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ABSTRACT: Make-on-demand chemical libraries have drastically increased the
reach of molecular docking, with the enumerated ready-to-dock ZINC-22 library
approaching 6.4 billion molecules (July 2024). While ever-growing libraries result in
better-scoring molecules, the computational resources required to dock all of ZINC-
22 make this endeavor infeasible for most. Here, we organize and traverse chemical
space with hierarchical navigable small-world graphs, a method we term retrieval
augmented docking (RAD). RAD recovers most virtual actives, despite docking only
a fraction of the library. Furthermore, RAD is protein-agnostic, supporting additional
docking campaigns without additional computational overhead. In depth, we assess
RAD on published large-scale docking campaigns against D4 and AmpC spanning 99.5 million and 138 million molecules,
respectively. RAD recovers 95% of DOCK virtual actives for both targets after evaluating only 10% of the libraries. In breadth, RAD
shows widespread applicability against 43 DUDE-Z proteins, evaluating 50.3 million associations. On average, RAD recovers 87% of
virtual actives while docking 10% of the library without sacrificing chemical diversity.

■ INTRODUCTION
Virtual screening methods attempt to computationally identify
ligands with desired properties from an immense sea of an
estimated 1060 drug-like molecules.1 Structure-based molecular
docking assesses hundreds of thousands of ligand config-
urations within a binding site, evaluating each ligand using a
physics-based scoring function. Molecular docking requires
enumerated virtual libraries of small molecules specifically
prepared for use in docking software.

Virtual library sizes have significantly expanded with “make-
on-demand” virtual libraries. These libraries of readily
synthesizable molecules combine hundreds of relatively simple
reactions and hundreds of thousands of building blocks.2 For
instance, the enumerated REAL database from the chemical
supplier Enamine3 has gone from 1.95 billion molecules (May
2021) to 6.75 billion molecules (July 2024). Concurrently, the
unenumerated Enamine REAL Space4 has increased from 19
billion molecules to 48 billion molecules. Emerging trends
suggest that larger libraries result in better fitting and better
scoring molecules.5 Consequently, many efforts focus on
docking increasingly extensive billion-scale libraries.6−10

However, the continuous growth of these virtual libraries
poses significant computational challenges. Docking all 6.4
billion 3D ZINC-2211 molecules (July 2024), a database of
“ready-to-dock” molecules purchasable through chemical
suppliers such as Enamine and WuXi, at a rate of 1 s per
molecule would take approximately 203 CPU years. Hence,
screening enumerated libraries on the scale of tens of billions
requires new methods.

Recently, many researchers have focused on using machine
and active learning (ML/AL) methods to facilitate ultralarge-

scale screening.12−16 In these workflows, they dock a small
subset of the chemical library to a target of interest and train an
ML model to predict the docking score. They use this ML
model to predict the scores for the entire library (Figure 1A,
machine learning), which we subsequently refer to as “single-
iteration” models. However, previous work obtained more
accurate predictions for some targets and scoring functions
through active learning. In this process, they used the ML
model to predict scores for the entire library and a selection
criterion to choose additional molecules to dock and retrain
the model.12,13,16 This iterative process, encompassing
successive cycles of docking, model training, and prediction,
aims to enhance the ability to identify high-scoring molecules
from the virtual library (Figure 1A, active learning). Due to the
ability of ML models to make rapid but accurate predictions of
docking scores, this workflow can reduce the computation time
required to screen ultralarge libraries. However, this approach
has its limitations:

(1) Although ML predictions are faster than direct docking
calculations, the necessity for repeated cycles of active learning
introduces a significant computational overhead. This over-
head includes repeated model training and inference across the
entire library, which is costly, particularly for ultralarge
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chemical libraries containing tens of billions of molecules.
While strategies like design space pruning17 aim to minimize
the number of ML predictions required in successive active
learning iterations, an initial comprehensive library evaluation
is unavoidable. Furthermore, each active learning cycle requires
model training and validation, contributing to the overall
computational overhead. While researchers can limit model
training and inference to a single iteration for efficiency,
previous work demonstrated that this can perform worse than
an active learning workflow.12,13 Additionally, this strategy still
requires a comprehensive evaluation of the entire library using
the ML model.

(2) Every virtual screening campaign requires its own ML
model. Although there have been attempts to develop general
ML models capable of predicting scores across multiple
proteins, their accuracy is worse than target-specific
models,18,19 and performance degrades when applied to
unseen proteins.20 Consequently, to achieve accurate results
in screening campaigns involving multiple protein targets,
researchers must carefully tailor their active learning workflow.
In the worst case, this requires tuning, training, and validating
models for every protein binding site of interest. In the best

case, a single model can make predictions for all proteins of
interest at once, and only a single ML model is needed.
However, in both cases, the acquisition of docking training
data scales linearly with the number of targets in the campaign.
Furthermore, the use of ML models requires expertise and
computational overhead to validate that they are not biased or
overfitted, and each additional screening campaign requires its
own model.

Alternatively, de novo generative methods21−23 and those
that operate directly on molecular building blocks and
reactions24,25 sidestep the enumeration problem. While de
novo generative methods may explore a larger or comple-
mentary chemical space, generated molecules are frequently
impossible to synthesize.26 Likewise, methods that screen
unenumerated libraries explore a large chemical space using
fragment-based screening, but docking scoring functions may
not accurately determine fragment binding modes27 and rank
their typically low affinities.28 Furthermore, to our knowledge,
no benchmark data sets enable a comprehensive comparison
between enumerated and unenumerated methods. Given these
considerations, we focus on exploring the enumerated chemical
space.

Figure 1. Comparison of workflows to accelerate docking. (A) Virtual screening workflow using RAD compared to the active learning and null
workflows described by Yang et al.12 (B) Time required to prepare each method and perform the DOCK calculations common to all methods. (C)
Ability of each method to scale to screen multiple protein targets. Machine learning timing estimates were performed assuming that only a single
model was needed to make predictions for all protein targets. The timing estimates assume the model training occurs on a GPU (NVIDIA GTX
1080Ti) and all other calculations occur on the CPU (Intel i5-8400 for DOCK calculations and model prediction and Intel Xeon Gold 6240R for
fingerprint construction and HNSW construction).
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This study introduces a new way to navigate chemical space
using hierarchical navigable small worlds (HNSW), a
hierarchical graph-based data structure and algorithm designed
for approximate nearest neighbor (ANN) search within high-
dimensional spaces.29 Although HNSW has predominantly
served as the foundation for vector databases30,31 powering
retrieval augmented generation (RAG),32 we leverage HNSW
to structure virtual chemical libraries. Instead of following a
conventional ANN search, we implement a greedy algorithm to
traverse and dock the molecules within the graph’s underlying
structure in a process we call retrieval augmented docking
(RAD).

RAD efficiently recovers a significant proportion of the best-
scoring molecules (virtual actives) within the entire chemical
library while evaluating only a fraction of the total library.
Moreover, this method exhibits comparable performance to
the single-iteration models and multi-iteration active learning
models presented by Yang et al.12 and many of the active
learning models presented by Graff et al.13 while addressing
some limitations: (1) RAD exploits the intrinsic graph
structure of HNSW, necessitating score calculations for only
a subset of the library. This is a notable improvement over the
machine learning approach, which requires ML predictions for
the entire library potentially multiple times for an active
learning loop. We used explicit docking calculations as the
scoring function during traversal. Nonetheless, the HNSW
structure can be traversed with any scoring function, such as an
ML-based scoring function, or even be integrated within an
active learning framework, eliminating the need for model
predictions across the entire library. (2) Because the HNSW
data structure involves only the virtual chemical library, its
traversal is “just-in-time”. Consequently, undertaking a new
screening campaign does not require the reconstruction of the
HNSW and does not incur additional computational overhead.
Our method solely focuses on relating ligands’ biological
activity, measured by the docking score, to their organization
based on similarity, akin to many previous methods.33−36 This
contrasts with the active learning approach, which has the

prerequisite of developing and tuning a campaign-specific ML
model. Launching a new campaign requires training a new
model, unlike the HNSW which can be reused for any number
of screening campaigns.

■ MATERIALS AND METHODS
Data Sets. AmpC and D4. We evaluated the retrospective

applicability of RAD in large-scale virtual screening using two
protein systems. We obtained results for 99 459 562 molecules
docked to AmpC β-lactamase (AmpC) and 138 312 677 to the
D4 dopamine receptor (D4) using DOCK 3.7 from Lyu et al.37

We obtained Glide38,39 docking results for the same molecules
and proteins from Yang et al.12

DUDE-Z. To assess the reusability of the HNSW structure
across many protein targets, we created a data set of 1 169 461
molecules provided by the DUDE-Z “Goldilocks” set docked
to the 43 proteins included in the DUDE-Z data set40 using
default DOCK 3.741 with no modifications. We used the
default parameters, INDOCK files, and grids provided by the
DUDE-Z data set for each protein with no modifications.
Molecules that failed to dock to a given protein were assigned
scores of infinity for that protein. On average, 89% of the
molecules per protein were successfully docked and scored,
each exploring 5226 orientations and 294 conformations.

Hierarchical Navigable Small World (HNSW) Graph.
HNSW is a data structure and algorithm designed for
approximate nearest neighbor search that leverages a
hierarchical multilayer graph where subsets of elements
(molecules) exist in the upper layers and all of the molecules
in the bottom layer. These sparse upper layers act as a coarse-
graining of the entire data set and allow for the rapid (O(log
N)) identification of nearby neighbors in high-dimensional
spaces. The HNSW algorithm constructs this hierarchical
graph structure by sequentially inserting molecules. Each
molecule in the data set is inserted into the graph according to
the following procedure.

First, the algorithm assigns a molecule a maximum layer, l, in
the hierarchy by sampling an exponentially decaying random

Figure 2. Hierarchical navigable small world (HNSW) graph construction and retrieval augmented docking (RAD). (A) We add molecules to the
HNSW structure in every layer below a randomly assigned maximal layer. A heuristic connects M nodes from ef Construction approximate nearest
neighbors in each layer. (B) RAD begins by scoring the entire top layer and continues by greedily traversing the graph structure prioritized by the
dock score.
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variable. The molecule will be inserted in the graph at this
maximum layer and all layers below it (l, l−1, ..., 0). The
exponentially decaying variable ensures the sparsity of the
upper layers of the graph. Only a few molecules will be
randomly assigned to the upper levels of the hierarchy. Note
that molecules are inserted into all layers below their assigned
maximum, so every molecule appears in the bottom layer 0.

Once a molecule is assigned a maximum layer l, it is inserted
into layers l, l−1, ..., 0. Molecule insertion employs a greedy
search to locate ef Construction approximate nearest neighbors
per layer based on the Tanimoto similarity between molecules.
We refer to these as candidates, as they will potentially be
connected to the newly inserted molecule. At each layer, M out
of the ef Construction candidates (2·M in the bottom layer 0)
are chosen to be bidirectionally connected to the inserted
molecule in the graph. The following strategy is employed to
choose the final M neighbors from the ef Construction
candidates to connect to the newly inserted molecule.

First, the algorithm connects the inserted molecule to the
nearest candidate. It then proceeds to the next nearest
candidate. This candidate is connected if it is more similar
to the inserted molecule than any of the already connected
candidates; otherwise, it is skipped. This process continues
until the algorithm connects M neighbors to the inserted
molecule or evaluates all of the ef Construction candidates
(Figure 2A). According to the original paper, this strategy
encouraged diverse connections among highly clustered data.
Modifying the parameters ef Construction and M influenced the
HNSW construction speed, memory requirements, and recall
rate of our RAD traversal method. These steps are repeated for
each molecule in the data set to construct the graph.

We developed a molecular HNSW using the open-source
library hnswlib,29 albeit with two primary adaptations for
molecular fingerprint processing: Tanimoto distance calcu-
lations for the HNSW construction distance metric42 and
integer data types for memory-efficient fingerprint storage and
expedited Tanimoto calculations.43 Using RDKit,44 we
converted the chemical library into Morgan fingerprints with
a radius of 2 and a length of 1024 bits. We constructed the
HNSW with an ef Construction of 400 and an M of 16. We
chose fingerprints and HNSW parameters that demonstrated
the best average recall of DUDE-Z virtual actives when
applying RAD to screen up to 10% of the chemical library
(Figure S1 and Table S3). While these parameters yielded the
best recall of virtual actives in this context, we note that many
other parameter choices resulted in similar performance while
reducing HNSW construction speed and memory usage
(Figure S2). Finally, we converted the flat HNSW C++ data
structure produced by hnswlib into a series of Python graph-
tool graphs45 for easier traversal.

RAD and Null Traversal. We quantitatively compared two
traversal techniques for identifying virtual actives within
chemical libraries while minimizing the fraction of the
explicitly docked library.

The first technique, RAD, used the docking scoring function
to greedily traverse the molecular HNSW graph. All molecules
in the top HNSW layer were docked and added to a priority
queue, with better-scoring molecules having higher priorities.
The traversal then iteratively removed the highest-scoring
molecule from the queue and retrieved its unvisited
neighboring molecules from the HNSW graph (including the
molecule at a lower level in the HNSW hierarchy). These
molecules were docked, scored, and added to the priority

queue (Figure 2B). This cycle continued until a predefined
stop criterion was satisfied. In this work, we stopped this
process once it scored 10% of the virtual library.

The alternate technique, known as the null traversal and
introduced by Yang et al.,12 randomly docked 0.2% of the
library (2% for the DUDE-Z library) and assigned the 100
best-scoring molecules to a probe library. The remainder of the
library molecules was scored based on their maximal Tanimoto
similarity to any probe library member. Similarity calculations
employed Morgan fingerprints with a radius of 2 and a length
of 1024 bits, mirroring the fingerprints used in the HNSW
construction.

Qualitatively, we compared the performance of both
techniques against the single-iteration and active learning
strategies employed by Yang et al.,12 but we could not compare
performance numerically due to the unavailability of that
study’s codebase. Additionally, we compared the performance
against the active learning strategies employed by Graff et al.13

Performance Metrics. We evaluated the ability of traversal
strategies to identify virtual actives using recall metrics. We
defined “virtual actives” as the top ∼0.01% scoring molecules
in a screening library (top 10k for D4 and AmpC libraries and
top 100 for DUDE-Z). Different traversals were compared by
their partial area under the curve (pAUC), representing the
recall of virtual actives against the screened percentage of the
library. Because of the computational costs associated with
docking, we were particularly interested in the ability to
identify virtual actives while screening only a fraction of the
library. To this end, we measured the pAUC associated with
screening up to 10% of the library, denoted as pAUC10.

Additionally, we assessed the trade-off between top-scoring
molecules and structural diversity by measuring the recall of
the Bemis−Murcko scaffolds46 and the Butina clusters47 of the
virtual actives. The Bemis−Murcko scaffolds represent the core
structures of molecules by removing the side chain atoms and
focusing on the central ring systems and linkers. Butina
clustering groups molecules into clusters based on their relative
similarity using Tanimoto similarity. These molecular diversity
methods complement each other as frameworks for evaluating
the core structural components and the relative similarity of
the molecules, respectively. We sought to capture different
aspects of diversity: scaffolds offer an absolute measure by
identifying distinct core structures, while clusters provide a
relative measure by grouping molecules based on their
similarities within the same library. Maintaining chemical
diversity is crucial for virtual screening methods, particularly
when applied prospectively, as it avoids redundant testing of
similar molecules, which are more likely to have similar
properties.48

We used RDKit to calculate chemical scaffolds and perform
Butina clustering on Morgan fingerprints with a radius of 2 and
a length of 1024. The top 10k D4 DOCK virtual actives had
4268 unique Bemis−Murcko scaffolds and 2714 Butina
clusters. In contrast, the AmpC DOCK virtual actives
encompassed 4519 scaffolds but 3394 clusters (Table S1).

The DUDE-Z molecule library was smaller and less diverse
than the D4 and AmpC libraries and did not undergo this
diversity analysis. DUDE-Z virtual actives were limited to the
top 100 as opposed to the top 10k, and the DUDE-Z
Goldilocks library, which averages 3.6 molecules per scaffold,40

did not accurately represent the diversity typically found in
ultralarge screening libraries like ZINC-22, which averages 46.7
molecules per scaffold.11
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Pocket and Virtual-Active Property Calculations.
Because RAD is easily applied to dozens of proteins, we
aimed to investigate whether the properties of the protein
binding pocket or their virtual actives correlated with the RAD
performance. We calculated the protein pocket properties for
all 43 DUDE-Z proteins using the program fpocket.49 We ran
fpocket in restricted mode with the crystal ligand provided by
DUDE-Z, which allowed fpocket to characterize the ligand
binding site explicitly rather than characterize putative binding
sites that may not align with the experimentally validated
ligand binding site. We leave an exact overview of all
descriptors returned by fpocket to the original manuscript,49

but at a high level, fpocket returned information about each
binding site’s volume, polarity, hydrophobicity, electrostatics,
solvent accessibility, and druggability.

We calculated the properties of the virtual actives for each
DUDE-Z protein using the program MOSES.50 Given a set of
molecules, MOSES calculated properties, including the internal
diversity defined by Benhenda,51 the average log P, and the
average molecular weight. We calculated internal diversity51 as
the average pairwise Tanimoto similarity of a set of molecules,
G:

G
G

T m mIntDiv ( ) 1
1

( , )p
m m G

p
2

,
1 2p

1 2

=
| |

where T is the Tanimoto similarity. This metric spans from 0
to 1, with higher values indicating greater diversity.

Hyperparameter Optimization. We considered hyper-
parameters affecting molecular representation and HNSW
construction. For the molecular representation, we considered
four fingerprint types: Morgan fingerprints with a radius of 2,
Morgan fingerprints with a radius of 3,52 RDKit fingerprints,44

and MACCS keys.53 For each fingerprint, we considered five
lengths: 128, 256, 512, 1024, and 2048 bits (except for
MACCS keys, which always had a length of 166 bits). For
HNSW construction, we considered various ef Construction and
M parameters, which controlled the number of neighbor
candidates and connected neighbors, respectively, when adding
a new vector. We considered four ef Construction values: 100,
200, 300, and 400, and six M values: 2, 4, 8, 16, 32, and 64.
These values were chosen according to reasonable ranges
suggested by the authors of the hnswlib library.

We constructed independent DUDE-Z HNSWs for all
hyperparameter combinations and evaluated their performance
by average pAUC10 across all DUDE-Z targets obtained with
RAD (Figure S1 and Table S3). We used the hyperparameter
combination that obtained the highest average pAUC10 across
all DUDE-Z targets for the larger D4 and AmpC HNSWs. We
compared HNSW construction times, measured on UCSF’s
Wynton HPC using 50 cores of a 2.00 GHz AMD EPYC 7662,
against their pAUC10 for each hyperparameter combination
(Figure S2).

The storage required for the bottom HNSW layer accounted
for most of its memory usage. Each node within the HNSW
structure required the following: (1) 4 bytes to specify the
number of neighbors, (2) 4·(2·M) bytes to store the node IDs

Figure 3. RAD efficiently searches large molecule libraries. (A) RAD versus null recall of the top 10k virtual active molecules, scaffolds, and clusters
for the D4 and AmpC libraries using DOCK and Glide. Positive-prefix (“+”) numbers indicate the pAUC10 increase from null to RAD. (B)
Distribution of the top 10k scores in the AmpC Glide screen compared to the top 10k scores from RAD and brute force docking of increasing
molecule count. (C) PCA embedding of the 1st level of the AmpC HNSW and the locations of the molecules in the upper layers.
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of the (2·M) neighbors on the bottom layer, (3) D/8 bytes to
store the fingerprint data where D is the length of the
fingerprint, (4) 8 bytes to store the number of set bits, and (5)
8 bytes to store the node ID.

The approximate memory requirement for an HNSW was
calculated as

M DMemory Library Size (20 8 /8)bytes= · + +

The memory requirements for each hyperparameter
combination were compared to their pAUC10 (Figure S2).

Estimating the Time Required to Screen 6.4 Billion
Molecules. To estimate the time necessary to construct an
HNSW for the entire 3D ZINC-22 library of 6.4 billion
molecules, we extrapolated from the empirical times obtained
during the construction of 100 million scale AmpC and D4
HNSWs. The construction time was recorded cumulatively for
each 1 million molecules added to the HNSW on 50 cores of a
2.40 GHz Intel Xeon Gold 6240R. The theoretical
construction time follows an N log(N) relationship,29 and we
fit our empirical times to this relationship to estimate the time
required to build an HNSW comprising 6.4 billion molecules
(Figure S3). We used the slightly slower estimates obtained
from the D4 empirical data for this analysis.

We used the average computation times reported by Yang et
al.12 for DOCK, model training, and model inference to
approximate the time required to set up an active learning
workflow for 6.4 billion molecules. This previous study docked
0.1% of the library to add to the training data at each round of
active learning at an average speed of 1 s per molecule per
CPU core with DOCK. We assumed that 0.1% of the total
library was docked at each round of active learning, regardless
of the total size. As such, training set acquisition sizes of 100
000 were used for the 100 million scale library estimates, while
training set acquisition sizes of 6.4 million were used for the
6.4 billion 3D ZINC-22 active learning calculations.

Yang et al.12 reported a 16-h ML training time, which we
adopted as a constant regardless of the training set size. We
note that this leads to an underestimate of the time required
for 6.4-billion scale active learning, as the 16 h training time
was based on training set acquisition sizes of ∼100 000. For
larger training set acquisition sizes, such as those used for the
3D ZINC-22 estimate, model training would likely take longer.
In fact, Sivula et al.16 investigated billion-scale active learning
with training set acquisition sizes of 1.56 million and
demonstrated training times closer to 22−35 h.

Lastly, Yang et al.12 reported a 5 ms per molecule per CPU
core ML prediction time. We modeled the DOCK calculations
and ML predictions as scaling linearly with the number of
CPU cores and predicted the total time required to dock the
training set, train the ML model, and perform ML inference for
a single-iteration model and two rounds of active learning, as
investigated by Yang et al.,12 as well as five rounds of active
learning, as investigated by Graff et al.13

■ RESULTS AND DISCUSSION
RAD Achieves a 100-Fold Speed Up Over Brute-Force

Docking. RAD significantly outperformed a naive search, the
null traversal (see the Methods section), in identifying virtual
actives during the large-scale screening of the 100 million-scale
AmpC and D4 libraries (Figure 3A). Despite docking only
10% of the library with DOCK, RAD recovered 95% of D4 and
AmpC virtual actives versus the null traversal’s 55% and 49%.
RAD similarly obtained higher pAUC10 values, which measure

the area under the curve representing the percentage of virtual
actives recovered while docking up to 10% of the library. RAD
achieved pAUC10 values of 0.84 for D4 and 0.83 for AmpC,
more than twice the null traversal’s 0.41 and 0.35, respectively.
We saw similar trends using Glide (Table S2).

RAD’s recall rates were qualitatively similar to the active
learning approach presented by Yang et al.12 (Figure S4; code
was unavailable), which required two rounds of deep learning
model training per receptor and two rounds of library
evaluation. For instance, the Yang et al.12 active learning
workflow recovered ∼87% of the D4 DOCK virtual actives
when screening 5% of the library, while RAD recovered ∼90%
when screening the same amount. Furthermore, RAD
frequently outperformed the single-iteration ML models by
Yang et al.,12 particularly for smaller training batch sizes. For
instance, the single-iteration ML model only recovered ∼79%,
∼74%, and ∼85% of the D4 DOCK virtual actives when
training batch sizes of 0.1%, 0.2%, and 0.5% were used and
screening 5% of the library. For AmpC with Glide, the single-
iteration models performed comparably to the active learning
models, and these differences were less pronounced. However,
when the single-iteration models used training batch sizes
smaller than 0.1% or considering only early enrichment, they
exhibited worse performance than the active learning models.

RAD’s recall rates were worse than the best active learning
models presented by Graff et al.,13 but comparable to or better
than many of those investigated (Figure S12). For instance, the
best ML architecture investigated in that work (a message-
passing neural network) with a training batch size of 0.4%
identified 83−95% of the top 50k AmpC DOCK virtual actives
and 58−84% of the top 50k D4 DOCK virtual actives while
screening 2.4% of the libraries, depending on the active
learning acquisition function. In comparison, RAD identified
∼75% of the top 50k AmpC DOCK virtual actives and ∼74%
of the top 50k D4 DOCK virtual actives while screening 2.4%
of the libraries. While RAD’s virtual active recall was lower
than the highest-performing active learning models from Graff
et al.,13 these workflows required five rounds of model training
and larger training batch sizes of 0.4%, dramatically increasing
the active learning computation time (Figure 1B). Further-
more, the performance of RAD was comparable to or better
than many of the models with smaller training batch sizes or
different ML model architectures. For instance, the feedfor-
ward neural network with a 0.2% training batch size by Graff et
al.13 identified 53% of the top 50k AmpC DOCK virtual
actives when screening 1.2% of the library. In comparison,
RAD identified ∼61% when screening the same number of
molecules.

RAD was far more efficient than brute-force docking in
finding virtual actives (Figure 3B). For instance, RAD achieved
a 100-fold search improvement over brute-force Glide docking
for AmpC. When assessing ∼105 molecules, RAD found a
comparable distribution of top-10k scores to the one that
brute-force docking achieved only after ∼107 molecules. These
trends were consistent across scoring functions and receptors
(Figure S5).

We attribute RAD’s ability to identify many of the virtual
actives while screening a fraction of the library to the
multilayered sparse hierarchy of the HNSW structure. The
upper levels of the hierarchy span broad regions of chemical
space as visualized by PCA (Figures 3C and S13), allowing
RAD’s early stages to explore more unique scaffolds than the
null traversal but fewer than brute-force docking (Figure S6A).
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Despite RAD sampling fewer scaffolds than brute-force
docking, the sampled molecules are much more likely to be
virtual actives than null traversal or brute-force docking (Figure
S6B).

RAD Maintains the Chemical Diversity of Virtual
Actives. We found that RAD’s efficiency does not necessarily
operate at the cost of chemical diversity. To quantify this, we
assessed unique scaffolds and clusters within the top virtual
actives. Recovery rates of unique Bemis−Murcko scaffolds and
Butina clusters for D4 and AmpC virtual actives correlated
with simple virtual active score recovery rates (Figure 3A).
Within the first 10% of the DOCK D4 library, RAD recovered
91% of the top clusters and 92% of the top scaffolds. For
AmpC, RAD recovered 92% of the clusters and 93% of the
scaffolds. The null traversal only recovered 50% and 48%, and
49% and 51% of the D4 and AmpC clusters and scaffolds,
respectively. These trends were also borne out with Glide
(Table S2).

We also found that RAD’s recall of top scaffolds and clusters
was comparable to the active learning procedure of Yang et
al.12 For instance, when screening 5% of the D4 library, RAD
identified 84% and 96% of the top scaffolds compared to active
learning’s 85% and 98% using DOCK and Glide, respectively.
RAD similarly outperformed the single-iteration models’ ability
to recall the top D4 DOCK clusters. When screening 5% of the
D4 DOCK library, RAD identified 82% of the top clusters,
qualitatively similar to the active learning workflow of Yang et
al.12 However, the single-iteration models investigated in that
work performed worse, recalling fewer than 80% of the top D4
DOCK clusters for all training set sizes. This result was not as
pronounced for D4 Glide, where the single-iteration models
again performed similarly to the active learning models, except
for the smallest training batch sizes.

Interestingly, we found that RAD’s recall of top scaffolds and
clusters across both proteins and scoring functions lagged
behind its recall of virtual actives. For example, when screening
5% of the AmpC library with Glide, RAD identified 75% of

Figure 4. RAD reliably accelerates dock search across 43 DUDE-Z targets. (A) RAD versus null recall of the top 100 virtual active molecules for all
43 DUDE-Z proteins. Positive-prefix (“+”) numbers indicate the pAUC10 increase from null to RAD. (B) Comparison of RAD and null recall
distributions. (C) Correlations between virtual actives’ internal diversity (IntDiv1) and the RAD and null recalls.

Journal of Chemical Information and Modeling pubs.acs.org/jcim Article

https://doi.org/10.1021/acs.jcim.4c00683
J. Chem. Inf. Model. 2024, 64, 7398−7408

7404

https://pubs.acs.org/doi/suppl/10.1021/acs.jcim.4c00683/suppl_file/ci4c00683_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.jcim.4c00683/suppl_file/ci4c00683_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.jcim.4c00683/suppl_file/ci4c00683_si_001.pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.4c00683?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.4c00683?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.4c00683?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.4c00683?fig=fig4&ref=pdf
pubs.acs.org/jcim?ref=pdf
https://doi.org/10.1021/acs.jcim.4c00683?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


virtual actives, but only 63% of the top scaffolds. One
explanation for this discrepancy could be the molecular
representations used for the HNSW construction. Because
the HNSW uses the Morgan fingerprints and Tanimoto
distance, neighbors within the graph have similar fingerprints
and are more likely to occupy the same Butina cluster. Despite
the sparse upper layers of the HNSW facilitating the
exploration of distant regions of chemical space, traversal is
inherently constrained to neighbors of good-scoring molecules,
potentially impeding the exploration of some clusters. Different
representations capture distinct molecular information, influ-
encing the chemotypes considered similar54 and demonstrating
variable performance on downstream biological tasks.55 We
anticipate advancements in these representations, such as those
emerging from machine learning,56,57 will improve the recall
rate and diversity of virtual actives identified through RAD.

RAD Preparation is Faster Than Active Learning
Preparation. One of RAD’s primary advantages over an active
learning workflow is its lower computational overhead to
prepare a screen. For a library of 100 million molecules, which
is the approximate size of the D4 and AmpC libraries, the
HNSW preparation time is approximately 20× faster than a
two-iteration active learning workflow’s preparation and 10×
faster than a single-iteration workflow preparation (Figure 1B).
ML model training dominates the active learning and single-
iteration computation time at this data set size and results in
both active learning and single-iteration ML taking longer than
RAD. Scaling up, we estimated the approximate time for
HNSW, single-iteration ML and active learning preparation for
a data set size of 6.4 billion, roughly the number of 3D
molecules in ZINC-22. While ML predictions are faster than
explicit docking, the sheer volume of predictions for 6.4 billion
molecules incurs substantial computational costs and domi-
nates the preparation time for single-iteration ML and active
learning. Constructing the HNSW for 6.4 billion molecules is
similarly costly but offers an approximately 3.2× speedup over
the two-iteration active learning preparation and an approx-
imately 1.6× speedup over the single-iteration ML workflow
(Figures 1B and S14). However, we need to build the HNSW
data structure only once and can add new molecules to it
incrementally thereafter.

Consequently, RAD’s efficiency becomes pronounced when
screening against multiple protein targets. The protein-agnostic
HNSW requires a one-time investment in graph construction,
and traversal can begin immediately. In contrast, active
learning traversal requires a prerequisite ML model, and
acquiring the docking data to train this model scales linearly
with the number of targets (Figure 1C). While a single ML
model could make predictions for multiple proteins simulta-
neously, acquiring the docking data to train multitarget models
incurs multiplicatively higher costs than RAD, which does not
require a trained model for traversal. Intriguingly, the primary
time expenditure across all methods, particularly at the 6.4
billion library scale, remains the docking calculations used to
traverse the HNSW or rescore the molecules from active
learning or null traversals (Figure 1C, right). It has not escaped
our notice that a workflow combining ML scoring with HNSW
traversals could serve as an exceedingly rapid albeit
approximate heuristic (Figure S11), but this is outside the
present scope.

RAD Significantly Outperforms the Null Traversal
Across 43 Protein Targets. To evaluate the ease of applying
RAD to multiple proteins, we constructed a single HNSW for

∼1 million DUDE-Z “Goldilocks” molecules and used it to
screen 43 DUDE-Z proteins. In the worst case, performing this
task with an active learning workflow would require
progressively training and validating 43 individual ML models
for each protein target and would take hundreds of hours.
Alternatively, a single multitask model may successfully learn
to predict scores for all 43 proteins simultaneously, but this
would still require multiple hours and rounds of training and
inference. Furthermore, ML models predicting docking scores
can require more than 50−100k training examples per target,58

and may not converge effectively at this scale even with active
learning. In contrast, constructing an HNSW for 1 million
molecules takes only a minute or two and can be reused for
each of the 43 proteins.

RAD outperforms the null traversal in the recall of virtual
actives for all 43 DUDE-Z proteins (Figure 4A). RAD’s
average pAUC10 of 0.72 across all DUDE-Z targets trounces
the null traversal’s 0.40 average pAUC10. While RAD recalls
more virtual actives than the null traversal for all targets, RAD
performance spans a large range, from 0.53 pAUC10 for FKB1A
to 0.91 pAUC10 for HDAC8. Furthermore, when using RAD
over the null traversal, some targets see much larger
improvements than others.

RAD Performance Correlates with the Internal
Diversity of the Virtual Actives. The ease with which the
same HNSW structure applies across protein targets facilitates
a comprehensive analysis of factors that may influence the
traversal performance. Accordingly, we investigated the
correlation between the properties of the protein binding
pockets, the protein’s virtual actives, and the performance of
RAD.

We find that RAD and the null traversal suffer as the internal
diversity of the virtual actives increases, although this
correlation is weaker for RAD. This is perhaps unsurprising
considering that HNSW construction and the null scoring
function exploit Tanimoto similarity and that the same metric
is integral to the internal diversity definition. Furthermore,
RAD notably outperforms the null traversal when the virtual-
active set has high internal diversity (Figure 4C). We find no
significant correlation between traversal performance and the
virtual actives’ average log P, molecular weight, or QED score59

(Figure S7).
Additionally, no protein pocket properties correlate

significantly with null traversal (Figure S8) or RAD recall
(Figure S9). While the polarity score and charge score weakly
correlate with RAD’s relative performance vs the null traversal
(R2: 0.10, p: 0.04 and R2: 0.16, p: 0.01, respectively) (Figure
S10), neither is significant under the Bonferroni correction for
multiple hypothesis testing (p: 0.72 and p: 0.18, respectively).
Future work could explore ligand or pocket property
combinations or other properties not calculated here.

Hyperparameter Choices Offer Efficiency Gains with
Minimal Performance Loss. RAD’s applicability to a wide
array of proteins made it possible to programmatically analyze
how fingerprint and HNSW hyperparameters influenced virtual
active recall with a reduced likelihood of overfitting to a single
protein target. We exhaustively constructed HNSWs for all
combinations of hyperparameters detailed in the Materials and
Methods section and quantitatively compared their perform-
ances by the average pAUC10 across all DUDE-Z targets. The
HNSW using Morgan fingerprints with a radius of 2 and a
length of 1024 bits, an M of 16, and an ef Construction of 400
achieved the highest average pAUC10 of 0.72 and required
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approximately 0.3 GB of memory and 1.1 min to construct.
Because these parameters obtained the highest average
pAUC10 (Table S3), we used them for all of the HNSWs
investigated in this work. These parameters also resulted in the
highest average AUC of 0.95 when screening 100% of the
library (Table S4) and the fifth highest average log AUC of
0.63 (compared to the maximum value obtained of 0.64),
which measures the AUC on a semilog x-axis60 (Table S5).

Several other hyperparameter combinations achieved slightly
lower but similar performance with reduced construction time
and memory usage (Figure S2). For instance, the HNSW using
Morgan fingerprints with a radius of 2 and a length of 256, an
M of 16, and an ef Construction of 300 exhibited a high pAUC10
of 0.69 (a 4.2% decrease), yet is more efficient: only requiring
42 s to construct (36% decrease) and approximately 0.21 GB
of memory (35% decrease). The construction of a 100-million
scale HNSW like those used for AmpC and D4 requires
approximately 1.8 h and occupies approximately 28 GB of
memory when using the highest performing hyperparameters.
Opting for the more efficient but slightly less performant
hyperparameters mentioned above would reduce the con-
struction time by approximately a quarter and decrease
memory requirements to 18 GB. Given these insights, we
anticipate that future applications of RAD for ultralarge
screening will need to balance performance with computational
costs, and we suspect that the easiest way to do this will be by
carefully considering the hyperparameter choices.

■ CONCLUSION
Ultralarge chemical libraries have grown to tens of billions of
molecules, requiring new, more efficient screening methods.
Previous methods, such as single-iteration machine learning,
approached this problem by quickly approximating the docking
scores, avoiding the need to prepare molecules and perform
expensive explicit docking scores. Further work expanded on
this idea by introducing active learning, a technique consisting
of iterative cycles of machine learning model training,
inference, and retraining. While this technique can improve
ML model accuracy for some targets and scoring functions, it
does not always outperform the single-iteration approach.
Despite the speed of these ML approximations, single-iteration
and active learning require inference on the entire chemical
library (potentially multiple times), which becomes infeasible
at large library sizes.

Here, we propose preorganizing ultralarge chemical libraries
using hierarchical navigable small worlds and greedily
traversing the underlying graph structure to find top-scoring
molecules. This method recovers actionable virtual actives
while screening a fraction of the chemical library and addresses
several limitations of active learning workflows. Namely, RAD
can screen multiple proteins without additional overhead since
no prerequisite model is required for traversal, and traversing
the graph structure subverts comprehensive library processing.

As ultralarge libraries expand into the hundreds of billions,
they will become too large to dock explicitly or comprehen-
sively score by repeated ML prediction. However, any scoring
function can guide HNSW structure traversal, so we expect
RAD to complement a hundred-billion-scale active learning
workflows by vastly reducing the amount of chemical space to
explore via rapid ML predictions. Across scales, RAD enables
the discovery of high-scoring molecules from much larger
libraries than would otherwise be accessible.
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