
UC Santa Cruz
UC Santa Cruz Electronic Theses and Dissertations

Title
Artifice: A Design for Usable Deniable Storage Informed by Adversary Threat

Permalink
https://escholarship.org/uc/item/43g1t8mn

Author
Barker, Austen

Publication Date
2022

Copyright Information
This work is made available under the terms of a Creative Commons Attribution License, 
availalbe at https://creativecommons.org/licenses/by/4.0/
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/43g1t8mn
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/


UNIVERSITY OF CALIFORNIA
SANTA CRUZ

ARTIFICE: A DESIGN FOR USABLE DENIABLE STORAGE
INFORMED BY ADVERSARY THREAT

A dissertation submitted in partial satisfaction of the
requirements for the degree of

DOCTOR OF PHILOSOPHY

in

COMPUTER SCIENCE

by

Austen Thomas Barker

June 2022

The Dissertation of Austen Thomas Barker
is approved:

Professor Darrell D. E. Long, Chair

Professor Ethan L. Miller

Doctor William Semancik

Doctor Ike Nassi

Peter Biehl
Vice Provost and Dean of Graduate Studies



Copyright © by

Austen Thomas Barker

2022



Table of Contents

List of Figures v

List of Tables ix

Abstract x

Dedication xii

Acknowledgments xiii

Glossary xv

1 Introduction 1

2 Background 8
2.1 A Survey of Steganographic File Systems . . . . . . . . . . . . . . 9
2.2 Snapshot and Traffic Analysis attacks . . . . . . . . . . . . . . . . 12
2.3 Flash Storage and Mobile Devices . . . . . . . . . . . . . . . . . . 13
2.4 Secure Deletion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3 Threat Model 20
3.1 Shortcomings of Previous Models . . . . . . . . . . . . . . . . . . 20
3.2 Our Threat Model . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.2.1 An Example Use Scenario . . . . . . . . . . . . . . . . . . 22
3.2.2 Malware and Information Leakage . . . . . . . . . . . . . . 23
3.2.3 Suspicion, Escalation, and Coercion . . . . . . . . . . . . . 25
3.2.4 The Attack Surface . . . . . . . . . . . . . . . . . . . . . . 26
3.2.5 The Challenge of Multi-leveled Deniability . . . . . . . . . 28

3.3 Possible attacks under our threat model . . . . . . . . . . . . . . 29
3.4 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.4.1 Prior Threat Models . . . . . . . . . . . . . . . . . . . . . 33

iii



3.4.2 Existing Attacks . . . . . . . . . . . . . . . . . . . . . . . 36
3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4 The Artifice Deniable Storage System 39
4.1 Design requirements for a Deniable Storage System . . . . . . . . 39
4.2 Artifice System design . . . . . . . . . . . . . . . . . . . . . . . . 41

4.2.1 Artifice Map . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.2.2 Information Leakage, Malware, and Hiding Driver Software 47
4.2.3 Obfuscation and Redundancy through Information Disper-

sal Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.2.4 Deniable Writes to Public Free Space . . . . . . . . . . . . 58
4.2.5 Flash Considerations . . . . . . . . . . . . . . . . . . . . . 61

4.3 Secure Deletion and Steganographic Storage . . . . . . . . . . . . 64
4.3.1 Steganographic Storage through a Secure Delete File System 65

4.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5 Implementation & Operational Security 70
5.1 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
5.2 Operational Security Model . . . . . . . . . . . . . . . . . . . . . 72
5.3 Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

6 Survivability Analysis 81
6.1 Theoretical Evaluation . . . . . . . . . . . . . . . . . . . . . . . . 82
6.2 Experimental Evaluation . . . . . . . . . . . . . . . . . . . . . . . 89
6.3 Mean Time to Data Loss . . . . . . . . . . . . . . . . . . . . . . . 95
6.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

7 Snapshot & Statistical Analysis Attacks 105
7.1 A Multiple Snapshot Attack Framework . . . . . . . . . . . . . . 106
7.2 Data Collection & Experiment Methodology . . . . . . . . . . . . 112
7.3 Snapshot Attack Mitigation . . . . . . . . . . . . . . . . . . . . . 116
7.4 Snapshot Attack Results . . . . . . . . . . . . . . . . . . . . . . . 118
7.5 Entropy Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
7.6 Dealing with FTLs and TRIM . . . . . . . . . . . . . . . . . . . . 126
7.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

8 Conclusion and Future Work 131
8.1 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

Bibliography 136

iv



List of Figures

2.1 Anderson et al.’s second proposed scheme for a steganographic file
system. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

4.1 System overview of Artifice. The Artifice kernel module resides in
a separate operating system contained on removable media. The
public system includes the public file system that Artifice hides in
and the public OS. Free space in the public file system should be
filled with pseudo-random blocks. . . . . . . . . . . . . . . . . . . 42

4.2 The design of the Artifice Map. . . . . . . . . . . . . . . . . . . . 43
4.3 The process of locating Artifice super blocks through chain hashing

a user’s passphrase. . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.4 Metadata overhead as a percentage of total Artifice available space

when implemented as a virtual block device. Metadata overhead is
only dependent on the total number of carrier blocks. . . . . . . . 46

4.5 Share generation with AONT-RS (All or Nothing Transform and
Reed-Solomon), Shamir Secret Sharing, and Reed-Solomon/Entropy. 51

5.1 Architecture of the Artifice block device driver. . . . . . . . . . . 71

v



6.1 Probability of survival for Artifice metadata in a variety of con-
figurations using both Reed-Solomon/Entropy (RS), Shamir Secret
Sharing (SSS) and AONT-RS. Probabilities are calculated assum-
ing 512GB of free space, 5GB written between repair cycles, 5GB
Artifice volume, and 365 repair cycles. k is the reconstruction
threshold in carrier blocks. . . . . . . . . . . . . . . . . . . . . . . 84

6.2 Probability of survival for an entire Artifice volume with the same
configuration as Figure 6.1 . . . . . . . . . . . . . . . . . . . . . . 85

6.3 Probability of survival with varying Artifice volume sizes ranging
from 256MB to 4GB. 5GB of writes between repair operations and
512GB of unallocated space. k is the reconstruction threshold in
carrier blocks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

6.4 Probability of survival with varying sizes of writes between Artifice
invocations from 256MB to 8GB. 512GB of unallocated space and
a 5GB Artifice volume. . . . . . . . . . . . . . . . . . . . . . . . . 87

6.5 Probability of survival with varying sizes of unallocated spaces from
64GB to 512GB. 5GB of writes between repair operations and a
5GB Artifice volume. . . . . . . . . . . . . . . . . . . . . . . . . . 88

6.6 Amount of free space on our SSD at each snapshot. . . . . . . . . 89
6.7 Amount of data written to the SSD between each pair of snapshots. 90
6.8 Amount of data written to newly allocated regions of the disk be-

tween each pair of snapshots. . . . . . . . . . . . . . . . . . . . . 91
6.9 Number of redundant carrier blocks per data block tuple versus the

average number of data blocks lost with a 2GB Artifice instance for
Reed-Solomon/Entropy (RS), AONT-RS (AONT), Shamir Secret
Sharing (SSS), and basic replication. . . . . . . . . . . . . . . . . 92

6.10 Number of redundant carrier blocks per data block tuple versus the
average number of carrier blocks overwritten with a 2GB Artifice
instance for a variety of IDAs. . . . . . . . . . . . . . . . . . . . . 93

6.11 Generalized Markov model with no repair rate. . . . . . . . . . . . 95
6.12 (5, 3) Markov model with no repair rate. . . . . . . . . . . . . . . 97

vi



6.13 Generalized Markov model with repair rate v. . . . . . . . . . . . 98
6.14 (5, 3) Markov model with a repair rate of v. . . . . . . . . . . . . 99
6.15 MTTDL in hours for Artifice data blocks using Shamir Secret Shar-

ing (SSS) with different reconstruction thresholds measured in car-
rier blocks (k) and basic replication with no repair rate (v = 0). . 102

6.16 MTTDL in hours for Artifice data blocks using Shamir Secret Shar-
ing (SSS) with different reconstruction thresholds measured in car-
rier blocks (k) and basic replication with a repair rate of v = 1/24
(once a day). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

7.1 Theoretical probability of consecutive changes when changes are
made uniformly. The probability of c consecutive changes degrades
very quickly, especially when the free space is large. . . . . . . . . 108

7.2 Empirical probability of consecutive changes for 52 change records
where the changes are made by an ext4 file system. Note the occa-
sional spikes in probability found in the long tail due to occasional
movements or downloads of unusually large pieces of data. . . . . 109

7.3 Hidden volumes over 0.75GB in size are always identified successfully.115
7.4 Entropy values per block for a variety of IDAs and AES. Note that

the entropy value for each block is around 7.95 with some level of
statistical noise and no easily visible outliers that would denote a
flaw in one of the systems. . . . . . . . . . . . . . . . . . . . . . . 122

7.5 Right: Approximated probability distributions for the entropy of
data encoded with a variety of IDAs and AES. Left: Probability
distribution for Reed-Solomon/Entropy with compressed data as
an entropy source, note the long tail indicative of lower entropy
values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

7.6 Quantile-Quantile plot showing the relationship between AES en-
tropy values and a Gaussian distribution. . . . . . . . . . . . . . . 125

vii



7.7 120GB SSD with 68GB of free space after a TRIM operation.
Black correspond to in use logical blocks, gray pixels are blocks
that return only zeroes due to TRIM. . . . . . . . . . . . . . . . . 126

7.8 Region of free space on a 120GB SSD with a 512MB Artifice vol-
ume written. Note the random distribution of written blocks in
otherwise unused and zeroed free space. . . . . . . . . . . . . . . . 127

viii



List of Tables

2.1 Summary of Previous Deniable Storage Systems . . . . . . . . . . 19

5.1 Possible scenarios and remedies for the compromise of different Ar-
tifice components. . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.2 Performance comparison of public volume performance with Ar-
tifice configured with AONT-RS and with Shamir Secret Sharing
(SSS). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

6.1 Probability of overwrite for Shamir Secret Sharing (SSS), All or
Nothing Transform (AONT-RS), Reed-Solomon/Entropy (RS), and
Replication with different reconstruction thresholds in carrier blocks
(k). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

7.1 Numeric results from the classifier averaged over 100 runs. Fur-
thermore, 95% confidence intervals for all figures vary only in the
thousandths. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

ix



Abstract

Artifice: A Design for Usable Deniable Storage Informed by Adversary Threat

by

Austen Thomas Barker

With the widespread adoption of disk encryption technologies, it has become

common for adversaries to employ coercive tactics to force users to surrender en-

cryption keys and other access credentials. For some users, this creates a need for

data storage that provides plausible deniability: the ability to deny the existence

of sensitive information to avoid coercive tactics that put their safety at risk.

Plausibly deniable storage would benefit groups such as human rights advocates

relaying sensitive information, journalists covering human rights stories in a war

zone, or NGO workers hiding food shipment schedules from militias.

Most previous systems rely on some form of steganography to conceal sensi-

tive information among innocuous-appearing data on a user’s storage device. To

accomplish this, they often utilize the unallocated space on a disk to conceal a

plausibly deniable hidden volume. Previous approaches all exhibit major design

weaknesses stemming from flawed assumptions in their design, like the assump-

tion that the presence of the driver software used to run a deniable volume would

not be suspicious to an adversary. The state of the art also does not present

solutions to malware installed by the adversary, and does not explore operational

characteristics of their systems. Generally, there is a lack of experimental eval-

uation and available implementations. As a result of these flawed assumptions

and other shortcomings, previous deniable storage systems only offer pieces of an

implementable and usable solution.

We have developed a new threat model for plausibly deniable storage, designed

x



a system to counter the adversary described in the threat model, and experimen-

tally evaluated both our design and long-held assumptions integral to previous

systems. We have designed and implemented Artifice, a deniable storage system

that allows us to evaluate our hypotheses. With Artifice, hidden data blocks are

split with an information dispersal algorithm to produce a set of obfuscated carrier

blocks that are indistinguishable from other pseudo-random blocks on the disk.

The blocks are then stored in unallocated space, possess a self-repair capability,

and rely on combinatorial security. We have evaluated the reliability and effec-

tiveness of this approach in protecting the integrity of a hidden volume through

theoretical models and empirical evaluation.

Unlike existing and proposed systems, Artifice addresses problems regarding

flash storage devices and multiple snapshot attacks through comparatively simple

block allocation schemes and operational security. To hide the user’s ability to

run a deniable system and prevent information leakage, Artifice stores its driver

software separately from the hidden data. We have also designed and imple-

mented the first multiple snapshot attack against a deniable storage system. This

attack has been shown to classify the existence of an Artifice volume on a disk un-

der certain circumstances and we used these results to provide recommendations

for how a user can deniably modify their device’s characteristics to mitigate the

effectiveness of the attack.

xi



This dissertation is dedicated to my parents and family for all their support, and

Natalie, without whose patience, love, and support this work would not have

been possible.

xii



Acknowledgments

I would like to thank Professor Long, my PhD advisor, for his mentor-ship,

guidance, and contributions to this work.

I would also like to thank Professor Miller, Dr. Ike Nassi and Dr. William

Semancik for serving on my qualifying exam and dissertation committees and for

working with me on editing and fine tuning this dissertation.

I’d like to thank my fiancée Natalie for her support. Without her I would not

have finished this work.

My parents, sister, and extended family who have listened to me rant endlessly

about myopic details pertaining to this work have my gratitude. I’d like to thank

them for nodding along and humoring these ramblings.

My thanks to Thomas Schwarz and Jehan-François Pâris for their assistance in

developing the survivability analysis chapter and James Hughes for his assistance

with the threat and operational security models.

Yash Gupta, Eugene Chou, and many other graduate students and under-

graduates have contributed to this project’s repositories over the years. Without

these individuals Artifice’s prototype implementation would not have taken form

as well as it has. I’d also like to thank Sabrina Au for repeatedly reviewing and

helping to craft the papers that published much of the content contained within

this dissertation.

Kyle Fredrickson was instrumental in developing and implementing a multi-

ple snapshot attack that has formed the core of the Artifice’s statistical analysis

evaluation.

Lastly I’d like to thank the NSF and the Storage Systems Research Center for

providing the funding and a work space needed to complete this work. This work

would not have been possible without the collaboration of SSRC members and

xiii



long hours spent in front of a lab white board.

Several members of the Storage Systems Research Center have contributed to

this work. This dissertation includes work sourced or derived from the following

previously published papers.

• Kyle Fredrickson, Austen Barker, Darrell D. E. Long. “A Multiple Snap-

shot Attack on Deniable Storage Systems.” Proceedings of the 29th Interna-

tional Symposium on Modeling, Analysis, and Simulation of Computer and

Telecommunication Systems (MASCOTS 2021), November 2021. With per-

mission from Kyle Fredrickson. Professor Long directed and supervised the

work published in this paper. I performed the literature review, data collec-

tion, implementation, and drafting of the paper with assistance from Kyle

on the theoretical construction of the attack, implementing the program

that carries out the attack, and processing experimental results.

xiv



Glossary

device mapper The Linux kernel system used to create virtualized block devices

on top of other virtual or physical storage devices to modify their behavior
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Chapter 1

Introduction

As the use of strong encryption for personal data storage becomes more com-

mon, it becomes more difficult for those who wish to control the free flow of

information to monitor and restrict a user’s actions. This prompts regimes and

other organizations in opposition to the widespread use of encryption to utilize

more unconventional tactics. As a result, in some situations, the possession of

an encrypted file or disk can expose a user to coercive cryptanalysis tactics that

can vary from threats of legal penalties [123] up to physical violence as in the

case of a rubber hose attack [124]. With such a threat to the user’s safety and

well-being while carrying sensitive information, it becomes necessary to not only

protect the confidentiality of the data but also provide plausible deniability, the

ability to deny that the sensitive data even exists.

The lack of plausibly deniable storage can encourage individuals to resort to

extreme methods to exfiltrate data from dangerous or restricted environments.

For example, in 2011 a Syrian engineer hid a micro SD card in an arm wound to

exfiltrate information about atrocities in Hama, Syria [79]. It is also becoming

increasingly common for nations and law enforcement agencies to legally require

disclosure of encryption keys [123] under a variety of circumstances. Developing

1



tools that enable secure and private information storage are vital for journalists,

NGOs, peaceful dissent, and the free dissemination of information.

This challenge can be met through the use of steganography: hiding sensitive

information among innocuous non-secret data. For instance, an example of digital

steganography is hiding information among the lower order bits of an image such

that the image appears unaltered to the naked eye. A class of software and

hardware techniques called deniable storage systems use such techniques to create

a hidden storage volume, the presence of which can be plausibly denied by a

user. In theory, this would allow a user to present a device to an adversary

and provide access credentials to a publicly visible volume without revealing the

hidden volume contained within it. Some approaches even take this a step further

and provide multiple levels of deniability with more sensitive information kept at

higher deniability levels. The most common way to achieve this is to disguise and

hide data among the unallocated space of an existing storage volume [9, 74].

There have been a wide variety of different proposed systems designed to pro-

vide plausible deniability, although there are perennial problems that no approach

has addressed. Foremost among these is that no system can provide plausible de-

niability for the driver software needed to maintain a hidden volume [26, 131].

Some designs assume that deniable storage systems would be widespread to pro-

vide deniability for the user’s capability of possessing a hidden volume [21, 109].

Widespread use of a privacy tool does not amount to deniability as evidenced

by the current suspicion of encryption technologies that serve as the impetus for

deniable storage. Flawed assumptions have also led to consistent problems with

sensitive information leakage from the hidden to the public volumes [30]. Many

systems assume that a device will not contain any malware even after contact

with the adversary [26,80,109], which is unlikely given recent trends [128]. Lastly,

2



existing systems that aim to defend against more technically evolved attacks that

could be carried out by a more advanced adversary in the process leave them-

selves vulnerable to much simpler attacks [16, 20, 26]. An example of this last

point can be found in the case of a multiple snapshot attack in which an adversary

compares snapshots of a device from different points in time and looks for suspi-

cious changes. In the process of defending against these sorts of attacks, systems

will create other sorts of suspicious markers that betray the existence of a hidden

volume.

An examination of previous systems reveals important questions about disk

forensics, system design, and the operational characteristics of deniable storage

systems. To better explore and test our hypotheses about answers to these ques-

tions we have developed a new adversary model that addresses the flawed assump-

tions of previous approaches. In this new threat model, it is assumed that malware

will be deployed by our adversary to surveil the user and gather additional infor-

mation they can use to find evidence of a hidden volume. We also present the

notion that an adversary will primarily rely on coercive tactics to uncover and

gain access to hidden data and only needs a sufficient level of suspicion to use

these tactics against a user. With a sufficiently detailed description of our attack

surface, we have been able to identify potential attacks our adversary can leverage

to look for indications of the hidden volume. These can include but are not limited

to: finding information leakage from applications, analyzing the performance of

a system for anomalies, statistical analysis to detect anomalies in measurements

taken from a disk, deploying malware, or identifying behaviors specific to flash

devices that betray a hidden volume.

From our adversary model, we can derive requirements for a deniable storage

system to defend against the described adversary. Since carrying encrypted files

3



or dedicated hardware is inherently suspicious, a deniable storage system must

co-exist with an open public file system to maintain plausible deniability. Visi-

ble drivers or firmware are highly suspicious, as are unconventional partitioning

schemes, unusable space in a file system, and unexplained changes to a disk’s

free space. The hidden file system must therefore operate in such a way that the

encapsulating file system and operating system (OS) are unaware of the hidden

file system’s existence, even when faced with a detailed forensic examination. A

deniable system must therefore meet four requirements: effectively hide existence

of the data, disguise hidden data accesses, have no impact on the behavior of the

public system, and hide the software used to read and write the hidden data.

Following these requirements, we have built a new system, Artifice, a deniable

steganographic storage system that seeks to provide functional plausible denia-

bility for both the data and the Artifice system. When the user needs to access

the hidden data, they boot into an Artifice-aware operating system, such as a

modified version of Linux stored on a USB drive. Booting into a separate operat-

ing system provides effective isolation from the host OS. Unlike previous systems,

this does not leave behind suspicious drivers on the user’s machine. To provide

both obfuscation and a level of redundancy to our hidden data, a user’s data is

encoded with an information dispersal algorithm (IDA) which produces a set of

carrier blocks that appear to contain random data. These carrier blocks can then

be written to the unallocated space of an existing public file system. As the public

file system cannot be aware of Artifice’s existence, Artifice must protect this data

from overwrites made by public operations. To address this risk to the integrity

of our hidden data our IDA based approach allows Artifice overwrite tolerance by

only requiring a tunable subset of the carrier blocks to reconstruct the original

data. We have selected a variety of IDAs that Artifice can use, each of which

4



have pros and cons. Additionally, this approach enables Artifice to repair itself

whenever the user boots the Artifice aware OS.

Artifice carrier blocks are generated so that they appear to be random data

making them indistinguishable from other random unallocated blocks. We have

concluded that filling free space on a drive with random bytes must be done

through a deniable process so that the adversary does not see the presence of

random unallocated blocks as suspicious. One way to accomplish this is through

a system that securely wipes a drive by encrypting data and throwing away the key.

To make our hidden data easy to find when needed but difficult for an adversary

to guess, Artifice metadata locations are generated algorithmically from a pass-

phrase that must be supplied by the user. Without the correct passphrase, finding

an Artifice instance through guessing its location in free space is computationally

infeasible.

Artifice addresses the issue of multiple snapshot attacks through a variety

of possible countermeasures. These include deniably shuffling blocks under the

guise of a deniable operation such as defragmentation, ensuring there are enough

accesses to the public volume to act as a smokescreen, or through operational

security measures that deny our adversary the ability to carry out such an attack.

All these techniques can be used to defend against this problem that previous work

has fixated on, while avoiding the vulnerabilities previous approaches expose.

We have explored the often-ignored operational characteristics of deniable stor-

age systems as a way to address gaps in a system’s deniability. These include pro-

cedures for compromised devices or passphrases, best practices for hidden data

integrity, navigating different choices of storage medium, and possible strategies

for avoiding certain attacks we have previously identified.

In its current form Artifice is implemented as a logical block device through the
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Linux device mapper framework. This implementation allowed us to empirically

evaluate the validity of both our assumptions and those upon which previous

approaches are based.

With both theoretical and applied techniques, we were able to evaluate the

resilience of a deniable storage system when faced with operations made by an

unaware public file system. To test the effectiveness of our obfuscation schemes,

we applied entropy analysis techniques to samples of carrier blocks and were able

to show that they are indistinguishable from other pseudo-random blocks, such

as those secured by strong disk encryption systems.

We carried out the first demonstrated multiple snapshot attack on deniable

storage. This attack entails taking two snapshots of a disk suspected of harbor-

ing a hidden volume and analyzing the changes between the two snapshots for

suspicious activity or statistical anomalies. Carrying out such an attack that has

previously only been described in theory has allowed for a more accurate charac-

terization of an adversary’s capabilities. Doing so determines the actual threat

these attacks pose to all deniable storage systems, and to better develop coun-

termeasures against such attacks. This implemented attack has shown that even

when comparing write behavior based on a single feature, it is possible to dis-

tinguish between a disk with and without a hidden volume if the ratio of writes

to the public volume versus the number of writes to the hidden volume is low

enough.

We have also been able to better analyze the challenges posed by the unique

structure of flash devices, specifically TRIM operations and garbage collection.

TRIM is a command sent by a file system to a flash device to tell the device

when a block is no longer in use so that it may be garbage collected. While it

is recommended that Artifice be used on a device with TRIM disabled, this left

6



unanswered questions as to whether or not Artifice could cope with the forensic

implications of a solid state drive with TRIM enabled. To address this, we have

described and demonstrated not only how Artifice can be detected or accidentally

destroyed on a flash storage device but also a variety of different avenues for

mitigating these risks and ensuring hidden data can remain undiscovered while

providing methods to reliably recover that data.
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Chapter 2

Background

Unlike more common cryptographic techniques such as encryption which fo-

cuses on preserving the confidentiality of a secret, steganography aims to hide the

presence of the secret altogether. In the digital era steganographic techniques are

commonly applied to hide information in media files such as images or audio. A

common technique is to manipulate the least significant bits in an image to store

information [24]. In most cases this leaves the image indistinguishable from the

original to the human eye. All these approaches are ill-suited for storing large

amounts of information because they are space inefficient and are difficult to scale

while maintaining an assurance of plausible deniability.

Over the past two decades there have been numerous attempts at creating

a steganographic storage system that will allow a user to store relatively large

amounts of data with some level of plausible deniability. While these existing

systems all claim to provide deniability, they commonly possess easily detectable

traces or behaviors. Such characteristics can betray the existence of the file system

itself or the user’s capability of running a plausibly deniable system.
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2.1 A Survey of Steganographic File Systems

Anderson, et al. [9] were the first to propose a steganographic file system and

described two possible approaches. The first approach consists of a set of cover files

filled with random information, of which a subset is combined with hidden files

using an additive secret sharing scheme. The exact subset of the cover files that

must be XOR’d together to reveal the hidden data is determined by a passphrase.

This approach is more in line with classical steganographic systems that rely on

embedding hidden information in the lower-order bits of audio and video files.

While this approach is conceptually simple, a relatively large number of cover

files is required to provide computational security. Additionally, the presence of

unexplained random cover files would be easily detectable and could be considered

suspicious by an adversary.

Figure 2.1: Anderson et al.’s second proposed scheme for a steganographic file
system.

The second construction hides data within the unallocated space of another

file system. The hidden files would be located using a one-way hash of some

credential, encrypted to prevent detection in a disk filled with random bits, and

replicated to protect against overwrite by the encapsulating file system. Due to

the challenges posed by the cover file method most deniable storage systems are

derived from this construction.

Deniable systems that hide information in free space fall into three general

categories as described by Anderson et al.
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1. File Systems that are either implemented as a standalone file system in-

tended to manage both public and hidden volumes [48, 80, 83] or as an ex-

tension to an existing file system [74].

2. Block Devices that present virtualized hidden and in some cases also public

volumes that are then treated by the operating system as disks [16,20,22,26].

These approaches often utilize the Linux device mapper framework [71] to

insert themselves into the existing Linux storage system.

3. Firmware approaches are often applied to flash devices where one could

modify the existing flash controller to support hidden volumes [55,131].

McDonald and Kuhn implemented Anderson et al.’s second scheme as a Linux

file system based on ext2 [4] known as StegFS [74]. StegFS uses a block allocation

table to map encrypted data to unallocated blocks. The hidden data is replicated

to protect against accidental overwrite by the public file system. Unfortunately,

continued writes to the public volume will eventually cause the loss of hidden

data. It also possesses the capability of nesting hidden volumes so that the user

can reveal less sensitive data in the hope of satisfying an adversary.

Mnemosyne [48] is a distributed approach to steganographic storage that re-

places StegFS’s simple replication technique with Rabin’s Information Disper-

sal Algorithm [88] to provide greater durability and decrease write amplification

across nodes. The primary weakness of such a system is that by distributing

hidden information across multiple machines the attack surface is expanded to

include any network infrastructure between the nodes.

The on-the-fly-encryption (OTFE) system TrueCrypt [120], its successor Ver-

aCrypt [78], and other similar systems [10, 98] also provide the capability of run-

ning a hidden file system within the free space of an ordinary encrypted volume.

Its approach is similar to StegFS in that each nested file system has a single key,
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which grants access to that level’s hidden data. Czeskis et al. [30] demonstrated

that TrueCrypt was vulnerable to information leakage through data writes made

by the operating system, file managers, and word processors. In the case of leak-

age through the operating system, a TrueCrypt hidden volume can be betrayed

by the Windows Registry or file shortcuts. Automated recovery files made by

Microsoft Word allowed for recovery of hidden files from the public volume if the

file was opened using the word processor.

Pang et al. [80] implemented their variant of StegFS that improved reliability

by removing the risk of data loss in the hidden file system when the public file

system writes data. To achieve this both public and private volumes share a

block allocation bitmap. The hidden files are stored in free locations according to

a secret key and are not tracked in the public file system’s data structures. While

this does provide perfect resistance to accidental overwrite the bitmap is left in

the open which exposes the existence and maximum size of the hidden files. This

work was expanded on by Zhou et al. [129] which described countermeasures for

defending Pang’s version of StegFS against two kinds of forensic analysis. In the

first case it is assumed that the adversary can view static snapshots of the disk and

compare them in what is commonly referred to in later work as a multiple snapshot

attack. The second type of analysis, called traffic analysis involves the adversary

viewing the actual IO traffic patterns in real-time. Both countermeasures rely on

obfuscating any patterns in disk traffic or differences between snapshots through

either relocating blocks and issuing dummy operations in the case of a snapshot

attack or through feeding operations through multiple buffers in the case of a

traffic analysis attack.
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2.2 Snapshot and Traffic Analysis attacks

Defeating snapshot and traffic analysis attacks has become a central problem

facing the development of deniable storage systems. As a result, most systems

developed after Zhou et al.’s work on StegFS attempt to eliminate distinctions

between writes to the public and hidden volumes.

Troncoso et al. [119] analyzed the countermeasures developed for Pang’s StegFS

from the perspective of an adversary that could continuously observe disk traffic.

They demonstrated that it is possible with high reliability to reveal the existence

of a hidden volume defended by those countermeasures.

Datalair [20] and HIVE [16] combine a hidden volume with oblivious RAM

(ORAM) [39, 40] techniques. ORAM is intended to prevent an adversary from

gaining information about a running program by observing the distribution of

memory accesses. This same class of techniques can be applied to deniable stor-

age systems where the distribution of writes to a device could betray the existence

of a hidden volume if the distribution does not reflect normal disk behavior. The

significant performance penalties of ORAM [23] are somewhat offset by the need

to only obfuscate write patterns as read patterns are often ignored because they

do not change the state of the disk. Theoretically, this prevents an adversary

from successfully carrying out a multiple snapshot attack. When it is applied

to a deniable storage system it severely impacts the usability of both the hidden

and public volumes. In the case of HIVE, throughput for both public and hidden

sequential operations is slowed to 1 MB/s [20] compared to raw disk performance

of about 220 MB/s. Random disk write patterns and unexplained slow perfor-

mance compared to the raw disk can be considered suspicious and lead to the

compromise of the hidden volume.

Chen et al. published PD-DM [26], a virtual block device approach aimed at
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addressing the poor performance of ORAM derived systems [16, 20]. Although

it significantly improves read performance, write performance still suffers and it

presents the same distinctive performance characteristics that would betray the

existence of a hidden volume.

A variety of systems attempt to defend against multiple snapshot attacks by

making dummy writes to the disk with the goal of preventing the adversary from

exposing the existence of a hidden volume based on write distributions [21,80,131].

Although this approach could lead to the same abnormal write patterns that

weaken ORAM-based approaches.

2.3 Flash Storage and Mobile Devices

SSDs create a set of different issues for deniable storage versus traditional hard

drives. The logical block store that the flash translation layer (FTL) presents to

the operating system allows the SSD to relocate physical pages so that garbage

collection can reclaim pages invalidated by more recent writes independently of

the operating system. It is necessary for the SSD to create free flash blocks

(encompassing a moderate, but fixed number of pages) that can be erased and

made available to future writes. Erased blocks are usually not available via the

logical interface as they are not mapped into the logical address space. The FTL

will mark any block written by a file system as “in use” whether these writes

from the hidden or public system. This creates an opening for detection through

forensic analysis where our adversary can compare a list of blocks used by the

file system to those marked as in use by the SSD. Alternatively, the FTL may

unknowingly erase hidden data as part of opaque and non-standardized garbage

collection operations if it is unaware of the deniable volume’s presence.

This layer of abstraction presents a hurdle for deniable storage systems. Most
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that seek to address these challenges either work on raw flash devices [83] or

are intended to operate as drive firmware [131]. Since custom firmware would

be suspicious and raw flash devices are still relatively uncommon, Artifice must

attempt to address these challenges through other means.

DEFY [83] is a log-structured deniable file system designed for host controlled

flash devices and is based on WhisperYAFFS [107], itself an encrypted version of

the YAFFS file system. DEFY does not adequately protect against hidden data

overwrite unless hidden volumes are constantly mounted and is designed for use on

memory technology devices (MTDs). An MTD is a type of raw flash device that

relies on the operating system or file system to perform tasks normally performed

by the FTL. MTDs are commonly found on mobile devices.

Zuck et al. [131] proposed the Ever-Changing Disk (ECD) [131], a firmware

design that splits a device into hidden and public volumes where hidden data

is written alongside pseudo-random data in a log-structured manner. Although

the design makes significant progress towards solving the problem of hidden data

overwrite and mitigating multiple snapshot attacks, the lack of deniability for the

exposed partitioning scheme and proposed custom firmware are vulnerabilities.

Jia et al. [55] present three generalized attacks against conventional deniable

volumes operating on flash devices. They describe a capacity analysis attack

against DEFY that leverages the fact that it disables garbage collection at its lower

deniability levels to prevent overwrite of data at higher levels. They also design

and implement an FTL-based deniable storage system called DEFTL. While this

system adequately defends against a less rigorous adversary it fails to provide

deniability for the flash device’s custom firmware or defend against a multiple

snapshot attack.

Some systems such as INFUSE [25] utilize the ability of certain flash devices
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to switch between single bit per cell (single bit per cell) and MLC (multiple bits

per cell) to hide information. To the adversary, a flash device looks like it is using

SLC while it actually is an MLC device that is using the additional available bits

per cell to create a hidden volume. Zuck et al. have explored the technical details

and limitations and of this technique with their data hiding method VT-HI [130].

While these techniques make it far more difficult to detect the hidden data outright

they do not provide protections against malware or information leakage.

Due to the increasing prevalence of mobile devices it follows that some deniable

systems would be developed specifically for smartphones and tablets. One of these

called Mobiflage [109], fills the disk with random bits where hidden data can

possibly be stored. The hidden volume is then placed at a specific hidden offset

within a public volume. Like many previous approaches, it relies on the ambiguity

of whether or not hidden data is present to provide deniability. Multiple variants of

Mobiflage are presented but they all rely on a FAT32 formatted SD card installed

in the mobile device.

Many similar systems designed for use in concert with Android’s full disk

encryption system have incrementally improved upon Mobiflage’s basic design.

Among these is Yu et al.’s Mobihydra [127] which adds support for multiple de-

niability levels and uses a “shelter volume” to transfer data from the public to

hidden volumes without rebooting the device. One of the primary focuses of this

work is the boot timing attack [127], a side channel attack in which the adver-

sary directs the user to attempt booting into a system repeatedly with both valid

public system passwords and incorrect passwords. The time difference between

correct and incorrect authentication operations is then used by the adversary to

determine whether a hidden volume is present. Yu et al. experimentally verify

the efficacy of the boot timing attack against a mobile phone running Mobiflage.
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Another system, Mobipluto [22], uses thin provisioning to create virtual hid-

den and public volumes. Mobimimosa [51] adds an additional security measure

that will either delete the hidden data or a threatening application to prevent

information leakage to the adversary. Mobiceal [21] aims to defend against mul-

tiple snapshot attacks by utilizing dummy writes and modifying certain Android

system characteristics to prevent information leakage.

Feng et al. while developing their mobile-specific system Mobigyges [37] for-

mally describe what they call the fill to full attack and the capacity analysis attack.

In a capacity analysis attack the adversary compares the capacity of the physical

device with the capacity of the public storage volumes to determine if a hidden

volume is present. Although this attack is commonly avoided using virtual block

devices. Complementary to capacity analysis is the fill to full attack in which the

adversary fills the public volume(s) and compares the amount of data successfully

written to the physical capacity of the device.

Most of these systems assume that the deniable system software is merged into

the Android operating system [21,22,109,127]. The resulting widespread adoption

is intended to counteract any suspicion resulting from its presence on a device.

2.4 Secure Deletion

Closely related to the topic of deniable steganographic storage is secure dele-

tion. The ability to securely delete information provides plausible deniability

because to an attacker the information may as well never existed.

Many approaches to secure deletion have been proposed but most incur signif-

icant performance penalties making their use in everyday systems unlikely. Early

approaches geared towards traditional magnetic media usually focused on over-

writing deleted blocks. Bauer et al. [13] implemented a system to work with EXT2
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that simply overwrites unused blocks. While simple and reliable it is not a par-

ticularly efficient technique as it requires multiple overwrites for each data block

and will not work on flash devices due to the difficulty of in-place updates and

write endurance limits.

Later the idea of encrypting data and disposing of the key became a popular

method of securely deleting data as it drastically cuts down on the amount of data

that must be overwritten. This idea was proposed by Boneh et al. [31] to allow

for the deletion of data from backup tapes without having to mount and write to

the tape. Instead the encryption key would be stored separately and controlled

by the operating system. When a user wishes to delete data the system would

simply “forget” the key.

Peterson et al. implemented a secure deletion capable versioning file system

utilizing authenticated encryption [84]. Deletion occurs by overwriting a small

“stub” appended to the end of each data block. Without this stub it is impossible

to recover the information. While this technique is significantly more efficient than

Bauer’s system, it assumes the ability to overwrite stubs in-place, which may not

always be possible, especially when considering the log-structured nature of flash

devices.

Log structured file systems and flash devices pose unique challenges to secure

deletion as one cannot simply overwrite the physical blocks: the old copy will

still exist in an obviated part of the log. Lee et al. designed a secure delete file

system designed for NAND flash that modifies YAFFS to encrypt data and delete

it by erasing the keys and metadata [67]. Although this technique is reliable and

relatively fast, it is limited to use with raw NAND flash devices due to the need

for an in-place update. Reardon et al. attempted to address the problem with

two user-space techniques [90]. The first method is called purging in which all

17



unallocated space is filled with junk data, ensuring all blocks are overwritten.

The second is ballooning, where the free space available is artificially constrained.

While a combination of these two techniques is demonstrated to be effective, it

causes a significant delay between issuing a command to delete a file and the

actual deletion.

Zhao and Mannan [69] proposed a secure deletion system called Gracewipe that

utilizes a processor’s trusted platform module (TPM) to verifiably delete encryp-

tion keys when the user is under coercion. It operates by deleting root encryption

keys when a special deletion password is entered into the system rendering the

device undecipherable.

2.5 Summary

There are many different designs for deniable storage systems that all share

a basic common mechanism, hiding data in unused space on the device. We

summarize this variety of systems and the general approaches they take to address

common challenges in Table 2.1.

A common thread across the development of deniable storage is the presence

of a unique “tell” or an exposed component or behavior, for each system. Should

the adversary know what to look for with each system it becomes significantly

easier to compromise the system’s deniability. This and other common flaws with

deniable storage systems are more thoroughly discussed in Chapter 3.

18



T
ab

le
2.
1:

Su
m
m
ar
y
of

Pr
ev
io
us

D
en

ia
bl
e
St
or
ag

e
Sy

st
em

s

Sy
st
em

T
yp

e
O
ve
rw

ri
te

M
ul
ti
pl
e
Sn

ap
sh
ot

D
en

ia
bi
lit
y
fo
r

A
va
ila

bl
e

R
es
is
ta
nc

e
R
es
is
ta
nc

e
So

ft
w
ar
e

fo
r
us
e

Ve
ra
cr
yp

t
[7
8]

O
T
FE

N
on

e
N
on

e
N
on

e
X

St
eg
FS

(M
cD

on
al
d)

[7
4]

Fi
le

Sy
st
em

R
ep
lic

at
io
n

N
on

e
Se

pa
ra
te

hi
dd

en
X

FS
dr
iv
er

St
eg
FS

(P
an

g)
[8
0]

Fi
le

Sy
st
em

Sh
ar
ed

A
llo

ca
tio

n
D
um

m
y
W
rit

es
N
on

e
×

M
ap

H
IV

E
[1
6]

Bl
oc
k
D
ev
ic
e

Se
pa

ra
te

Vo
lu
m
es

O
R
A
M

N
on

e
X

D
at
al
ai
r
[2
0]

Bl
oc
k
D
ev
ic
e

Se
pa

ra
te

Vo
lu
m
es

O
R
A
M

N
on

e
×

D
EF

Y
[8
3]

Fl
as
h
FS

Se
pa

ra
te

Vo
lu
m
es

D
um

m
y
W
rit

es
N
on

e
X

M
ob

ifl
ag

e
[1
09

]
M
ob

ile
FS

Se
pa

ra
te

Vo
lu
m
es

N
on

e
N
on

e
×

M
ob

ip
lu
to

[2
2]

M
ob

ile
FS

Se
pa

ra
te

Vo
lu
m
es

N
on

e
N
on

e
×

M
ob

ig
yg

es
[3
7]

M
ob

ile
FS

Se
pa

ra
te

Vo
lu
m
es

N
on

e
N
on

e
×

Ev
er

C
ha

ng
in
g
D
isk

[1
31

]
Fl
as
h
Fi
rm

wa
re

U
se
r
in
te
rv
en
tio

n
D
um

m
y
W
rit

es
N
on

e
×

Li
m
ite

d
Pu

bl
ic

W
rit

es
PD

-D
M

[2
6]

Bl
oc
k
D
ev
ic
e

Se
pa

ra
te

Vo
lu
m
es

O
R
A
M

N
on

e
×

D
EF

T
L
[5
5]

Fl
as
h
Fi
rm

wa
re

FT
L
M
an

ag
ed

A
llo

ca
tio

n
FT

L
M
an

ag
ed

A
llo

ca
tio

n
N
on

e
×

IN
FU

SE
[2
5]

Fl
as
h
FS

R
ep

lic
at
io
n

D
at
a
hi
dd

en
in

Se
pa

ra
te

hi
dd

en
×

fla
sh

sid
e
ch
an

ne
ls

FS
dr
iv
er

A
rt
ifi
ce

Bl
oc
k
D
ev
ic
e

Er
as
ur
e
C
od

in
g

Bl
oc
k
R
e-
us
e

Se
pa

ra
te

hi
dd

en
X

an
d
ID

A
s

D
um

m
y
A
cc
es
se
s

vo
lu
m
e
an

d
O
S

19



Chapter 3

Threat Model

A threat model that more accurately describes the adversaries a user will face

when utilizing a deniable storage system is essential to a successful design and

deployment. By analyzing previous approaches and identifying attacks against

them, we have developed a new more thorough and realistic threat model for

deniable storage systems.

3.1 Shortcomings of Previous Models

Many fundamental flaws of existing deniable storage systems can be traced

back to flawed assumptions made in their proposed threat model and in some cases

a failure to explicitly state a definition of the adversary or their capabilities [74,80].

One of the most flawed assumptions is the fact that the adversary does not

have to prove the existence of a deniable volume to compromise the system. Since

adversaries are often assumed to apply coercive tactics to access plainly visible

encrypted data, they could also apply the same technique to compromise a de-

niable volume. In the case of encrypted data, the obfuscated bytes are readily

apparent but in the case of a deniable volume there must be sufficient indica-
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tion that the user is running such a system to warrant escalating to coercion and

expending additional resources. As a result, we can assume attacks against a de-

niable storage system do not have to prove the existence of a hidden volume but

only convince the adversary that there is a sufficient probability that the user is

hiding something. Since the goal of a hidden volume is to avoid coercive tactics,

we must avoid arousing the adversary’s suspicion or to provide some information

to convince the adversary that a hidden volume does not exist.

Some examples of previous work also assume that the user’s ability to uti-

lize a deniable storage system would be considered innocuous if that system is

bundled with other widely used software such as a specific operating system im-

plementation [22, 109]. Since plausibly deniable storage is a response to scrutiny

of disk encryption systems which have seen widespread use, the adversary would

also view a deniable storage system with similar, if not more suspicion than an

encrypted volume. If the capability of creating a hidden volume is innocuous,

even sophisticated multiple-snapshot-resistant approaches would be vulnerable to

a significantly simpler adversary. While this more limited adversary would have

to know what driver software or system characteristics to look for, we must also

assume that the adversary has knowledge of the deniable system’s design. Oth-

erwise we risk relying on “security through obscurity” which should be avoided

whenever possible as it does not provide a strong security assurance [62]. While

keeping the design of the system a secret can add an additional layer of security

to hinder an adversary, design secrecy should not be a critical assumption made

when evaluating the security of a deniable storage system. Since we must assume

they will know the design and capabilities of deniable systems, it would be prudent

to also assume they know of weaknesses and attacks against such systems. From

this we have concluded that a user’s capability to run a plausibly deniable storage
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system cannot be considered normal. As such, any secure deniable storage system

must also take efforts to disguise a user’s ability to run said system in addition to

any hidden data.

Another flawed assumption is that the adversary will not install malware or

take steps to gain more information about that device than they can obtain

through static snapshots [22, 26, 80, 83, 109]. It has been observed that officials

have installed malware on user’s devices when they cross a border [128] and both

nation-states [125] and private enterprises [126] have developed robust tool kits for

widespread surveillance. We propose that a deniable storage system must assume

that malware can be installed on the user’s device and that it should be capable of

defending against it. Since malware can potentially provide a significant amount

of information to the adversary about the user’s activities, we must assume that

an adversary that can install malware on the user’s device must be capable of

surveilling the user in real-time, even observing individual disk accesses.

3.2 Our Threat Model

In light of these shortcomings, we propose the following threat model. The

adversary is assumed to be an agency or organization that wishes to tightly control

the flow of information within and across their regime’s borders. We consider our

user to be an individual who wishes to carry sensitive information through a region

where the user can possibly come under close scrutiny.

3.2.1 An Example Use Scenario

A user enters a region with the intent of obtaining sensitive information that

our adversary does not want disseminated. There is also something preventing the
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user from transmitting the data over a network, either due to strict monitoring

of network infrastructure by the adversary or lack of network connectivity. As a

result, our user is limited to physically transporting the data out of the region on

a storage device. In our case the user decides to do so by using a steganographic

or deniable storage system rather than conventional disk encryption to create a

hidden volume to hide the fact that information is being leaked.

In our scenario the adversary is some organization that exerts a level of control

over a region and tightly controls the flow of information. It is the goal of this ad-

versary to prevent leakage of information. To further this goal our adversary seeks

to determine whether the user is attempting to exfiltrate sensitive information on

their device. The adversary will inspect devices, flag individuals of interest, and

install spyware to gather more information on the individual’s activities.

3.2.2 Malware and Information Leakage

Utilizing malware and exploiting existing sources of information leakage are

commonly used in digital surveillance. Tools are widely available from both

commercial (Pegasus Spyware) [126] and government sources (NSA ANT Cat-

alog) [125]. In the past, it has been shown that state-level adversaries will deploy

these sorts of tools at places like border crossings in order to gather information

about a user’s movements and activities [128]. Since an adversary would have

physical access to the user’s device and any credentials, they would have the abil-

ity to install many different forms of malware ranging from a malicious application

to operating system and firmware level rootkits on the user’s device. We must

assume that as part of a region’s practices governing the flow of information, the

adversary can and will deploy malware to track and surveil the user.

The primary advantage of malware when used to search for hidden volumes is
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that it allows our adversary access to significantly more information about a user

and their device than when only observing a static device at a border crossing or

when the device is unattended in a hotel room. Many pieces of malware could

allow the adversary to observe the device’s activities in real-time. If this malware

is installed in the operating system, it would be possible for the adversary to view

storage operations in real-time. This fine granularity of observations has been

shown to defeat deniable storage systems in the past by looking at specific write

behaviors unique to specific deniable systems [119]. The collected observations

can either be covertly transmitted over a network to the adversary or stored on

the device for later retrieval when the adversary next has a chance to inspect the

device in person.

Malware used by the adversary could come in multiple forms. A simple yet

obvious form may be a smartphone application that is given access to the device’s

underlying storage and I/O hardware such as a camera or microphone. A more

sophisticated adversary could employ a rootkit, a self-hiding malicious piece of

software that provides access to unauthorized users, to monitor the activities of

both the user and storage device. The most sophisticated adversaries could employ

lower level attacks where an adversary compromises the hardware or firmware of

a device. Of particular risk are pieces of malware such as keyloggers, tools that

record buttons pressed on a keyboard, that can reveal access credentials to an

adversary.

If an adversary can install malware on a device that would under other circum-

stances be limited to a single or limited number of interactions with the adversary,

it can greatly expand their ability to observe the device and the user. For instance,

while an adversary is making an initial inspection of a device as the user is crossing

a border, they could install a piece of spyware and proceed to surveil the user at
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their leisure. That adversary has now gone from being able to observe the device

at border crossings to observing the user’s activities whenever they wished at low

cost. Given the widespread deployment of malware and easily developed tools

that can expose deniable storage systems, we consider that any threat model per-

taining to deniable storage must assume that the adversary will deploy malware

against the user.

3.2.3 Suspicion, Escalation, and Coercion

Unlike the adversary those previous systems have been designed to defend

against, our adversary doesn’t have to specifically prove that a hidden volume

exists. Since it is well known that the user is a vulnerability in most systems,

it would follow that instead of relying on relatively involved methods of proving

that a user has a hidden volume, the adversary would look for clues to establish

whether there is a reasonable suspicion that the user possesses such a volume.

The flaw of this sort of logical escalation is that it expects the adversary to follow

rules and act logically, which may not always be the case. There is always a

chance that the adversary could jump straight to coercive tactics for unknown

reasons and there is no reliable defense against this possible outcome. As such,

to limit the scope of our problem, we will assume that our adversary will behave

in a logical manner.

Ultimately the adversary will follow some sort of process for escalating surveil-

lance of a user based on the suspicion that the user may be attempting to carry

out actions in opposition to the adversary’s interests. This sort of escalation

would begin with relatively quick, low effort attacks against possible hidden vol-

umes. Should they find clues that arouse their suspicion, they can escalate to

more involved attacks that could determine with better accuracy whether a hid-
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den volume is present. For instance, the adversary will be suspicious if there is

software present on the device that creates or accesses a hidden volume. Even if

the tools used to access the hidden volume are bundled by default with a com-

monly available system, such as in the case of Veracrypt [78], they would still

garner significant scrutiny. Once a sufficiently high probability that the user pos-

sesses a hidden volume has been established, the adversary will move to coercion

to expose the contents of the volume. The nature of these coercive tactics could

range from legal penalties to direct bodily harm.

We assume the adversary, although powerful, will wish to apply resources in an

efficient manner. Many ways of compromising a hidden volume, especially those

reliant on statistical methods, will incur several false positives and false negatives.

We assume that in the interest of efficient resource use, our adversary will seek

to minimize the number of false positives they must investigate. Some number of

false positives will still occur, we assume our adversary will be tolerant of this.

Should the false positive rate be too high for a given technique, we assume that

the adversary would instead turn to alternatives with a lower rate. Conversely, we

assume our adversary will not be tolerant of a significant number of false negatives

when designing their investigative techniques, as this would indicate that sensitive

information is slipping through their net.

3.2.4 The Attack Surface

We consider anything on the user’s machine and any devices the user can

interact with using their machine as part of the potential attack surface. Unlike

previous adversary models, we also consider the user to be a part of the attack

surface, primarily because the user is susceptible to coercive attacks which will

compromise the deniable volume.
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There are two different ways the adversary can interact with this attack surface.

The first is direct, where the adversary has physical access to the device, such as in

the case of a border crossing. This allows for direct observations of the hardware

and software on the device at a single point in time. The second is when the

adversary can indirectly surveil or observe the device or user, by observing the

user’s network traffic or malware installed on the user’s device. The secondary

method would allow the adversary a fine-grained view of the user’s activities over

time, whereas direct physical access would allow the user to view the device in

snapshots.

The adversary might be able to take control of the device at certain points in

time and perform any static forensic analysis they want. This could be with the

user present, such as at a border crossing or checkpoint or with the user absent,

when the device is left unattended in a place like a hotel room. When in possession

of the device, the adversary can install applications, modify files, manipulate disk

sectors, inspect hardware, and make copies of the disk. In these situations the

adversary would gain information about the device at a specific point in time or

install malware to enable remote observation to gather further information about

the user.

The adversary may monitor the user’s interactions with a public network in-

frastructure for suspicious behavior. An example of suspicious behavior would be

uploading images and video to a remote file server or accessing the TOR network.

It is also possible that certain outgoing or incoming connections would be blocked

within the adversary’s sphere of influence.

Although the adversary we have presented is relatively powerful, we must lastly

assume that they can’t always monitor a user. There must be a time where the

user is safe enough to access and write to a hidden volume. If this assumption
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does not hold for a specific adversary, a deniable storage system is not the correct

tool for that use case.

The adversary will very likely have access to credentials for the user’s normal

operating system or publicly visible encrypted volumes. These credentials would

be provided freely by the user when requested to avoid the use of coercive tactics.

The adversary can easily verify any access credentials obtained from the user.

This is because the adversary will likely possess the user’s device and can verify

whether any supplied credentials can access what they are supposed to.

3.2.5 The Challenge of Multi-leveled Deniability

Many deniable storage systems support multiple levels of hidden information

where the lower levels contain increasingly sensitive information [74, 80, 83]. The

intended purpose is so that when subjected to coercion, the user could reveal the

less sensitive levels of the deniable system while keeping lower levels secret. This

is similar to running a whole disk encryption system alongside a deniable system

where the user would surrender the encryption key to an adversary while not

revealing the presence of the deniable system.

The multi-level approach assumes the adversary will deduce the existence of

a hidden volume without significant hassle. While such an approach may satiate

an ignorant or less determined adversary, if they possess knowledge of the storage

system’s capabilities, we have to assume they will press the user for access to

further hidden levels until they are satisfied. In fact, once the user exposes a

hidden level, it would make sense that the adversary would know exactly which

deniable storage system is in use. At this point a highly motivated adversary

could pressure the user to disclose all levels of the deniable storage system.

As we assume that our adversary knows of a deniable system’s design and
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capabilities, it becomes clear that multiple levels of deniability are of dubious value

as a primary defensive measure against a determined adversary. For example, we

cannot predict how the adversary will react once they are given credentials to a

less sensitive hidden level. If they know that a system can possess multiple levels

there is nothing stopping them from pressuring the user to provide credentials for

every level on the device. Considering this, a safer course of action would be to

avoid disclosing any aspect of the deniable system to the adversary and rely only

on secrecy as a first line of defense. That is not to say that the capability isn’t

worthwhile but that it should be relied on only as a fallback if other methods of

protecting the user have failed.

3.3 Possible attacks under our threat model

We have identified a series of potential attacks against existing and possible

future deniable storage systems. The goal of each attack is to gather enough

information to establish whether there is a sufficient probability that the device

contains a hidden volume. If the probability is high enough to arouse the adver-

sary’s suspicions, we assume they will move to coercive tactics.

1. Capacity Analysis: This is a relatively simplistic class of attacks in which

the adversary can look at the characteristics of visible volumes on a device

and compare that to the advertised capacity of the device. A sufficiently

large discrepancy between the two would indicate an abnormality that could

indicate a side effect of a hidden volume. For instance, if an adversary notes

that there is a relatively large amount of used space on the device that is

not accessible through visible volumes, it could indicate a hidden volume.

2. Detecting Exposed Software, Data structures, and Firmware: If the adver-
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sary can identify a data structure (for example StegFS’s exposed allocation

bitmap) or some software that corresponds to the user’s ability to run a

deniable storage system, they could conclude the user possesses such a vol-

ume. If the device is known to have a suspicious firmware version available,

it is possible for the adversary to regard all devices of that model to be

suspicious.

3. Information leakage: The adversary could check common locations for tem-

porary or hidden files created by applications that may have accessed a

hidden volume. If there is no evidence that those files are linked to in-

nocuous public files, the adversary can possibly conclude that those files are

traces of a deniable volume [30].

4. Performance Analysis: The adversary could run a benchmark on the pub-

lic device and compare the results to the advertised or normal performance

results for the storage device. Since some deniable storage devices, most

notably ORAM-based approaches, significantly impact the performance of

both the public and hidden volumes [16,20,26]. A sufficiently large discrep-

ancy between advertised and actual performance could indicate the existence

of a hidden volume.

5. Statistical Analysis: Assuming that the hidden data has been obfuscated in

some manner (such as encryption) the adversary could perform statistical

analysis on the unallocated space of a hidden volume. If there is a significant

difference in the statistical distribution of bits from one block to another, it

could indicate the existence of a hidden volume.

6. TRIM analysis: Should TRIM be enabled on the user’s device, the adversary

could look at which logical block addresses have not been TRIMmed but also
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don’t have valid blocks from the file system’s perspective. This will provide

the adversary with a far smaller set of blocks to analyze further. Since most

devices utilize periodic TRIM, some blocks will have been flagged as false

positives.

7. Malware: We consider the primary threat posed by adversary controlled

malware to be information gathering about the user’s activities on their

device, specifically those pertaining to their storage devices. Intelligence

regarding the user’s movements and network traffic could also be useful to

the adversary. The adversary realistically could install malware anywhere

on the device where persistent writable storage is found.

8. Boot-timing: This attack specifically targets Mobiflage [109] as described by

Yu et al. [127]. In this attack it is assumed that the adversary will possess

the password to the public volume. The adversary will boot into the public

volume, noting the time needed for authentication. The adversary repeats

this with an incorrect password while also recording the authentication time.

In the case of Mobiflage there is a noted difference in the overall authenti-

cation time and the difference between successful and failed attempts. It is

unknown whether other deniable storage systems are as susceptible to this

attack.

9. Denial of Service: The adversary fills all free space on the public volume.

Since data is stored within the free space eventually will be overwritten

unless the space occupied by hidden data is protected by the software writing

to the public volume. In this case the system would be vulnerable to capacity

analysis, expose suspicious partitioning schemes, or expose driver software.

This attack also demonstrates an interesting behavior in some systems where
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they will fail securely when attacked in this manner. Data will be lost but the

confidentiality of that data and the safety of the user are not compromised.

10. Multiple Snapshot Analysis: The adversary compares a snapshot of the disk

obtained at a previous point in time to one or more from a later point in

time. In theory differences between the snapshots should follow a certain

pattern or distribution based on a user’s workload or the public file system.

For instance in a log-structured file system [96] it can be assumed that new

blocks will always be written to new segments at the head of the log and

blocks will be freed throughout the log as segments are marked for deletion

and later garbage collected. Unusual deviations from the “normal” pattern

could imply the existence of a hidden volume.

As with previous work we consider there might be different observation

frequencies for this attack [16]. A minimum of two snapshots would be

required but this number could increase to one snapshot for each individual

disk operation. We will call this latter case continuous traffic analysis. If

the adversary can obtain this granularity of snapshots, we would expect it

to become significantly easier to determine the existence of any suspicious

writes to the hidden volume.

11. Continuous Traffic Analysis: As a worst case scenario the adversary could

have access to a full record of accesses to the disk and other system events.

With such a breadth of information the adversary would be able to detect

the presence of hidden volume [119]. One way the adversary could obtain

such information is through spying on the user via malware.
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3.4 Related Work

While the specific details of previous threat models vary, we can generally cate-

gorize them by how often they assume the adversary can possibly access the device

to inspect it for traces of hidden information or other suspicious activity [30].

• Single snapshot: A single snapshot adversary can only view a device once.

Most existing deniable systems have some level of resilience against this sort

of attack. This is the simplest and generally considered the least capable

adversary considered by previous work. Examples of systems designed to de-

fend against this adversary are McDonald’s StegFS [74] and Mobiflage [109].

• Multiple snapshot: A multiple snapshot adversary can view the device

two or more times. Multiple snapshots of the disk can be compared and

the changes analyzed for anomalies that could reveal a hidden volume on

the user’s device. It is important to note that with this class of attacks, the

adversary is only able to view static snapshots of the disk a limited number

of times.

• Continuous observation is when an adversary can continuously observe

writes to the user’s device or make a snapshot of the device for each write.

This adversary capability is sometimes also called continuous traffic analysis.

This sort of attack would likely require a form of malware to be installed

on the user’s device for information gathering. Technologies such as ORAM

are employed to defend against this class of adversary [16,20].

3.4.1 Prior Threat Models

Anderson et al.’s work makes the initial assumption that the adversaries can

and will use coercive tactics against the user to expose sensitive information on a
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device and that the adversary has a complete understanding of both the stegano-

graphic and the public components of the system [9]. Subsequently, McDon-

ald et al. does not provide an explicit threat model but does note a weakeness, an

adversary discovering an exposed StegFS driver could lead to them pressing the

user for access to a hidden volume [74]. The original description of Pang et al.’s

StegFS also doesn’t explicitly make assumptions concerning the adversary’s capa-

bilities [80]. In most cases it implicitly assumes the same use case and adversary

as McDonald et al.’s design. The key weakness of their model is their solution to

the accidental overwrite problem, which is an exposed allocation map. As such it

implicitly assumes that an exposed data structure without a deniable explanation

is not inherently suspicious.

Further work on Pang et al.’s system includes the author’s description of a

possible multiple snapshot attack mitigation and introduces elements of a formal

adversary model [129]. They introduce the idea of categorizing attackers by the

level of granularity at which they can make observations of a system running a

hidden volume. Specifically, they make a distinction between what later work

would call a snapshot and traffic analysis adversaries.

Hive, while lacking an explicit threat model, assumes that the security of a

multiple snapshot-resistant system relies on rendering accesses to a hidden volume

and a public volume indistinguishable [16]. While they, along with Datalair [20]

and PD-DM [26], can provably achieve this, they do not assume that the ad-

versary will not find two things suspicious. First, they create random appearing

write patterns for the public volume which along with an exposed driver would

be considered suspicious. Second, they do not assume that the adversary can de-

ploy malware. If faced with an adversary that deploys malware on a device they

consider suspicious due to previously stated reasons, the adversary would likely
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be able to view the state of the machine in operation, which the authors assume

is impossible. Lastly, since the authors assume that the adversary can utilize co-

ercion to force a user to reveal a password, the presence of suspiciously random

write patterns and a piece of software would give the adversary reason to employ

coercion. As a result of these shortcomings, the notion of indistinguishability as

presented does not entirely provide plausible deniability.

Another very common flawed assumption found in previous work is that the

adversary will not find a piece of software capable of creating a hidden volume

suspicious if it is widely deployed on devices [21,22,51,109,127]. This assumption

is flawed as existing disk encryption schemes are commonly deployed but still

face significant scrutiny. There is no reason that widespread adoption of systems

capable of creating deniable volumes would lead to a different outcome. Therefore

we assume that our system is not widely adopted, and we must disguise the

presence of the software used to create and access a hidden volume.

The threat model utilized by INFUSE makes some departures from preceding

systems. Most importantly it assumes that the adversary will find suspicious

the presence of software used to access a hidden volume. Although, unlike our

approach they make no assumptions regarding malware. It can be implicitly

stated that they assume that the adversary will not deploy malware by stating

that the adversary cannot view the running state of the system, which is a clear

capability with certain types of malware.

Kedziora et al. look at threat models of existing deniable storage systems

and their threat models with a specific focus on Veracrypt [61]. They propose

that the categories of continuous observation and multiple snapshots are similar

enough to be considered a single type of adversary and introduce a third stronger

adversary type called Live Response Access. In a Live Response Access model,
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the adversary is assumed to be capable of direct or remote live access to the

user’s device while they are running a deniable volume. This includes access to

any hidden operating system, and access to any network environment or cloud

application that the hidden system is interacting with or contained in. This last

model, while not explicitly stated, is closely related to our assumption that an

adversary can install malware on a user’s device, which would lead to similar

adversary capabilities. Instead, Kedziora et al. propose that an adversary would

obtain this level of access through physical access to the device or remote access

tools like Team Viewer or Windows Remote Desktop.

3.4.2 Existing Attacks

While many threat models and constructions for deniable storage systems have

been proposed, there is a notable deficit in the number of proposed attacks against

such systems. The first thoroughly described and published attack against a de-

niable storage is Troncoso et al.’s traffic analysis attack [119] against Zhou et al.’s

proposed enhancements for Pang et al.’s StegFS [80,129]. Troncoso et al. demon-

strates that if an adversary can perform continuous traffic analysis on a system

containing a hidden volume, presumably through some form of spyware, it is pos-

sible to detect distinctive block access patterns that correlate to the dummy writes

and block moves that Zhou et al.’s mechanisms use to hide writes to the hidden

volume. It is from this paper that the power of being able to directly observe a

record of disk writes is made apparent.

Following another avenue, Czeskis et al. attack the deniable volume feature

found in the TrueCrypt by looking at its interactions with the Windows Operating

System and user applications [30]. They show that Windows can leak information

about the existence of a hidden volume through automatically generated shortcuts
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(lnk files), the Windows Registry, Microsoft Word auto-save files, and through

the application Google Desktop. All of these locations would be accessible to

most adversaries inspecting a device. As a result we assume that the adversary is

capable of exploiting this weakness in existing systems.

Kedziora et al., in addition to describing a new take on threat models for deni-

able storage, also demonstrates attacks against the Veracrypt hidden OS feature

which, is an operating system installed in a hidden volume. Through entropy

analysis of their test disk, they observed that the beginning and end of the hidden

volume corresponded to sectors with lower entropy than the surrounding parts of

the disk. Their second attack compares two disks, one where a hidden OS has

run and one where a decoy OS has run and demonstrates that because of how

Veracrypt writes data, it is possible to look at the ranges of sectors changed and

determine the approximate size and possible existence of the hidden volume.

3.5 Summary

In this chapter we have examined the shortcomings of assumptions, both ex-

plicit and implicit, made by previous deniable storage systems. Chief among the

shortcomings of previous models are the assumption that the adversary does not

know about deniable systems and their weaknesses and the assumption that the

adversary will not install malware on the user’s device. In the case of the former

it has been widely accepted that if a system relies on the secrecy of its design to

provide security, that secret will eventually leak leading to the compromise of the

system in question. It follows that we must design our system under the assump-

tion that our adversary knows what a deniable storage system and what points

to attack. The second assumption is malware, which can provide an adversary

an easy means to escalate their capabilities and in some cases possibly even com-
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promise access credentials used to secure a deniable system. In short, we have to

assume our adversary is competent and will use existing observation techniques

effectively.

From this examination we have defined a sample use case for our deniable

storage system; where a user crosses a border into a country, obtains some sensitive

information, and then crosses the border again to leave. We discuss how an

adversary may utilize malware, a framework for how an adversary may escalate

their tactics based on observations, and define our attack surface. Additionally,

we examine the consequences that may arise from the use of multiple levels of

deniability in a single volume.

We define a list of potential attacks our adversary can employ against a de-

niable storage system. These attacks can include exploiting information leakage,

denial of service, multiple snapshot analysis, TRIM analysis, malware, and more.

Lastly, we cover the adversary models and assumptions presented by previous sys-

tems and more thoroughly examine their individual shortcomings. Following this

we can then look at the relatively small number of implemented or well defined

attacks against existing systems.
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Chapter 4

The Artifice Deniable Storage

System

With a well-defined threat model we can now create a set of design require-

ments with which to direct the construction of Artifice, our steganographic deni-

able storage system. In this chapter we discuss these design requirements, how

Artifice approaches meeting these design requirements, our Artifice implemen-

tation, and an operational security model to help dictate the proper use of our

system, and evaluate its performance.

4.1 Design requirements for a Deniable Storage

System

By estimating our adversary’s characteristics and considering our identified

attacks, we have identified the following problems central to the successful design

and implementation of a deniable storage system:

1. Hide the system’s driver software. Due to the specific use cases for deniable
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volumes, we must consider that the existence of driver software on a device

might imply the existence of a hidden volume on a user’s device. Our system

must be able to provide a deniable reason for the presence of the suspicious

software or hide the driver software through some secondary mechanism

to avoid arousing the adversary’s suspicion. Ideally, our system would be

capable of running on off-the-shelf hardware.

2. Obfuscate the hidden data. To deniably store data, we must obfuscate the

hidden data and render it undiscoverable. In most existing systems this

involves encrypting the data and hiding it among random bytes in a volume’s

unallocated space. We consider this to be the primary mechanism for hiding

information, and as such it is imperative to thoroughly examine available

obfuscation techniques and their limits.

3. Mitigate the effects of information leakage. Hidden data must coexist with

publicly visible data on a drive. This presents the risk that sensitive infor-

mation leaks from the secure environment provided by the hidden volume

to an insecure public volume, whether this is through ordinary programs

operating on the hidden data, the operating system, or malware installed

by an adversary. Since closely vetting all the software present on the average

computer is an almost infeasible task, we must study design decisions and

practical measures that can be taken to mitigate the effects of information

leakage.

4. Preserve the integrity of hidden data. Since the hidden data may need to

exist on an unaware publicly visible volume, there is a risk that the volume

will unwittingly destroy some hidden information. As such a deniable sys-

tem, to the extent possible, should take measures to ensure that its data
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is not overwritten without compromising the secrecy of the volume or its

driver.

5. Providing deniable reasons for changes made to a disk by writing hidden

data. Writing hidden data to the disk will inevitably result in changes visible

to an adversary. Previous work has shown that if the adversary possesses

sufficient background information about the user’s device, a hidden volume

can be detected. As a result, a secure deniable storage system must be able

to provide innocuous reasons for the inevitable changes to the disk that are

not made by the public file system.

6. Address flash and emerging storage tech. Compared to mechanical disks,

flash storage presents different storage characteristics that impact the design

of a deniable storage system. Flash translation layers and the inherent char-

acteristics of flash devices present additional opportunities for compromising

a deniable volume designed for a mechanical disk. These characteristics can

lead to information leakage, a higher risk of data overwrite, or expose the

user’s capability of possessing a hidden volume. Since most user devices now

utilize flash memory for storage, we must seek to mitigate these additional

risks when designing a deniable storage system.

4.2 Artifice System design

To address the previously discussed design requirements, we have designed

Artifice, a plausibly deniable virtual block device in software using the Linux

device mapper kernel interface. Artifice obfuscates data and protects against

accidental overwrite using an IDA such as Shamir Secret Sharing [105] to generate

a set of pseudo-random shares or carrier blocks from a user’s data blocks that are
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uniformly distributed throughout the free space of a device. These carrier blocks

provide combinatorial security where an adversary must select the correct blocks

out of the free space to reconstruct a valid data block. Adding redundant carrier

blocks enables Artifice to repair itself when it is inevitably damaged by the public

file system. This IDA-based approach and flexible block allocation allows the user

to configure Artifice for use with a variety of public file systems and mitigate the

effectiveness of a multiple snapshot attack.

Plaintext Data
Hidden Data

Random Bytes

Hidden 
Data

Carrier Blocks

...

...

Virtual Artifice block device

Legend

Host File System

Public Data

Public System

Artifice-aware OS

Hidden 
Data

Secret Sharing

Figure 4.1: System overview of Artifice. The Artifice kernel module resides in
a separate operating system contained on removable media. The public system
includes the public file system that Artifice hides in and the public OS. Free space
in the public file system should be filled with pseudo-random blocks.

Unlike previous approaches that require driver software to be installed on the

user’s device, a user accesses Artifice by booting a separate live Linux installation

on a USB drive containing the Artifice driver. Isolating the driver from the public

operating system prevents information leakage and protects the Artifice volume

from most malware. Separating the hidden data from the driver software helps

prevent the adversary from noticing the existence of the Artifice software and
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thereby inferring the existence of hidden data. It is also important to note that

the user does not need to possess a copy of the bootable USB drive at all times; it

would be advantageous for them to not be carrying it on their person when under

the scrutiny of an adversary.

4.2.1 Artifice Map

Pointer Blocks

Map Blocks
Carrier Blocks

Superblock
Replica

Pointer blocks 
form a chain and 
contain pointers to 
map blocks.

The superblock 
and pointer blocks 
are replicated. 
Each replica is 
encrypted with a 
unique key.

Map blocks contain map 
entries that point to 
shares of other map 
blocks or carrier blocks.

Carrier block hashes and pointers

<10, 0xBE>, <90, 0xA1>, <17, 0xD0>0

Artifice block number. Data block hash

0xCAFE

Example Map Entry:

Figure 4.2: The design of the Artifice Map.

Artifice reads data by identifying the carrier blocks and entropy blocks as-

sociated with the logical block address through a metadata structure called the

Artifice Map (shown in Figure 4.2). The Artifice Map is a multi-level tree that
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stores mappings from logical data blocks to physical carrier block locations and

vice versa. The map is made repairable in the face of overwrites by our IDA

scheme and is stored alongside the carrier blocks in unallocated space.

A hash of a user-specified passphrase is used to determine the location of a

super block, which provides general information about the metadata structures

and the locations of the Artifice Map carrier blocks (Figure 4.3). The super block

is replicated to protect against overwrite and each replica is encrypted with a

different unique key derived from the passphrase. The possible block offset of each

replica is derived from a hash of the previous replica’s possible location. Should

a specified location be in use by a valid public block, the next possible location

is used for that replica. A possible location is confirmed to contain a super block

replica if the decrypted replica starts with a known value. If a possible location

for a super block is found to not begin with the expected value when mounting

an Artifice volume, the driver moves to the next location and repeats the process

until a replica is found. The number of these replicas written to the disk is

defined by the user. Artifice should be configured to generate more replicas of

the super block than shares of the data blocks to provide a better probability

of survival when faced with overwrites made by the public system. If Artifice

sustains significant damage beyond its ability to repair, we can still recover some

data if a superblock replica can be found. If all copies of the superblock are lost,

then no data can be recovered from the hidden volume. Should a user need to

revoke the passphrase, the super blocks are re-encrypted with a new passphrase

and moved to new locations determined by the new passphrase.
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Figure 4.3: The process of locating Artifice super blocks through chain hashing
a user’s passphrase.

Each entry in the map contains a set of carrier block pointers, checksums of

each carrier block, and a hash of the original data block that is used to verify

the reconstruction succeeded. In the case of an encoding scheme that requires an

external entropy source, identifying information about that entropy source is also

included. These entries are arranged into map blocks.

To support information dispersal for the map blocks, a multi-level approach

is used. Additional levels of map blocks are used to track the shares of the next

lowest level of map blocks. This technique reduces the size of the top-level of map

blocks. The location of the top level of map blocks are stored by a set of pointer

blocks. Both these top level map blocks and the pointer blocks are replicated and

encrypted much like the super block. Information about the pointer blocks is

stored in the super block. When Artifice is running, map and pointer blocks are

reconstructed, and a working set is cached in memory. As the map is modified by

new writes, it is periodically flushed to the disk.

The size of this metadata structure will grow linearly as the size of the Artifice

volume increases. Figure 4.4 shows the metadata overhead assuming 128-bit data

block hashes, 16-bit checksums, and 32-bit block pointers. Metadata overhead

for our proposed scheme in a virtual block device is relatively high, especially for

information dispersal algorithms where additional metadata must be stored to
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enable decoding.
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Figure 4.4: Metadata overhead as a percentage of total Artifice available space
when implemented as a virtual block device. Metadata overhead is only dependent
on the total number of carrier blocks.

The Artifice metadata structures can also be modified to allow it to run as a

standalone file system instead of a block device driver. In this case our pointer

block and map block structures would be modified to function as inodes, the

data structure that stores metadata for a file or directory in Unix file systems

and their relatives. These inodes would have to be replicated or encoded into

shares with an IDA the same as normal Artifice metadata blocks. Instead of

single data block pointers like in a normal file system (ext4), each inode will

contain tuples pointing to the encoded carrier blocks that correspond to one data

block out of the file that the inode addresses. The worst case scenario in terms

of space used for this metadata approach is one file per data block in the volume.

Whenever a file is updated changes would need to cascade up the chain of inodes
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for each file eventually to the super block which is still located using chain hashing.

Allowing an unlimited length inode file similar to WAFL [50] would allow for

efficient updates to the metadata and let it expand to just the size needed to

support the files contained within a volume.

Such an approach would improve ease of deployment through tools such as File

System in Userspace (FUSE) [70]. However, it would also introduce additional

complexity through the need to implement and ensure the security of all the file

system operations and semantics as opposed to simple read and write operations

required for a virtual block device.

4.2.2 Information Leakage, Malware, and Hiding Driver

Software

Since existing deniable storage systems inherently possess significant draw-

backs we assume that it is unlikely for the average user to keep a copy of the driver

on their devices thus making possession of such software suspicious. As a result,

the presence of a deniable system’s driver implies that the user’s device contains

a hidden volume. Detecting the driver software is perhaps the least computation-

ally intensive way to detect a deniable system as it only involves inspection of the

storage software stack, device firmware, behavioral characteristics, or partitioning

scheme. In the case of some systems there is a significant performance impact

for both the hidden and public volumes such that it would be simple to infer the

existence of a deniable system [16,20,26] through a storage benchmark. While it

is possible to hide such software through the use of a rootkit (an often self hiding

piece of software used to gain root access to a machine) or other malware, this

technique is “security through obscurity” and as such is unreliable.

With Artifice the driver software exists independently of the hidden volume on
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a separate device with no trace of the driver software left on the device containing

the public and hidden volumes.

Since deniable storage systems coexist with the public operating system, chal-

lenges arise concerning information leakage through programs and hardware that

interact with the hidden volume. In the case of TrueCrypt, Czeskis et al. [30]

demonstrated that the system was plagued by information leakage through both

the features of the Windows operating system and through temporary files gener-

ated by applications such as a word processor. This persistent system and appli-

cation data, lacking a publicly visible reason for its presence, could be considered

an indication of a hidden volume. It has also been made apparent by Troncoso

et al. [119] that should an adversary install malware on a device to continuously

leak disk traffic information, it is possible to reveal the existence and location of

hidden files. Since our adversary can freely manipulate the user’s device it is safe

to assume that they can and likely will install some form of malware on the device

to monitor the user’s activities, including writes to any mounted storage devices.

Currently, no known deniable storage system provides explicit protections against

compromise through accidental or intentional information leakage through user

applications or malware respectively.

To address the problem posed by malware and information leakage we restrict

access to a deniable volume to a separate and secure operating system contained

on separate bootable media. To access the hidden volume the user reboots the

computer using the separate operating system, performs necessary operations on

the hidden volume, and switches back to the public OS for normal use. By not

accessing the hidden volume through the public operating system we do not expose

the hidden volume to any programs capable of storing application data in the

public volume and do not expose it to any malware that may have been installed
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on the public volume, but as we will discuss later, it does allow for the public file

system to overwrite data in the hidden volume.

This should prevent malware installed by the adversary on the public operating

system from leaking information about the hidden volume so long as the user does

not use the public operating system to access the hidden volume. However, this

approach does not protect against malware installed on a device at the firmware

level [35].

4.2.3 Obfuscation and Redundancy through Information

Dispersal Algorithms

As most deniable storage systems rely on hiding information among random

data in the free space of a device there is a need for both obfuscation and some

form of overwrite resistance. While most systems avoid the need for additional

data integrity protections by preventing the hidden volume from sharing the same

set of disk blocks as the public volume [80], these schemes often leak information

about the hidden volume through either exposed metadata structures or significant

differences between the advertised and usable capacity of a device.

Our strategy to solve both obfuscation and redundancy is to encode hidden

data using an IDA and hide the resulting encoded blocks in unallocated space filled

with random bytes generated by a secure-deletion-capable drive wiping utility or

an encrypted file system. In this approach the hidden data blocks are processed

through the IDA to produce a set of random appearing carrier blocks. These

blocks will be written to the unallocated space that has been deniably filled with

random bytes. Without knowledge of which carrier blocks correspond to what data

blocks and with carrier blocks indistinguishable from other free space on the disk.

To brute force this system an adversary is forced to reconstruct every possible
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combination of blocks on the disk. Through this we obtain combinatorial security

as an additional provision alongside standard encryption techniques. Most IDAs

can generate redundant shards of the original secret, much like standard erasure

codes. As a result, the IDA allows a system to repair itself and protect against

accidental overwrite by the public volume. This strategy has limits to how many

blocks the hidden volume can lose before irreparable damage is done, if that

happens the system fails securely by not revealing information to the adversary.

Information Dispersal Algorithms and Erasure Codes

With an IDA pieces of data are split into a series of shares, a subset of which

are required to reconstruct the original data. This is similar to and in some cases

the same as an (n, k) erasure code, such as Reed-Solomon [91], with which there

are n symbols in the code-word and k ≤ n symbols are required to reconstruct

the data. When applied to steganographic storage the most important aspects of

an IDA are the ratio of write amplification to number of recoverable erasures and

its ability to prevent the adversary from gleaning information about the plaintext

from some number of shares less than the threshold k.
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Figure 4.5: Share generation with AONT-RS (All or Nothing Transform and
Reed-Solomon), Shamir Secret Sharing, and Reed-Solomon/Entropy.

Shamir Secret Sharing

One of the best known IDAs is Shamir’s Secret Sharing algorithm [105]. In

this scheme n shares are generated from the secret and any k ≤ n shares are

needed to reconstruct the original secret. This relies on the fact that any set of k

points will define a unique polynomial of degree k−1. The secret is used to create

this polynomial of degree k − 1 which is evaluated at n random points. When at

least k points are known it is possible to reconstruct the original secret through

polynomial interpolation. The benefit of this approach is that with any less than

51



k points, it is impossible to infer any information about the original secret. One

share does not reveal any information about the potential contents of other shares.

This set of characteristics provides us with information theoretic security.

AONT-RS

A similar but computationally secure threshold guarantee can be provided us-

ing the All or Nothing Transform (AONT) [93]. In standard symmetric encryption

modes such as Cipher Block Chaining (CBC) it is possible to decrypt information

one block at a time, so the adversary need not know the entirety of the data to

reveal some plaintext. The AONT is an encryption mode that prevents decrypt-

ing a piece of information without possessing all of it. With the AONT a block of

data D is encrypted with key K to produce ciphertext C. A cryptographic hash

H is used to produce digest d = H(C) that is equal in length to K. K and d are

combined with a bit-wise XOR operation and the resulting difference is appended

to the encrypted data to produce the AONT payload. To recover D the entirety of

the payload is required. The digest d is recomputed from C and the digest is used

to recover K from the difference. Combining this technique with an erasure code

such as Reed-Solomon results in an algorithm that provides error correction abil-

ities and a computationally secure threshold scheme [92]. Although theoretically

weaker than Shamir’s information theoretic approach, AONT-RS provides the ad-

vantage that the individual shares can be smaller than the input data. AONT-RS

splits information of length L into n pieces with a threshold of k where each share

is only of size L/k ≤ L. This improved space efficiency for the same number of

shares is a significant advantage when applied to deniable storage where the total

footprint on disk relates to both overall deniability and reliability.
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Reed-Solomon and Entropy

We have also explored a new IDA that combines non-systematic Reed-Solomon

erasure codes with existing blocks of pseudo-random entropy data as a sort of

one time pad. This algorithm will produce random appearing carrier blocks

with a similar space efficiency to AONT-RS. As shown in Figure 4.5 our Reed-

Solomon/Entropy approach uses a set of one or more data blocks and a set of one

or more pseudo-random entropy blocks in the initial Reed-Solomon code-word.

The generated random appearing carrier blocks are stored on the disk and the

original data blocks are discarded. When it comes time to reconstruct the data

any surviving carrier blocks and the entropy blocks are used to recover the data

blocks. It is important to use a non-systematic Reed-Solomon code so that the

original data blocks are not retained.

For example, if we have d ≤ k data blocks and e = k− d entropy blocks, after

encoding we are left with m = n−k carrier blocks and e entropy blocks. The data

blocks are discarded, and the carrier blocks are stored in the unallocated space of

the file system. The entropy blocks are stored in a known, external location. If

m < e + d, we require entropy blocks to reconstruct the original data. Whereas

if m ≥ e+ d we do not require entropy blocks to reconstruct. For example, if we

have d = 2 data blocks and e = 3 entropy blocks resulting in k = 5, and if n = 9,

we arrive at a set of m = 4 carrier blocks after encoding. Since the two plaintext

data blocks are discarded and not written to disk, we are left with seven blocks

that can be used to reconstruct the original data. Out of this set of n− d blocks,

only k are needed to reconstruct the original data. The numbers m, d, and e can

each be adjusted by the user to provide more resiliency, performance, or security

as desired.

Artifice has multiple ways to acquire high entropy data from deniable sources
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such as a user’s DRM (Digital Rights Management) protected media files. The

presence of which on a publicly visible file system is not suspicious. So long as

m < d+ e, without the entropy blocks, the original data is unrecoverable.

With an erasure coding scheme, it is possible to map multiple data blocks to a

single pool of carrier blocks and provide improved space efficiency over secret shar-

ing. However, we must weigh the advantage of improved space efficiency against

the additional complexity and inconvenience of requiring additional entropy data.

Other IDAs

Rabin presented another IDA [88] that similarly to Shamir’s scheme splits a

piece of information into shares smaller than the original data like AONT-RS but

through a different means than Reed-Solomon encoding. Although more efficient,

Rabin’s scheme provides weaker security assurances as without the random ap-

pearing encoded shares provided by Shamir’s scheme an adversary can infer the

contents shares that they do not possess [92]. The basic principles of Rabin’s

scheme are very similar to those employed by Reed-Solomon erasure codes [91].

There have been a few attempts at providing the space and computational

efficiency of Rabin’s approach with the security assurances of Shamir’s. An ex-

ample of this is Secret Sharing Made Short (SSMS) [65]. In SSMS the secret S is

encrypted with a key K which is split using Shamir’s scheme into a set of n shares

K0, K1, ..., Kn with a threshold m. The encrypted secret is split into n shares with

a threshold of m using Rabin’s scheme to produce S0, S1, ..., Sn. The result is a set

of shares that are significantly more space efficient than Shamir’s scheme alone.

The downside is that this approach can only be considered computationally secure

much like AONT-RS and does not provide any additional benefits as far as space

efficiency.

54



Combinatorial Security

One interesting aspect of IDAs is the possibility of relying on combinatorial

security either in addition to or in place of a conventional encryption type scheme

that protects data with some secret known by the user. While this does save us

the hassle of worrying about key management a combinatoric guarantee can only

be provided given certain preconditions regarding the size of the Artifice volume,

the size of the free space we are hiding a volume in, and the number of shares

written to the disk.

For instance, if we assume that the adversary cannot determine which unal-

located blocks contain hidden data the time needed for a brute force attempt to

reconstruct the volume is O(n!/(k!(n−k)!) where N is the total number of unallo-

cated blocks on the disk. In this case the threshold k can be considered constant,

or limited to a small range of realistic values, so the computational complexity

can be simplified to O(Nk). While polynomial time does not necessarily provide a

strong security guarantee on its own, the number of blocks N can be quite large.

In the case of a 1TB disk with 512GB of free space there are 227 4KB unallocated

blocks. If we assume each data block is divided into a set of 12 carrier blocks with

a reconstruction threshold of 8 then there are (227)8 or 2216 possible combinations

for reconstructing each data block.

In this scenario, even if an adversary can determine which blocks contain hid-

den data, a brute force attack is still infeasible. Using the same secret sharing

parameters as the previous example and assuming our Artifice volume has a foot-

print of 8GB or 221 4KB carrier blocks, there are still (221)8 or 2168 possible block

combinations for the adversary to attempt. Each data block can be reconstructed

through
(

12
8

)
= 495 different combinations. With this and the approximate size

of the volume we can approximate that out of the 2168 block combinations, on the
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order of 227 combinations will yield a valid data block.

There is of course a trade-off between resilience, security, and performance

but using an IDA allows for a measure of tunability. The larger the threshold k

required to rebuild the data, the more secure the system as the number of possible

block combinations has increased. However, there is a minimum threshold for a

reasonable combinatorial guarantee based on the size of the Artifice volume, size

of the free space, and the number of shares. Should we have too little free space,

too few shares per data block, or too small of an Artifice volume the number of

combinations the adversary must try becomes a feasible, if still expensive task.

For example, an Artifice volume of 1GB with four shares per block presents

(218)4 = 272 possible combinations. Shrink this to a 256MB volume and you have

264 possible combinations. This is still a difficult problem but possibly feasible

given past successful efforts at brute forcing encryption keys [1]. These small

volume sizes become a significant concern when one keeps in mind that the smaller

the footprint the easier it is to hide sensitive data.

Luckily both our proposed Reed-Solomon + Entropy scheme and AONT-RS

can rely on some additional provisions to ensure the security of the encoded data

either encryption or entropy blocks. As such, Shamir Secret Sharing is the al-

gorithm that stands to benefit the most from combinatorial guarantees as any

correct selection of blocks can reveal data without the need for additional infor-

mation. This should be considered when selecting an IDA for use with a deniable

storage system. If the volume is not large enough or there is not enough free space

to provide a combinatorial security guarantee using Shamir Secret Sharing would

be ill-advised. In the case of our other two IDAs combinatorial security provides

an additional layer of security alongside other mechanisms.
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Overwrite Resistance

To avoid the security pitfalls of previous approaches, a deniable volume must

be designed to exist in an environment where accidental overwrite is a constant

threat to data integrity. Some approaches utilize basic replication [74] but this

leads to significant write amplification. This gives the hidden volume a significant

footprint on the disk which requires significantly more free space in which to store

data. This increases the chances of accidental overwrite and changes more blocks

for each write which can make detection more likely. We believe that a deniable

storage system must be able to efficiently repair itself and recover from a limited

amount of damage dealt by the public volume. We aim to achieve this using the

same IDA scheme to obfuscate the data. Most IDAs can produce more redundant

shares than the number needed to reconstruct the secret. It follows that they can

reconstruct the original secret and regenerate the overwritten shares. The system

can remap the reconstructed shares to new locations on the disk, restoring the

full erasure correcting capability of the volume. By adjusting the total number of

shares and the reconstruction threshold along with careful placement of the data

the deniable system can adapt to different rates and distributions of overwrites.

The primary drawback of this approach is that hidden data survival is proba-

bilistic. We can minimize the probability of catastrophic data loss through either

maintaining a small hidden volume relative to the size of the public system’s un-

allocated space or through the user consciously limiting the amount of data they

write to the public volume between repair operations. We have theoretically and

empirically evaluated the effectiveness of multiple IDAs with a variety of hidden

volume sizes, amounts of unallocated space, and the amount of data written to

the public volume per repair operation. Additionally, we have developed methods

by which Artifice can determine the appropriate settings for the IDA.
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However, Artifice would still be vulnerable to the “fill to full” attack [37]. We

consider the result of silently losing the hidden volume to be a secure failure as it

does not compromise the confidentiality of the hidden data or alert the adversary

to the presence of the hidden volume.

4.2.4 Deniable Writes to Public Free Space

Of significant concern for previous systems among the is the multiple snapshot

attack in which the adversary can capture images of the disk and infer the existence

of a hidden volume through analysis of the changes. To tackle this problem there

must be a level of plausible deniability for the inevitable changes made to the

unallocated space of a public volume when data is written to the hidden volume.

Current strategies to provide a provable defense against a multiple snapshot at-

tack inevitably weaken the system against attacks far simpler than snapshot analy-

sis. As we have discussed in Sections 2.2 and 3.1, ORAM-based approaches [16,20]

primarily compromise information leakage resistance and leave the deniable sys-

tem’s driver open to the adversary. As a result, we have assumed both of these

weaknesses are less resource intensive for an adversary to exploit than analyzing

disk access patterns from a limited number of snapshots. Alternate approaches

rely on the system constantly writing dummy blocks to locations on the disk

independent of writes to the public or hidden volumes [80, 131]. Additionally,

outside of Troncoso et al.’s work on traffic analysis attacks [119], there is a lack

of empirical evaluation for the effectiveness of snapshot attack countermeasures.

We instead prioritize securing the system against information leakage and

hiding the driver software over provable snapshot analysis countermeasures while

still providing some defenses which rely on providing deniable reasons for the

changes in a disk’s free space.
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The first solution is rooted in operational security. Avoiding the scenario of a

multiple snapshot attack is the most foolproof way to defeat it. When an adversary

gains access to the device, the user must assume that either a snapshot has been

taken or malware installed. The easiest and most reliable response is to replace

either the whole device or the disk, or deniably scramble the contents of the disk

rendering the previous snapshot meaningless. With any data already contained in

the public and hidden volumes copied to the new device or scrubbed disk, there

is nothing for the adversary to meaningfully compare to previous snapshots. In

the case of a mechanical disk, a defragmentation operation between two snapshots

would render the first meaningless and provide a deniable reason for the changes.

Only then would data be written to the hidden volume. Although relying on

operational security is ideal, it will not always be practical for a user to take such

relatively drastic measures.

Another approach is to write data to a portion of the disk where the contents

change frequently or recently. This reduces the problem to selecting suitable

blocks for storing hidden data. Artifice would be limited to writing new hidden

data only to blocks that have been freed by the public file system after the most

recent opportunity for the adversary to take a snapshot. To accomplish this

Artifice would store an allocation bit vector describing which blocks are in use

as of the last hidden data access. When it is next initialized the current state of

the disk would be compared to the previous state. Since these “hot” regions on

the disk change frequently there would be a deniable reason for changes in the

free space. A drawback is that hiding data in frequently changed sections of the

disk increases the probability of overwrite. We would need to store larger sets

of carrier blocks to provide a reasonable probability of survival. Lastly for this

approach to be feasible the user must be sure to delete enough data to provide
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free blocks before writing to an Artifice volume.

Even our best efforts at rendering write patterns indistinguishable still run

the risk of missing something that the adversary notices as has happened with

multiple attempts to disguise TOR traffic by mimicking the behavior of another

type of network [52]. As such while we implement and propose defenses for Artifice

(see §7.1 it would still be advisable to take an operational security approach like

the one we have proposed to maintain deniability more reliably.

Deniably Random Free Space

Tangentially related to the problem of deniable writes is how we prepare the

free space of the device to receive those writes. The primary challenge is that filling

the unallocated portions of the disk with unexplained pseudo-random information

could be considered suspicious. Consequently, there must be a deniable reason for

the free space of an existing file system to be filled with pseudo-random bytes.

One possible solution to this problem is maintaining a large amount of deleted

random appearing files such as compressed archives to fill unallocated space with

random bytes. Although there is the possibility of statistical tests showing hidden

data as being "too random" or otherwise standing out from the surrounding blocks.

Such a mismatch could be detected using widely available randomness testing

programs such as the NIST Statistical Test Suite (STS) [97]. The most reliable

way to produce large amounts of sufficiently random information is to rely on

cryptographic ciphers. Although we must assume that the user would surrender

keys for a file system or whole disk encryption system and that the free space

could be decrypted revealing our obfuscated hidden data. To avoid this, we must

render the hidden space undecipherable. The use of a secure drive wiping utility

that encrypts data and discards the key would accomplish this but the number
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of random blocks on the disk would decrease as data is written through normal

use. The use of an encrypted file system that deletes information securely by

overwriting the key material used to encrypt a block or file would result in deniably

random unallocated space that replenishes itself through normal operations. We

discuss how to address this challenge in §4.3.

4.2.5 Flash Considerations

SSDs create a set of different issues for Artifice as flash technologies possess

different technical characteristics and features when compared to traditional me-

chanical disks. The primary culprit in this problem is the FTL which can mark

hidden blocks as written which leaks information about the location and presence

of hidden data. Alternatively, the FTL may unknowingly erase hidden data as

part of opaque and non-standardized garbage collection operations if is unaware

of the hidden volume’s writes which presents another possible source of hidden

data overwrites.

This layer of abstraction presents a hurdle for deniable storage systems. Many

designs seek to address these challenges by operating on raw flash devices [83] or

are intended to be implemented as drive firmware [131]. Since custom firmware

could be suspicious in a similar way to publicly visible drivers and raw flash

devices are still relatively uncommon, Artifice primarily addresses these challenges

through other means.

TRIM

Most modern file systems support the TRIM function, which notifies an SSD

that certain blocks are no longer in use by the host, and thus need not be copied

to new locations during garbage collection. Ideally for the public file system,
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the hidden data would be TRIMmed, therefore marked as unallocated by the

SSD, and would treat garbage collection operations as another form of accidental

overwrite. However only one kind of TRIM (Non-deterministic TRIM) possibly

allows access to the original data after a block has been subject to TRIM. When

reading from TRIMmed blocks the SSD could either return the original data or

some other information if the block has been subjected to garbage collection.

The other two types of TRIM are far more damaging for a deniable storage

system, Deterministic Read After TRIM (DRAT) and deterministic Read Zero

After TRIM (RZAT). Both will return a consistent pre-defined value for any

logical block address that has been TRIMmed. In this case it would be necessary

for a deniable storage system to leave all of its blocks listed as allocated on the

SSD and therefore vulnerable to forensic analysis. Additionally, deterministic trim

will cause most, if not all, free space on the device to appear uniform, eliminating

the ability for a deniable storage system to hide within pseudo-random free space.

The challenge posed by TRIM is somewhat mitigated by the fact that most

operating systems utilize periodic TRIM, where the operating system will peri-

odically send a TRIM command for all blocks deleted after the previous TRIM

operation [6, 116]. This is viewed as preferable to continuous TRIM where a

TRIM command is sent to the disk each time a file is deleted. The common use

of periodic TRIM allows for a small region of accessible untrimmed free space on

an SSD between TRIM invocations. It is unknown whether the size and lifespan

of this region are sufficient to address the problem that TRIM presents.

To address this issue, we have concluded that TRIM should be disabled when

a device contains a hidden volume. Fortunately, it is common to disable TRIM if

using a drive encryption system as it could leak the locations of the unallocated

blocks and reveal the possible size of stored data [18, 109, 120]. In the case of a
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deniable storage system disabling TRIM is an ideal choice as we need not worry

about hiding data in blocks that would be altered by TRIM. Effectively causing

the SSD to behave like a mechanical disk from the perspective of Artifice and the

public file system.

NVMe and Zoned Namespaces

Multiple reasonable alternatives to FTL based SSDs have emerged, such as

open channel SSDs. A related recent development has been the move towards the

adoption of Zoned Namespaces (ZNS) [15]. This new approach breaks an SSD up

into a series of sequentially written and host controlled “zones” that are written

sequentially like a log-structured file system. Zoned block device support is already

included in the Linux kernel through software such as dm-zoned and F2FS [66,72].

Zones behave similarly to segments in a log-structured file system or erase blocks

on a flash device. Artifice could extend its block allocation functionality to support

hiding data in deleted blocks of zones that have not yet been garbage collected

by the file system or dm-zoned if those zones already contained pseudo-random

or encrypted information.

There are two possible routes Artifice can take when interacting with zoned

namespaces. The first is where Artifice is oblivious of the fact that it is operating

on a zoned device by running the Artifice block device on top of an existing

dm-zoned device. This is the simplest approach that eliminates the need for

any additional functionality in the Artifice driver. The second technique involves

Artifice working in concert with a secure deletion utility as previously described

in §4.3. Artifice data would be written normally to a series of zones and would

be marked as deleted in the same manner as with a secure deletion utility on a

conventional drive. It would be best to spread carrier blocks from the same data
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block tuple across multiple zones to increase the probability of survival should an

entire zone be deleted.

While zoned namespaces and other host controlled flash devices present com-

pelling options for bypassing the challenges posed by FTL controlled flash, they

have not yet achieved wide adoption and some standards like Zone Namespaces

have not yet been integrated into commonly available consumer hardware.

4.3 Secure Deletion and Steganographic Storage

As previously stated in §4.2.3 Artifice, and most other deniable storage sys-

tems require some deniable justification for unallocated space to be filled with

undecipherable pseudo-random blocks. If discovered, unexplained random blocks

would be considered suspicious by the adversary and provide justification for fur-

ther investigation. Without pseudo-random free space Artifice blocks will be rela-

tively easy to spot. Our proposed solution was the use of a secure deletion utility

that encrypts data and throws away the key to render the data undecipherable.

This technique is commonly used to wipe drives before disposal and by modern

self-encrypting drives (SEDs).

With a secure deletion utility, the user would first wipe a drive before use and

then create a hidden volume within the free space of the volume. If the device

allows in-place updates and has not been given any TRIM commands the device

will contain pseudo-random blocks throughout its unallocated space. While this

technique is relatively simple to implement it is not without its drawbacks. The

biggest of which being that limited number of random free blocks. As the device

is used and blocks are freed by normal use the number of random blocks in the

unallocated space will shrink, reducing the space available to Artifice to hide in.

Additionally, it is unclear how this technique would fare when used on an SSD
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due to overprovisioning and the behaviors of the FTL.

As an alternative to using a secure deletion utility the user could decide to

wipe a drive by overwriting it entirely with an Artifice volume with a significant

number of redundant blocks generated. Then the user could write normal looking

cover files onto the disk. Since blocks encoded with Artifice IDAs would produce

psuedo-random appearing blocks it would appear as if the user had simply used

a secure deletion utility at some point in the past. The high redundancy factor

would then provide Artifice ample ability to absorb overwrites until the data could

be extracted. While this approach places data integrity and deniability of random

information at the forefront it limits the user’s ability to write new data to the

Artifice volume over time and limits the user’s ability to perform repair operations

on the data once it is written to the device. As such this method would only be

advisable when a piece of information only must be hidden for a short time.

A more ideal solution to this problem would be to utilize a technique that

would automatically generate new pseudo-random free blocks as the file system

is used. Such a system would be an encrypted file system that deletes data by

discarding an encryption key.

4.3.1 Steganographic Storage through a Secure Delete File

System

To demonstrate how Artifice would interact with a secure delete capable file

system we will assume a theoretical system that fulfills the following requirements.

• The file system securely deletes data by provably forgetting an encryption

key corresponding to this data. Ideally, these keys would be at a finer

granularity than the entire file system such as a key per block.
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• The primarily used version of this file system must have no capability of

interacting with a hidden volume to avoid suspicion of the software itself.

To explore how Artifice would be modified for use with such a system we will

be using a system called Lethe which provides file system encryption and efficient

secure deletion. With Lethe keys are generated for individual blocks through a

Keyed Hash Tree (KHT) [68]. With a KHT, individual block keys can be derived

from a single root key. Each file possesses its own list of KHTs where generated

leaf keys are used to encrypt individual blocks from a set of root file keys. These

root file keys are stored in a metadata file similar to systems like WAFL and

ZFS [50]. The root file keys in this key file are managed and encrypted with their

own list of KHTs like any other file. By using KHTs Lethe reduces the number

of keys that must be forgotten to only the root key for the file system and avoids

re-encrypting data with new keys. Instead of changing the root key with each

deletion operation it is done periodically with each file system epoch, some length

of time or number of writes after which we roll over to a new root key. When the

root key is changed any keys or sub-trees for still valid files or blocks are rolled

forward to the next epoch. Anything not carried forward is securely forgotten, as

is the data encrypted with the forgotten key assuming the system can provably

forget a single root key. Eventually data will need to be re-encrypted with new

keys once the KHT lists reach some level of fragmentation caused by carrying

forward old keys to a new epoch. This is addressed through garbage collection

operations that lazily re-encrypt and remap data with new keys to defragment

KHT lists.

There are two ways that Artifice could interact with Lethe. In the first ap-

proach Artifice treats Lethe like any other file system and hides within unallocated

blocks. The second method of utilizing Artifice alongside Lethe involves writing
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data through the encrypted file system, deleting said data, and preserving the

relevant keys elsewhere. Data would be written to a volume encrypted with Lethe

using the IDA techniques that Artifice normally uses. These newly written blocks

and their corresponding inodes will then be “deleted” with the user being sure to

maintain a copy of the root encryption key for those blocks elsewhere. An IDA

would still be necessary to protect against accidental overwrite as the “deleted”

blocks are reused by the file system. We must be sure to only write to this hidden

volume using another operating system like the live disk used in a conventional

Artifice deployment. This is to maintain the same isolation that ensures resistance

to information leakage and malware. The primary challenge of this technique is

that the saved key(s) used to decrypt the Artifice blocks must be stored some-

where. These could be stored using more conventional steganographic techniques

such as embedded in an image or hidden in a smaller Artifice volume on another

device. Ideally only the root key for the entire file system corresponding to the

epoch in which the Artifice data was written is needed to read the Artifice volume.

To modify Artifice for use alongside Lethe as described in our second method

we can drastically simplify the Artifice driver. Instead of existing as a virtual

block device Artifice could instead be a simpler program that takes a set of files

the user wishes to write to a hidden volume and writes them to a Lethe file system.

This streamlined Artifice version would still need IDAs and metadata structures

to provide redundancy, but the obfuscation provided by Lethe’s encryption system

would be sufficient. The most important function of this Artifice variant is that it

must record which blocks it has written to and return a copy of the corresponding

keys to the user. To recover data the user would provide Artifice with the root

keys corresponding to the hidden data, decrypt the relevant blocks, perform error

correction to account for overwritten blocks, and provide the reconstructed and
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decrypted data to the user.

Either approach automatically provides a replenishing set of apparent pseudo-

random blocks with a deniable reason for their existence on the device. The second

method has the the benefit that the write patterns will match what is “normal”

for the public file system, especially if it is a file system that utilizes append-only

or read-modify-write operations.

Since Lethe would perform garbage collection operations to mitigate KHT list

fragmentation Artifice must contend with an additional source of overwrites by an

unknowing file system. As a result, it may be necessary to increase the redundancy

of Artifice IDA configuration or decrease the frequency at which garbage collection

is run to minimize the number of overwrites for a given duration.

A drawback of this approach is that we would need a modified version of the

Artifice driver that interfaces directly with Lethe. This could make use of an

ordinary Lethe instance suspicious to an adversary if they knew of a version of

the Artifice driver tailored for use with Lethe. Also when hiding data by writing

into the Lethe volume, instead of a single passphrase we have a set of one or

more root keys we must keep track of. Changing access credentials for the hidden

volume is also more complicated and expensive than with a conventional Artifice

deployment as we would have to re-write the hidden data to new locations in a

different epoch and save new keys.

4.4 Summary

To defend against our adversary described in Chapter 3 we have developed

Artifice, a plausibly deniable virtual block device. Artifice defends against mal-

ware and mitigates information leakage from the hidden volume through isolating

the hidden volume from the public system. A user accesses Artifice through a
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separate bootable drive that contains the Artifice driver. The public OS is not

running, and the public volume is not mounted. Reducing the chances of infor-

mation leaking from one volume to the other and preventing malware present on

the public volume from running. This isolation also allows us to keep the driver

software and hidden volume separate, which helps to hide the existence of the

driver software.

Artifice utilizes IDAs to both provide redundancy in the face of the public

volume overwriting Artifice blocks and obfuscates the data to render it indistin-

guishable from other random blocks in the free space of a device.

To mitigate the compromising characteristics of flash devices we propose dis-

abling TRIM when using an Artifice volume, as is commonly done with disk

encryption systems.

Secure deletion through encryption provides us with a deniable reason for

random blocks in free space that Artifice blocks hide in. We extend this by

considering how we can modify Artifice to make the most of a file system called

Lethe (§4.3) that performs secure deletion as a default behavior.
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Chapter 5

Implementation & Operational

Security

Core to our objective of designing usable deniable storage is to implement

our proposed design and evaluate it against our design criteria. To demonstrate

and test its viability we have implemented Artifice as a loadable kernel module

intended to be run from a Linux live flash drive. With an implementation of Arti-

fice we empirically evaluate how well it meets our design requirements, benchmark

its performance, and draw up an operational security model for its use.

5.1 Implementation

Artifice uses the Linux device-mapper framework [71] to present the user with

a virtual block device. This block device maps block IO operations from logical

data blocks to carrier blocks that are written into the free space of an existing file

system. As with most device-mapper targets, Artifice can be layered with other

device mappers such as dm-crypt and dm-zoned to modify its behavior. Also like

other block device drivers, our implementation of Artifice must be formatted with
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a file system before it is used like a regular physical disk. While Artifice can be

implemented as a file system instead of a virtual block device, choosing the latter

reduces the number of operations Artifice must handle to only block reads and

writes and simplifies the required metadata structures. That said, a file system

built on a user-space pass-through system like FUSE (File System in Userspace)

would eliminate the added complexity of a loadable kernel module and allow easier

deployment on other Unix-like operating systems such as FreeBSD or MacOS. It

is important to note that by keeping Artifice at the block device layer or higher in

the storage stack, we are able to eliminate the need for the specialized hardware

or firmware that some previous approaches require and allow Artifice to run on

common commodity devices.

The architecture of the current implementation of Artifice, as shown in Fig-

ure 5.1, is easily extensible to support multiple public file system types and cur-

rently supports ext4 [5] and FAT32 [3] and we plan to support NTFS [2] and APFS.

CRSS Confidential

Figure 5.1: Architecture of the Artifice block device driver.
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This implementation is designed to utilize Shamir Secret Sharing [105], non-

systematic Reed-Solomon erasure codes [91], or systematic erasure codes combined

with an all or nothing transform [92] as IDAs to generate carrier blocks. All of

which provide an (n, k) scheme where at least k carrier blocks out of a set of n

are needed to reconstruct the original data and no data is recovered if fewer than

k blocks are available.

For its IDAs, Artifice includes a variant of the libgfshare [108] Shamir Secret

Sharing library ported for use in the Linux kernel, an AONT-RS library built on

a SIMD-optimized Reed-Solomon library and the SPECK symmetric cipher [14],

and a Reed-Solomon/Entropy library using the same SIMD library. The current

implementation operates on 4KB logical blocks as it is a common default block size

for file systems such as ext4 and because it is the default Linux page size. Block

checksums use a modified version of the cityhash library [41] and the passphrase

is hashed with SHA256.

5.2 Operational Security Model

Operational security is an often-overlooked aspect of deniable systems and

something that we must consider in the design phase. Exploring the procedures

and operational circumstances surrounding the deployment of such storage sys-

tems are critical and likely to be the deciding factor in the actual security of the

system. In the case of Artifice we must consider the deniability of the driver soft-

ware, the security of the passphrase, the physical security of the device, and the

measures that should be taken if any of the components necessary to use Artifice

are compromised.

As mentioned previously, Artifice aims to provide deniability for the storage

system’s driver as the presence of a relatively uncommon and suspicious program
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on the user’s device would imply the existence of a deniable volume. Keeping

the volume and software on separate devices assists in this but is still heavily

reliant on the user’s practices. We assume that the deniability of the software

is tied to its probability of being present on an average user’s device. The more

common and innocuous the software is, the less suspicious it is to our adversary.

Due to the many drawbacks inherent in deniable storage systems, we can assume

that a user will not have it installed unless they intend to maintain a hidden

volume. Many previous solutions assume that if a deniable storage system was

to be included in some other common software package, such as the Linux or

Android kernel [22, 109], the user would have a deniable reason for the driver’s

presence on their device. The flaw in this approach is that there would have to

be enough machines with the software sitting unused to make its presence appear

innocuous. We consider it unlikely for a maintainer of a mainstream piece of

software to bundle such a niche application into a release due to the relatively

narrow use case and significant compromises that deniable storage systems must

make.

When designing operational security procedures for a system we must first

consider what components must be secured. With Artifice we must at minimum

secure the passphrase to the hidden volume, the device the volume is stored on,

and the driver software to ensure that the hidden volume remains secure and

deniable. An important question of how to keep Artifice deniable is what the

user should do when one or more of these components is compromised. These

procedures are summarized in Table 5.1.

One of the more critical components to secure is the passphrase to an Artifice

volume. Artifice does not persistently store any material related to the passphrase

on a device. To further improve security multiple factors can be utilized alongside
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the passphrase to locate and secure an Artifice volume. If a passphrase is compro-

mised by an adversary Artifice provides an easy means for revoking and replacing

a set of credentials. When a new passphrase is chosen Artifice will determine

new locations for the super block and pointer blocks. These will be remapped to

those new locations and encrypted using the new passphrase. The old super block

replicas and pointer blocks will be overwritten with random information. If the

user can change the passphrase before the adversary gains access to the storage

volume, they will be unable to find the hidden volume using the old passphrase.

In an ideal scenario, the user would ensure that they do not possess a copy of

Artifice on a live disk when the adversary is most likely to inspect their device.

This assumes the user has discarded their original live disk and made arrangements

to obtain a copy once the present danger has passed to access or repair the volume.

To carry out this more secure procedure the user in possession of the hidden

volume may need to coordinate with multiple other individuals. When this is

not practical the user could fall back on classic steganographic techniques such

as hiding data in the lower order bits of images to hide the software on the live

disk. This approach would require less overhead as the driver is significantly

smaller than the hidden volume. Additional options to avoid exposing the driver

include downloading it through secure means like TOR [33] or an HTTPS secured

website and carrying it on an easily concealed MicroSD memory card. Should the

user carry the live disk on their person without additional measures to hide the

software and it falls into the hands of the adversary we must be concerned about

the adversary escalating efforts to monitor the user’s actions and we must assume

the adversary knows that the user is possibly in possession of a hidden volume.

Perhaps the most complicated factor to consider is the device the user is keep-

ing the hidden volume on. We have a few different kinds of devices to contend
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with that influence what the user must keep in mind when using a deniable stor-

age system. The simplest of these is a mechanical disk. This disk could either

be a boot disk or an external disk kept separately from the user’s machine. We

must also consider whether or not this device is one that uses flash. Flash intro-

duces another dimension of possible device consideration. Some flash devices like

compact memory cards or USB flash drives often lack an FTL and can be treated

as an ordinary mechanical disk. Should the drive have an FTL the user should

consider disabling TRIM or utilizing other possible countermeasures discussed in

§4.2.5.

A significant operational concern for the device used to store and/or access the

hidden volume is malware. Should the adversary gain physical access to the user’s

device we must assume that they have installed malware to monitor the user’s

actions and taken a snapshot of the disk. Isolating Artifice to a separate operating

system helps protect against leakage through OS-level malware, although Artifice

cannot help protect against hardware or firmware level malware. If it is suspected

that the adversary has tampered with or compromised the device the safest option

is to destroy and replace the device. If this is not possible, the user could scramble

the information on the disk through an operation such as disk defragmentation

or system cleanup utilities and change the Artifice passphrase. While the best

solution to malware is to scrub the device or replace it there can be an advantage

to leaving it be if the malware cannot impact or observe Artifice operations. This

is because the adversary may consider it suspicious if the device no longer contains

malware when they next get the opportunity to interact with it.

If all the components of the system are compromised there is little that can be

done to maintain security. Although if the user possessed multiple hidden volumes

and only the passphrase for a subset of these are compromised then they may be
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able to satiate the adversary by revealing one of the volumes. It is unknown if

this would be a viable strategy because we have assumed the adversary would be

aware of this capability and may continue pressing the user for more information.

In addition to developing procedures for the compromise of each component,

the user must also remain aware of specific Artifice behaviors such as the integrity

of the hidden data. The user must remain aware of their activities on the public

system and how much data is being written to the disk to ensure that the hidden

data survives. For instance, if the user cannot take an operational security ap-

proach to mitigate the threat of multiple snapshot attacks (§4.2.4) then we must

manage the deniability of the volume, e.g. the number of disk updates, versus how

much we want to store and how much the public file system is writing. Ideally,

the user would be able to minimize how much the public file system is writing

once hidden data has been stored on the device. This is more controllable when

the user is writing data to an external drive that does not see writes from the

operating system or user applications.

Perhaps the most difficult aspect of using a deniable storage system is that

the user must be aware of the level of scrutiny the adversary has placed them

under. If the adversary has already targeted the user for closer observation the

number of options available to ensure the secrecy of a hidden volume becomes

significantly limited. If the user is being closely tracked by our adversary, the

movements may provide sufficient reason for an adversary to escalate to coercion

at the next available opportunity. If the user suspects that the adversary has paid

particularly close attention to them the safest course of action would be to not

attempt to use Artifice and destroy any device that may have stored a hidden

volume or suspicious software.
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5.3 Performance

In general, we consider the performance of a deniable storage system a low

priority. Artifice is not a high-performance system; its ultimate goal is protecting

the user and only requires sufficient throughput to process small amounts of in-

formation. That said, performance must be sufficiently fast so that Artifice does

not become a dangerous hindrance to the user as is the case with some previous

systems [16,20,26]. We consider this threshold to be the performance of a small re-

movable storage device such as a USB flash drive. The largest sources of overhead

are the additional processing that secret sharing or Reed-Solomon will require

and write amplification from writing multiple carrier blocks for each data block.

Performance oriented Shamir Secret Sharing and erasure code implementations

can be achieved using vector instructions [86] and fast Fourier transforms [64] to

accelerate Galois field operations. Despite these methods, reading blocks from

scattered locations will hinder performance.

Fortunately, the use of magnetic hard drives is rapidly decreasing, and with

them painfully long seek times. SSDs impose no significant seek penalty and have

high read performance. Scattered blocks on an SSD pose less of a performance

hindrance.

Contrarily, writing redundant carrier blocks will inevitably impose excess writes

and CPU overhead. Traditional buffering techniques can be used to mitigate these

delays. Simple methods applied in traditional storage devices, such as contiguous

allocation, are not applicable as they introduce correlations that would render Ar-

tifice vulnerable to multiple snapshot attacks and an increased risk of accidental

overwrite.

It is also important that a deniable storage system does not impact the perfor-

mance of the public system as is the case with some approaches aimed at tackling
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the multiple snapshot attack [16,20,26].

Our test machine was equipped with an Intel i7-4790 CPU, 32GB of RAM,

and a 480GB Intel 660p SSD. To better model an average laptop computer we

ran all benchmarks on a VirtualBox virtual machine provisioned with 4 processor

cores, 4GB of RAM, and a virtual disk formatted with FAT32 containing 100GB

of free space. This virtual machine was running Ubuntu 18.04 with kernel v4.15.0.

Our Artifice volume was 16GB and formatted with ext4. For our benchmark we

used the disk benchmark bonnie++ (version 1.97) with no special options enabled.

As seen in Table 5.2 our Artifice implementation using a relatively slow se-

cret sharing library running on a commodity SSD provides performance on par

with USB 2.0 flash drives [118] and thoroughly surpasses the write throughput

of recent competing systems [16, 20, 26] without compromising the performance

of the public volume. As the current bottleneck is a naïve secret sharing im-

plementation, further improvements can be made by leveraging processor vector

instructions or fast Fourier transforms as previously discussed. Even without those

improvements, Artifice’s performance is sufficient for most basic tasks including

compressed 1080p video playback.
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Chapter 6

Survivability Analysis

While the idea of adding redundancy to ensure the survivability of a deniable

volume is not new [74], there has never been an evaluation of what level of re-

dundancy is needed to provide a reasonable probability of survival for a deniable

volume. This sort of evaluation is essential to demonstrating the efficacy of the

proposed techniques and informs users of the limitations they must be aware of

when using a deniable storage system.

Conventional storage systems are predominantly designed for use with highly

reliable devices. Traditional magnetic drives have an uncorrectable error rate on

the order of 10−13 to 10−15 [42]. If a block can be read at all it is extremely unlikely

to be incorrect after normal error correction techniques are employed by the disk.

Marginal blocks can be remapped by the drive or the file system. In contrast, a

deniable storage system following Artifice’s design requirements would have con-

stant destruction of data blocks as normal behavior because public file system

operations will overwrite some Artifice carrier blocks. Without a constantly run-

ning mechanism to prevent the public file system from overwriting carrier blocks,

the survival of the hidden information is at best probabilistic. Although this may

appear as a problematic situation, we have found through both theoretical models
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and an experimental evaluation that it is relatively simple to reliably ensure the

survival of a small hidden volume under the right conditions. We have also devel-

oped a means to provide users with approximations of how their hidden volumes

will behave through a combination of experimental observations and reliability

analysis techniques commonly applied to arrays of conventional storage devices.

6.1 Theoretical Evaluation

Recall from §4.2.3 that in our Information Dispersal Algorithm IDA-based ap-

proach we require k carrier blocks out of a set of n to reconstruct our original

data when using secret sharing. By calculating the probability that we will lose

no more than n− k blocks from each set of carrier blocks, we can determine the

probability of survival for an Artifice volume. We can model this using Equa-

tion 6.1 that utilizes a binomial distribution to approximate a series of Bernoulli

trials where the number of blocks successfully overwritten X is less or equal to the

number of redundant blocks, n − k. In this case probability p is the probability

of overwrite for any one given block on our disk as given in Equation 6.2.

Pr[X ≤ n− k] =
n−k∑
i=0

pi

(
n

i

)
(1− p)n−i (6.1)

p = number of writes to unallocated blocks
number of total unallocated blocks (6.2)

With the probability of survival for a single reconstructed data block we can

determine the probability of survival for the entirety of the Artifice volume. This

is shown in Equation 6.3 where s is the logical size of the Artifice volume and the

function SizeSSS(s, n, k) is the effective size of our Artifice volume when account-

ing for write amplification incurred by Shamir Secret Sharing. The variable t is
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the number of times the user writes a given amount of data and then performs a

repair process. For instance, each iteration approximates the user writing 5GB

of data and then booting into the Artifice aware OS to repair the hidden volume.

Pr
Survival

[k, n] =
(

n−k∑
i=0

pi

(
n

i

)
(1− p)n−i

)SizeSSS(s,n,k)×t

(6.3)

In the case of our Reed-Solomon/Entropy scheme, we must also account for

the entropy blocks, e, and the possibility of multiple data blocks, d, mapping to

a single set of carrier blocks m. In this case, we can lose up to m− d blocks out

of e+m stored. It is important to note that, unlike the secret sharing approach,

the reconstruction threshold is dependent on the number of carrier blocks. The

number of vulnerable blocks is given as SizeRS(s,m, e, d).

Pr
Survival

[e, d,m] =
(

m−d∑
i=0

pi

(
e+m

i

)
(1− p)e+m−i

)SizeRS(s,m,e,d)×t

(6.4)

With these two functions, we can evaluate the probability of survival for a given

number of carrier blocks. We assume that the drive has 512GB of unallocated

space and an Artifice instance has a usable space of about 5GB. In the case of

our Reed-Solomon scheme, we assume that our code word contains one entropy

block and either one or two data blocks. It is assumed that the user overwrites

about 1% of the public volume between each time Artifice is initialized to start a

repair cycle that rebuilds any overwritten blocks.
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Figure 6.1: Probability of survival for Artifice metadata in a variety of config-
urations using both Reed-Solomon/Entropy (RS), Shamir Secret Sharing (SSS)
and AONT-RS. Probabilities are calculated assuming 512GB of free space, 5GB
written between repair cycles, 5GB Artifice volume, and 365 repair cycles. k is
the reconstruction threshold in carrier blocks.
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Figure 6.2: Probability of survival for an entire Artifice volume with the same
configuration as Figure 6.1

Figures 6.1 and 6.2 show the survival probability of our example instance

over one year assuming a repair cycle run each day for both the metadata and

the entire Artifice instance with a variety of different encoding techniques and

numbers of carrier blocks. From these figures, we can see that there is a specific

number of carrier blocks for each configuration where the probability of survival

asymptotically approaches one, which depends on the reconstruction threshold k.

We can also observe that while a Reed-Solomon erasure code can provide better

reliability due to improved error correction capabilities and a smaller footprint on

the disk, it is at the cost of additional operational overhead due to the required

entropy blocks. On the other hand, Shamir Secret Sharing would usually require

one additional carrier block to provide a similar level of reliability.
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Figure 6.3: Probability of survival with varying Artifice volume sizes ranging
from 256MB to 4GB. 5GB of writes between repair operations and 512GB of
unallocated space. k is the reconstruction threshold in carrier blocks.
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Figure 6.4: Probability of survival with varying sizes of writes between Artifice
invocations from 256MB to 8GB. 512GB of unallocated space and a 5GB Artifice
volume.

We can also model survivability based on the size of the Artifice volume, the

size of the free space, and the amount written to the public file system between

repair operations. For these figures, we assume that each data block corresponds

to a set of eight carrier blocks. As shown in Figure 6.3, the smaller the Artifice

volume, the higher the probability of survival. We see overall marginal decreases

in reliability with different IDAs and but the probability of survival remains rather

high even in the case of Shamir Secret Sharing when k = 3, which lags behind

the other configurations. Overall, we observe a linear relationship between the

size of the Artifice volume and reliability. In the case of the amount written to

the public volume between repairs (Figure 6.4) we can observe an exponential

decrease in reliability after approximately 4GB. Finally, when the amount of free
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space available to Artifice (Figure 6.5) we can see that 256GB of unallocated

space provides a promising probability of survival for our Artifice instance.
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Figure 6.5: Probability of survival with varying sizes of unallocated spaces from
64GB to 512GB. 5GB of writes between repair operations and a 5GB Artifice
volume.

Figure 6.5 shows that Artifice can sustain severe damage, as long as the user

(i) maintains a certain percentage of the encapsulating file system remains avail-

able for Artifice to occupy, and (ii) regularly remounting the hidden volume so

Artifice can repair any lost shares. It should be noted that these figures do not

specifically take into account the probability of overwrite from additional sources

such as garbage collection on an SSD utilizing non-deterministic TRIM operations.

Although Artifice cannot escape the probabilistic block overwrite behaviors that

arise as a result of our stronger adversary model, it is possible with the right IDA

configuration to effectively nullify the issue.
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6.2 Experimental Evaluation

To simplify experimental evaluation of Artifice’s survivability characteristics

with a variety of IDA configurations we have collected records of block changes and

allocation information from a real-world device that we can replay onto a simulated

disk containing an Artifice volume. This allows us to compare the survivability

of different IDA configurations and allocation schemes with the same set of disk

changes.

We have collected four months (March through June of 2021) of snapshots

from a 1TB NVMe SSD formatted with ext4 and in use as the boot disk of

a desktop computer running Ubuntu 18.04. We collected 53 snapshots in total,

giving us 52 sets of changes to replay against a variety of different Artifice hidden

volumes.

Figure 6.6: Amount of free space on our SSD at each snapshot.
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Figure 6.7: Amount of data written to the SSD between each pair of snapshots.

Figures 6.6, 6.7, and 6.8 characterize the changing state of the disk’s free space

and amount written with each data point generated from a pair of snapshots.

While this data was collected from an SSD it is from the perspective of the logical

block addressing scheme that the Artifice block device interacts with. In Figure 6.6

we can see that the free space on the disk remains relatively consistent in size with

an average of 177.7GB of free space. Figure 6.7 shows the total amount of data

that changed from one snapshot to the next. Usually, this number is below 10GB

but we can see occasional spikes up to 40GB which correspond to the user moving

or downloading large media files. The average amount of data written between

snapshots is 12.7GB. In Figure 6.8 we can see that the actual amount of data

written between snapshots is mostly in-place updates to already allocated blocks.

This presents us with a much smaller number of blocks written between snapshots
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that Artifice must endure. Out of the average 12.7GB written per data point, we

see that only an average of 1.45GB of this is written to newly allocated locations

on the disk.

Figure 6.8: Amount of data written to newly allocated regions of the disk be-
tween each pair of snapshots.

With each pair of snapshots we can generate a list of blocks changed between

the two. By combining this list of changed blocks with lists of unallocated blocks

on the disk from the same time as those snapshots were taken we get a set of

multiple block address arrays that we call a change record. With these change

records we can characterize the writes to a disk and the changes in free space

between two snapshots. These change records were fed into our Artifice simulator

with Artifice volume sizes of 256MB, 512MB, 1GB, 2GB, and 4GB using our

Reed-Solomon/Entropy, All or Nothing Transform plus Reed-Solomon (AONT-

RS), and Shamir Secret Sharing IDAs. We also added simple replication, or
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replicating and encrypting a data block, to our collection of IDAs as a point of

comparison to previous systems [74,80].

Our simulator reconstructs the state of the disk using the first of a pair of

snapshots that make up a given change record. In the unallocated space of this

snapshot we construct an Artifice volume with a given size and IDA configuration.

The simulator will then use the list of changed blocks from our change record to

mark which blocks were overwritten between the two snapshots. The simulator

pays specific attention to which Artifice blocks were overwritten and outputs a

record of what types of Artifice blocks were overwritten, how many of each type,

and ultimately how many metadata or data blocks were rendered unrecoverable

and lost.
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Figure 6.9: Number of redundant carrier blocks per data block tuple versus
the average number of data blocks lost with a 2GB Artifice instance for Reed-
Solomon/Entropy (RS), AONT-RS (AONT), Shamir Secret Sharing (SSS), and
basic replication.
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We can see in Figure 6.9 the number of data blocks lost due to public file system

writes. The lower the average number of blocks lost for a given configuration, the

more effective the redundancy scheme is at ensuring the survival of the Artifice

volume. It is apparent that when compared with previous approaches utilizing

a basic replication scheme, SSS and Reed-Solomon/Entropy lose more blocks on

average for a given number of redundant blocks per tuple than AONT-RS or

replication. This is due to a combination of the overall higher write amplification

factor and higher reconstruction threshold for a given number of redundant blocks.

Unsurprisingly, AONT-RS loses fewer blocks than replication. This is primarily

due to the increased space efficiency of the algorithm despite requiring more shares

of data to reconstruct than replication.

1 2 3 4 5 6 7 8
Number of Redundant Blocks

0

25000

50000

75000

100000

125000

150000

175000

Nu
m

be
r o

f C
ar

rie
r B

lo
ck

s L
os

t

Number of Redundant Blocks vs Carrier Blocks Lost
RS, 1 data block
RS, 2 data blocks
SSS, threshold 2
SSS, threshold 3
AONT, threshold 2
AONT, threshold 3
Replication

Figure 6.10: Number of redundant carrier blocks per data block tuple versus
the average number of carrier blocks overwritten with a 2GB Artifice instance for
a variety of IDAs.
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Figure 6.10 shows the average total number of redundant carrier blocks over-

written by the public file system. This graph shows us part of the relationship

between a given scheme’s write amplification and the probability of a collision

between blocks. We can see two general groupings. Replication and Shamir Se-

cret sharing incur higher write amplification because each share is equal in size to

the original data block. Reed-Solomon/Entropy, and AONT-RS allow for carrier

blocks smaller than the original data block and therefore have smaller write am-

plification factors. These graphs ultimately let us know approximately how many

redundant carrier blocks must be added to our original reconstruction threshold

to ensure data is not lost given real-world write patterns. For instance, we can

observe from Figure 6.10 that with a 2GB Artifice volume that AONT-RS and

replication provide far greater reliability with each additional carrier block added

than Reed-Solomon/Entropy with only three redundant blocks needed to provide

near zero data loss versus the latter’s four or five, depending on the reconstruction

threshold.

From the experimental results, it is apparent that Artifice, if configured with

the proper level of redundancy, stands a good chance of surviving on a system’s

primary drive in the configuration we observed, although it should be noted that

the pattern and number of blocks written by the public file system depends heav-

ily on the user’s behavior and the behavior of their computer’s file system. As

such users must be acutely aware of their activities when using Artifice to assist

Artifice’s built-in redundancy mechanisms in ensuring the survival of their hidden

data.
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6.3 Mean Time to Data Loss

While our experimental evaluation provides us empirical evidence that Artifice

can survive the inadvertently destructive actions of the public volume, it is difficult

to translate those into recommendations for the user. Although they provide us

with some starting data with which to estimate the amount of redundancy with

which an Artifice volume should be configured. With an estimate of the rate at

which individual blocks are overwritten we can model the mean time to data loss

(MTTDL) for an Artifice volume, a more directly applicable and easily calculated

metric than running a set of simulations and collecting the required data sets.

To do this we construct a simple Markov model from which we can derive the

MTTDL for each set of carrier blocks in a method described by Pâris et al. [81].

While MTTDL is far from an ideal measurement of storage system reliability [43],

it is relatively easy to calculate from our gathered measurements and provides

a reasonable approximation for the purposes of comparing the effectiveness of

different IDA configurations when given a block overwrite rate.

As an example, we have constructed a model and determined the MTTDL

for a set of carrier blocks where n = 5, k = 3, and λ is the failure rate for

individual carrier blocks in Figure 6.11. From this model we can derive a system

of differential equations where pn(t) is the probability of being in state n at time

t.

n n-1 n-2 Data 
loss

n𝜆 (n-1)𝜆

k+1 k

(k+1)𝜆 k𝜆(k+2)𝜆(n-2)𝜆
…

Figure 6.11: Generalized Markov model with no repair rate.
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p′n(t) = −nλpn(t)

p′n−1(t) = nλpn(t)− (n− 1)λpn−1(t)

...

p′k(t) = (k + 1)λpk+1(t)− kλpk(t)

To simplify the problem of solving this system of differential equations we

can apply the Laplace transform to either side of each equation. When we take

the Laplace transforms of this series of differential equations where the initial

conditions are pn(0) = 1, pn−1(0) = 0, ..., pk(0) = 0 it gives us a system of linear

equations in the domain of s.

sp∗n(s)− 1 = −nλp∗n(s)

sp∗n−1(s) = nλp∗n(s)− (n− 1)λp∗n−1(s)

...

sp∗k(s) = (k + 1)λp∗k+1(s)− kλp∗k(s)

The solutions of this system of Laplace transformed differential equations can

be used to compute the MTTDL with the following sum.

MTTDL =
∑

i

p∗i (0)
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5 4 3 Data 
loss

5𝜆 4𝜆 3𝜆

Figure 6.12: (5, 3) Markov model with no repair rate.

By taking the Laplace transform of pi(t) at time zero we get the average

amount of time spent in state i. To calculate the MTTDL we add these average

times for each non-failure state to determine the average time before entering our

failure state. For example, if we have an IDA where n = 5 and k = 3 (shown in

Figure 6.12) we get the following system of differential equations

p′5(t) = −5λp5(t)

p′4(t) = 5λp5(t)− 4λp4(t)

p′3(t) = 4λp4(t)− 3λp3(t)

This combined with the initial conditions of our Markov model, p5(0) = 1,

p4(0) = 0, and p3(0) = 0 we can take the Laplace transforms of this system of

differential equations.

sp∗5(s)− 1 = −5λp∗5(s)

sp∗4(s) = 5λp∗5(s)− 4λp∗4(s)

sp∗3(s) = 4λp∗4(s)− 3λp∗3(s)

The MTTDL of the set of carrier blocks is given by the sum of the solutions

to the system of Laplace transformed differential equations evaluated at s = 0.
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MTTDL =
∑

i

p∗i (0) = 1
5λ + 1

4λ + 1
3λ = 47

60λ

This can be generalized into the following for a single set of carrier blocks with

n total shares, a reconstruction threshold of k, n ≥ k, and without a repair rate.

MTTDL(n, k, λ) =
n−k∑
i=0

1
(n− i)λ = 1

nλ
+ 1

(n− 1)λ + 1
(n− 2)λ + ...+ 1

kλ

n n-1 n-2 Data 
loss

n𝜆 (n-1)𝜆

k+1 k

(k+1)𝜆 k𝜆(k+2)𝜆(n-2)𝜆
…

𝑣𝑣

𝑣 𝑣

Figure 6.13: Generalized Markov model with repair rate v.

Since Artifice can repair the volume when mounted at some rate v we can

modify our Markov model with a new set of possible state transitions. If we

mount Artifice for repair once a day, then we have a probability of v = 1/24 that

the user will mount Artifice in any given hour. This yields a new set of differential

equations derived from a revised Markov model (Figure 6.13).

p′n(t) = −nλpn(t) +
n−1∑
i=k

vpi(t)

p′n−1(t) = nλpn(t)− (n− 1)λpn−1(t)− vpn−1(t)

...

p′k(t) = (k + 1)λpk+1(t)− kλpk(t)− vpk(t)

From this new set of differential equations, we can compute their Laplace
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transforms.

sp∗n(s)− 1 = −nλp∗n(s) +
n−1∑
i=k

vp∗i (s)

sp∗n−1(s) = nλp∗n(s)− (n− 1)λp∗n−1(s)− vp∗n−1(s)

...

sp∗k(s) = (k + 1)λp∗k+1(s)− kλp∗k(s)− vp∗k(s)

As an example, we can compute the MTTDL for a (5, 3) code shown in Fig-

ure 6.14.

5 4 3 Data 
loss

5𝜆 4𝜆 3𝜆

𝑣𝑣

Figure 6.14: (5, 3) Markov model with a repair rate of v.

p′5(t) = −5λp5(t) + vp4(t) + vp3(t)

p′4(t) = 5λp5(t)− 4λp4(t)− vp4(t)

p′3(t) = 4λp4(t)− 3λp3(t)− vp3(t)

Then using the same initial conditions as our model without a repair rate we

get the following set of Laplace transformed equations.
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sp∗5(s)− 1 = −5λp∗5(s) + vp∗4(s) + vp∗3(s)

sp∗4(s) = 5λp∗5(s)− 4λp∗4(s)− vp∗4(s)

sp∗3(s) = 4λp∗4(s)− 3λp∗3(s)− vp∗3(s)

Then by solving this system of transformed equations when s = 0 we get the

following solution for the MTTDL.

MTTDL(5, 3, λ, v) = 1
3λ + 3λ+ v

12λ2 + 12λ2 + 7λv + v2

60λ3 = 47λ2 + 12λv + v2

60λ3

The failure rate (λ) is the total number of failures over time.

λ = Total Number of Failures
Total Operating Time

Our simulator used in §6.2 tracks both the number of overwritten carrier blocks

and the number of overwritten metadata blocks for a given Artifice volume. Also,

because we know the amount of time over which the original disk write mea-

surements were taken we can compute the average failure rate for that period of

time.

Recall that our data was collected from a 1TB SSD that had on average

171GB of free space, and 1.45GB of new unallocated blocks written to between

snapshots. On average each measurement period between snapshots was 47.14

hours or about two days. With these measurements we can compute the failure

rate for a variety of IDAs and (n, k) combinations for a 2GB Artifice volume.
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Table 6.1: Probability of overwrite for Shamir Secret Sharing (SSS), All or
Nothing Transform (AONT-RS), Reed-Solomon/Entropy (RS), and Replication
with different reconstruction thresholds in carrier blocks (k).

SSS Replication AONT-RS AONT-RS RS RS
(k = 2) (k = 3) (k = 2) (k = 3)

0.0007 0.0007 0.00011 0.00017 0.00011 0.00017

Since our MTTDL equations require λ to be expressed as a probability of

failure in a given length of time, we can divide the failure rate by the total footprint

of the Artifice volume on the disk in blocks to express it as a probability that any

one block in an Artifice volume will be overwritten in an hour (Table 6.1). We

can plug that probability into our formulas for the MTTDL derived using the

methods we have previously described. We can see in Figure 6.15 the MTTDL

of a 2GB Artifice volume with 1.45GB of new blocks written every 47.14 hours

assuming that there is no repair rate (v = 0). In this figure we can see that the

MTTDL increases relatively gradually as the number of redundant carrier blocks

is increased but in general, we see reliability on the order of a few thousand hours

and with a lower reconstruction threshold resulting in an overall higher MTTDL.

This can tell our user a rough idea of how long they have until the Artifice volume

is damaged beyond repair, or, the effective operational lifespan of a hidden volume.

Although, Figure 6.15 ignores Artifice’s self-repair capability. If we apply a

repair rate where a user boots into the Artifice aware operating system to perform

self-repair once per day we get a probability of repair in any given hour of 1/24.

We can see in Figure 6.16 that even a relatively infrequent repair rate for the

expected lifetime of an Artifice volume provides a greatly improved MTTDL that

increases exponentially as the number of redundant blocks per carrier block tuple

increases. In addition to the MTTDL being orders of magnitude higher than if a

user was to not repair their hidden volume.
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Figure 6.15: MTTDL in hours for Artifice data blocks using Shamir Secret
Sharing (SSS) with different reconstruction thresholds measured in carrier blocks
(k) and basic replication with no repair rate (v = 0).
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Figure 6.16: MTTDL in hours for Artifice data blocks using Shamir Secret
Sharing (SSS) with different reconstruction thresholds measured in carrier blocks
(k) and basic replication with a repair rate of v = 1/24 (once a day).

With a way to calculate the MTTDL we can equip the user with a means to

estimate on average how long the user can hide an Artifice volume before hidden

data is lost and approximate how often the user should boot into the Artifice-aware

OS to repair the hidden volume.

6.4 Summary

In this chapter we have shown that Artifice if configured right can reliably

withstand accidental overwrites that are naturally a result of hiding Artifice data

within the unallocated space of an existing public file system. Our original theoret-

ical evaluation gave us a model with which we could estimate the probability that
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an Artifice volume would be able to survive for a given number of overwrite/repair

cycles. While it may be an imperfect model this analysis showed that if config-

ured correctly Artifice can survive for a long period of time consistent with the

indicated conditions.

The drawback of our theoretical evaluation is that the uniform write patterns

the model assumes are unlikely to to be found on a user’s device. This shortcoming

prompted us to gather data on real-world disk activity so that we could determine

the reliability of an Artifice volume in a setting in which the write patterns would

match those of a real device. With our simulator we were able to confirm our

findings from our theoretical evaluation that Artifice should be able to survive if

used as recommended. The primary limitation of this approach is that gathering

data and running a set of simulations is a labor and computationally intensive

process. This limitation makes it unrealistic for a user to replicate these methods

to estimate how they should configure Artifice and and provide and estimation of

how long their hidden volume can survive.

To address the shortcomings of our simulator-based approach, we observed

the failure rate of individual Artifice blocks and used that in conjunction with

techniques commonly applied to redundant disk arrays to derive expressions with

which we can calculate the MTTDL of an Artifice volume. While allowing us

an easier way to estimate of a volume’s lifespan with a given configuration, this

approach also allows us to easily include repair rates so that the user can determine

how often to repair their hidden volume.
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Chapter 7

Snapshot & Statistical Analysis

Attacks

To address the lack of extensive experimental evaluation and attempted attacks

against deniable storage systems we have explored a variety of possible avenues

to compromise a deniable storage system.

First, we have implemented a multiple snapshot attack that analyzes the av-

erage length of a disk update. The overall goal of this proposed attack is to

reliably differentiate between devices that contain a hidden volume and devices

that do not. In particular, we pay attention to the rates of false positives and false

negatives that should both be sufficiently low for an attack to be considered suc-

cessful. Using our implemented attack as a guideline we propose countermeasures

that Artifice can use to mitigate the effectiveness of our attack.

Next we explore the matter of entropy analysis to differentiate Artifice carrier

blocks produced by an IDA from those filled with random bytes. Through our

experimentation we were able to verify the effectiveness of our IDAs in rendering

data indistinguishable from surrounding random blocks. As well as demonstrat-

ing a situation where blocks generated by a misconfigured IDA can be detected
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through the use of entropy analysis.

Lastly we demonstrate how TRIM on a flash device can invalidate our assump-

tion that hidden data blocks are indistinguishable from other blocks on the disk.

We also discuss possible ways that Artifice can still be used to effectively hide

data on a device where TRIM is enabled.

7.1 A Multiple Snapshot Attack Framework

Recall from §4.2 that Artifice by default distributes its blocks uniformly across

a disk’s free space. Depending on the size of the free space, writes made uniformly

are very likely to result in isolated changes on disk, which we call singletons. Ad-

ditionally, other deniable storage systems such as Pang’s StegFS [80], HIVE [16],

and Datalair [20] also exhibit a pseudo-random distribution of writes to the disk.

This is in contrast to normal file systems, which do not uniformly distribute writes,

and are much more likely to place writes that are part of long strings of consecu-

tive changes that we call chains, which are a series of changed consecutive blocks.

We call a chain of c consecutive changes a c-chain.

Example 7.1.1. Assume that in a list of changes to a block device, a 1 denotes

a changed block and a 0 denotes no change between two snapshots of the block

device taken at different points in time. In Figure 7.1 there are two singletons (or

1-chains) and one 3-chain.

1 0 1 0 1 1 1 (7.1)

An adversary analyzing the change records produced from a pair of disk snap-

shots would be able to see the lengths of the chains those changes produce. Cru-

cially, if the disk contains a hidden volume, the adversary would also see singleton
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changes made by writes to that volume.

We will represent the theoretical distribution of these chains by representing

our disk with an array of blocks A of length n with k changes made uniformly

where 1 denotes a change and 0 denotes no change to a specified block. A can

be represented as p = (p1, p2, ..., pk), an ordered partition of k, where each pi ∈ Z

represents the i-th string of pi consecutive 1s separated by one or more 0s and

|p| is the length of the partition of k. By our construction of p, A is uniquely

represented by p and

p1 + p2 + ...+ p|p| = k. (7.2)

Since any array A can be represented by p ∈ P , where P is the partition of k,

we can compute the probability of c length chains Pr(C = c), as

Pr(C = c) =
∑
p∈P

Pr(C = c | p) Pr(p), (7.3)

by marginalizing over P , the size of which is
(

2k−1
k−1

)
. Since there are

(
n
k

)
possible

arrays, counting the number of arrays represented by p is sufficient to compute

Pr(p).

In our construction arrays that are represented by p must have the form

? 11 · · · 10︸ ︷︷ ︸
p1

? 11 · · · 10︸ ︷︷ ︸
p2

? · · · ? 11 · · · 1︸ ︷︷ ︸
p|p|

?

Notice that there are k 1s and |p| − 1 0s in the string above, so there are n −

k− (|p| − 1) 0s, whose locations are variable. There are
(

n−k−1
|p|

)
different ways to

place these 0s, thus Pr(p) is defined as

Pr(p) =

(
n−k−1
|p|

)
(

n
k

) (7.4)
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The probability of a chain of c consecutive changes in A is given by Equa-

tion 7.5, where P is the set of partitions of k, |p| is the number of elements in a

partition p, and Pr(C = c | p) is the probability of c in a partition p.

Pr(C = c) =
∑
p∈P

(
n−k+1
|p|

)
(

n
k

) Pr(C = c | p) (7.5)

Figure 7.1: Theoretical probability of consecutive changes when changes are
made uniformly. The probability of c consecutive changes degrades very quickly,
especially when the free space is large.

A plot of Equation 7.5 for a variety of free space sizes and chain lengths

(Figure 7.1) shows that as the free space grows relative to the number of writes,

the probability of a singleton increases. A plot of chains found in our collected

dataset (Figure 7.2) shows that for real disks, the probability of a singleton is much

smaller, and the tail of the distribution is typically much heavier. Together they

show the disparity between the distributions of chains due to a hidden volume
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and the chains due to a public file system. This becomes more pronounced as

the hidden volume writes more data. Consequently, we can construct features

based on these probabilities to distinguish between the distribution of consecutive

changes made by a public file system and those made by a public file system with

a hidden volume.

Figure 7.2: Empirical probability of consecutive changes for 52 change records
where the changes are made by an ext4 file system. Note the occasional spikes
in probability found in the long tail due to occasional movements or downloads
of unusually large pieces of data.

To carry out this attack, we assume that the attacker has access to a large

set of disk images, both from disks that contain hidden volumes and from those

that do not. Images in this set will be organized into pairs of images from the

same disk at different points in time. Comparing these pairs of images produces

a list of changes made to that disk. Moving forward we will call pairs that do not

have an instance of a hidden volume clean and those that do dirty. Assuming our

adversary is well-funded and motivated we consider this sort of data obtainable.
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Since for our proposed attack we only need to determine whether individual

blocks have changed, we can take snapshots of the clean and dirty disks in a space

efficient manner by hashing each block on the disk and constructing a Merkle

tree [75] over the hashed blocks. This gives us a very efficient method of finding

changes and producing change records. These change records are further processed

into lists of integers, Di, recording the lengths of chains found in each change

record. We will denote these lists of chains {Di} = D.

From D the adversary has several options for constructing an arbitrary n

number of features for use in a classification algorithm. The first is to remove

a set of clean disks that we will call C. Using C the adversary estimates the

probability of c-changes from 1 to n, the number of features, for each Di by

counting the occurrences of each c-chain and dividing by the total number of

chains in Di. Using these probabilities on D−C, the adversary can then estimate

the probability of a disk containing more than k c-chains with the cumulative

distribution function (CDF) of the binomial distribution, F (k;n, pc) where n is

the length of the change record and pc is the estimated probability of a chain

of c consecutive changes. We will denote the event of an adversary observing k

consecutive changes of length c as Xc. The probability of an adversary observing

more than k consecutive c-chains is given by Equation 7.6.

P (Xc > k) = 1− F (k;n, pc). (7.6)

Using these values we construct our final set of features F , a matrix of size D× c,

for our list of chains D. This method has greater sensitivity to small variations

in probabilities for small disks; however, on large disks, it tends to underflow

when computing the equation shown above. The pseudocode for this feature

construction algorithm is provided in Algorithm 1. For large datasets, we take
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a simpler approach to computing F by computing the probabilities of chains of

length 1 to n for each Di and feeding these to a classifier.

Algorithm 1: Feature Construction. This method is suitable for smaller
disks, where greater sensitivity is required, but suffers from underflow on
large disks.
Input: D, a set of processed disks; {p1, ..., pc}, the estimated

probabilities of consecutive changes of length 1...c.
Output: F , a |D| × c matrix.
F := {}
foreach Di ∈ D do

f := {}
foreach ci ∈ {1...c} do

k := number of c-consecutive changes in Di

a := 1− F (k; |Di|, pci
)

append(a, f)
end
append(f,F)

end
return F

Our classification problem has two possible outcomes, either the disk contains a

hidden Artifice volume or it does not. Since our output has two possible outcomes

we can use a simple binary logistic regression fit to our training dataset as our

classifier. This logistic regression allows us to estimate the probability that a

given disk contains a hidden volume from our set of features, in this case, the

probability of a chain of length n. Based on this probability and a threshold value

(we use the default value of 0.5) the model will classify a disk as containing a

hidden volume or not.

Recall that the dataset is entirely constructed by the adversary, so it has

ground truth labels describing whether each row in F corresponds to a disk con-

taining a hidden volume or not. The adversary now trains a supervised classifi-

cation algorithm on F split into standard train and test sets. On new pairs of

disks, the adversary runs through the feature construction process, then runs the
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classification algorithm on those features and responds accordingly. Furthermore,

if the adversary can confirm that some disks did contain a hidden volume, it can

update its model using various online learning techniques [104], further refining

their model.

As a note on the selection of the number of features, we observe from Equa-

tion 7.5 that when the free space on a disk is large relative to the number of writes,

the vast majority of writes will result in singleton changes. As a consequence, the

adversary could learn based on a single feature derived from singletons. This may

be desirable in some situations for the sake of efficiency; however, Artifice could

simply be modified so that when writing blocks they would be grouped in chains

of two or more, thereby defeating the attack as described. The adversary can in

turn thwart this countermeasure by increasing the number of features, n. We go

into more detail regarding this problem in §7.3.

7.2 Data Collection & Experiment Methodology

One of the more daunting challenges of carrying out a multiple snapshot attack

is the availability of pairs of disk images. These are necessary to learn what normal

chains look like. While collecting hundreds, or thousands, of disk images may be

feasible for a nation-state level adversary (or a large IT department), we were

unable to collect such a large amount of data.

Instead, we have used the dataset collected for the survivability experiments

described in §6.2. This data set gives us 53 snapshots in total and comparing these

snapshots gives us 52 change records. By observing the distribution of lengths of

changes over our collected data (Figure 7.2), and the theoretical distribution of

consecutive changes (Figure 7.1) when changes are made uniformly, the potential

strangeness of a disk running a deniable volume becomes clear.
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Because just 52 data points are insufficient to train a classifier and would be

inconclusive regarding the performance of that classifier, we instead used this data

to generate a synthetic dataset on which to train and test our classifier. While in

the real world different file systems may produce different patterns of changes, this

does not change the reality that a deniable volume writing many single blocks, and

thereby causing many singleton chains in the change record, would be considered

abnormal regardless of the public file system in use. Though the fact that our

attack only utilizes data from ext4 file systems is a limitation, no file system in

widespread use writes blocks randomly, so we expect our attack will generalize to

other data sources.

Our experiments are conservative in terms of the operational security measures

the user of a hidden volume might take and we discuss them here to better describe

our experimental methodology. There are several things that the user of a deniable

volume could do to decrease the odds of detection. To start, assume that a single

snapshot has been taken, and no deniable volume yet exists on the drive. A

prudent user would make many changes to the disk through the public file system

so that if there are overwhelmingly many chains distributed according to normal

disk behavior, the singletons made by writing to the hidden volume could be

made to look like noise. To illustrate this, consider a user that does not produce

a single change through the public file system after the deniable volume is created

and written to. In this case, the adversary would see, after taking a second

snapshot and computing the differences, only chains produced by the deniable

volume. These chains would principally be singletons, which would surely be

conspicuous. As an extreme measure, the user could simply wipe the disk and

then create the deniable volume, but this may be considered suspicious or may be

undesirable for other reasons. As a less drastic alternative, the user could produce
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an overwhelming number of changes to the disk through the public file system. In

our experiments we chose this middle ground by using our real data to simulate

25GB worth of public changes on a 1TB disk with 100GB of free space. This

produces a sufficient number of public changes to hide private changes while still

behaving as a normal user might and is in line with the occasional spikes in write

activity that we observed in §6.2.

Each pair of disk snapshots can be regarded as producing a distribution over

consecutive change lengths, so to construct our synthetic dataset we simply draw

chains from these distributions. Realistically, the fraction of disks containing

hidden volumes would be relatively small, and the size of hidden volumes would

also be variable. For our hidden volumes, we assume that we have instances

that are from 250MB to 1.25GB in increments of 250MB. In addition to its

realism, this allows us to determine a point at which the number of uniform

writes becomes conspicuous. For our Artifice parameters we chose those that

minimized the number of writes while achieving survival probabilities over 80%

with 25GB of cover changes. This led us to copy data blocks 6 times, where

the survival of a single block is sufficient for reconstructing the data. Since our

adversary can generate an arbitrary number of disk snapshots with and without

hidden volumes, to allow our classifier to learn to distinguish disks more quickly

our training set contains an even split of disks with and without hidden volumes.

However, to reflect the rarity of hidden volumes in the real world only 5% of our

test set contains disks with a hidden volume. We generate a training set of size

10,000 and a test set of size 2,500. We repeat this generation, training, and testing

cycle 100 times to ensure the reliability of our results.
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Figure 7.3: Hidden volumes over 0.75GB in size are always identified success-
fully.

The presence of a point where the false negative rate (FNR) becomes negligible

also offers an explanation for the relatively constant false positive rate (FPR).

This being that a certain percentage of simulated clean disks will naturally have

disproportionately many singletons and thus get misclassified as containing an

Artifice volume. Interestingly, there were very few disks that naturally had enough

singletons to exceed the learned threshold.

Future work may combine the features we use in this attack with other features.

Such as what proportion of changes is made to blocks in free space versus allocated

blocks. The introduction of more features would serve to better characterize disk

behavior and further improve the efficacy of the attack.
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Table 7.1: Numeric results from the classifier averaged over 100 runs. Further-
more, 95% confidence intervals for all figures vary only in the thousandths.

Size (GB) Accuracy Precision Recall FPR FNR
0.25 0.981 0.911 0.680 0.004 0.320
0.5 0.993 0.934 0.937 0.004 0.063
0.75 0.997 0.942 0.999 0.003 0.001
1.0 0.996 0.935 1.0 0.004 0.0
1.25 0.997 0.939 1.0 0.004 0.0

7.3 Snapshot Attack Mitigation

With a practical multiple snapshot attack described in detail, we can develop

countermeasures that Artifice and other deniable storage systems can use to de-

fend themselves against this class of attacks. In §4.2.4 we proposed mitigating

multiple snapshot attacks through operational security measures. The rationale

is that if the user can produce a deniable reason for changes to the entire disk,

such as re-installing the operating system or defragmentation, the adversary’s

previously gathered data would be rendered useless. This defense relies heavily

on the ability of the user to out-maneuver the adversary and will not always be

practical. As a result, it would be prudent to develop some other countermeasures

against our proposed attack and future types of snapshot analysis.

We can observe in Figure 7.3 that the FNR of our classifier decreases as the

effective size of the Artifice instance increases while the amount of data written by

the public volume remains the same. With this in mind, we can conclude that the

operational strategy proposed in §7.2, to keep the proportion of hidden to public

writes sufficiently skewed in favor of the latter, is a viable strategy. Unfortunately,

this severely limits the effective size of an Artifice instance.

In our proposed attack, we use only one feature associated with single block

changes to the disk. A naïve approach would be to simply write all blocks in pairs,
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producing consecutive changes of two blocks. This would defeat our attack, but

the adversary could expand its feature set to include changes two blocks long and

so on, forcing the user of the hidden volume to mimic the public file system or risk

detection. Furthermore, given the myriad of measurable features in the average

file system and that the adversary is unlikely to publish details of its attack, we

can conclude it would be difficult to accurately determine what features are and

are not being tracked by the adversary, making mimicry or operational measures

safer options.

While our proposed mitigation technique is a promising means of defense

against snapshot analysis it is still worthwhile to explore the possibility of a mech-

anism that does not require such close user involvement. For a deniable storage

system to defend against a snapshot attack without operational measures, the

designer of such a system could attempt to mimic the distribution of writes that

the public file system is making. Similar to our operational approach, the sur-

vivability of a hidden volume may be impacted by changing the distribution of

writes from uniform to something more closely resembling a normal file system.

To accurately mimic expected access patterns, more work needs to be done

to quantify exactly what a change pattern for a disk without a deniable volume

looks like. A significant body of work has been published in the context of net-

work steganography and pattern mimicking cryptography and could be used to

inform designers of ways to design future multiple snapshot resistance systems.

For instance, initial work into format-transforming encryption by Dyer et al. [34]

showed that it was possible to efficiently encrypt data so that it would conform

to a target regular expression. An application of this is found in censorship re-

sistant networking. In this case, a user might be running a blacklisted protocol,

such as Tor, but transforms the protocol messages in such a way that they look
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like HTTPS. Similar techniques could be applied to deniable storage to disguise

suspicious write patterns. Unfortunately, there is also evidence that more capa-

ble adversaries utilizing more sophisticated attacks can easily identify these false

protocols. Houmansadr et al. [52] argue that it is unlikely that one could mimic

a protocol perfectly without running the actual protocol because there are of-

ten sub-protocols one would also need to mimic or differences in implementations

that allow for version fingerprinting. Assuming snapshot analysis becomes more

sophisticated it is likely that mimicry techniques applied to deniable storage would

also need to evolve.

Since Artifice relies on pseudo-random data in free space and the use of secure

deletion utilities to produce cover changes, one way to potentially sidestep the

issues of artificial mimicry could be found in actually using these deleted files.

Artifice could keep track of changes in free space on the public file system, and

when it sees a block added to free space it could overwrite this with an Artifice

block. As noted above this is not uniformly written and so may risk corruption

of files, but it also may provide stronger mimicry guarantees than other methods.

We leave it to future work to investigate this and the other techniques we have

presented for mitigation.

7.4 Snapshot Attack Results

By implementing the experimental methodology described in §7.2 and running

it against our dataset we collected a set of results that show the efficacy of our

proposed multiple snapshot attack. It should be noted from the start that at the

core of our implementation is a simple logistic regression based classifier that only

takes into account the probability of single block changes on the disk. For this

experiment, we utilized the Scikit-learn library’s logistic regression classifier [101].
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In choosing to implement such a simple learning algorithm we highlight the dis-

tinguishing power of analyzing consecutive block changes in detecting anomalous

disk behavior.

We collected five different metrics on our classifier: accuracy, precision, recall,

false positive rate, and false negative rate. Because only 5% of our test set contains

Artifice instances, accuracy is not a very informative metric, and we include it for

completeness only. Precision is the ratio of true positives to predicted positives.

Recall is the ratio of true positives to the sum of true positives and false negatives,

giving the ratio of Artifice instances that were identified from the test set. False-

positive and false-negative rates are useful for understanding how frequently our

classifier makes errors in both directions. We consider false classification rates to

be the most important metrics for our adversary.

In our experiments the 250MB Artifice instances were often able to pass unde-

tected, implying that 25GB of cover changes were sufficient to hide these volumes.

However, the largest four sizes were reliably detected, with the three largest sizes,

0.75GB, 1.0GB, and 1.25GB, being detected nearly 100% of the time. This

highlights a feature of our attack, namely that for 25GB of cover changes every

Artifice instance above a certain size will be detected with high probability. This

is because of our use of logistic regression, and because the probability of single-

tons is so overwhelming. Eventually, as free space fills up, Artifice will begin to

make changes that are parts of longer chains, but if the reconstruction threshold

is low, this will severely impact the survivability of the volume.

While these results show that it is possible to reliably detect an Artifice in-

stance on a device by analyzing snapshots of the device, it is far more difficult

than the theoretical attacks described in previous work. To carry out this attack

an adversary must collect a large dataset of previous snapshots to build a statis-
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tical model with which they can identify suspicious patterns, obtain at least two

snapshots of a suspect device, and then feed a comparison of those two snapshots

through a classifier compared to other attacks that only require one observation

of the device and no large dataset to compare against.

7.5 Entropy Analysis

An often untested assumption underlying the security of deniable storage sys-

tems is the theoretical impossibility of distinguishing obfuscated hidden data from

random free space, as described in §4.2.3. Although indistinguishability provided

by random unallocated and hidden blocks is a strong security property, it can be

undermined by any blocks with lower entropy than their surroundings. Since Ar-

tifice uses IDAs instead of the more common symmetric ciphers to obfuscate data

we must verify whether these IDAs reliably produce blocks with a high enough

level of entropy to evade detection through entropy analysis. We assume that the

presence of anomalous blocks with lower entropy than surrounding bytes would

be suspicious and may be just as insecure as random obfuscated blocks residing

in free space filled with only zeroes. This would mean that we must verify that all

of our IDAs produce pseudo-random output that is indistinguishable from other

pseudo-random blocks on the disk and whether there are any circumstances under

which they may not.

To evaluate the effectiveness of our proposed IDA-based scheme we first tested

each IDA with the dieharder [94] statistical test suite. The dieharder suite

is a battery of statistical tests used to measure the quality of a random number

generator that includes tests from both the older diehard [38] test suite and

the NIST Statistical Test Suite [97]. With dieharder, we tested the quality

of the pseudo-random output produced by AONT-RS, Shamir Secret Sharing,
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our Reed-Solomon/Entropy Scheme, and the Linux Kernel’s Cryptographic API

implementation of AES-CBC with a 256-bit key. Any pseudo-random numbers

needed for AONT-RS, Secret Sharing, or AES were generated using the Linux

kernel’s random number generator. Entropy blocks for the Reed-Solomon scheme

were generated by a cryptographically secure pseudo-random number generator

based on the Speck cipher seeded with values from encrypted files. To utilize the

test suite we had each algorithm encode a stream of data taken from a disk full

of an assortment of text documents, music files, and videos. The output was then

fed into the test suite. We found that each algorithm passed the battery of tests

without issue which would imply that each IDA produces similar quality random

numbers as our AES control. Although these tests are a good benchmark for the

overall quality of cipher or IDA implementation and would indicate that encoded

blocks should be indistinguishable from one another, it is not suited to identifying

blocks with lower entropy than their surroundings.

With the quality of the output randomness of each algorithm verified using the

dieharder tests, we move on to exploring tests that would allow us to identify

lower entropy blocks in the free space of a file system. Specifically we aim to

search for outliers or easily discernable differences in the level of entropy for each

block. This is similar to what was done by Kedziora et al. [61] to find the start

and end sectors of a hidden Veracrypt volume. To do this we compute the Shan-

non Entropy [106] of our encoded data. The entropy of an encoded block gives

us a measurement of how uniformly the individual values for a set of bytes are

distributed among the possible 256 values. The closer to a uniform distribution

we get, the higher the entropy. Differences in this entropy between sets of bytes

allow us to compare them and see if one is more ”random“ than the other. In the

case of our experiment, the calculated entropy ranges from 0, or no entropy, to
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8, a perfect uniform distribution of possible values for each byte. The equation

for Shannon entropy given possible byte values xi and the probability of a given

byte value Pbyte(xi) is shown in Equation 7.7. Each probability Pbyte(xi) is derived

from how frequently each possible byte value appears in a set of bytes.

H(X) = −
n∑

i=0
Pbyte(xi) log2(Pbyte(xi)) (7.7)

As Artifice and most other block devices write data in discrete blocks we com-

puted the Shannon entropy of each 4KB block in our test dataset. The plotted

entropy values for a 400MB dataset of assorted images and PDF documents en-

coded with a variety of IDAs and AES operating in CBC mode can be seen in

Figure 7.4.

Figure 7.4: Entropy values per block for a variety of IDAs and AES. Note that
the entropy value for each block is around 7.95 with some level of statistical noise
and no easily visible outliers that would denote a flaw in one of the systems.
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The same behavior was observed for each of our IDAs. No obvious outliers are

apparent which is what would be expected based on the results of the previous

battery of tests run.

To create a more precise test for distinguishing IDAs and encryption through

entropy analysis we can look at the probability distribution of entropy values for

a large array of blocks. To build a large experimental data set to look at these

distributions, we processed 141GB of data through our IDAs and AES. In the

case of Reed-Solomon/Entropy, we used three different entropy sources, a cryp-

tographically secure pseudo-random number generator seeded with values from

a known source, encrypted data, and compressed data. As shown in Figure 7.5

these distributions when represented by a kernel density estimation taken over the

dataset mostly follow the pattern of a Gaussian distribution with expected values

close enough that the plots cannot be easily distinguished.

We can then verify that they follow a Gaussian distribution with the quantile-

quantile plot shown in Figure 7.6. A cursory examination of this would indicate

that our IDAs produce blocks that all follow the same distribution as those en-

crypted with AES. The notable exception to this pattern is Reed-Solomon/Entropy

with a compressed entropy source which exhibits a relatively suspicious long tail.

This long tail is indicative of a small number of encoded blocks with low lev-

els of entropy outside of the expected range. While this number of low entropy

blocks appears small, if found within unallocated space filled with high entropy

blocksthey would be easy to identify and would appear suspicious.

Lastly to verify through another test whether the distributions for our IDAs

are indistinguishable we have used a χ-squared test. A χ-squared test allows us to

compare two sets of measurements and determine whether there is a statistically

significant difference between the two. Our null hypothesis for this test is that each
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sample of entropy values came from the same distribution. We implemented this

test in Python using the SciPy χ-square library and compared the distribution for

AES to the distributions for each IDA. In almost every case our null hypothesis

that both samples come from the same distribution held with a significance level

of 0.05. From this and our previous tests we can conclude that data encoded

with most of our IDAs is indistinguishable from blocks encrypted with AES. The

exception to this pattern was Reed-Solomon/Entropy with compressed data as an

entropy source, which returned a value lower than our significance level and thus

rejected our null hypothesis. This indicates that there is a very high probability

that the two compared samples came from different distributions. In short, we can

conclude that in this last case the data encoded by this specific IDA configuration

is not indistinguishable from pseudo-random blocks that we assume fill a public

volume’s unallocated space. Overall, from these results we can conclude that

the chances of distinguishing carrier blocks from pseudo-random appearing data

blocks in the free space of a file system are negligible if proper care has been taken

when implementing the IDAs and choosing entropy sources.

Figure 7.5: Right: Approximated probability distributions for the entropy of
data encoded with a variety of IDAs and AES. Left: Probability distribution for
Reed-Solomon/Entropy with compressed data as an entropy source, note the long
tail indicative of lower entropy values.
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Figure 7.6: Quantile-Quantile plot showing the relationship between AES en-
tropy values and a Gaussian distribution.

While an IDA producing lower entropy blocks is not acceptable when free space

is full of random bytes, it may be acceptable in some situations depending on the

contents of the device’s free space. If the user does not fill their free space with

random bytes but also ensures it has not been overwritten with zeroes, it could

be difficult for our adversary to detect anomalies based on the level of entropy.

The presence of lower entropy blocks in the free space of a disk is to be expected

in a situation where the free space of the drive is filled by a single secure deletion

operation as normal use of the drive will replace pseudo-random blocks with freshly

deleted data over time. The resulting problem for our adversary is similar to the

one posed by the multiple snapshot attack. It is resource-intensive to define what

the “normal” level of entropy is. Although, relying on non-random free space to

provide some obfuscation cannot provide an indistinguishability guarantee but it
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may provide a sufficient level of security in the case where random free space may

be considered suspicious by an adversary.

7.6 Dealing with FTLs and TRIM

As previously stated in §4.2.5 we assume that the ideal situation when using a

flash storage device with Artifice would be to disable TRIM. Disabling TRIM on a

device with a deniable reason to do so, such as running disk encryption, is not an

inherently suspicious behavior. While this solution is both deniable and effective

it still leaves open questions regarding how an attacker can find an Artifice volume

on a device with TRIM enabled and what can we do with Artifice to mitigate this

threat.

First, we must look at how Artifice on a device with TRIM enabled would

appear under basic forensic examination. For this example we utilized a 512MB

Artifice volume on a 120GB Samsung 850 Evo SSD using periodic RZAT TRIM

where reading trimmed logical blocks returns only zeroes. We wrote 68GB of

regular data to the drive and then ran a TRIM operation to clear any unallocated

blocks. To analyze the disk we computed the Shannon Entropy for each block on

the device. The results of this test are shown in Figure 7.7 where each pixle is

an individual block on the disk. Black pixels correspond to used logical blocks

whereas gray pixels correspond to blocks containing only zeroes.

Figure 7.7: 120GB SSD with 68GB of free space after a TRIM operation. Black
correspond to in use logical blocks, gray pixels are blocks that return only zeroes
due to TRIM.
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By creating and filling a hidden volume on the device with the default Artifice

write behavior of placing carrier blocks uniformly across the disk, we can see a

sprinkling of lone single blocks in otherwise unallocated space zeroed by TRIM.

The distinctive pattern is shown more closely in Figure 7.8. This pattern of disk

writes, even with a relatively small Artifice volume would be distinctive enough

to raise suspicion. As demonstrated in §7.4 such a pattern of isolated single block

writes can be easily and reliably detected through the user of a classifier trained

on the probability of singleton blocks.

Figure 7.8: Region of free space on a 120GB SSD with a 512MB Artifice volume
written. Note the random distribution of written blocks in otherwise unused and
zeroed free space.

Although this write pattern is distinctive we can look to our multiple snapshot

attack evaluation for a possible countermeasure. If a sufficient number of write

operations are made to the public volume as cover traffic after the last TRIM

operation, we can make the blocks distributed throughout free space appear less
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suspicious by manipulating the probability of single block changes. A drawback

of this approach is that it may not entirely obscure the random pattern of writes

if the adversary chooses to manually examine the disk in the manner that we have

done in Figures 7.7 and 7.8. To avoid this, Artifice blocks could be contiguously

allocated or limited to specific regions of free space to avoid the distinctive write

pattern produced by random allocation. Such a limitation on block allocation

would negatively impact the survivability of a hidden volume and result in a

functional limit on the size of the volume and a subsequent increase in the level

of redundancy needed to prevent data loss. Additionally, leaving even periodic

TRIM enabled would significantly shorten the lifespan of an Artifice volume. At

maximum this lifespan would be however long it is until the next TRIM operation.

The second possible countermeasure is to allow Artifice blocks to be trimmed

and retrieve them at a later point in time through forensic techniques. There are

two techniques for recovering data from flash after a TRIM operation is carried

out. In the first approach the physical flash chips are removed from the drive’s

circuit board and the data is recovered using specialized tools in what is called

off-chip analysis. This technique is reliable but very costly in terms of the labor

and time needed to recover data. Alternatively, using aftermarket forensic tools

we can put an SSD into something called Factory Access Mode [7]. Factory access

mode allows us to read trimmed logical blocks or physical pages without having to

completely disassemble the flash device. Once the data is read from either directly

from the flash chips or through factory access mode, the process for recovering

an Artifice volume is similar to what would be done normally. As long as enough

carrier blocks were written to survive garbage collection operations performed by

the device controller it would be possible to identify an Artifice superblock and

recover the data. While factory access mode and off-chip analysis can sidestep
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the challenges posed by flash devices this technique for information hiding is not

without its drawbacks.

Both techniques require specialized software and in some cases hardware to

access the trimmed data. The procedures for enabling Factory Access Mode differ

depending on the device manufacturer. The two techniques, while varying in their

invasiveness both require disassembling a machine to remove the drive. These

limitations mean that both methods of recovering trimmed data should only be

carried out in a safe location that the adversary cannot observe or control. This

approach also eliminates Artifice’s ability to carry out self-repair operations by

rendering the hidden blocks inaccessible by normal software.

While there are ways to have a hidden volume implemented at the block device

or file system level that coexists with TRIM operations, we can see that the pos-

sible techniques for preserving deniability in the face of TRIM impose significant

drawbacks. As a result, we can only recommend that these techniques be used in

a situation where it would suspicious to disable TRIM.

7.7 Summary

While there is a large variety of existing deniable storage system designs, as

stated in §3.4.2 there is very little in the way of demonstrated or thoroughly

described attacks against these systems. We have demonstrated and explored a

variety of avenues through which our adversary can establish whether they suspect

a user is in possession of a hidden volume.

To start we have described the first multiple snapshot attack that analyzes

numbers of consecutive block updates, or chains, to determine whether there is

a statistically anomalous number of single block changes. Through gathering a

dataset of block change records we established a distribution that described the
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probability of single block updates on the disk. With this dataset and simulated

Artifice volumes we trained our model to reliably classify whether or not there

was a hidden volume present on the test device. Additionally, were were able

to demonstrate the circumstances underwhich our attack was unable to reliably

distinguish whether a device did or did not contain a hidden volume. With this

information we developed possible countermeasures the user could use to inflate

the test’s false-negative rate which include artificially skewing the ratio of public

to hidden writes in favor of the public writes.

We verified the effectiveness of our IDAs in obfuscating data in a hidden vol-

ume through entropy analysis. We showed that if configured correctly our IDA-

based approach produces carrier blocks that are indistinguishable from surround-

ing pseudo-random blocks in the unallocated space on the disk. We also showed

circumstances where an insufficient source of entropy can produce lower entropy

carrier blocks that can be easily identified under forensic examination.

Lastly we demonstrated how an adversary could use the unique behavior of

flash devices that utilize TRIM to allow for easy identification of blocks written

to the free space of an existing file system. Our originally proposed approach

of simply disabling TRIM may not always be the best choice for a user so we

discuss two methods of combating TRIM on a flash device. The first is to produce

sufficient cover traffic and change Artifice’s block allocation scheme to make our

carrier blocks less obvious. Secondly, we can utilize niche features of flash devices

such as factory access mode to TRIM hidden blocks and recover them later using

off-the-shelf software tools.
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Chapter 8

Conclusion and Future Work

Deniable storage systems such as Artifice stand to fill an ever more impor-

tant niche in situations where normal disk encryption is not enough to ensure

both secrecy and a user’s safety. Previous attempts to fill this niche have been

plagued with flawed assumptions, insecure design characteristics, and usability

problems. It is Artifice’s goal to address the shortcomings of previous deniable

storage systems in light of a more realistic threat model. This encompasses not

only implementing and evaluating a system but also exploring how such a system

would be used.

To start, we had to first revisit the assumptions and priorities behind the de-

sign of existing deniable storage systems. These previous approaches frequently

exhibit similar problems in how they assume an adversary will behave. Usually

this entails counting on the adversary’s incompetence and seem to imply that

their security relies on their systems “flying under the radar”. To address this

fundamental problem and others, we have introduced a new threat model for de-

niable storage that assumes the adversary will be knowledgeable about this class

of systems and be familiar with their weaknesses. Unlike previous models we as-

sume the adversary will deploy malware to surveil the user and collect information

131



to establish suspicion of whether the user possesses a hidden volume or not. In

addition, this threat model makes assumptions about how our adversary would

escalate their attacks against a user until they establish reasonable suspicion the

user may possess a hidden volume before moving on to coercive tactics. From our

new assumptions and a description of an example use case, we have defined the

attack surface and described a series of attacks against deniable storage systems

that can be used by our adversary and that Artifice must contend with.

To defend against this adversary, we have designed and implemented Artifice,

an operationally secure, tunable, and self repairing deniable storage system that

addresses the flaws of previous approaches. Unlike previous systems, Artifice pro-

vides a means to both deny the existence of data and the Artifice software itself.

It obfuscates and protects the integrity of hidden data through the use of infor-

mation dispersal algorithms (IDAs), mitigates the threats posed by information

leakage and malware, and provides functional means for defending against the

attacks described in our adversary model including the much-maligned multiple

snapshot attack.

With a prototype of Artifice we were able to verify the effectiveness of our pro-

posed IDA scheme in both obfuscating and protecting hidden data from accidental

overwrite. We have implemented and demonstrated the first multiple snapshot at-

tack against a deniable storage system, showing not only its effectiveness but also

better characterizing the attack’s limitations and identifying possible mitigations

Artifice can deploy to defend itself. With a design and implementation of Artifice

we have been able to develop an operational security model that would inform a

user of what to do in the event that a component of the system is compromised

and suggestions on system configuration to mitigate Artifice’s weaknesses. Lastly,

through our prototype, we have explored the threats posed by the unique design
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characteristics of flash devices and multiple avenues for mitigating them.

8.1 Future Work

While the evaluation of Artifice in Chapter 7 has shed light on many unknown

and untested factors that can compromise a deniable storage system there is still

room for further evaluation in the areas of snapshot and statistical analysis. There

is also a need to explore the implications of new developments in the realm of flash

storage technologies as they evolve.

Secure Deletion and Deniable Storage

While we have proposed an approach to modifying Artifice to co-exist with a

secure-delete file system called Lethe (§4.3), we have yet to empirically evaluate

Artifice’s behavior when used alongside it. This is because Lethe is currently still

a work in progress and consequently not yet ready for experimentation along-

side Artifice. If we take our first proposed approach of having Artifice treat

Lethe like any other file system, the primary question is, "what impact would the

additional overwrites caused by garbage collection operations have on Artifice’s

reliability?" To measure this we would have to revisit the experiments described

in §6.2 and §6.3 with new measurements that show the patterns and numbers of

Lethe-incurred overwrites.

In the case of the second approach where Artifice blocks are written and then

immediately deleted, we would not only have to revisit our survivability exper-

iments, but also modify the current Artifice implementation and perform new

statistical analysis experiments to determine whether Artifice blocks handled in

this manner produce a pattern easily recognizable by the adversary.
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Snapshot and Statistical Analysis

In §7, our multiple snapshot attack when used against Artifice showed the

effectiveness of training a classifier based on only a single feature, the frequency

of single block updates. This attack was relatively simple and provided avenues

for additional research regarding the use of additional features and show how a

more sophisticated model would impact our proposed mitigations. Additionally,

due to the lack of suitable implementations for other deniable storage systems

we were not able to apply our attack against systems that exhibit different write

behavior. We hypothesize that other deniable storage systems would be vulnerable

to our attack based on the write patterns their designs would produce, such as the

uniformly distributed blocks of StegFS implementations [74, 80] or ORAM-based

solutions [16, 20]. We consider it worthwhile to verify whether these hypotheses

hold under experimental evaluation.

Zone Namespaces and Raw Flash

As we have previously stated in §4.2.5, newer storage technologies and meth-

ods for managing flash are currently under active development. A promising

technology that could eliminate the need for an flash translation layer’s current

features, such as TRIM operations, is Zoned Namespaces (ZNS). The strict se-

quential writes of ZNS devices change how we must think about how Artifice

writes to the disk, what constitutes a deniable operation, and what we consider

unallocated space on the disk.

ZNS breaks up the logical block address space into fixed size zones that enforces

strict sequential writes to a zone. On the surface this means that we cannot

perform easy in-place updates to the device and alters how free space is structured.

With these new design characteristics in mind, it is unclear which blocks Artifice
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should write to in a deniable manner.

There is functionality in zoned devices that allows for random writes in specific

namespaces or areas of a device’s address space. While this would allow Artifice

to operate similarly to how it does now, it would also limit the amount of space

on the disk in which we have to hide data and would negatively impact the total

size and survivability of an Artifice volume.

A possible solution to these challenges could be found in the log-structured

approaches to Artifice described in §4.3 but more investigation into the specifics

of how these devices fit into existing storage stacks will be required as they begin

to appear in consumer devices. As these devices become more readily available,

Artifice’s design decisions should be re-examined to ensure that deniable storage

can adapt to this new paradigm.
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