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Abstract

Lysophosphatidic acid (LPA) is a phospholipid that acts as an extracellular signaling molecule and 

activates the family of lysophosphatidic acid receptors (LPA1–6). These G protein-coupled 

receptors (GPCRs) are broadly expressed and are particularly important in development as well as 

in the nervous, cardiovascular, reproductive, gastrointestinal, and pulmonary systems. Here, we 

report on a photoswitchable analogue of LPA, termed AzoLPA, which contains an azobenzene 

photoswitch embedded in the acyl chain. AzoLPA enables optical control of LPA receptor 

activation, shown through its ability to rapidly control LPA-evoked increases in intracellular Ca2+ 

levels. AzoLPA shows greater activation of LPA receptors in its light-induced cis-form than its 

dark-adapted (or 460 nm light-induced) trans-form. AzoLPA enabled the optical control of neurite 

retraction through its activation of the LPA2 receptor.

Lysophosphatidic acid (LPA) is a bioactive lipid that plays key physiological roles in health 

and disease. LPA targets the lysophospholipid receptors LPA1–6, a class of G protein-

coupled receptors (GPCRs) that have important roles in the nervous system, immune 

response, and development.1–3 Aberrant homeostasis of LPA levels is linked to a number of 

diseases including cancer,4 neurological disorders,5 and cardiovascular diseases.6 LPA is a 

potent signaling lipid with Kd values in the low nanomolar range at most LPA receptor 

subtypes.7 Additionally, LPA targets a number of intracellular targets, including the nuclear 

hormone receptor PPARγ,8 the autotaxin lysophospholipase D,9 and the ion channel 

TRPV1.10 LPA is formed transiently with a high metabolic turnover and complex 

metabolism since multiple enzymes contribute to its formation and degradation. The study 

of LPA function is therefore challenging with slow-acting conventional approaches, 

including pharmacology and genetic manipulations. New methods that facilitate 

spatiotemporal control over LPA signaling are needed to dissect the many functions of LPA. 

Optical tools could be particularly useful in this regard. Recently, Schultz and co-workers 

reported a photocaged version of LPA that allowed for light-induced activation of LPA 

receptor-dependent effects, including chemotaxis.11 However, photoactivation of this probe 

is not reversible, and it has a chemically modified headgroup, which perturbs the 

amphiphilic character of the molecule and might affect trafficking.12,13 In recent years, we 

and others have developed a series of photoswitchable lipids and demonstrated their capacity 

for the reversible optical control of lipid metabolism and signaling. These photoswitchable 

lipids have an azobenzene photoswitch incorporated into the hydrophobic tail and mediate 

optical control of lipid function by reversible, light-induced isomerization between the trans-

(straight) and cis- (bent) isomers. To date, applications of photoswitchable lipids include the 

modulation of ion channels,14–17 the fatty acid receptor GPR40,18 lipid rafts,19,20 lipid 

vesicle budding and fission,21 and protein translocation.22 Most recently, a photoswitchable 

version of sphingosine-1-phosphate (S1P), termed PhotoS1P, was published.23 While S1P is 

a sphingolipid and not a glycerophospholipid like LPA, the GPCRs activated by it are 

structurally related to the LPA receptors.24 Motivated by the importance of LPA and the 

success of our S1P derivatives, we decided to explore the photoswitchable version of LPA. 
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We now report a new photoswitchable probe, termed AzoLPA, which can be used to control 

endogenous and heterologously expressed LPA receptors and LPA2 receptor-dependent 

neurite retraction in NG108.15 neuroblastoma cells. The molecular design of a 

photoswitchable LPA called for incorporation of the azobenzene N=N double bond near the 

middle of the lipid tail, which corresponds to the C=C cis double bond in the predominant 

form of LPA, LPA(18:1). The synthesis of AzoLPA (Figure 1A) commenced with the 

phosphorylation of (S)-glycidol using di-tert-butyl-N,N-diisopropyl phosphoramidite to 

yield the phosphorylated glycidol derivative, 1. Acylation with a mixture of FAAzo-414 and 

the corresponding cesium salt gave the phosphoester, 2. AzoLPA was obtained through 

depro-tection of 2 with TFA. The photophysical characterization of AzoLPA (Figure 1B,C) 

revealed similar properties to classical azobenzenes and other photoswitchable lipids. The 

photolipid could be reversibly switched with UV-A (365 nm) and blue light (460 nm) and 

underwent slow thermal relaxation (Figure 1C).

We next tested the ability of AzoLPA to optically control LPA receptors using Ca2+ imaging 

in human embryonic kidney cells (HEK 293T; Figure 2), which exhibit high endogenous 

expression of LPA1 receptor.25 We employed the red calcium dye X-Rhod-5F,AM with λex 

= 581 nm and λem = 603 nm, which is orthogonal to the UV-A/blue wavelengths needed to 

achieve AzoLPA photoswitching. When applied in the trans-form, AzoLPA (25 nM) was 

inactive and did not yield a significant increase in Ca2+ concentration. Upon irradiation with 

UV-A light, AzoLPA could be activated yielding a robust increase in Ca2+ concentration 

(Figure 2B,C), which was also observed after direct addition of preirradiated (365 nm for 1 

min) cis-AzoLPA (25 nM, Figure 2D). Addition of DMSO and subsequent use of UV-A and 

blue light did not result in Ca2+ responses (Figure 2E and Figure S1). A saturating 

concentration of LPA (250 nM) yielded robust Ca2+ responses, which were not modulated 

through UV-A or blue light (Figure 2E and Figure S1). To demonstrate that the observed 

responses originated from the optical control of LPA1 receptor, we applied 10 μM of 

Ki16425,26 an antagonist for LPA1 receptor, together with the active photoisomer cis-

AzoLPA (25 nM). Ki16425 completely inhibited the Ca2+ response observed with cis-

AzoLPA demonstrating that these results are indeed based on the optical control of 

endogenous LPA1 receptors in HEK293T cells (Figure 2E).

Next, we systematically evaluated the effect of AzoLPA on cell lines that do not 

endogenously express LPA receptors endogenously and were stably transfected with one of 

the LPA1–5 receptors using a Ca2+-mobilization assay.27 Each untrans-fected cell line 

employed was confirmed to be nonresponsive to LPA(18:1), cis-AzoLPA, and trans-

AzoLPA (Figure S2). In agreement with the above Ca2+ imaging experiments in HEK 293T 

cells, cis-AzoLPA produced an increased response with the LPA1 receptor compared to 

trans-AzoLPA (Figure 3A). The same preference for cis-AzoLPA was observed by the 

LPA2 (Figure 3B) receptor and LPA4 receptors (Figure 3D). For the LPA3 receptor, AzoLPA 
(Figure 3C) showed only weak agonism and no significant light-dependent activity. At the 

LPA5 receptor, our data suggests potent agonism, but no significant differences were 

observed between photoisomers (Figure 3E). Thus, AzoLPA is an agonist of LPA1–5 

receptors, with markedly greater potency for LPA1,2,4 receptors.
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To rationalize the enhanced activity of cis-AzoLPA, we performed molecular docking 

studies into a crystal structure of LPA1 receptor (PDB29 entry 4Z3430) and homology 

models of LPA2–5 receptors. Homology models of LPA2–3 receptors were based on the 

crystal structure of LPA1 receptor, and homology models of LPA4–5 receptors were based on 

the crystal structure of LPA6 receptor (PDB29 entry 5XSZ31). Docking results confirm that 

cis-AzoLPA resembles the binding pose of bent LPA (18:1) better than trans-AzoLPA 
across different receptors (Figure 4 and Figure S3). Docked ligands in the LPA1 and LPA4 

receptors all showed phosphate headgroup engagement of residues required for LPA 

recognition (Figure 4A,C: R3.28 in LPA1 receptor24 and K2.60 in LPA4 receptor by analogy 

to R2.60 in LPA4
32). However, trans-AzoLPA must adopt a nonplanar conformation of the 

conjugated system (inset of Figure 4A,C), consistent with the poor receptor activation 

observed compared to both cis-AzoLPA and LPA(18:1) itself. The activity difference 

between photoisomers at LPA2 receptor was due to lack of phosphate engagement of R3.28 

by trans-AzoLPA (Figure 4B).

To demonstrate that AzoLPA can be used for the optical control of other LPA receptor-

dependent physiological path-ways, we next turned to neurite outgrowth assays. Neurite 

branch outgrowth and retraction are critical for the regulation of neural networks,5 and 

LPA(18:1) induces pronounced ROCK-pathway-dependent neurite retraction.33,34 We used 

the neuronal cell line NG108.15 to study light-dependence of neurite retraction and cell-

rounding with different concentrations of trans-AzoLPA or cis-AzoLPA. NG108.15 cells 

primarily express LPA2 receptors (Figure S4). In accordance with the pharmacological data 

shown in Figure 3B, we observed that cis-AzoLPA was significantly more potent than trans-

AzoLPA (Figure 5B,C). At physiologically relevant concentrations (100 nM), cis-AzoLPA 
is as potent as LPA(18:1) itself. The cell viability is not compromised by cis-AzoLPA 
(Figure S5).

In summary, we have disclosed the design, development, and application of a 

photoswitchable analogue of lysophosphatidic acid, AzoLPA. This photolipid was 

synthesized by incorporation of an azobenzene photoswitch into the lipid tail. Our approach 

preserves the integrity of the lipid headgroup and only perturbs the lipid tail while enabling 

light-dependent modulation of lipid function. We show that AzoLPA provides precise 

optical control of LPA receptor function using dynamic live cell Ca2+ release experiments. 

We further demonstrate the capacity of this tool to control neurite branching with light. 

Optical control of neurite branching in development could allow for the study of nervous 

system development with opportunities for spatiotemporal control. Beyond applications in 

neuroscience, AzoLPA could allow for the optical control of LPA-dependent physiological 

pathways in the study of development, reproduction, and vascular biology. This new tool 

might further be applicable to the optical control of intracellular LPA targets, including 

TRPV1, ATX, or PPARγ.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Synthesis and photophysical properties of AzoLPA. (A) Chemical synthesis of AzoLPA. 

(B) UV–vis spectra of AzoLPA in the dark-adapted (black, trans), 365 nm adapted (gray, 

cis), and 460 nm adapted (blue, trans) photostationary states (50 μM, DMSO). (C) 

Reversible cycling between photoisomers with alternating illumination at 365/460 nm.
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Figure 2. 
Optical control of endogenous LPA receptors in HEK293T cells. (A) Schematic depiction of 

the optical control of LPA receptor-induced Ca2+ release. (B) Representative images of Ca2+ 

response before and after addition of AzoLPA (25 nM), irradiation with 375 nm light, and 

addition of Triton X100. Ca2+ responses after treatment with cis-AzoLPA (C), trans-

AzoLPA (D), irradiation with light, and after treatment with Triton X100. (E) Quantification 

of Ca2+ responses as Fmax normalized to Triton X100. Parts C–E include data from at least 

20 cells from two independent experiments. Error bars represent mean ± SEM; **** p < 

0.0001, n.s., not significant, Student’s t-test.
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Figure 3. 
Optical control of LPA1–5 receptor-mediated Ca2+ release. Fura2-AM calcium imaging in 

cells stably transfected with LPA1–5 receptors. Dose response of LPA (18:1), trans-AzoLPA 
and cis-AzoLPA in RH7777 LPA1 receptor (A), MEF LPA2 receptor (B), RH7777 LPA3 

receptor (C), CHO LPA4 receptor (D), and B103 LPA5 receptor (E) cells. A minimum of 

two independent experiments that included triplicate samples were performed. Data points 

were normalized to maximal LPA response for each receptor. Error bars represent mean ± 

SD.
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Figure 4. 
Molecular docking of AzoLPA. Computationally predicted poses for LPA(18:1) (green), 

trans-AzoLPA (cyan), and cis-AzoLPA (orange) docked into LPA1 receptor (A), LPA2 

receptor (B), and LPA4 receptor (C). Pocket surfaces are highlighted in green (hydrophobic) 

and violet (hydrophilic). The numerals represent key residues involved in target engagement 

according to the Ballesteros– Weinstein system.28
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Figure 5. 
Optical control of neurite branch retraction in NG108.15 cells. (A) Scheme of LPA or 

AzoLPA-induced neurite retraction. (B) Representative images of NG108.15 cells after 

addition of trans-AzoLPA or cis-AzoLPA after 0 and 30 min. (C) Quantification of body 

cell rounding at different concentrations of LPA (18:1), trans-AzoLPA, and cis-AzoLPA 
after 30 min of treatment. Samples were run at least in three independent experiments. p-

values for trans-AzoLPA vs cis-AzoLPA. **** p < 0.0001, Mann–Whitney test. Error bars 

represent mean ± SD.
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