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Abstract 
Across the lifespan, humans direct their learning towards infor-
mation they are curious to know. However, it is unclear what 
elicits curiosity, and whether and how this changes across de-
velopment. Is curiosity triggered by surprise and uncertainty, 
as prior research suggests, or by expected learning, which is 
often confounded with these features? In the present research, 
we use a Bayesian reinforcement learning model to quantify 
and disentangle surprise, uncertainty, and expected learning. 
We use the resulting model-estimated features to predict curi-
osity ratings from 5- to 9-year-olds and adults in an augmented 
multi-armed bandit task. Like adults’ curiosity, children’s cu-
riosity was best predicted by expected learning. However, after 
accounting for expected learning, children (but not adults) were 
also more curious when uncertainty was higher and surprise 
lower. This research points to developmental changes in what 
elicits curiosity and calls for a reexamination of research that 
confounds these elicitors. 
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Children come into the world with a great deal to learn, and 
they actively direct their learning by selectively attending, ex-
ploring, and asking questions. Often, such information search 
is motivated by curiosity, the phenomenological experience 
of wanting to know (Liquin & Lombrozo, 2020b). Curiosity 
not only directs learning, but can potentially improve it: older 
children and adults better remember facts about which they 
were more curious (Fandakova & Gruber, 2021; Kang et al., 
2009), and young children learn object labels better after 
pointing at the object (perhaps indicating curiosity; Lucca & 
Wilbourn, 2018). While targets of curiosity may enjoy an ad-
vantage for learning, it is not clear how those targets are cho-
sen—especially by young children. In the current paper we 
ask: what elicits curiosity, and how might this change over 
the course of development? 

Though curiosity might enhance learning when new and 
valuable information is obtained, many quests for infor-
mation fail: we do not always find new and useful infor-
mation when we seek it. In order to maximize the chance of 
successfully achieving learning, an ideal learner should expe-
rience curiosity about—and hence direct their information 
search towards—queries that have the greatest potential to 
yield such information. In the present research, we test 
whether children and adults are “optimal” in this sense, expe-
riencing curiosity selectively when learning is likely to occur. 
We contrast this optimal strategy with a simpler strategy: 
learners might instead use indirect “heuristic cues” to 

expected learning, such as surprise and uncertainty—two 
plausible elicitors of curiosity based on prior research. 

Surprise and uncertainty are “heuristic cues” because they 
are reasonable but imperfect guides to expected learning, and 
because they are likely easier to gauge. Surprise and uncer-
tainty often co-occur with expected learning: for example, a 
magic trick might elicit surprise, uncertainty about how the 
trick worked, and the expectation that one could learn by 
questioning the magician. However, surprise and uncertainty 
can also lead a learner astray. For example, a child might 
watch cars driving past and wonder whether their colors form 
a pattern. As each new car appears, the child will be surprised 
by its color and uncertain about the pattern—but there is no 
pattern to be found, and thus no opportunity for learning. 
Moreover, surprise and uncertainty may be easier to compute 
than expected learning: the former rely solely on prior beliefs, 
while the latter also incorporates beliefs about the future.  

Do children and adults experience curiosity when learning 
is likely to occur, or do they rely on heuristic cues (surprise 
and uncertainty)? Though these potential elicitors of curiosity 
might often co-occur, disentangling their influence on curi-
osity can shed light on the mechanisms that drive curiosity 
and offer the potential to develop interventions that elicit cu-
riosity when it would be beneficial (e.g., in educational set-
tings). Below we briefly review prior work on what elicits 
children’s and adults’ curiosity, which largely does not dif-
ferentiate between the optimal strategy of tracking expected 
learning and the use of simpler heuristic cues. We then intro-
duce a method that allows us to tease apart expected learning, 
surprise, and uncertainty. To preview our results, we find that 
adults’ curiosity tracks expected learning almost exclusively, 
whereas children’s curiosity tracks expected learning less 
strongly, with additional roles for surprise and uncertainty.  

Triggers of Curiosity 
Prior research has not typically measured curiosity directly, 
especially in children. Instead, prior work has investigated 
the cues that shape attention, exploration, and question ask-
ing, behaviors that are likely to be at least in part triggered by 
curiosity. This research has suggested an important role for 
surprise (violation of expectation) and uncertainty in eliciting 
information search. Children explore and attend to objects 
that violate their expectations, whether those expectations are 
based on core knowledge, intuitive theories, or probabilistic 
evidence (Bonawitz et al., 2012; Kidd et al., 2012; Sim & Xu, 
2017; Stahl & Feigenson, 2015). Moreover, children 
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preferentially explore when they are uncertain—for example, 
when two equally likely hypotheses are compatible with ob-
served evidence (Cook et al., 2011; Schulz & Bonawitz, 
2007). In adults, surprise and uncertainty are associated with 
both self-report measures of curiosity (Kang et al., 2009; 
Vogl et al., 2020) and behavioral measures of information 
search (Itti & Baldi, 2009; Kobayashi et al., 2019).  

 For adults, there is also evidence that curiosity tracks ex-
pected useful learning (Abir et al., 2020; Dubey & Griffiths, 
2020), above and beyond heuristic cues including surprise 
and uncertainty (Liquin et al., 2020; Liquin & Lombrozo, 
2020a). In contrast, research on children’s information search 
has not disentangled surprise and uncertainty from expected 
learning. For example, a child who observes a surprising 
event (e.g., a ball rolling through a solid wall; Stahl & 
Feigenson, 2015) might also expect to learn by exploring. Be-
cause surprise and uncertainty are confounded with expected 
learning, it remains unclear what elicits children’s curiosity. 
Are children more curious when they expect to learn? Or does 
children’s curiosity instead track surprise and uncertainty, 
which may be reasonable (but sometimes unreliable) cues to 
when learning is likely to occur? 

Two lines of research offer initial insight into these ques-
tions. First, recent studies have disentangled some heuristic 
cues to expected learning. In one study, infants did not ex-
plore after a surprising event that was immediately explained 
away (Perez & Feigenson, 2020), suggesting a potential role 
for uncertainty or expected learning above and beyond sur-
prise. Another study (Poli et al., 2020) found that surprise, 
uncertainty, and learning each explained variance in infants’ 
attention—but the authors tested learning from the just-ob-
served trial (i.e., previous learning) rather than learning from 
future exploration (i.e., expected learning). Like surprise and 
uncertainty, previous learning may be a cue to expected 
learning, but these quantities are distinct.  

Other research has investigated how children select which 
question to ask (which could be partly determined by curios-
ity), focusing on expected learning as the optimal determinant 
of a question’s quality (for a review, see Jones et al., 2020).  
Like adults (Rothe et al., 2018), preschoolers can select the 
optimal question from a small set of alternatives (Ruggeri et 
al., 2017), suggesting that children might have the capacity to 
detect expected learning. However, this research has not con-
trasted expected learning with surprise and uncertainty. 

The Present Research 
In the present research, we investigate to what extent chil-
dren’s curiosity tracks surprise, uncertainty, and expected 
learning. Building on an experimental paradigm and compu-
tational model introduced by Liquin et al. (2020), we opera-
tionalize these candidate triggers precisely, allowing us to 
tease apart their roles in guiding curiosity. 

In our reinforcement learning task (adapted from Dorfman 
et al. 2019), participants choose between two options (candy 
machines) over 20 trials. Each option has a fixed probability 
of producing a rewarding outcome (candy). However, there 
is an additional causal influence, such that each outcome can 

be caused by either the option itself or by an intervening 
agent. On each trial, the participant reports their curiosity 
about the cause of the outcome (the machine or the agent). 
Using a Bayesian reinforcement learning model, we quantify 
surprise, uncertainty, and expected learning on each trial, al-
lowing us to test whether curiosity tracks each feature. 

In addition to testing several potential triggers of children’s 
curiosity, we compare children’s curiosity to that of adults. 
Computing expected learning is a complex operation in terms 
of its cognitive and metacognitive demands. Perhaps reflect-
ing these demands, 7- to 10-year-olds are more likely than 
adults to ask questions that do not provide any new infor-
mation (Ruggeri et al., 2016) and are less attuned to expected 
learning in their exploration (Nussenbaum et al., 2020). Sim-
ilarly, we might expect children’s curiosity to be less attuned 
to expected learning (and perhaps more attuned to surprise 
and uncertainty) than adults’ curiosity. To test this, we com-
pare adults with 5- to 9-year-olds, an age range in which chil-
dren show some sophistication in question-asking ability yet 
still differ from adults (Jones et al., 2020). 

We measure curiosity through self-report. As we previ-
ously suggested, decisions to direct one’s attention, explore, 
or ask a question might be partly motivated by curiosity. 
However, these behaviors can arise even when curiosity is 
not present (e.g., a child might ask a question to facilitate a 
social exchange), and curiosity can be experienced but not 
pursued (e.g., a child might wonder about an object’s label 
but not ask their parent about it). As a result, the study of in-
formation search does not provide conclusive evidence re-
garding the elicitors of curiosity. Thus, departing from most 
prior research, we attempt to measure curiosity more directly, 
by asking participants to give explicit ratings of how curious 
they are (i.e., how much they “want to know”). 

Computational Model 
We modeled the hypothesized determinants of curiosity us-
ing a Bayesian reinforcement learning model developed by 
Liquin et al. (2020). The model tracks the probability of re-
ceiving candy or no candy from a given candy machine. 

On each trial, 𝑡, the candy machine generates candy with 
probability 𝜃. However, a hidden agent intervenes with prob-
ability 𝜀 (with 𝜀 = 	1/3).The intervention is modeled as a la-
tent variable, 𝑍! ∼ Bernoulli(𝜀), where 𝑍! = 1 means an in-
tervention occurred on trial 𝑡. When an intervention does oc-
cur, candy is instead produced with probability 𝜃", which is 
set to 1 or 0 depending on the experimental condition. As a 
result, the reward 𝑅! for a trial is distributed: 𝑅! ∼
Bernoulli(𝜃(1 − 𝑍!) 	+	𝜃"𝑍!).  

The model estimates 𝜃, that is, the probability of a machine 
producing candy. We assume a uniform prior on 𝜃 between 0 
and 1. The posterior is computed by marginalizing over the 
sequence of interventions, 𝑧, 

𝑝( 𝜃 ∣∣ 𝑟#:! , 𝜃", 𝜀 ) ∝ 89
!"⃗

𝑝(𝑧!	|	𝜀)𝑝(𝑟!	|	𝜃, 𝜃", 𝑧!). 

As noted by Liquin et al. (2020), marginalizing over 𝑧 di-
rectly is intractable, but the posterior can nonetheless be com-
puted because it depends only on the number of times each 
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possible combination of (𝑟, 𝑧) occurs. We assume that 𝜃" and 
𝜀 are known. For concision, we omit the dependence on these 
parameters in later equations. 

This model estimates 𝜃 for a given candy machine; the 
model is copied to estimate 𝜃 for a second candy machine. 
On each trial, in addition to estimating 𝜃, the model computes 
a number of quantities, defined below (see also Table 1).  

Surprise features capture the extent to which the outcome 
on a given trial is unexpected in light of prior beliefs. We 
consider four possible definitions of surprise. One definition 
captures information-theoretic surprisal (Shannon, 1948) 
which has been previously used to model infants’ attention 
(Kidd et al., 2012; Poli et al., 2020). The other three defini-
tions capture unsigned reward prediction error, which has 
been previously used to model adults’ attention (Stojić et al., 
2020). Because both information-theoretic surprisal and un-
signed reward prediction error have been used in prior re-
search, we model both. 

Information-theoretic surprisal (surprise-IT) is defined as 
the negative log posterior predictive probability of the ob-
served reward given the history of previous rewards, 
− log 𝑝(𝑟!|𝑟#:!&#). The posterior predictive is defined  

𝑝(𝑟!|𝑟#:!&#) = 	> 𝑝
#

'
( 𝜃 ∣∣ 𝑟#:!&# )8𝑝(𝑧!)

"!

	𝑝(𝑟!	|	𝜃, 𝑧!)	𝑑𝜃. 

Unsigned reward prediction error is defined |𝑅! − 𝑟!|, or 
the absolute difference between expected reward and re-
ceived reward. We consider three possible definitions of ex-
pected reward 𝑟!. First, the full Bayesian estimate, taking into 
account both the current estimate of 𝜃 and the possibility of 
intervention, is 𝑟!

full = 𝑝(𝑅! = 1|𝑟#:!&#). Two additional def-
initions do not consider the possibility of intervention: the 
posterior mean estimate of 𝜃 prior to the current reward, 
𝑟!
mean =	∫ 𝑝#' ( 𝜃 ∣∣ 𝑟#:!&# )𝜃	𝑑𝜃 and the maximum a posteriori 

(MAP) estimate of	𝜃 prior to the current reward, 𝑟!
MAP =

	argmax(𝑝( 𝜃 ∣∣ 𝑟#:!&# ). This results in three additional 

surprise features: surprise-full, surprise-mean, and surprise-
MAP. 

Uncertainty features describe uncertainty about model es-
timates, defined using the information-theoretic measure en-
tropy (Shannon, 1948). The first feature, value uncertainty, 
captures uncertainty about the estimated value of the chosen 
machine (i.e., its probability of producing candy, 𝜃). This is 
defined  𝐻(𝜃 ∣∣ 𝑟#:! ) = −∫ 𝑝#' (𝜃 ∣ 𝑟#:!)logB𝑝( 𝜃 ∣∣ 𝑟#:! )C𝑑𝜃. 
The second feature, query uncertainty, captures uncertainty 
about whether an intervention occurred (i.e., the target query 
about which participants rate their curiosity). This is defined 
as the entropy of the intervention’s predictive distribution, 
𝐻(𝑍! ∣ 𝑟#:!) = −𝑧!log𝑧! − (1 − 𝑧!)	log(1 − 𝑧!) where 𝑧! =
𝑝(𝑍! = 1 ∣ 𝑟#:!) is the conditional probability of the agent 
having intervened on this trial given all observed rewards, 

𝑧! =	> 𝑝
#

'
( 𝜃 ∣∣ 𝑟#:! )

𝑝(𝑟!|	𝜃, 𝑍! = 1)𝑝(𝑍! = 1)
∑"!"	∈{',#} 𝑝(𝑟!|	𝜃, 𝑧!

.)𝑝(𝑧!.)
𝑑𝜃. 

Expected learning features encode how much learning is 
expected to occur if the target of one’s curiosity (whether an 
intervention occurred) were to be revealed. We define ex-
pected learning using a measure of expected information gain 
(EIG) that has been influential in the study of inquiry (see 
Coenen et al., 2019). First, expected learning about the cho-
sen machine’s value, or value EIG, is the expected reduction 
in entropy of the posterior distribution of 𝜃 after observing 
the value of 𝑍!, ∑ 𝑝"∈{',#} (𝑍! = 𝑧 ∣ 𝑟#:!)𝐻(𝜃 ∣ 𝑟#:! , 𝑍! = 𝑧) −
𝐻(𝜃 ∣ 𝑟#:!). Second, expected learning about whether an in-
tervention occurred, or query EIG, is the expected reduction 
in entropy in the predictive distribution, 𝐻(𝑍! ∣∣ 𝑟#:! ), after 
observing the value of 𝑍!. Because observing the value of 𝑍! 
would reduce entropy to zero, query EIG is equal to query 
uncertainty, and we refer to this as “query EIG/uncertainty.”  

 To summarize, though surprise, uncertainty, and expected 
learning often co-occur (see Fig. 1), the provided mathemat-
ical definitions allow us to pull apart these features, including 
several possible definitions of surprise and several possible 

Table 1: Definition of each model estimated feature, and associations with curiosity in simple linear regression models. 
 

 
Feature Definition 

b [95% CI] 
Children Adults 

Surprise-IT Unlikeliness of received reward, based on machine's es-
timated value and possibility of intervention -0.21 [-0.27, -0.16] -0.28 [-0.34, -0.23] 

Surprise-Full Difference between received and expected reward based 
on estimated value and possibility of intervention -0.20 [-0.26, -0.14] -0.28 [-0.34, -0.23] 

Surprise-Mean Difference between received and expected reward based 
on mean estimate of the machine's value -0.005 [-0.06, 0.05] 0.20 [0.14, 0.25] 

Surprise-MAP Difference between received and expected reward based 
on most likely estimate of the machine's value -0.08 [-0.13, -0.02] 0.12 [0.06, 0.18] 

Value Uncertainty Uncertainty about the machine's value 0.08 [0.02, 0.14] 0.11 [0.05, 0.16] 
Query EIG/Uncer-
tainty 

Expected learning/uncertainty about whether an inter-
vention occurred (the target query) 0.27 [0.21, 0.32] 0.53 [0.48, 0.57] 

Value EIG Expected learning about chosen machine's value if the 
target query were to be answered 0.25 [0.19, 0.31] 0.52 [0.47, 0.57] 
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targets of uncertainty/expected learning. In the following sec-
tion, we describe an experiment in which we test how well 
these features predict children’s and adults’ curiosity.  

Experiment 

Method 
Participants We recruited 55 five- to nine-year-old children 
(2 five-year-olds, 13 six-year-olds, 14 seven-year-olds, 14 
eight-year-olds, and 12 nine-year-olds; 32 female, 23 male), 
using a laboratory registry and word-of-mouth. We also re-
cruited 55 adults (ages 18-62; 33 female, 20 male, one non-
binary, and one unspecified) from Prolific, who were re-
quired to be in the United States and have a history of partic-
ipating in at least 100 studies with a minimum 95% approval 
rate. An additional 12 children and five adults were excluded 
for providing the same curiosity rating on all trials. 

Procedure All children and adults completed the experiment 
on a computer. Child participants were supervised by their 
parents. The full procedure was narrated by a pre-recorded 
“experimenter” and illustrated with animated videos.  

The procedure was modified from Dorfman et al. (2019) 
and Liquin et al. (2020). Participants were introduced to vir-
tual candy machines, which sometimes produced virtual 
candy when clicked. Some machines “work really well” and 
provided candy often, while other machines “don’t work so 
well.” Participants practiced clicking on two machines, 
which differed in their probability of producing candy. 

Participants were then introduced to a squirrel named AJ, 
who interferes with the candy machines’ performance. In the 
donor condition (N = 25 children, 30 adults), participants 
were told that AJ likes to give people candy, while in the thief 
condition (N = 30 children, 25 adults), participants were told 
that AJ likes to take away people’s candy. Participants 
learned through practice with two machines that AJ inter-
vened on one-third of trials; when AJ intervened, they re-
ceived candy (in the donor condition) or no candy (in the thief 
condition) with 100% probability. 

During this training, participants were also introduced to a 
curiosity rating scale. On the first practice trial after learning 
about AJ, the experimenter narrated, “Huh, I wonder whether 
we [got candy/didn’t get any candy] because AJ [put it 
there/took it away], or because of how well the machine 
works!” (with the text in brackets dependent upon condition). 
The experimenter then introduced a four-point rating scale, 
based on the idea that “in school, you raise your hand when 
you want to know something.” Participants were shown four 
cartoon images of raised hands, varying in size. For each 
hand, the experimenter described varying levels of “wanting 
to know whether AJ made that happen,” with higher levels of 
“wanting to know” corresponding to larger hands. Partici-
pants practiced selecting a hand to indicate their curiosity on 
multiple trials and answered several questions assessing their 
understanding of the rating scale (with corrective feedback).  

Participants then advanced to the main task. Participants 
were shown two new candy machines, which differed in color 

(blue or green) and were visually distinct from the practice 
machines. Participants were instructed that they needed to 
learn how well the machines worked over 20 trials. On each 
trial, participants chose to click on one machine, receiving 
either candy or no candy. After each outcome, participants 
rated their curiosity about whether AJ had intervened. 
Whether or not AJ intervened was not revealed. Across all 
trials, the machines produced candy with 70% and 30% prob-
ability (side and color counterbalanced). 

Finally, we assessed learning. Participants were told, “An-
other kid played this game, and she clicked on the 
[blue/green] machine four times.” Participants selected how 
many candies they thought were received on those turns. This 
measure was completed twice for each machine, resulting in 
a “value estimate” for each machine ranging from zero of 
eight trials (0%) to eight of eight trials (100%). 

Results 
Children’s Engagement We first assessed whether parents 
reported any difficulty with the task. Only five out of 55 par-
ents reported any technical difficulties, all minor. One parent 
reported influencing their child’s responses “once or twice,” 
while the remaining reported no interference. Fifty-three par-
ents reported their children were somewhat or very engaged, 
and only one parent reported that their child took any breaks. 
In sum, the majority of children were engaged, provided their 
own responses, and encountered no technical problems.  
 
Qualitative Predictions Next, we tested several qualitative 
predictions, which together allow us to assess whether partic-
ipants understood the task and utilized the four-point curios-
ity scale as instructed. We tested these predictions separately 
for children and adults. 

First, if participants attended to the observed outcomes, we 
would expect final value estimates to be higher for the 70% 
machine than the 30% machine. We fit a mixed-effects re-
gression model predicting participants’ value estimates as a 

 
 

Figure 1: Pearson correlations between all model-esti-
mated features, over all trials for both child and adult 

participants. 
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function of machine, with random intercepts for participant. 
We tested the effect of machine using a likelihood ratio test. 
Children provided higher value estimates for the 70% ma-
chine (M = 0.69, SD = 0.22) than for the 30% machine (M = 
0.52, SD = 0.29), c2(1) = 571.89, p < .001, as did adults (70% 
machine: M = 0.66, SD = 0.20; 30% machine: M = 0.43, SD 
= 0.24), c2(1) = 1116.70, p < .001. 

Second, if participants understood the hidden agent and the 
curiosity rating scale, curiosity ratings should be low after an 
outcome that could not have been caused by AJ: candy in the 
thief condition, and no candy in the donor condition. We fit a 
mixed-effects regression model predicting curiosity ratings, 
with fixed effects for outcome, agent condition, and their in-
teraction and with random intercepts for participant. We com-
pared this model to a reduced model excluding the interac-
tion, revealing a significant interaction in both children, c2(1) 
= 88.25, p < .001, and adults, c2(1) = 472.65, p < .001. Curi-
osity followed the predicted pattern in both groups: partici-
pants were less curious after receiving candy (vs. no candy) 
in the thief condition, and vice versa in the donor condition.  
 
Triggers of Curiosity Next, we tested whether curiosity 
tracked surprise, uncertainty, and expected learning. To test 
whether each feature was associated with curiosity in isola-
tion, we fit several mixed-effects regression models predict-
ing curiosity ratings for adults or children. Each model in-
cluded one feature as a fixed effect. Following Liquin et al. 
(2020), curiosity ratings were z-scored within participants, to 
account for variation in use of the rating scale. We also in-
cluded by-participant random intercepts in each model. The 
results of this analysis are presented in Table 1. For both chil-
dren and adults, the strongest predictor of curiosity was query 
EIG/uncertainty, closely followed by value EIG.  

Surprisingly, surprise-IT and surprise-full were negatively 
associated with adults’ and children’s curiosity, and surprise-
MAP was negatively associated with children’s (but not 
adults’) curiosity. The former associations could be explained 
by the negative correlations between query EIG/uncertainty 
and surprise-IT/surprise-full (see Fig. 1). On trials where 
query EIG/uncertainty is high, unlikely outcomes can be par-
tially explained away by the possibility of intervention and 
thus are less surprising. On trials where query EIG/uncer-
tainty is low, unlikely outcomes are less likely to be attributed 
to the intervention and are thus more surprising. Therefore, if 
curiosity is positively related to query EIG/uncertainty, it will 
be negatively related to surprise-IT and surprise-full. This is 
not the case for surprise-mean and surprise-MAP, which do 
not account for the intervention.  

Though this analysis reveals the strongest single predictors 
of curiosity, it does not disentangle these predictors. For ex-
ample, value EIG might be related to curiosity merely by vir-
tue of its strong association with query EIG/uncertainty (r = 
0.72, see Fig. 1). To disentangle the influence of each feature, 
we fit several multiple regression models. Because the candi-
date surprise features were highly correlated (or highly cor-
related when controlling for other features), we fit a separate 
model for each surprise feature. Each model also included 
fixed effects for value uncertainty, query EIG/uncertainty, 
value EIG, age group, and the interactions between age group 
and each feature, as well as by-participant random intercepts. 
We label these models by the included surprise feature: IT 
model, full model, mean model, or MAP model.  

All four models were nearly equivalent in AIC: IT model 
5674, full model 5676, mean model 5678, and MAP model 
5676. Because the models achieved comparable fit to the 
data, we analyzed the coefficients of all four models.  

 
Figure 2: Regression coefficients predicting curiosity in children and adults, with 95% confidence intervals. Coefficients and 

confidence intervals are estimated from multiple regression models fit within each age group. Asterisks indicate statistical 
significance of interactions between age group and features in the cross-age models; * p < .05; ** p < .01; *** p < .001. 

***

***

*

Value EIG

Query EIG/
Uncertainty

Value
Uncertainty

Surprise−IT

−0.2 0.0 0.2 0.4 0.6
Estimate

IT Model

***

**

**

Value EIG

Query EIG/
Uncertainty

Value
Uncertainty

Surprise−Full

−0.2 0.0 0.2 0.4 0.6
Estimate

Full Model

**

**

*

Value EIG

Query EIG/
Uncertainty

Value
Uncertainty

Surprise−Mean

−0.2 0.0 0.2 0.4
Estimate

Mean Model

**

**

*

Value EIG

Query EIG/
Uncertainty

Value
Uncertainty

Surprise−MAP

−0.2 0.0 0.2 0.4
Estimate

MAP Model

Age Adults Children

1364



First, to test whether any features were differentially pre-
dictive of curiosity in children versus adults, we tested 
whether each interaction term was significant using likeli-
hood ratio tests. The interaction terms between age group and 
surprise, value uncertainty, and query EIG/uncertainty were 
significant in all models (see Fig. 2). To further probe these 
interactions, we fit separate regression models to children’s 
responses and adults’ responses, allowing us to investigate 
the association between each feature and curiosity within 
each age group (see Fig. 2). Children’s curiosity was nega-
tively related to surprise across models, such that curiosity 
was higher after outcomes that were less surprising (when un-
certainty and expected learning were held fixed). Adults’ cu-
riosity, in contrast, was unrelated to surprise in all models but 
the IT model, where it was positively related to surprise. 
Across models, children’s curiosity was positively related to 
value uncertainty, while there was no evidence that adults’ 
curiosity tracked value uncertainty. Both children’s and 
adults’ curiosity tracked value EIG, but children’s curiosity 
did not track query EIG/uncertainty when controlling for 
some definitions of surprise.  

In summary, when the candidate triggers of curiosity were 
disentangled, we found that children’s curiosity was higher 
when expected learning was higher (holding surprise and un-
certainty fixed), when uncertainty was higher (holding sur-
prise and expected learning fixed), and when surprise was 
lower (holding uncertainty and expected learning fixed). 
Adults’ curiosity was higher when expected learning was 
higher (holding surprise and uncertainty fixed), but there was 
little evidence for an additional effect of surprise or uncer-
tainty. All four definitions of surprise produced similar mul-
tiple regression results, suggesting similar associations with 
curiosity despite subtly different definitions.  

Discussion 
By precisely quantifying and disentangling candidate triggers 
of curiosity, we found that children’s curiosity, like adults’ 
curiosity, tracks expected learning—above and beyond heu-
ristic cues (namely surprise and uncertainty). However, we 
also found evidence for developmental change. Whereas 
adults’ curiosity was triggered almost exclusively by ex-
pected learning, children’s curiosity was also related to sur-
prise and uncertainty, tracking expected learning less closely. 

What accounts for this developmental change? One possi-
bility is that with increasing age, the elicitors of curiosity gen-
uinely shift from heuristic cues (that may be easier to com-
pute) towards “optimal” cues (that best track expected learn-
ing). However, it is also possible that this pattern of results 
reflects other developmental changes. First, the Bayesian 
model from which we estimated surprise, uncertainty, and ex-
pected learning could provide a better account of adults’ 
learning than children’s learning. For example, children 
might not fully integrate beliefs about the task’s causal struc-
ture (e.g., the possibility of AJ intervening) into their learning 
(Cohen et al., 2020). Our model-estimated features capture 
surprise, uncertainty, and expected learning according to the 
optimal learner—and to the extent that children (or adults) 

are not well-approximated by the optimal learner, these fea-
tures may not be appropriate predictors of children’s or 
adults’ curiosity. Future work would benefit from testing al-
ternative models that make different assumptions about chil-
dren’s and adults’ learning. 

In addition, children and adults might have different 
goals—for example, there may be a shift from exploration to 
exploitation (Gopnik, 2020), or from guiding learning to 
guiding action. Such a shift might be accompanied by a 
change in curiosity itself: from a non-instrumental drive, as 
posited by classic theories (Loewenstein, 1994), to a motiva-
tional state more integrated with considerations of utility 
(Dubey & Griffiths, 2020). In the context of our task, a 
learner could aim to learn the probability of reward from each 
machine (as assumed by our model), or instead the best ma-
chine to choose. The “optimal” trigger of curiosity will de-
pend on what the learning goal is, so future research might 
explore additional learning goals. 

In addition to considering other sources of developmental 
change, future work would benefit from investigating devel-
opmental change within childhood. When do the elicitors of 
curiosity change from more “child-like” to more “adult-like,” 
and why? And is there an earlier period in development 
where children only track surprise and uncertainty?  

Finally, the finding that children are more curious after out-
comes that are less surprising (controlling for uncertainty and 
expected learning) is unexpected in light of prior research. It 
is possible that children’s curiosity about unsurprising out-
comes is specific to our task. Indeed, the surprising outcomes 
in our task were statistically unlikely, but they did not violate 
principles of core knowledge or intuitive theories (Bonawitz 
et al., 2012; Stahl & Feigenson, 2015), and thus only captured 
a low to moderate range of surprise. However, it is also pos-
sible that children’s responses to surprise in prior research in 
fact reflect a preference for uncertainty or expected learning, 
which were confounded with surprise. If this is the case, a 
surprise that does not generate uncertainty or expected learn-
ing would not elicit curiosity (see Perez & Feigenson, 
2020)—and might actually depress curiosity. Unsurprising 
observations could elicit more curiosity because they provide 
a unique opportunity to confirm one’s beliefs, aligning with 
children’s use of a “positive test strategy” during explora-
tion—choosing questions or actions that are expected to pro-
vide confirmatory evidence for one’s working hypothesis 
(Nussenbaum et al., 2020; Ruggeri et al., 2016). Future re-
search could shed light on these issues. 

In sum, we found both continuity and change in the triggers 
of curiosity across development. Although expected learning 
appears to be an important driver of curiosity in both children 
and adults, children show more sensitivity to other features 
and track expected learning less closely. Our findings raise 
important questions about children’s information search: why 
do children attend, explore, and ask questions when they do? 
We suggest that surprise, uncertainty, and expected learning 
may all be at play—but these features must be disentangled 
to fully understand self-directed learning, including how it 
changes across the lifespan. 
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