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Abstract

Processing of dynamic ripple stimuli in the cat inferior colliculus: an ecological
approach to sound processing. by Monty A. Escabi: Natural sounds, such as speech
and vocalizations, are characterized by time-varying spectra that give rise to distinct
temporal periodicities, frequency transitions, and spectral resonances. These structural
features are decomposed by the primary sensory epithelium and give rise to a number of
perceptual attributes. Given the complexity of the auditory neuronal network and the fact
that the brain is in general extremely nonlinear, it is increasingly clear that simple
acoustic stimuli (e.g. pure tones and noise) can not be used to identify natural sounds
processing strategies. To understand how complex sound attributes are represented in the
brain, statistical properties of the spectro—temporal envelope of natural sounds (including
speech, vocalizations, environmental noise, and music) were studied in detail. Ensemble
statistics are marked by robust spectrographic correlations, logarithmic contrast, and
stimulus dynamics which are closely related to a number of perceptually relevant
acoustic variables. Hypothetically, these higher—order stimulus attributes can be utilized
by the auditory system for efficient sound processing and across—category
discrimination. To test this hypothesis, neuronal recordings were performed in the central
nucleus of the inferior colliculus (ICC) of cats using synthetic ripple stimuli that
incorporate the observed statistical attributes. Using spectro—temporal receptive field
(STRF) methods, it is found that ICC neurons efficiently utilize these higher—order
stimulus attributes for sound processing. Populations of neurons are distinguished based
on their degree of feature selectivity and their ability to time—lock to the spectro—
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temporal envelope. A hierarchy of functionally distinct neuronal types is revealed based
on three possible neuronal codes. Further evaluation reveals that the operating range of
ICC neurons is physically matched to the spectro—temporal energy distributions observed
in natural sounds. When tested with stimuli that mimic natural sounds, neurons show
contrast tuning and improved spectro—temporal coding at time—scales comparable to the
neuron’s receptive field. These findings establish a link between acoustic ecology,
acoustic sound structure, and neuronal processing. Such processing strategies make use

of structural regularities in natural sounds and likely underlie human perceptual abilities.
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Abstract

The time—varying spectrum of natural sounds and many man made sounds (e.g.
music) is marked by spectral resonances, edges, temporal modulations, and frequency
transitions, all of which give rise to distinct perceptual qualities. This study seeks to
provide insight into the ensemble characteristics of natural sounds by analyzing high—
order statistics of the time—varying spectrum of speech, animal vocalizations, music, and
background sounds (wind, rain etc.). Low—order statistics such as the modulation
spectrum and temporal contrast (Attias and Schreiner 1998a) of natural sounds show
invariant statistics across various sound ensembles. Thus, such low—order descriptors can
not be used directly to distinguish and classify sounds. We show that ensembles of
natural sounds segregate if one takes into account cross—channel spectrographic
correlations, spectrographic contrast, and stimulus dynamics. The presented findings
allow us to define possible perceptually relevant acoustic variables and mechanisms for
across—category discrimination of natural sounds.
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1.1 Introduction

In complex acoustic environments speech, vocalizations, and other competing
sounds often do not occur in isolation. Despite this, the auditory system of humans and
mammals is capable of distinguishing sounds in less than optimal conditions (Moore
1997). Mammals have evolved elaborate neural systems for analyzing the time—varying
spectrum of natural sounds, classifying sounds, and for distinguishing distinct perceptual
qualities present in natural sounds (e.g., pitch, timbre). Presumably, the evolved
processing strategies have been evolutionary influences by ecological constraints, and are
consequently, efficiently adapted for processing natural sounds (Rieke et al. 1995; Attias
and Schreiner 1999b; Nelken et al. 1999).

Given this basic hypothesis, one approach of studying auditory function, is to first
study in detail the structural characteristics of the acoustic ecology. This approach has
been employed for naturally occurring visual scenes (Ruderman and Bialek 1994; Dong
and Atick 1995; Ruderman 1997), for acoustically specialized mammals (Simmons,
Howell, and Suga 1975), and to a much lesser degree for natural sounds in general
(Attias and Schreiner 1999b; Nelken ez al. 1999). In the case of the echolocating bat and
songbird auditory systems (Simmons, Howell, and Suga 1975; Theunissen Et. al. 2000),
the acoustic ecology which is most often considered is largely limited to a small set of
highly stereotyped sounds that are prevalent in the animals vocal repertoire and that elicit
a precise behavior. The relevant acoustic ecology of less specialized animals has only

been studied to a small extent ( Attias and Schreiner 1999a; Nelken, Rotman, and Yosef
1 999) and it is, in general, not well understood.

In most animals the task of deciphering the relevant acoustic parameters in the



animals acoustic ecology is not a trivial task. Unlike the bat and songbird species, this is
in part attributed to the fact that a direct link between physical properties of a sound, the
animal’s behavior, and physiology can not be easily established. Such is the case for
acoustically nonspecialized animals such as the cat, rabbit, and possibly even for
primates. In other animals, such as the echolocating bat and the barn owl, the search for
relevant parameters is greatly simplified since these animals show a direct link between a
sound and behavior.

Because of the general lack of understanding of natural sounds, attempts at
understanding auditory function in most mammals is largely limited to studies that use
narrow band acoustic stimuli. In the case of pure tones, these sounds excite only a small
fraction of the primary sensory epithelium and, consequently, a small fraction of the
auditory neuronal network. In the special cases where broadband stimuli are used these
are essentially limited to white noise and clicks (e.g., Young and Browenell 1976; Yin,
Chan, and Irvine 1986). Natural sounds are clearly not well described by these basic
attributes. Instead, most natural sounds are broad—band, spectro—temporally complex,
and nonstationary. Consequently, the excitation patterns produced by natural sounds on
the cochlea and along the auditory neural network are significantly more complex than
for the simple stimuli that are used to study the auditory system.

Given this general observation, we seek to understand the patterns of excitation
that are produced by natural sounds at the level of the auditory periphery and at central

auditory stations. This approach is dually motivated: first we seek to identify robust
statistical characteristics which are prevalent in natural sounds and that allow one to

distinguish between various classes of natural sounds (e.g. speech versus a background



sound such as running water). Secondly, we would like to identify structural
characteristics of natural sounds that may be of perceptual relevance and which the
auditory system may use for efficient sound encoding. Since low—order statistics of
natural sounds show invariant modulation and contrast statistics (Attias and Schreiner
1998a), they alone are insufficient for distinguish among classes of natural sounds.
Analysis of higher—order comodulation statistics, however, reveals that vocalizations can
be distinguished from background sounds (Nelken, Rotman, and Yosef 1999).

In this study, the spectrographic statistics of natural sounds, including spectro—
temporal correlations, contrast statistics, and stimulus dynamics, are therefore examined
in detail. First, it is shown that natural sounds have strong spectro—temporal correlations
across octave spaced frequency channels. Comparisons among speech, vocalizations,
background sounds, and music reveals that sounds can be segregated based on the degree
of correlation. Thus by analyzing spectro—temporal correlations, the auditory system can
potentially distinguish among classes of natural sounds. Secondly, we show that the
spectrographic representation of natural sounds has local amplitude fluctuations which
span several orders of magnitude. Using perceptually relevant time—scales (for loudness
perception) to model the dynamics and statistics of natural sounds, we show that these
amplitude statistics can be use to distinguish among classes of natural sounds. These
findings allow us to define possible perceptually relevant variables and allow us to

identify structural characteristics of natural sounds which the auditory system may use
for efficient sound encoding. These ideas are further tested and verified directly using

electrophysiologic recording methods in chapters 3 and 4.
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1.2 Spectro—-Temporal Stimulus Decomposition of Sounds

The peripheral auditory system is characterized by a tonotopically arranged set of
hair—cells which are individually tuned to a small range of frequencies (Liberman 1982;
Greenwood 1990). Upon arriving the cochlea, incoming sounds are decomposed by a
bank of tonotopically arranged frequency channels into a complex spectro—temporal
excitation pattern (Sachs and Young 1979; Delgutte and Kiang 1984; Shamma 1985;
Carney and Geisler 1986; Geisler and Gamble 1989). Since this spectro—temporal
decomposition defines the inputs for higher—order processing centers in the brain, it is
useful to understand the basic parameters that are of possible relevance and the
constraints that are imposed on the auditory neuronal network by incoming natural
sounds.

Time—frequency representations, such as the spectrogram, have a long history in
engineering, the physical, and biological sciences. Initially, the spectrogram was
motivated by the need to devise physiologically plausible models of speech production

and perception during the advent of telephone and other communications systems. A key
aspect of the cochlear transformation is the conversion of a one dimensional acoustic
pressure waveform, by an array of bandpass filters (i.e. the cochlea), into a spectro—
temporal excitation pattern. The resulting neuronal discharge pattern describes the
changes in the stimulus spectrum as a function of time, much like time—frequency
representations used to analyze dynamic signals (Cohen 1995). This spectro—temporal
neuronal discharge pattern is relayed by the eight nerve to the cochlear nucleus, which

serves as the inputs for higher—order processing centers in the brain. Thus, a key question

in auditory neuroscience deals with trying to understand how such inputs are utilized by

e~



the brain for efficient sound encoding, sound recognition, and source segregation. We
specifically ask: what are the relevant spectro—temporal parameters for this stimulus
representation? And how is this complex excitation pattern further processed by the
brain? To understand this, it is first useful to understand statistical characteristics of this

excitation pattern in detail.

1.3 Spectro-Temporal Decomposition of Sounds Using an Auditory

Filter Bank

The spectro—temporal decomposition of sounds performed by cochlea is
characterized by octave spaced filters of nearly equal resolution (Liberman 1982; Kiang
et al. 1965). Numerous physiologically motivated auditory filter bank models have been
designed which mimic the acoustic stimulus decomposition performed by the cochlea.
These spectro—temporal decomposition are used in a variety of application, ranging from
design of auditory filter models (Carney 1993; Wang and Shamma 1995a 199b; Jenison
et al. 1991), to sound compression, and sound analysis algorithms (Picone 1997).

Here, an alternative spectro—temporal filter bank decomposition is designed that
satisfies two essential properties of the cochlear filter decomposition. It is required that
the component filters have 1) logarithmically spaced center frequencies and 2) constant
quality factor. The latter requirement essentially demands that the component filters have
equal resolution (bandwidth) on an octave frequency axis much like cochlear filter
resolutions. For completeness a slightly more refined filter model is used. This model
takes into account the fact that the frequency spacing and filter bandwidths along the

basilar membrane deviate slightly from this ideal logarithmic scenario at frequencies

Wa



below about 1000 Hz (Liberman 1982; Greenwood 1990). The cochlear center

frequency versus cochlea position equation provided by Greenwood (Greenwood 1990)

is used to model the spacing of the auditory filter bank at low and high frequencies.
Along the cochlear partition, the inner hair cell (IHC) center frequency is

provided by (Greenwood 1990)

f=A(10°"=k) (1.1)

where x is the normalized cochlear distance (normalized between zero and one) from the
apex (stapes) to the base of the basilar membrane. The constants 4, a, and k are species
dependent. For humans 4=165.4, a=2.1 ( a=0.06 if x is expressed in millimeters, total
length of about 34 mm), k=0.88 whereas for the cat 4=456, a=2.1, and k=0.8. At
intermediate frequency values, the frequency versus position curves for the human and
cat are for the most part identical (Fig. 1A) with a fixed offset along the cochleotopic, x,
axis. They only differ at the extremities where the lower and upper frequency limit are
determined by the constant 4. For humans the lower and upper frequency limits are 20
Hz and 20 kHz respectively whereas for the cat they are 90 Hz and 60 kHz. Comparing
the curves in an intermediate range of frequencies, say 90 Hz through 20 kHz, one
notices that they are identical (with a fixed offset along the cochlear, x, axis). Since the
presented data analysis is confined for acoustic signals with a frequency range of 100 Hz
to 20 kHz, we arbitrarily use the parameters for humans in the filter bank design since it
nicely accommodates this range of frequencies.

Although such a filter bank design is appealing because its spacing and resolution



is matched to that of the human cochlea, it is not intuitive since the variable x (cochlear

distance) is not commonly used to describe auditory filter models. For example, it is not

clear what the spatial resolution along the cochlea, A x , is required to achieve a given

spectral resolution, AX , of say 1/3 octave. In most instances it is convenient to think

of spectral filtering and spectral bandwidths using an octave frequency convention where
the frequency doubles with each octave. Thus, the cochlear distance variable needs to be

related to the more conventional description of octave frequency. We define the octave

frequency axis by
x=log,(11f,) (1.2)

where f; is a lower reference frequency, f'is the frequency along the cochlear partition,

and X is an octave (logarithmic base two) spaced frequency axis. Substituting the inverse

of Eq. (1.2), f=f£.2* ,into Eq. (1.1) and solving for X gives

X=log2[A/f,]+log2[lO“’—k] . (1.3)

It is expected that for high frequencies the frequency variable, £, be precisely
logarithmically spaced. For high frequencies we note that 10”>> k is strictly satisfied

and so allowing k~(Q resultsin

LN



X=log,[ 4If,]+xalog,[10] . (14)

At high frequencies above about 1000 Hz, the octave frequency axis and cochlear

partition distance are therefore linearly related (Fig. 1B). These variables can, therefore,

easily be related for most of the hearing range using Eq. (1.4). Knowing this, the

cochleotopic resolution, A x , which is necessary to achieve a given or desired spectral

resolution of A X (in octaves) is expressed as

os

Cochiear Position — x

10’

Frequency (Hz)

A x=——
alog,[10]

Cochlear Position — x

(1.5)

08|
o8|
o4}

oz}

Octave Frequency — X

Figure 1: (A) Cochlea frequency versus cochlear position function for the cat (dotted)

and human (continuous). Both curves have identical shape and differ only by a fixed

offset which determines the minimum and maximum frequencies. (B) Human

cochleotopic position function versus octave frequency function (continuous) and linear

fit obtained using the octave frequency representation of Eq. (1.2). Note that the curves

deviate at low frequencies where the cochleotopic curve flattens.
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For the desired analysis, two filter banks are designed each with an equivalent
spectral resolution of AX=1/4 and AX=1/8 octave. This corresponds to a
cochleotopic resolution of A x=0.0358 ( Ax=1.254 mm)and A x=0.0179 (

A x=0.672 mm) normalized units respectively. These two filter banks only differ in

the spectro—temporal trade off which is a direct consequence of the uncertainty principle

(Cohen 1995). The high resolution filter bank ( AX=0.125 ) can accommodate a

periodic spectral oscillations or a ripple frequency of up to, Q , of 4 cycles/octave yet

has low temporal resolution. Alternately, the low resolution filter bank ( AX=0.25 ) :

accommodates a ripple frequency, 2 , of up to 2 cycles/octave but allows for slightly
higher temporal resolution.

Although auditory filter bank models generally use filter bandwidths that adhere
to the perceptually based filter bandwidth, i.e. the critical band (1/3 octave,

A x=1.672 mm) (Picone 1997), this convention is not used since the auditory system
is actually sensitive to spectral frequencies beyond this range (up to ~8 ripples per
octave; Van Veen and Houtgast 1985; Supin et al. 1999; Chin et al. 1999). Analysis of
vowel sounds, for example, has shown that vowels can have spectral modulations
(denoted by the ripple density, 2 ) of up to 4 cycles per octave. Yet it appears that
humans are most sensitive to spectral modulations of up to 2.5 cycles per octave (Van
‘Veen and Houtgast 1985) which would require a filter bank resolution of about 1/5
octave to appropriately sample these signals (as suggested by the Nyquist sampling

theorem).

11



Secondly, most of the filter banks used for auditory analysis are constructed for
simulating auditory neuronal responses and for understanding the perceptual and
psychophysical limits of the auditory system. Our purpose here is not necessarily to
simulate the auditory system, but instead to thoroughly characterize the spectro—temporal
content of natural sounds. Hence we seek to find out "what stimulus content the auditory
system is being exposed to?" How and if the auditory system makes use of this
information is a separate problem which must be solved as well.

We use Eq. (1.1) (Greenwood 1990) to design a linear filter bank with L

independent sub—bands. The cochleotopic axis is first discretized to a resolution of

A x (equivalent resolution of A X ). The center frequency (on the logarithmic

' s
cochlear axis x), f, , of the * filter component are expressed as i:\» :
F A
f=4(10""=k) (1.6)
where x,=x,+/Ax and [=0...L—1 . For each filter the 3 dB cutoff frequencies, o

denoted by f, and f;,, forthe M™filter, are

fi=4(10""-k) (1.7)

where x;=x,+(/-0.5)Ax and /=0...L . The linear bandwidth of the /* filter is

therefore Af,=f,+,—f,=A(10“:*'- 10‘“‘7) . A two octave segment of the auditory filter

12



bank is shown in Fig. 2 A. On a linear frequency axis the filter bandwidths, A f, , are

dilated (much like for a wavelet filter bank) with increasing frequency. Unlike a wavelet
decomposition, however, the amplitude of the filters do not scale and have a constant

gain. When displayed on the cochleotopic axis, x, the filters are effectively identical

having the same resolution, Ax .

1.4 Filter Selection and Design

Selection of filters for auditory models is generally based on choosing a filter
prototype function which captures the physiologic properties of the cochlea and eight
nerve auditory responses. Filters which model the steep high frequency rolloffs and
smooth low frequency transitions of eighth nerve auditory filter, such as the gamma-—tone
filter (Lyon 1982), are often used. More refined filter models have been designed using
non—parametric methods which estimate the auditory nerve filter transfer function by
fitting experimental data (Jenison et al. 1991). Here, filter criteria and design
considerations for decomposing natural sounds into a spectro—temporal representation
are outlined. Although the chosen filter prototypes (B—spline) are not physiologically
motivated, they nonetheless offer several advantages over using physiologically derived
filter shapes and more conventional precision filters (i.e. Kaiser, Dolph—Chebyshev,
etc.). In particular, these filters are chosen since they are spectro—temporally compact.

They provide superior stopband and passband attenuation properties over all other filter
types, thereby preventing signal leakage from adjacent bands.
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e



The chosen B—spline lowpass filter (Roark and Escabi 1998) has an impulse

response

h[n]=%sm("“’c)( sin(anwc/p))” (1.8)

nw, anw,lp

where n=-N,...,N—-1,N , w,=f./F, isthe discrete—time filter cutoff frequency

(units of radians), f, is the desired filter cutoff frequency (in Hz), F, is the sampling e

'
yi7. ¥y
WoF a4

rate (in Hz), 2N+1 is the filter order (the number of coefficients), and « and p are

d

filter parameters which control the filter transition width and the stopband and passband -

Fv. ~

attenuations. The frequency domain lowpass filter prototype function (i.e. for N— o )

£
‘

is given by .
) ol : (1.9)

H(w)=1-L 3 {2} 2{ =21 )& i

p!k-o k 2 awc + et

where [x],=max(0,x) . This filter can be thought of conceptually, as a spectral
convolution between the ideal lowpass filter transfer function and a p™ order B—spline

window of width aw_ /p .
The B—spline filter design has several advantages over other commonly used
precision filters such as the Kaiser, Saramakii, and Dolph—Chebyshev. First, the filter

14



prototype is effectively temporally (temporal convergence factor of 1/N”*' )and

spectrally compact. This property requires that filter transfer function, H (w) , and its
corresponding impulse response function, k[n] , be zero outside some range of values

(for example |n|>N and for |w|>w’ ). Secondly, unlike most precision filters which
generally have a constant attenuation throughout the passband and stopband, the B—spline
filter transfer function has an exponentially decreasing stopband error (ATT) at
frequencies away from the filter cutoff frequencies. An examples of the B—spline filter
and a Kaiser window with similar design criteria are shown in Fig. 2 B. Note that the
stopband error for the B—spline filter decreases at frequencies away from the filter cutoff
frequencies. Signals which pass through these filters are therefore effectively bandlimited
since these filters can achieve much higher attenuation than other filters with identical
design specification. This is particularly important to prevent strong signals at adjacent
frequency bands from leaking into bands which have very little energy. Such an artifact,
for example, would show up as correlated activity across frequency bands despite the fact
that these bands may not have any common signal. This would be a significant problem
if one where to estimate spectro—temporal content using physiologically derived filters
(since these filters generally have shallow rolloffs ).
To construct the filter bank with desired cutoff frequencies as described in section
1.3, the lowpass filter impulse response of Eq. (1.8) is adapted so that it adheres to the
bandpass filter specifications (Oppenheim and Schafer 1989) in the filter bank design.

The impulse response for the /® bandpass filter is given by

15
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b[nl=h,, [n]~h[n] (1.10)

where A, [n] and h[n] are the impulse response of the component lowpass filters
with cutoff frequencies w,,,=2mf,, /F, and w=2mf,/F, . The transition width

of the /* filters is chosen as TW ,=(f;,,—f;)/4 . For all filters the minimum stopband

and passband attenuation is set to 60 dB so that signal leakage is prevented. An example
of such a bandpass filter is provided in Fig. 2 B. Equations for choosing the parameters

[SCha

o and p are provided by Roark and Escabi (1998).
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Figure 2: Cochleotopic filter bank used for spectro—temporal sound decomposition (A)
shown for a two octave segment. The filter bandwidths grow with increasing center
frequency. (B) Example B—spline filter (continuous line) used for spectro—temporal
decomposition compared to a Kaiser filter (dotted line) using identical filter order
(N=848). The Kaiser filter has a higher first and second sidelobe attenuation (72 dB)
than the B-spline filter (60 dB). The B-spline filter, however, has a decreasing

stopband attenuation at frequencies away from the filter cutoff frequency whereas the

16



Kaiser filter stopband attenuation levels off at 100 dB. This property helps reject signal
leakage from adjacent filter bands.

1.5 Signal Decomposition and Envelope Extraction

Using the filter bank design of sections 1.3 and 1.4, acoustic signals, x[n] ,

where decomposed by filtering each sounds with the filter impulse response 5,[n]

using the discrete time convolution operator

ylnl= z b[n—k]x[k] (1.11)

k=-N

For each input signal, x[n] , a series of L outputs, y,[n],y,[n],---,y,[n] , is

therefore produced. Since the acoustic signals, x[n] , were often extremely long (tens
of minutes and therefore tens of mega samples) this operation was performed using the
overlap save method which partitions the signals into blocks of a small fixed size upon
performing this operation (Jackson 1989). This guarantees that one does not exceed the
memory requirements of the computer. This method does not introduce any error to this
operation.
For each band, the envelope was extracted using the Hilbert transform operator.

To do this we approximated the analytic signal representation using (Cohen 1995;
Oppenheim and Schafer 1989)

17



z[n]=b[n]+H[b[n]]=a[n]e"*"" (1.12)

where z,[n] is the discrete time analytic signal, H[x[n]]= 2 h[n—m]x[m] is the

90 degree phase shifter operation, otherwise known as the discrete time Hilbert

transformer (Cohen 1995; Oppenheim and Schafer 1989), and

+ 2
B 2 sin (rrn/2) , w0 (1.13)
h[n]— " n Lt ~ -
0, n=0

is the corresponding impulse response for the 90 degree phase shifter. Using this

il
formulation, the envelope for the / band is given by a ,[n]=|z ,[n]l . Since the filter o
bandwidth, A f, , of the /* output is dilated with increasing /, the bandwidth for each
corresponding envelope, a,[n] , is also dilated an can be approximated by A f, _,‘-51 -
(Oppenheim and Schafer 1989; Cohen 1994). As a consequence, the /* temporal ::’_

envelope has a maximum modulation rate of A f;/2 . It is desired that the maximum

modulation rate for each band be uniform so that their temporal properties can be

compared across bands. This is achieved by lowpass filtering each band using a B—spline

lowpass filter, h[n] , with cutoff frequency of 100 Hz (parameter for the filter are:

«=0.1037 , p=2.3391 , N=4973 , ATT=60 , TW=20 )
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elnl= 3 Hn—kla,k] . (1.14)

k=—-N

The lowpass filtered temporal envelope, e,[n] , therefore accommodates the same
range of temporal modulations for all bands.

Since acoustic features and sound perception are generally well described using a
decibel intensity description, we also consider the zero mean decibel spectro—temporal

envelope
e‘fB[n]=2010310(e,[n])—udB : (1.15)

where p,, isthe mean value of 20log,(e,[n]) and the expectation is taken across all

time, n, and along the spectral axis, /. The mean normalization is performed to facilitate
comparison and analytic assessment across frequency channels and across stimulus

ensembles.

1.6 Spectrographic Envelope
To characterize linear spaced features of natural sounds the short—time Fourier

transform signal representation is used (Cohen 1995; Oppenheim and Schafer 1989). The

discrete time version of this transform is given by

X[nw]= i x[n+m]w[m]e” " (1.16)
m=—N
19



where as before n and w, are the discrete time and discrete frequency variables,

w([n] is a time limited window sequence, and x[n] is the discrete time sampled
signal. As for the filter bank design of sections 1.3 and 1.4, the corresponding B—spline

window function is used

otz e

mmoanlp

where n=-N,...,N , Nis the window order (number of coefficients), « isa

parameter which controls the window bandwidth ( A f ), and p control the window
attenuation (ATT). This window is chosen for the same set of reasons and design
considerations as for section 1.4. The spectrogram is obtained by evaluating the

magnitude

S["'wk]=\/X[n,w,,]-X[n,w,‘]. (1.18)

of the short—time Fourier transform. Here X[n,w,]  is the complex conjugate of the
short-time Fourier transform.

The stimulus spectro—temporal envelope, S[n,w,] , obtained by dividing the

spectrogram by a detrending function S (w,]
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- =S[n’w*]=1+AS[”'wk] (1.19)

The quantity AS[n w,]=S[nw,]-S[w,] is the difference spectrogram about the

detrending function. The detrending function is obtained by applying a linear fit (in mean
square sense) of general form Aw,+ B to the stimulus mean ensemble decibel power

spectrum, 20log (E[S[n w,]]) (expectation taken with respect to n). The detrending

function is therefore expressed as

w + 1.20
S[w,‘]=10('4 +B)/20 (1.20)

Note that after combining terms from Egs. 1.19 and 1.20 the overall decibel spectro—

temporal envelope is conveniently expressed as

S ln w,]=20log,(S[nw,])-A4w,~ B (1.21)

Although linear trends are subtracted from the stimulus decibel spectrogram using this
procedure, the detrended stimulus is not white. Note that in general strong spectral
oscillations are still present. Examples are shown in Figs. 8 and 12—-14.

The outlined detrending procedure is applied for several reasons. First note that
patural sounds generally have very little energy at high frequencies. On a logarithmic
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(decibel) plot the power spectrum is usually strongly biased at low frequencies despite
the fact that relevant stimulus components are also present at high frequencies. This
procedure therefore removes spectral trends which are characteristic of natural sounds.
Note that the auditory system effectively performs a similar detrending operation, since
frequency tuning and integration bandwidths in the sensory epithelium of the cochlea are
logarithmically spaced (e.g. Kiang et al. 1965; Evans 1972; Liberman 1982; Greenwood
1990). Because of this, similar detrending procedures are often employed for speech
modeling and in speech recognition systems (Picone 1997). Secondly, this transformation
is crucial for quantifying contrast statistics of natural sounds in sections 1.9—1.10. Unlike
the spectrogram which depicts absolute energy variations of the stimulus, the defined
spectro—temporal envelope depicts relative energy variations along time and frequency.
This is not an unreasonable descriptor since it is arguable that relative quantities are far
more important for the auditory processing than absolute quantities (for example

Weber’s law). Note that similar reasoning is also applied to visual processing since visual

contrast is likewise defined as a relative quantity ( C=(1,,,,—1,.)/(I,.+1,.) )
As for the spectro—temporal envelope of Eq. (1.15), we also consider the zero

mean logarithmic amplitude spectro—temporal envelope

S ulnw,]=2010g,,(S[n w,])—H, (1.22)

where p,; is the mean of ZOloglo(S'[n,w,,]) . This descriptor is used since the

percepﬁon of intensity differences is ordered on a logarithmic space (Miller 1947; Harris
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1963; Viemeister and Bacon 1988) and since temporal fluctuations of natural sounds are

likewise logarithmically distributed (Attias and Schreiner 1998a).

1.7 Low-Order Stimulus Statistics — The Power Spectrum

For all soundscapes we estimated the stimulus power spectrum using a Welsch
average periodogram (Hayes 1996). Prior to estimating the periodogram, each sound
sequence was normalized as s[n]/o, . Here o, is the stimulus standard deviation.

This normalization is performed so that all sounds have unity standard deviation

therefore allowing for ease of comparison. The spectral resolution, A f , was set to 86

Hz. The ensemble power spectrum was then estimated by averaging over all sounds in

the ensemble using the equation

N 1.23
PaloJeLYp ) .

n=1

Here, P,[w,] isthe Welsch average periodogram for a particular sound in the

ensemble. Upon computing the ensemble periodogram, a least—squares linear fit of the

form S[w,)]=Aw,+B was applied to each ensemble in order to obtain descriptive
parameters.

Fig. 3 shows results obtained for five sound ensembles (human conversational
speech (A), environemental background sounds (B), animal vocalizations (C), pop music

(D)’ and classical music(E)). In all instances, the power spectrum had a decreasing trend
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as a function of increasing frequency. The constants 4 and B are given in Table 1.

A (dB/kHz) B(B) |
Human Speech -2.68 7.1
Animal Vocalizations -1.41 8.9
Background Sounds -1.71 7.2
Pop Music -2.29 7.9
Classical Music -2.87 55 |

Table 1: Power spectrum statistics for five natural sound ensembles. Mean slope, 4, and

y—intercepts, B. All sounds had negative slopes and positive intercepts.

PSD (dB)

-40 -40 -40
0 5 10 15 0 5 10 15 0 5 10 15
Frequency (kHz) Frequency (kHz) Frequency (kHz)
D E
20 20

PSD (dB)

-400 5 10 15 -400 5 10 15
Frequency (kHz) Frequency (kHz)
Figure 3: Power spectrum (continuous line) for five natural sound ensembles show a

decreasing trend in energy as a function of frequency with similar intercepts and slopes
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(see Table 1). The least—squares regression fit is shown as dotted line for all ensembles.
Shown for: human speech (A), environmental background sounds (B) (e.g. wind,
running water, etc.), animal vocalizations (C) (both primate and non—primate sources),

pop music (D), and classical music (E).

1.8 Across Band Correlations of Natural Sounds

Throughout the remainder of this chapter we consider a generic spectro—temporal

envelope variable, s,[n] . For any of the described spectro—temporal measure (the

linear and logarithmic spectro—temporal envelopes as well as the logarithmic and linear

filter bank envelopes described in sections 1.5 and 1.6 respectively) can be substituted

for s,[n] . Specifics as to which envelope is used are noted in the figure legends and

throughout the text.

For all natural sounds the crossband correlation was estimated using the

correlation coefficient. For the ¥* and /* envelope outputs, s,[n] and s,[n]

respectively (or the &* and /* spectrogram channels), the correlation coefficient is

computed as

(1.24)

2 1 [ 2 2] 1 1 - 2 2
p.=——E 3:[,,] 5[,,] = _2 E[n] 5[,,]
" ated VT ol Mt

where the time average expectation, E[-] , is taken with respect to n,

5-’,[ nl=s[n]-pu, is the zero mean spectro—temporal envelope, u, is the mean value of
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the /™ channel envelope taken across all time, and o, and o, are the corresponding

standard deviations for the &* and /* channels respectively. This measure quantifies the
amount of redundancy or similarity that exists across frequency channels. The procedure
for computing the across—channel correlation matrix is depicted in Fig. 4. The temporal
envelope for each channel is first extracted, at which point a channel by channel
comparison is performed using the correlation coefficient. Regimes in the correlation

map with high correlation coefficient values designate channel combinations that show

highly correlated temporal modulations.

Figure 4. Computing the across—channel correlation matrix, p, . The stimulus

waveform (top left) is decomposed into a spectro—temporal stimulus representation
(bottom left). The spectro—temporal envelope (shown for human speech) is then used to
construct the across—channel correlation matrix. For each frequency—channel (total of
52 channels), the temporal envelope is extracted and compared with all of the other
temporal envelopes. This comparison consists of computing the correlation coefficient

between any two channels. This measure provides an unbiased estimate of the degree of
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corresponding channels are highly correlated whereas values near zero (blue) indicate

that the temporal envelopes for the compared channels are highly dissimilar.

Correlation coefficient matrices, p,, , were computed for all sounds in the

chosen ensembles using both the decibel and linear amplitude spectro—temporal
envelope. Likewise, across—channel correlation matrices were also computed for the
spectrographic and the octave filter bank spectro—temporal decompositions. In all
instances the results were qualitatively similar. Results are therefore presented only for

the octave filter bank design decibel spectro—temporal envelope.

Fig. 5-7 depicts typical across—correlation matrices, p, , for the different sound

ensembles. Clear and distinct trends were observed across the different ensembles. Of all

the sound categories, vocalization sounds had the most diverse range of correlation

matrices, p,, . Across—channel correlation matrices for vocalizations have highly

structured oscillatory patterns, indicative of complex patterns of correlation across
distinct frequency channels (Fig. 5 D and F). Likewise, speech sounds also had a
complex pattern of spectrally correlated channels although, unlike the vocalization
sounds, overall pattern of the correlation matrix was homogenous for the different sound
segments used (compare the correlation matrices for Fig. 5 B and Fig. 4). By
comparison, white noise has no across —channel correlations (Fig. 7 F).
By far the weakest correlations were observed for environmental background

sounds. Examples are shown for running water (Fig. 6 A and B), wind (Fig. 6 C and D),

and shuffling leaves (Fig. 6 E and F). These sounds generally showed very weak

carrelation patterns. For the shuffling leaves example (Fig. 6 F) a high degree of
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correlation was observed among the high frequency channels. This finding is evident in
its spectro—temporal envelope (Fig. 6 E) which shows a series of sharp brad—band

features that are most prominent at high frequencies.

A
C - — -
6 e * g Wi LR
‘ AR R HD, SR
B L
E

Time (sec)

Figure 5: Spectro—temporal correlations for speech and primate vocalizations. Spectro—
temporal envelope segment (A) and across—channel correlation matrix of human speech
segment (B). Across—channel correlation matrix for primate vocalizations (D) and (F)
and a short segment of the corresponding spectro—temporal envelopes (C) and (E)
respectively. Both speech and animal vocalizations showed significant and highly
structured patterns of across—channel correlations, indicative of complex interactions

across spectral channels.
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Figure 6: Spectro—temporal correlations for environmental background sounds.
Spectro—temporal envelope segments for the sounds emanating from a moving stream
(A), wind (C), and shuffling leaves (D) and the corresponding across—channel
correlation matrices (B, D, and F respectively). Both the moving stream and the wind
have very little across—channel correlations. The shuffling leave sounds have
significantly higher correlations. This was most obvious at high frequencies were

transient broadband click—like sounds create comodulated temporal components.

As for speech and vocalizations, both pop and classical music showed a high
degree of correlation across frequency channels (Figs. 7 B and D), although the observed
patterns for the different sound segments did not show pronounced differences. As for

speech, correlations were strongest at high frequencies. This is evident from the spectro—
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temporal envelopes (Fig. 7 A and C) which show comodulated components at high

frequencies.
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Figure 7: Spectro—temporal correlations for music and white noise. Spectro—temporal o
| St

envelope segments for classical music (A) and pop music (C) show a high degree of
structure. By comparison white noise (E) has little spectro—temporal structure. The
corresponding across—channel correlation matrices for classical music (B) and pop
music (D) show significant wide scale correlations. These are most prominent at high
frequencies likely because of broadband temporally comodulated components. The
across—channel correlation matrix for white noise (F) shows no correlation across

frequency channels.
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1.9 Spectro—Temporal Contrast of Natural Sounds

Visual contrast is defined as the percent deviation relative to the mean intensity of
a spatial sinusoid grating. Mathematically it is expressed as C=(Inax—Imin) / (Imax*Tmin)
where I. and Ini, correspond to the maximum and minimum stimulus intensities
(Albrecht 1995; Nordmann, Freeman, and Casanova 1992; Troy et al. 1998). In the

auditory literature the analogous quantity is the modulation depth or modulation index,

B=(/max—Imin) / Imax. Such a description suffices for the case of sinusoidal, square wave,

and other simple stimulus gradations since these waveforms are fully specified by their e
minimum and maximum intensities. For natural signals, where the amplitude gradations ‘.: z
can cover several orders of magnitude, such descriptions fail to fully characterize v 75-5
amplitude fluctuations since they only take into account the minimum and maximum ""
envelope intensities. They do not tell us anything about intermediate values and higher— f“ -

order amplitude statistics of the modulation signal. To overcome this we adopt a more

general definition of contrast to denote the probability distribution of the relative

amplitude gradations. { '-
A large ensemble of natural sounds was analyzed which included human speech

(Excerpts from Hamlet), music ( pop and classical), environmental sounds (wind, rain,

thunder, etc.), animal vocalization (primate, bird, cat, crickets etc.) and mixtures of the

latter two. These sounds were taken as representative examples of the vast acoustic

biotope (Smolders et al. 1979) which mammals and humans are typically exposed to. For

comparison, white noise was included in this analysis as a control. For all sounds the

relative spectro—temporal envelopes of Eq. (1.19) and (1.21), S(z,f,) and S (% f,) ,
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were compute and the corresponding envelope contrast distributions, C=p(S) and

C s=p(S ;) , were estimated for thousands of sound segments.

Fig. 8 shows the decibel and linear amplitude spectro—temporal envelopes for a
human speech segment. The linear amplitude spectro—temporal envelope (Fig. 8 A)
shows little detail and largely consists of amplitude values near zero (blue). The
measured linear modulation depth for this speech segment is exceptionally high (99.9994
%), whereas the measure standard deviation, o, is relatively small (0.019 normalized
amplitude units for an amplitude range that spans 0 to 1). Together these two descriptors
provide a conflicting and misleading description of the envelope fluctuations. The large X
modulation index suggests that the sound components for this segment span a large range
of the O to 1 linear amplitude dimension, whereas the small standard deviation suggest o
that it only covers a small portion of this linear amplitude space. By comparison, the
decibel amplitude spectro—temporal envelope (Fig. 8 B) shows significant more

structure. A close inspection of the logarithmic decibel envelope,

5 (2, £,)=2010g,,(S(t,f,)) ,reveals that the speech signal has spectral and temporal S
amplitude fluctuations that span several orders of magnitude (roughly 50 dB, Fig. 8 B). BT
To quantify these observations, we computed the linear and decibel contrast
distributions for all sounds by collapsing all pixels values of the linear and decibel
spectro—temporal envelopes respectively into a probability histogram. These are shown
collectively for all sound ensembles in Figs. 9 and 10. The linear amplitude distribution

was obtained by normalizing the spectro—temporal envelope so that it has a maximum

value of unity, S, (% f)=S(z,f)/max(S(z,f)) , therefore obeying the general
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convention used to define a modulation signal (Cohen 1995). For all natural sounds the
linearly defined envelope has a skewed amplitude distribution such that loud (near unity)
sound segments are sparse whereas soft segments (near zero) are much more common
(Fig. 9). In contrast, white noise (Fig. 9 F) has a linear amplitude distribution which is
broadly distributed and partially symmetric. Upon performing a logarithmic decibel
transformation of the envelope to construct the decibel contrast distributions,

Cs=pr(S ) , the relative amplitude gradations of natural sounds are roughly
symmetric, have an average standard deviation of 10.9 dB, and span an overall range of
more than 25 dB (Fig. 10) for the natural sounds ensembles. Traditional definitions of
contrast, such as the modulation depth or the envelope standard deviation, fail to
characterize such higher—order statistics associated with the shape and the overall range
of the envelope gradations.

The transformed logarithmic decibel amplitude ( S, ) magnifies the soft and
moderately loud sound segments relative to the very loud sounds. Thus one can discern
the fine detail in the amplitude distribution over several orders of magnitude. This
descriptor is perceptually motivated since the perception of loudness and intensity
discrimination thresholds are ordered on a decibel space (Miller 1947; Stevens 1957,
Harris 1963; Stevens 1972; Jesteadt, Wier, and Green 1977; Viemeister and Bacon
1988). For all sounds the distribution of logarithmic—contrast is broadly distributed. To

quantify the range of relative amplitudes we measured the average spread of the

distribution, 0, . With the exception of the background sounds, all natural sounds had

relatively large standard deviation values: 11.0 dB for speech, 13.3 dB for vocalizations,

7.4 dB for background sounds, 11.2 dB for pop—music and 11.8 dB for the classical
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music ensemble. By comparison, the white noise control ensemble has a small standard

deviation of only 5.6 dB.

Frequency (kHz)

Frequency (kHz)

Time (sec)

Figure 8: Detrended spectrographic envelope for a short speech segment. Shown using a
linear amplitude, S, (7, f,) ,and a decibel amplitude convention

S (1 £)=2010g,,(S(t, f,))—H,, - The linear amplitude spectro—temporal

envelope, shows little detail and most of the signal values are concentrated near zero.
The decibel spectro—temporal envelope has significant more detail and has amplitude

fluctuations which span a large dynamic range of more than 50 dB.
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Figure 9: Linear contrast statistics for natural sound ensembles. The linear amplitude

distribution, p( S) , for speech (A), animal vocalizations (B) (both primate and non—
primate sources), background sounds (C) (e.g. wind, running water, etc.), pop—music
(D) classical music (E) and white noise (F). All sounds are normalized so that they have
a maximum amplitude of unity. Natural sound ensembles have a highly skewed
exponential—like linear amplitude distributions. The spectro—temporal envelope of
natural sounds has a significantly larger proportion of soft to loud sound components.
By comparison, white noise has a broad distribution (F).
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Figure 10: Decibel contrast statistics for natural sound ensembles. The decibel

amplitude distribution, p(S,,) , for speech (A), animal vocalizations (B) (both

primate and non—primate sources), background sounds (C) (e.g. wind, running water,

etc.), pop—music (D) classical music (E) and white noise (F). All natural sound

ensembles have normal—like decibel distributions. Of these, environmental sounds has

the narrowest distribution indicating that the overall range spectro—temporal

fluctuations are significantly smaller than for speech, vocalizations, and music. By

comparison, white noise has the narrowest distribution indicative of a narrow range of

spectro—temporal amplitude fluctuations (F).

The statistical homogeneity of the shape of contrast distribution across the four
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natural sound ensembles suggests that logarithmic amplitude fluctuations are an invariant
acoustic property across natural stimuli (Attias and Schreiner 1998a). Natural sounds are
therefore characterized exponential—like amplitude distributions and normal—-like

logarithmic contrast which extends over a dynamic range of 14-25dB (i.e. 20, ).

This fundamental property of natural sounds closely resemble natural image statistics
which show similar spatial amplitude fluctuations (Ruderman and Bialek 1994; Dong and
Atick 1995; Ruderman 1997).

1.10 Contrast and Intensity Dynamics of Natural Sounds

Although such a description gives us insight into the global amplitude statistics
of sensory signals, it nonetheless presents us with a static picture of the acoustic world
which has been averaged for a large ensemble over all time. In reality, natural signals
such as speech are time—varying and non—stationary. It therefore makes sense to consider
the dynamic behavior of these signals at time—scales which are relevant for neuronal and
perceptual integration . A realistic model of contrast therefore takes into account time
dependencies that arise from multiple sound sources which radiate in and out of the
acoustic scene.

To characterize such time dependencies we defined a time—dependent contrast
distribution, C ,(¢)=p(Sl¢) . This statistic was computed by discretizing the time
axis of the spectrographic signal representation into 47 msec frames (Fig. 11) and
computing the contrast distribution for each frame. A frame size of 47 milliseconds is

chosen since intensity perception has a maximum integration time—scale which is slightly
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larger (in the order of 200—500 msec) (Hughes 1946; Garner and Miller 1947). Thus by
choosing this time—scale we can sample and track the dynamic behavior of intensity

fluctuations within a perceptually relevant time—scale.

Frequency (kHz)

Probability

Amplitude (dB)
Probability

Time (sec)

Figure 11: Constructing the time—varying contrast distribution, C ,(¢)=p(S,lt) .
The sound’s spectro—temporal envelope (shown for human speech) is broken up into
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overlapping frames of 47 msec width. Two such non—overlapping frames are shown at
a separation of roughly 3 sec (A). For each frame, the local contrast distribution is
estimated by collapsing the pixels in the chosen frame into a probability histogram (B).
The corresponding contrast distributions are shown in (B) for the green and red frames
of (A). Note that the shape of the distribution (including the mean and standard
deviation) differ from frame to frame. For all time instants, the probability distributions
are collapsed into a three—dimensional plot (C) where the colorscale denotes the
relative probability. This plot depicts the progression of the contrast distribution with
time. The resulting time—varying contrast distribution is non—stationary, changing both

in its mean value and its standard deviation as a function of time.

The time—dependent contrast distribution, C ,(¢)=p(S,lt) , was computed
for all soundscapes in the chosen ensembles. Examples of each are provided in Figs. 12—
14. For most environmental background sounds the shape of the contrast distribution was
globally stationary. An example is shown for the sounds emanating from a waterfall in
Fig. 12 A. The shape of the contrast distribution is constant throughout the sound
segment. Analogous properties are observed for white noise (Fig. 12 B).

Speech, mixtures of vocalizations, and music, on the other hand, had the character ‘«

where the mean value, u,,(t)=E[S‘ alt] , and the standard deviation,
0.u(0=E| (54-u(n)]s] , of the decibel contrast distribution (see Fig. 11 and Fig. 13)

were time—dependent and largely determined by the specific sound which dominates the
acoustic scene. Fluctuations in the mean of the contrast distribution reflect changes in
the mean intensity of the sound whereas fluctuations in the standard deviation reflect the

local variability of the amplitude gradations within a 47 msec sound segment. Note that
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the intensity fluctuations associated with the mean are themselves a form of contrast (on
a large time—scale) which reflects the fact that the contrast distribution is a function of
the time—scale over which it is defined.

Vocalization and speech sounds are characterized by non—stationary / time—

dependent contrast distributions. Examples are provided in Fig. 11 and 13. The speech

segments of Figs. 11 and 13 A oscillate between loud (high u,, ) and soft sound

segments (low p,; ) in a time—dependent manner. Furthermore, the width of the

contrast distribution ( 0, ) also varies with time. Thus the dynamic range of the local
spectro—temporal gradations (within the 47 msec analysis frame) change in a time—
dependent manner.

Mixtures of vocalizations and environmental noises likewise followed non—
stationary contrast statistics. Fig. 13 B shows such an example for an animal vocalization
(giant anteater Myrmecophaga tridactyla ) superimposed on mixture of a background
noise. The contrast distribution oscillates between two states which are individually
determined by the properties of the noise and the vocalization. In this particular example,
the time—dependent mean and standard deviation covaried with each other in a negatively

correlated fashion — although this was not always the case. During the vocalization (loud

portion of the stimulus) the contrast distribution is narrowest (small o ,(¢) ) whereas

during the background sound (soft segment, low u () ) it is significantly narrower
(large o () ). For this example this trend resulted from departure of S(t,f,) about

the detrending function S(f,) .
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As for the speech and vocalization sounds, both classical and pop music have

non—stationary contrast distributions, C ,(¢) , with a time—dependent mean value,

M(2) , and standard deviation, o ,(¢) . Examples are provided in Fig. 14. Classical
music has contrast statistics which appear as random oscillations of the contrast
distribution. By comparison the oscillations of C 4(¢) for the pop music ensemble
appear to be significantly more structured. For this example, oscillations of the contrast
distribution are quasi—periodic and locked to the rhythmic pattern of the music, as

evident from the spectrographic representation. Furthermore, fluctuations in the mean

and standard deviation were generally much slower for classical music. X

Time (sec) Time (sec) e
Figure 12: Time—varying contrast distribution for environmental background sound and

white noise. The sounds emanating from a waterfall (A) have stationary contrast

statistics (C). The time—dependent contrast distribution for this sounds is homogenous

for all time (C). Likewise, white noise (B) has stationary contrast statistics (D).
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1 2

2 3 3 4 5
Time (sec) Time (sec)

Figure 13: Speech (A) and animal vocalizations (B) have non—stationary (time—

dependent) contrast statistics with complex dynamics. The time—dependent contrast

distributions, (C) and (D), for the corresponding segments of (A) and (B) oscillates _ -:
wildly between loud and soft sound segments. Furthermore, the width of the contrast . .
-
distribution, (C(¢) , also oscillates in a time—dependent manner suggesting that the ¢
dynamic range of the local spectro—temporal fluctuations varies with time. : -

>

- oS

Frequency (kHz)

(@)

Amplitude (dB)

Time (sec) Time (sec)

Figure 14: Classical (A) and pop (B) music have non—stationary contrast statistics with

complex dynamics. As for speech and vocalization sounds (Fig. 13), the time—
dependent contrast distributions, (C) and (D), oscillate between loud (high p,, )and

soft segments (low . ). The dynamic range of the local contrast statistics (denoted
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by o, )arealsotime-varying.

1.11 Contrast and Intensity Ensemble Statistics

To quantify the observed contrast dynamics for the various sound ensembles, the
time—dependent contrast distribution C ,(f) was parametrized by computing its time—
dependent mean value p(¢) , and its standard deviation o ,(t) , (Fig. 15). For all
sounds in a given ensemble the joint histogram for these quantities was computed. The
joint histogram was normalized so that its cumulative sum gives unity probability. This
descriptor approximates the joint distribution function, p(u,,0,,) ,and characterizes
the statistical dependence and the relative occurrence of these parameters at time—scales
of 47 msec. Ensemble histograms for both parameters are shown in Fig. 16 for human
speech, animal vocalizations (primate and non—primate sources), environmental noise
sounds (rain, running water, wind, etc.), classical music, pop music, and white noise.

Human speech and animal vocalizations have the character where the relative

intensity fluctuations, designated by u_,, , and the local contrast fluctuations, designated

by o, , are significantly broader and span a larger range of values than environmental

noise sounds. This is evident in the speech and vocalization examples of Fig. 11 and 13
where the contrast distribution oscillates wildly in its mean value and its overall width.

The parameter o, is significantly larger (t—test, p<107') for speech and vocalizations
than for environmental sounds indicating that the local spectro—temporal fluctuations in

these sounds are broader than for environmental sounds. Thus, relative intensity

fluctuations and the local contrast statistics present in environmental noise sounds are
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relatively homogenous when compared to vocalization sounds and music. Likewise the
white noise control stimulus shows little fluctuations in these parameters when measured

at time—scales of 47 msec.

>
@

50 50
g 0
c -50 D 50
_ 50 50
§0 0
£
E -50 F -50
~ 20 20
8 15 15
o 10 10
5 5
o 1 2 3 4 0 1 2 3 4 5
Time (sec) Time (sec)

Figure 15: Parametrizing the contrast distribution into its time—varying parameters,
o,(t) and p . (¢) .Shown for the vocalization sound of Fig. 13 B (A, C, and E)

and the running water sound of Fig. 12 A (B, D, and F). The time varying mean,
u(t) , designates the instantaneous relative intensity of the sound. The time—

varying standard deviation, o ,(t) , is determined by the instantaneous width of the

contrast distribution and is therefore representative of the instantaneous dynamic range
of the sound. For the vocalization example the mean (C) and standard deviation (D)
parameters oscillate wildly as a function of time. By contrast, these parameters are

stationary and have no obvious fluctuations for the water sound (D and F).

For comparison a one dimensional histogram was computed for o 4(¢) . This

is shown for the different sound classes in Fig. 17. Note that the distribution and the

corresponding mean values for speech and vocalizations are almost identical (mean value
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of 9.3 dB for speech and 9.5 dB for vocalizations, t—test p>0.9) whereas the distribution
for the environmental sound is significantly narrower and has a significantly lower mean
value (mean of 7.6 dB, t—test p<107'®). The distributions for classical music and pop
music were slightly overlapped although the mean value was higher for classical music
(10.0 dB versus 8.7 dB, t—test p<107'%). To distinguish possible differences between
primate and non—primate animal vocalizations, we additionally broke up the parameter

signals into those arising from primate and non—primate sources. The distribution for
py(t) versus o () were highly overlapped and covered a similar range of values.

As for human speech, the corresponding mean value for o ,(¢) were also not H

significantly different (mean of 9.6 dB for primates and 9.4 dB for non—primate,t—test N
p>0.9). R

[
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Figure 16: Intensity versus contrast statistics for (A) human speech, (B) animal

vocalizations, (C) environmental sounds, (D) pop music, (E) classical music, and (F)

white noise. The time—dependent trajectories for the mean and standard deviation of the -
contrast distribution (Fig. 15) are collapsed into a joint probability histogram. The

standard deviation designates the local variability of the spectrographic signal within a

47 msec frame (Fig. 11). The mean designates the average intensity for each frame.

Both speech (A) and vocalizations (B) cover a significantly broader range of values

than environmental sounds (C) and white noise (F). Classical music shows a

significantly broader range of values for o, than pop music. In addition, the

histogram for classical music is obliquely oriented indicative of a negative correlation.

46



o
-
T

(=]
-

18

20

0-2 T T

0.1

Probability

Standard Deviation - o4

Figure 17: Contrast statistics for the sound ensembles of Fig. 16 (A—E). The standard

deviation trajectory distribution is shown for speech (continuous), vocalizations

16

18

(dotted), and environmental sounds (dashed) in (A). The distribution for speech is

highly overlapped with the distribution for vocalizations (mean value of 9.3 and 9.5).
The distribution for environmental sounds assumes significantly lower values (mean

7.6). (B) The standard deviation trajectory distribution for pop (continuous) and

classical (dotted) music.

20

The dynamic behavior of these parameters was determined by computing the

power spectrum of u,(t) and o 4(t) for each ensemble. The power spectrum for

these parameters are shown in Fig. 18. In all instances, the power spectrum had a

47



decreasing trend as a function of frequency that followed a 1/ftype functional
relationship. The strongest fluctuations in these parameters for all sounds therefore
occurred below 1 Hz. In the instance of pop music, the power spectrum also has a strong
peak centered about 6 Hz. By listening to this music it was evident that all soundtracs

used for this analysis had a strong rhythmic pattern near 6 Hz.

Frequency (Hz) Frequency (Hz) Frequency (Hz)

Figure 18: Power spectrum for the parameters o ,,(¢) (continuous)and ()
(dashed—dotted) shown for (A) human speech, (B) animal vocalizations, (C)
environmental sounds, (D) pop music, (E) classical music, and (F) white noise. Both

parameters have power spectrums with similar trends. With the exception of white
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noise, all sounds have a 1/flike trend in energy as a function of increasing frequency.

For all ensembles, the power spectrum for u,(¢) and o (¢) were visually
very similar (Fig. 18). Thus it is possible that both parameters are temporally correlated
following similar trajectories. An alternate possibility, however, is that both parameters
do not covary in time and the similarity in the power spectrum arises because the

parameters follow similar statistics. To ascertain this possibility, we first computed the

Pierson correlation coefficient (Zar 1999) between u,(¢) and o0 ,(f) . Ifboth

parameters follow similar trajectories it is expected that the correlation coefficient be
near unity. If the parameters are temporally uncorrelated, the resulting correlation b
coefficient will be near zero. Correlation coefficients near negative one alternately s -
indicate that the trajectories are temporally correlated but differ in polarity. Results are
provided in Table 2.

Example trajectories for p,(#) and o ,(¢) are provided in Fig. 15. For all

ensembles, particular examples could be found that showed an anticorrelated (r<0),

positively correlated (1>0), and uncorrelated (r~0) relationship between these two e
parameters. Thus the described correlation coefficient provide the average statistics for
the whole ensemble. Both the pop and classical music ensembles showed a significant

negative correlation (bootstrap, p<107'%). Thus when the spectro—temporal intensity,

Hg(2) , was high the local contrast standard deviation, o ,(t) , was reduced and

vice versa. In contrast the human speech, vocalization, and environmental sound

ensembles have a small but significant positive correlation (bootstrap, p<107'7).
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It is possible that the measured contrast standard deviation, o (¢) , reflects a
departure from the mean ensemble spectrum (as for the example of Fig. 15A), as
opposed to local fluctuations about the mean spectrum. Recall that the detrended
spectro—temporal envelope was obtained by performing a global detrending operation on
the spectrogram by subtracting the best—fit linear trend of the ensemble spectrum (Eq.
(1.21)). To determine if this is so, the local spectro—temporal envelope, S,[n,w,] ,
was further detrended using a linear spectral fit of the general form Aw,+B—pu
(estimated for a 47 ms frame). The detrended spectro—temporal envelope is then given by

S sln w,]=20log,(S[n w,])-4w,—B+p, where A and B now represent the linear

regression coefficients for the local spectrum and u,, is the local mean. This procedure

removes the local spectral trend but, unlike the detrending operation of Eq. (1.21), it

preserved the local mean value, u, . All of the presented statistics were reestimated

using this procedure. Although specific instances were found where exceptionally high

values of 0 4(¢) were attributed to departure of the detrending function from the local

spectrum this was not the general rule. In most instances the obtained results were

qualitatively similar for the two detrending procedures although o ,,(¢) was slightly
smaller in value for the local detrending. This parameter followed similar trajectories for
either of the performed detrending operations suggesting that fluctuations of the contrast
standard deviation do not arise solely from departure between the local and the global
ensemble spectrum. Instead, this result argues that a significant amount of the observed

spectro—temporal variability arises from spectro—temporal oscillations about the mean
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spectrum. Furthermore, the obtained population statistics of Figs. 16—18 were
qualitatively identical indicating that either detrending procedure captures the essential

statistical properties for the described ensembles.

Pearson Correlation
Coefficient (r)
Human Speech 0.141+0.003
Animal Vocalizations 0.034+0.004
Background Sounds 0.040+0.008
Pop Music ~0.254:+0.003 T
Classical Music —0.646+0.003 s

Table 2: Ensemble correlation statistics between o ,(r) and p () . Instantaneous

contrast and intensity parameters for human speech, classical music, and pop music are ‘
highly correlated across time. Animal vocalizations and background sounds show little P

covariation among these parameters. N

To further understand the dynamic behavior of these higher—order stimulus .
parameters we computed the coherence function (Marmarelis and Marmarelis 1978; e
Hayes 1996; Bendat 1990). This descriptor measures the degree of linear association
between two signals as a function of frequency. A value near unity for the coherence
indicates a high degree of linear association whereas a value near zero is indicative of no
linear association. Since the correlation coefficient averages over all sounds and over all
temporal segments, information about the time—scales of interaction between these two
parameters is discarded. Thus, the correlation coefficient measure can not identify what

regime of the power spectral density (Fig. 18) is responsible for the temporal
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covariations between the trajectory signals u,(¢) and o ,(¢) .
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Figure 19: Coherence function between the parameters o ,,(¢) and p,(¢) shown
for human speech (A), animal vocalizations (B), environmental sounds (C), pop music
(D), and classical music (E). Speech, animal vocalizations, and background sounds
show a weak coherence between these two parameters consistent with the measured
correlation coefficients of table 2. These parameters show a large amount of correlated
signal activity in the vicinity of 6 Hz for pop music and at frequencies below 6 Hz for
classical music.

The ensemble coherence functions between the mean and standard deviation
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trajectory signals are depicted in Fig. 19. All signals showed a statistically significant
coherence (bootstrap, p<0.0S) indicating some amount of temporal covariation for these
parameters. Consistent with the measured correlation coefficients for the different sound
ensembles, pop and classical music had the strongest coherence function. For both of

these ensembles, the coherence was localized to a small regime of the frequency axis.
Classical music had the strongest coherent oscillations between o ,,(¢) and p(f) at

frequencies below six Hz. Pop music alternately had coherent activity in the vicinity of
six Hz. Vocalizations, speech, and backgorund sounds alternately had weak coherence

functions that were not localized along the frequency dimension.

1.12 Discussion and Conclusion

The spectro—temporal envelope of natural sounds is a mathematical construct
which describes the spectro (spatio)—temporal neuronal excitation pattern produced by
the acoustic sensory epithelium. Because of this it is thought to contain much of the
pertinent acoustic information which the brain uses for complex sound analysis and
encoding. To date a quantitative evaluation of the relevant statistical components of the
spectro—temporal envelope of natural sounds is lacking. In this study, we analyzed a
number of higher—order statistical characteristics for five natural sound ensembles. The
presented data demonstrates that natural sound ensembles share a number of spectro—
temporal characteristics but yet differ in terms of their associated dynamics and the
degree of coherency across spectral channels.

Comparisons among natural sound ensembles show that vocalizations, speech,

and music have a significant amount of correlated signal components across spectral
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channels. These sounds therefore activate the auditory neuronal network with a complex
spectro—temporal excitation pattern composed of redundant signal components. By
comparison, the across—channel correlation matrices of environmental sounds show
significantly lower levels of across—channel correlation and spectro—temporal
redundancy. The role of redundant signal information for acoustic processing is in
general not well understood although it may bestow the auditory with its robust
characteristics for sound processing under a number of adverse conditions. Redundant
acoustic information, for examples, may be necessary for detecting relevant acoustic
signals in background noise and reverberant environments. How the brain uses such
redundant information directly for complex signal analysis and source segregation still
needs to be determined, although initial insights are provided by human psychoacoustics
studies for speech perception.

Psychoacoustics studies support the observation that speech is highly redundant
and that pertinent acoustic information is preserved across spectral channels. By
performing a number of modifications of the speech waveform studies have
demonstrated that speech contains a large amount of redundant information that is not
necessary for detection and classification of speech. Perception of speech, for example, is
robust to a number of spectral, temporal, and amplitude alterations. Filtered speech
changes significantly in its overall quality when filtered above or below 1.8 kHz. Despite
this, much of the necessary information for identifying and distinguishing speech
segments is retained when such filtering is performed (Moore 1997). Other alterations
include infinite peak clipping of the amplitude waveform which converts the speech

waveform to a binary sequence. Despite the loss of amplitude information such highly
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distorted speech can be understood by listeners (Moore 1997) who achieve word
articulation scores of 80—90%.

Spectro—temporal correlations likely play a significant role in auditory groping
and auditory scene analysis. Psychoacousticians have demonstrated that sound
components that are presented in temporal unison often "group" together to form an
unified percept or an acoustic stream (Moore 1997). A classic example is the case where
two pure tones at distinct frequencies are coherently modulated by a common envelope.
The two sounds are perceived as a part of a whole and can not be distinctly identified. If
the same pure tones are instead modulated by independent temporal envelopes, the two
sounds segregate and are each perceived as a distinct entity. Given the observed spectro—
temporal correlations and differences among natural sound ensembles, it is likely that
such signal statistics are pertinent for sound source segregation. From a neuronal coding
perspective it is plausible that the observed different levels of spectrographic correlations
may be pertinent for signal detection, inter—category discrimination, and sound source
segregation by the auditory neuronal network.

Physiologic studies on cats and songbirds have further demonstrated the
importance of the spectro—temporal envelope and the inherent redundancy which exists
across spectral channels (Theunissen and Doupe 1998) of natural sounds. Using
procedures which degrade the spectral and/or temporal resolutions of a sounds
spectrogram, these studies have demonstrated that neuronal responses of auditory
neurons to natural sounds are robust under various adverse conditions. Neuronal

responses appear to be extremely robust against spectral degradations but are

significantly more sensitive to temporal modifications. These findings stress the relative
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importance of temporal over spectral information for acoustic processing and further
demonstrate notion that natural sounds contain a significant amount of redundant signal
information.

A secondary acoustic property which may facilitate signal detection and the
reliability of sensory coding is the signal contrast. Contrast is a fundamental property of
all sensory signals including visual, somatosensory, and acoustic. In most instances the
contrast of a sensory signal is specified by the signal’s peak to minimum intensities or its
standard deviation. In vision, for example contrast is generally specified by the ratio

between the difference signal intensity and the mean level or luminance. Visual contrast Lo
is therefore specified by the equation: C=(/,, -I,,)/(I,,.+1,,) where I,  and
I,,, designate the maximum and minimum signal intensities. In general such

description are insufficient since they can’t account for the intermediate values of the
sensory signal which may be equally and possibly more physiologically relevant than the
extremum values. We provide a more complete description of the spectro—temporal
contrast or the amplitude gradations of natural stimuli by considering the complete
probability distribution, as opposed to simpler descriptions such as the modulation index
or the standard deviation.

The contrast distribution was examined for both the linear amplitude and the
logarithmic (decibel) amplitude spectro—temporal envelope. In the first case, the
amplitude distribution of natural sounds are skewed towards zero containing a high

proportion of the signal’s amplitude values at low levels. By comparison, the linear
amplitude distribution for white noise is broadly distributed and therefore does not share

this statistical attribute observed for natural sounds. The decibel spectro—temporal
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envelope amplitude distribution of all natural sound ensembles was broadly distributed
qualitatively resembling a normal distribution of amplitude values. The average range of
values, as measured by the standard deviation, was broadest for vocalizations (13.3 dB),
music (11.5 dB) and speech (11.0 dB) and narrowest for environmental sounds (7.4 dB).
Not surprisingly the overall range of values spanned by white noise was significantly
smaller (5.6 dB).

Given that the auditory system of humans has a dynamic range of more than five
orders of magnitude it is of interest to determine how and if the observed decibel
distributed amplitude fluctuations are utilized for efficient sound encoding and/or sound
categorization. One hypothesis of sensory encoding asserts that the dynamic range of the
input sensory stimulus must be physically matched to the operating range of the neural
system in order to maximize the information transfer and encoding ability (Rieke et al.
1997). The work of Attias and Schreiner (1998 a and b) demonstrates the importance of
the complete statistics of the amplitude signal and the effects on the neuronal encoding
ability. From the presented data one interesting observation which is consistent with this
hypothesis is the observation that the average range of values spanned by natural sounds
( 20, ) and the 90" percentile range (roughly 30, ) is comparable in magnitude to
the average dynamic range of peripheral auditory neurons which typically span a
dynamic range 30—60 dB (Evans and Palmer 1980; Veimeister 1988). Furthermore
since the rate—level dependencies of auditory neurons of the peripheral auditory system

have a linear dependence with decibel intensity, an efficient probing sound would span a
the decibel amplitude dimension. In fact, from an information theoretic perspective the

stimulus which would most efficiently drive such a system (i.e. with a linear rate versus
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level (SPL) dependency) would follow normally distributed decibel contrast statistics as
is the case for natural sounds.
Although all of the studied natural sounds had logarithmic distributed contrast
fluctuations and therefore shared a common attribute, the measured variability and
dynamics were distinctly different across the five sound ensembles. By comparing these
sounds at pertinent time—scales for neuronal and perceptual integration of intensity, it is
shown that environmental sounds are time—invariant and have little spectro—temporal
variability whereas vocalized sounds and music have non—stationary contrast statistics.
Using a perceptually relevant time—scale of 47 ms the contrast distribution was
decomposed into temporally disjoint segments. The running contrast distribution was
then analyzed by computing the time—varying mean, p(¢) , and the contrast standard L
deviation, 0 () . These descriptive parameters describe the intensity fluctuations and :
the instantaneous contrast statistics of the stimulus respectively. Analogous to white
noise, environmental background sounds (e.g. running water and wind) showed narrow

distributions for both of these parameters suggesting that they are relatively homogenous

over the analyzed time—scales. By comparison, the distribution of values for these
parameters, p(u,,0,,) , was significantly broader for vocalizations, speech, and

music. Consequently these sounds show strong intensity and contrast fluctuations at the
analyzed time—scales.
Further evaluation of the temporal dynamics and temporal covariation among
these parameters for the different ensembles reveals that the intensity and contrast

fluctuations have 1/flike spectrum with most of the parameter signal energy residing at
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low frequencies (below 1 Hz). Similar observations have been described for the intensity
fluctuations of speech and music (Voss and Clarke 1975; Voss and Clarke 1978)
although a clear picture of the temporal covariations among the spectro—temporal

contrast and the spectro—temporal stimulus intensity has not been described. Here we

additionally show that the time—varying mean value, u,(¢) and standard deviation,

o 4(t) , parameters obtain from the spectrographic envelope show significant amounts

of covariation. By comparing the coherence function between these two parameters it is
demonstrated that vocalized and environmental sounds have weak coherence functions
whereas musical sounds have the strongest covariations among these parameters.
Furthermore the strong covariations observed in musical sounds were most strongly
isolated at particular frequencies below 10 Hz whereas for speech, vocalizations, and
background sounds the temporal covariations appear to be less frequency specific.

The described spectro—temporal statistic show that natural signals have a wealth
of information which can be feasibly used by the auditory system for stimulus coding and
categorization. Currently, due to the limited knowledge of the general properties of
natural sounds little is known as to weather these acoustic parameters are pertinent for
sound perception and stimulus encoding in the central nervous system. Judging from
human psychophysics data and the fact that the response of central auditory neurons is
strongly affected by closely related stimulus parameters (including intensity, modulation
depth, and spectral correlation) , it is expected that these parameters may be pertinent for

sound processing. The dependence of the neuronal response on the described acoustic
parameters will be studied in the following sections. Chapter 3 addresses the issue of

spectro—temporal correlations and their effect on the response of inferior colliculus
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neurons. The dependence of the neuronal response as a function of the stimulus contrast

is evaluated further in chapter 4.
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Abstract
Complex acoustic stimuli, such as speech and music, have time—varying spectrum

that give rise to rapidly changing frequency transitions and temporal periodicities.
Despite this, central auditory representations are most often probed using simple acoustic
stimuli which lack many of the structural components of natural sounds. Given the
complexity of the auditory neuronal network and the fact that the brain is in general
extremely nonlinear, it is increasingly clear that simple acoustic stimuli can not be used
directly to identify many of the processing schemes which the auditory system uses for
complex sounds analysis. Thus the question arises: should one use natural sounds directly
to study central auditory representations? Or, should one use complex synthetic stimuli
that are specifically tailored for a particular application?

In this chapter we consider how complex acoustic stimuli can be systematically
tailored to incorporate basic attributes present in natural sounds and how these can be
used to identify nonlinear processing abilities of auditory neurons. Throughout, we

outline a number of necessary experimental, ecological, psychoacoustical, physiological,
and theoretical considerations which should be taken into account when designing such
complex stimuli. We proceed by designing two sounds that incorporate a number of low—
order and high—order characteristics of natural sounds, are parametrically accessible, and
are theoretically compatible with reverse correlation procedures. Analogous to natural
sounds, these stimuli are broad—band, spectro—temporally complex, and are particularly
well suited for studying various nonlinear transformations that may exists along the
auditory pathway. The usefulness of this approach and its applicability for physiological

systems is verified in chapters 3 and 4.

i
ar
- %
N
e
Sl A g B
= A
T RES X AN
Yre o
e
R - TS A £
ISR T 4

&
N
- "*‘\

A2
RIYAY;




2.1 Probing the Auditory System with Simple Sounds

Much of our understanding of central auditory function is derived from studies
which wuse simple sounds to probe neuronal sensitivities. With the exception of the bat
and songbird auditory systems, ethologic considerations have had only a minor impact in
our general understanding of central auditory function. However, the neuroethologic
approach used in the bat and songbird has taught us that simple sounds can not reveal
many of the neural specializations which the auditory system uses for natural sound

processing (Suga et al. 1975; Suga and Jen 1976; Margoliash 1983; Olsen and Suga

B R

o

1991a 1991b; Margoliash and Fortune 1992; Ohlemiller er al. 1996; Razak et al. 1999). T
With the exception of a handful of studies (Aersten 1980 1981; Schreiner and Calhoun e “
1994; Kowalski, Depireux, and Shamma, 1996a 1996b; Attias and Schreiner 1998a e 1T
1998b; Nelken, Rotman, and Yosef1999), the use of natural sounds and complex stimuli ,:‘n,
which incorporate statistical and structural sound features has not been readily adopted in Comiazenzeen

other mammalian species. Although such an approach may be advantageous it has ST

nonetheless eluded much of the auditory community.

By far the most widely used acoustic stimulus for studying central auditory R T

representations is the pure tone. This stimulus is commonly used to map the frequency
response area of neuron. The pure tone has a basic appeal to most auditory physiologist
since peripheral and central auditory neurons respond to a restricted range of frequencies
and since the lemniscal auditory pathway is organized with respect to frequency in a
tonotopic fashion (Liberman 1982; Greenwood 1990; Fay and Popper 1992). Hence it is
not uncommon to think of the auditory pathway as performing a Fourier—like

decomposition of incoming acoustic sounds. Since a pure tone excites a restricted portion
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of the primary sensory epithelium, pure tones allow one to investigate and map local
neuronal sensitivities. 2
Unfortunately natural sounds are seldom narrow—band and they rarely resemble =
pure tones. Instead, natural sounds are often broad—band, spectrally complex, and time—
varying with rapidly changing onsets and offsets. To understand how such characteristic
features are represented in the brain, auditory scientists have used a vast number of
simple sounds which independently probe each of these stimulus dimensions. Temporal

preferences, for examples, are most often studied using sinusoidal amplitude modulated

tones (e.g., Schreiner, Urbas, and Mehrgardt 1983; Rees and Moller 1987; Langner and e :* e "
Schreiner 1988) or repetitive clicks trains (e.g. Eggermont 1999). These sounds can test o :‘ L
the ability of a neuron to follow rapidly changing sound transitions and periodic events. o ‘: :‘«*
Sounds such as frequency modulated sweeps are additionally used to investigate neuronal ,: . *ﬁ N “ v,

responses to transient events with time—varying frequency transitions (e.g., Rees and

BN N AU TN N ¢

Moller 1987; Mendelson et al. 1993). s

Spectral selectivity of auditory neurons are alternately tested using various : f‘ : _ ’ ‘ -
broad—band stimuli and combinations of narrow-band stimuli. White noise and clicks, Sun

for example, provide a simple complement to the pure tone which allow one to e "‘ e . L TE
characterize neuronal responses to broad—band sounds (e.g., Ehret and Moffat 1985; Of"*;,y’

Young and Browenell 1976; Yin, Chan, and Irvine 1986). Two tone response tuning R
Curves are often constructed to probe excitatory and inhibitory neuronal response = *“go

characteristics. Ripple noise stimuli were introduced by Houtgast (Houtgast 1977) to AR

RAVAY;

study the psychophysical limits of spectral filtering and lateral inhibition of the auditory
System. Recently these sounds have been used to thoroughly characterize spectral
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response sensitivities and lateral inhibition of primary auditory cortex neurons (Schreiner

and Calhoun 1994; Calhoun and Schreiner 1998; Kowalski et al. 1996a 1996b). 2

2.2 Nonlinear Auditory Processing

Although all of these stimuli can provide valuable insight into the workings of
auditory neural networks and their spatial arrangements, results using such sounds can
not be easily compared or extended to more complex and dynamic stimulus scenarios.

This is in part due to the fact that the brain is highly nonlinear. If the brain were to

perform a linear decomposition of incoming sounds, then the responses to complex e - e
stimuli (i.e. vocalizations, speech, sound mixtures etc.) could be understood by simply “;t; ::;-_::' .
observing responses to its constituent components. The superposition principle of a linear LT
systemn guarantees (Marmarelis and Marmarelis 1978) that the systems behavior for (e :% Vi (:'o,‘
complex stimuli can be extrapolated by studying the systems behavior for simpler S e e 0
stimuli. L . 5
A complex stimuli x(¢) , for example, can be decomposed using some basis set g . c
""" - Tt hJ
"..T.\ :"'h'.i»‘- * .SII/[/
of local stimulus features, x,(¢) , which occur at delays, 7, . The complex stimulus is R L E
therefore represented by o
s,
N
N Ll ;5‘5‘ ‘
x()=2 2 x,(t-1) @.1) =
k=1 [=] A
RAVAY]

Wwhere L, is the number of occurrences of the k™ feature at temporal delays T, and N

is the number of acoustic features which the sound is decomposed into. The response of
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a linear time invariant system to such a stimulus is given by

N L

r(0)=2 2 r(t=T) (2.2)

k=1 I=1

where the response, r(t) , of a complex stimulus is simply the sum of responses to its
individual components, r,(f) .

For a nonlinear system, Eq. (2.2) will in general not hold and the true responses
to a complex sound will deviate from Eq. (2.2). The amount of departure from Eq. (2.2)
depends on the nature of the nonlinearity. In general, three types of response components

contribute to this departure: response interaction terms in which the response of one

feature, x,(¢) , can be strongly affected by a nearby component, x,_(¢) .Response
gain terms can alternately magnify the response of a single component by a nonlinear
gain factor causing large departures from Eq. (2.2). Such a nonlinear level dependence is
a common feature of nonlinear systems and the central auditory system as a whole (Ehret
and Merzenich 1988; Eggermont 1989). Thirdly, dynamic nonlinearities, which are
prevalent in neural systems, can alter the shape of the systems nonlinearity and filtering
characteristics in a time dependent manner (Smirnakis ez al. 1997). Consequently,
although the complex stimulus can be decomposed as a superposition of many simpler
stimuli (Eq. (2.1)), the response of a nonlinear system to such can not be decomposed
into the sum of the individual response components. Hence the functional rules which the

brain uses for natural sound processing can not be easily and fully extrapolated using

simple stimuli such as pure tones, clicks, modulated tones, etc.
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2.3 Neuroethology Versus the Systems Approach

Linear system theoretic approaches are commonly used in conjunction with such
sowarads to characterizing auditory neuronal responses. Of these, the transfer function
method (Rees and Moller 1983; Langner and Schreiner 1988; Schreiner and Calhoun
19948 ; Calhoun and Schreiner 1998; Kowalski e al. 1996a 1996b) is by far the most
widely used functional descriptor. This is attributed to the fact that this methodology is

theoretically well defined, easy to interpret, and experimentally tractable (i.e. sounds are .

easy to design and the data analysis is simple). More recently the linear spectro—temporal ;i; Ewm
receptive field (impulse response estimates) (Aertsen et al. 1980 1981; Hermes et al. 0w t:: —
1981 ; Yeshurun, Wollberg, and Dyn 1987; deCharms, Blake, and Merzenich 1998; ﬁ: : ES
: . . AN o
Theunissen et al. 2000; Klein ef al. 2000) has also been used for studying central s 2 v e “
auditory neuronal response properties. o memmencil ) '
Although such methods do reveal quasi linear processing characteristics of S B < f\\v
auditory neurons, either of these methods generally lack the ability to discern "hard" J; o
nonlinear response characteristics which may be prevalent in central auditory neurons : ” ;\“ T “} \:jﬁf
(Young 1998). In part this is attributed to the types of spectro—temporal sound ensembles 2 .
(spectro—temporal m—sequences , randomly distributed tone pip ensembles, modulated S J;}’L
tones, click trains etc.) which are used to study neuronal responses with such methods. =
For STRF methods, for example, the stimuli which are most prevalent generally have :i\d
spectro—temporal white—noise like properties but the envelope spectrum, otherwise RIVEYL

known as the characteristic function (Cohen 1995), is significantly reduced. This is done

so that the range of modulation frequencies and spectral periodicities is matched to the
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range for which the specific brain region is responsive. Although such "white—noise" like
stirmuli are in principle well suited for such analysis, occurrences of higher—order
acouastic features and combinations, which may be necessary to drive highly nonlinear
(sele=ctive) neurons, are rare at high power levels within the limited experimental
recoxding time.

In the bat auditory system, for example, nonlinear processing provides a
substrrate for processing behaviorally relevant sounds. Central auditory neurons for such
speci es can show strong selectivity to behaviorally relevant sounds (Suga, Simmons, and
Jen 1 975; Suga and Jen 1976; Margoliash 1983), combination sensitivity to conjunctions “-“_ o

of biologically important acoustic stimuli (Suga, O’ Neil, and Manabe 1978; Margoliash

and Fortune 1992; Olsen and Suga 1991a 1991b; Doupe 1997) and context dependent

response characteristics (Ohlemiller, Kanwal, and Suga 1996; Razak, Fuzessery, and Foon e ~ -
Lohuis 1999). All of these response characteristics clearly arise from highly nonlinear K s ez zte

phenomena such as neural inhibition, thresholding, and adaptive response mechanisms s
which are common to neural systems (Casseday, Ehrlich, and Covey 1994; Kuwada et ) o X
al. 1997; Spiro, Dalva, and Mooney 1999; Bringuier ef al. 1999). When tested with S T ‘
simpler stimuli such as pure tones and white noise, these neurons often show little or no
response (Theunissen et al. 2000). Hence such neurons are not easily characterized with

simple stimuli and the linearizing approaches associated with them.

Because of this, system theoretic approaches are not widely used to study species
with highly specialized acoustic behaviors. Instead neuroethology has been the prominent
driving force for scientist who study bat echolocation and avian song recognition.

Ecological considerations are generally employed in the selection of the search stimuli
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and features that are used to probe neuronal responses. For such species this task is
relatively simple largely because of the stereotyped calls which these animals use during
tlhhe1ix vocalizing behavior. Although these approaches have proved noteworthy
id ex tifying nonlinear response characteristics and mechanisms, they are not infallible and
camn <asily lead to misconceptions and oversimplifications of the neural capabilities of
thes < animals. Given that such systems are generally extremely nonlinear, any knowledge
gaimed with a given sound about the systems properties will likely hold true only for that
soumnd and experimental condition. An example of such, is provided by the same
investigators which previously showed that the bat auditory cortex possesses a high
degree of neural specialization for echolocation tasks. FM—FM neurons of the mustache
bat respond selectively to combinations of FM segments in that species’ echolocation
calls (Suga, O’ Neil, and Manabe 1978). Recently Suga and his collaborators
demonstrated that these neurons also respond selectively to a variety of communication
Sounds and therefore serve an important secondary function (Ohlemiller et al. 1996). In
certain instances, the sounds that are used to study auditory processing for such species
are therefore much too constrained to fully characterize more general response attributes.

As for the bat and songbird, similar principles have also been employed for
St“‘-'lying the audio—vocal behavior of primate species (Winter and Funkenstein 1973;
Glasg gng Wolberg 1983; Ploog 1981 ;Wang et al. 1995) although these have not
TeVvealed similar neuronal specializations. Studies in the squirrel monkey have shown that

nea-ﬂy all neurons respond to simple sounds (pure tone, pips, and noise) and to species
SPecific vocalizations although they respond to the latter unselectively (Winter and

l-}“tlke:nstein 1973). Unlike the bat and songbird neurons which can respond almost
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e clusively to a single sound, primate cortical neurons generally respond to numerous
sowunds and the neuronal responses appear to be correlated with low—order features of the
dxiving stimulus (i.e. spectral energy distribution, temporal structure, etc.) (Winter and
FuxaKenstein 1973; Glass and Wolberg 1983; Ploog 1981; Wang et al. 1995). This may
ref1 ect operating principles for primates that are vastly different than those for the bat and
sox gZbird species were neurons can respond exclusively to a single sound component or to
coxxx binations of such. However, these primate studies were largely conducted in primary

audli tory cortex whereas the specialized processing in bats is most clearly expressed in

LEXRN

stations outside of Al ! N ::‘: : .
In mammals in which the auditory system lacks obvious specializations and ‘ " ’;; T
relevant acoustic behavioral paradigms (i.e. many terrestrial mammals such as the cat and o : * ,.
possibly including primates), neuroethology has had little impact, since the set of £ - .

biologically relevant stimuli is enormous. Consequently, linearizing methods which use
engineering principles (such as reverse correlation and the transfer function method) by
testing neuronal responses to a wide range of simple sounds are most often employed. A
hand ful of studies have shown that nonlinear phenomena underlie the ability of central e M ,.
auditory neuron to extract information inherent in natural sounds (Nelken ez al. 1999; M
Attiag and Schreiner 1998b). Aside from these, however, much of central auditory

Physjology in the cat has proceeded by using stimuli which are for the most part

Stholggjcally uninteresting.

Hence a clear dichotomy is established between neuroethology and the more
Eenera] systems approach used to characterize auditory neuronal responses in the cat.

While the systems approach utilizes a vast collection of simple sounds to probe multiple
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stimulus conditions and operating points, the ethological approach uses a biased and
Thi ghily restricted stimulus set which only probes a limited operating regime. At least two
A j or limitations are anticipated, the first arising from the methodology and the second
axising from the types of stimulus used to characterize the system.
In the systems approach, the types of stimuli used may not provide enough
dri ving force, especially if the neuron’s nonlinearities are specifically adapted ("hard"
nomn 1inearities) for processing a given stimulus feature and/or combinations. Such is the
case for feature selective neurons in the bat and songbird and for bat combination
sensi tive FM—FM neurons. Hence this leads us to the notion that to "see" or characterize
such a nonlinearity you must first provide sufficient driving force along the appropriate
stimmulus dimension. Simple sounds often lack many of the higher—order statistics and
correlations necessary to properly drive such auditory neurons. Hard nonlinearities that
are present for specific scenarios of sound processing are therefore not easily
characterized using such sounds. In many instances, especially scenarios where the
System has a "soft" or weak nonlinearity, the systems approach can be advantageous
since it offers a simple parametric description of the stimulus—response relationship and
Since each stimulus dimension can be explored quasi—independently.
The ethological approach likewise has advantages and disadvantages. As
pr €Viously mentioned, application of neuroethologic principles has shared large amounts
Of success t;or studying hard nonlinearities in the bat and songbird species. This is largely
Attribuyted to the fact that identifying the "right" stimulus is a fairly simple task for
Animals which actively vocalize because of the obvious behavioral needs and biological

Mportance of their vocalizations. In mammals which rely heavily on passive listening,
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e. & for hunting and avoiding predators, this passive mode hampers the identification of
relevant sounds and acoustic features. Consequently for such animals (i.e. the cat) finding
thhe Tight stimulus is not a trivial task since the set of biologically relevant stimuli is very
1ax sze. For these animals behaviorally relevant stimulus paradigms have not been
rev <aled. Hence although this methodology is readily applicable for the bat and songbird
spe<ies, it is not easily applicable for nonspecialized and acoustically passive terrestrial

maxmals.

In theory one can imagine taking a huge collection of natural sounds and playing

DR RN

thern continuously to an animal in order to overcome this limitation. Such attempts S e et
(Smolders et al. 1979), however, have not revealed similar specializations that arise from & _ : :” ot
hard mnonlinearities. This is partly due to the fact that for such sound schemes on must gt oy

contend with the high dimensionality of the stimulus. When using natural sounds one
inevitably probes the auditory system with many physical dimensions that include
carrier structure (e.g. harmonic vs. inharmonic), spectral and temporal envelope (first,
Second, and higher—order statistics), intensity, binaurality (both interaural intensity and
temporal differences). Likewise one may conceive of this process as probing the system e
With the corresponding perceptual dimensions which include comodulation, pitch, e
Thythms, loudness, streaming, and timbre (which itself is a multidimensional percept

depending on the spectral envelope, temporal changes in time, and whether the sound is

haJTImnic or inharmonic (Plomp 1969 1970). Either way, it is clear that there is a

Beometric explosion of stimulus parameters and response possibilities. This makes it

I)al'ticularly difficult from the analysis point of view since it ultimately increases the

QolIlplexity of the analysis required to identify hard nonlinearities and to disassociate
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neuronal responses and mechanisms.

Another limitation for this approach is that for natural sounds all of the physical
stirmulus dimensions are already highly biased and these may be different for different

stirmulus ensembles. For example, the temporal modulation spectrum has a 1/f

chuaaracteristic (Attias and Schreiner 1998a 1998b; chapter 1) as does the spectral envelope

(clhhvaapter 1) and intensity fluctuations of the stimulus (Voss and Clarke 1975).
Comnsequently, in many natural sounds low frequencies predominate over higher
frequency components for these stimulus parameters. Although one can in principle
circumvent these problems by detrending (via deconvolution) the stimulus bias when
using reverse correlation methods (Theunissen ez al. 2000), this may not be feasible for
the fall range of sounds especially if the signal power for a relevant parameter is so
small that the response signal to noise ratio is below chance. Under such conditions the
stimnulus correlation matrix will be non—invertible and the actual transfer function for the
given parameter can not be determined reliably. Practically, this situation is quite
Common due to the high modulation index of natural sounds (Van Veen and Houtgast

1985), and the effects of background noise and environmental acoustic (Schroeder,
Gottiob, and Siebrasse 1974).

For experimental paradigms where one is interested in identifying neuronal
Mechanisms, one instantly realizes the bottleneck and limitations that can arise from
llsing continuous soundscapes and the simple stimuli used for the systems approach. For
SOunds which are designed to be compatible with reverse correlation methods (such as
sI)GCt:l-o-temporal m-sequences), relevant higher—order acoustic features (e.g. spectral

T'esonances, FM sweeps) which are necessary to efficiently drive auditory neurons are
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commonly underrepresented. The use of natural soundscapes can partly overcome this by
1ixniting structural sound components to those which are likely more relevant. For certain
matural sound components (e.g. high frequency envelope components), however, this
Ay not be reasonable since these can be relatively scarce (because of the stimulus bias
andl high dimensionality of natural sounds) preventing the observer from achieving
su ficient statistical power. Moreover, because of the geometric complexity of natural
sowxds, statistical bias, and large number of acoustic dimensions it is exceedingly
difTa cult to dissociate responses arising from a single acoustic feature and/or dimension.
One must therefore jointly consider the limited amount of experimental recording time
which is available (this is ultimately determined by the electrode stability of the
experimental setup and it is usually in the range of tens of minutes to several hours) and
the stimulus space of interest. Either way, when using such sounds to derive STRFs one
may ultimately be wasting precious recording time by exploring only a small subspace of
the target objective or parameter, while driving the neuron or system (for most of the
recording epoch) with numerous other sound features that are not of immediately
interest. Although natural sounds may be efficient stimuli to drive the auditory system as
a Whole, the statistical bias of their spectro—temporal composition and high

dirl'ltznsionality can prohibit a clear understanding of the underlying neuronal principles

2.4 stimulus Requirements for Deriving STRFs

The spectro—temporal receptive field (Aertsen et al. 1980 1981; Hermes et al.
1981, Yeshurun et al. 1987; Nelken et al. 1997; deCharms et al. 1998; Theunissen ef al.

2000; Klein et al. 2000) provides a linear model for characterizing the response area of
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auditory neurons. In the visual system, the analogous functional descriptor is the spatio—
temporal receptive (Jones and Palmer 1987; Deangelis, Ohzawa, Freeman 1993;
Anzai et al. 1999; Reich et al. 2000) field. This linear descriptor has been successfully
used to describe the response areas of visual neurons along the space—time dimensions.
Conxceptually, the STRF can be thought of as the optimal linear descriptor which jointly
charxacterizes a neuron’s spectral (spatial for the visual system) and temporal preferences.
In general, the STRF serves as a linear model which can be used to predict
neuronal responses to arbitrary stimuli. For a quasi linear neurons, the STRF serves as an
invaluable tool since it retains much of the neuron’s transfer function characteristics
which are necessary for predicting neuronal responses. For a nonlinear neuron, however,
the S7ZRF may not fully generalize and will often fail at describing the neuron’s transfer
function attributes. The ability to characterize highly nonlinear neurons therefore depend
strongly on the neurons operating point and on the driving stimulus used to derive the
STRF . Here we consider the stimulus requirements which are necessary for deriving
auditory spectro—temporal receptive fields.
We consider a multi—input single output linear filter bank (Marmarelis and Naka
1974) as a model representation for auditory neuronal filtering. This representation
consists of a set of NV adjacent linear filters tonotopically arranged along the primary
Sensory epithelium (e.g. the cochlea). This representation is motivated by the fact that the
Primary sensory epithelium performs a spectro—temporal decomposition of incoming
Sounds and consequently all further processing along the auditory system is constrained

by this output pattern.

Given a spectro—temporal representation for a sound, S(2.X,)=s,(¢) , the signal
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s, (#) describes the temporal modulations for the &* input channel (tonotopically

arranged). We use a filter model to describe the neuronal integration and temporal

dymnamics of response for a given channel. The spectro—temporal filter bank model

consists of a set of N octave spaced linear filters, [A,(7),h,(T)," -, hy(T)] , where
A, (t)=h(T,X,) isthe impulse response of a linear filter centered about the frequency

band X, and T corresponds to the temporal lag of the filter . Here X, corresponds

to the center frequency of the & filter in units of octaves. Taken together, the spectral
array of N filters describe the spectro—temporal integration dynamics for a single

neuron.
For such a model neuron the overall response output, r(¢) , is obtained by

summing the response for each of the tonotopically arranged frequency channels
N
r(0)=ry+ 2 r(1) 2.3)
k=1

Where r, is the neuron’s mean firing rate (zeroth—order kernel),
rk(t)=I s,(t=T)h(T)dT+e,(1) 2.4)

is the output for the k* frequency channel, s,(t)=s(¢,X,) isthe input of the k* filter

Channel, and e ,(2) is a noise term that arises from measurement error and the neuron’s
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internal noise. For practical reasons, we assume that e,(¢) has zero mean and standard

deviation denoted by O, . Furthermore, e ,(t) is statistically independent of the input
sigmal s,(t) . The response of the k* frequency band corresponds to the linear temporal
comnvolution between the k* input, s,(¢) , and the k& impulse response, h,(T) , as

described by Eq (2.4). Note that the input stimulus, s,(¢) , varies along the temporal

and spectral axis and therefore corresponds to a spectro—temporal stimulus
representation, more commonly referred to as the spectro—temporal envelope (Kowalski
et al. 1996s; Klein et al. 2000).
In practical applications, it is desired to estimate the spectro—temporal receptive
field of a neuron using the reverse correlation procedure. This procedure consists of
performing a crosscorrelation between the neuronal response and input driving stimulus.

Unlike the one dimensional stimulus case, where the response difference output,

r(r)- r, ,is crosscorrelated with a single input, the described spectro—temporal
Tepresentation requires that the response be crosscorrelated with each of the N inputs. For

the linear model neuron this procedures is expressed as

E[(r(t)-r,)s,(t+0))= i E[r(t)s(t+0)]= (2.5)
i f E[s,(t—7)s/(t+0)]h,(T)dT+E[e,(t)s,(t+T)]~

i IRu(T-a’Xk—Xl) h(t)dT
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where E[]='m %ffl:,,'dt is the time average operator, /=1,---,N ,and R_(T,C)

T—-w
is the stimulus spectro—temporal autocorrelation function. For a sufficiently large

recording period, T, the error crosscorrelation E[e,(t)s,(t+0)] approaches zero since

e, (t) and s(t+0) are statistically independent and both have zero—mean. If the

spectro—temporal autocorrelation of the stimulus has the unique property that it has

imprulse like characteristics, thatis R_(t ,§)=0'56( 7,C) , then the spectro—temporal e

crosscorrelation between the stimulus and the output simplifies to ‘n. S ~e

:

E[(r(t)—ro)-s(t+a,X,)]=a’:zf6(‘r—O',Xk—X,)h(‘r,X,‘)d1'=0'fh(o-,X,) (2.6) “5: LN

mio

Here o, isto the standard deviation of the stimulus spectro—temporal envelope. The y ;3 o

Spectro—temporal receptive field, h(o,X,) , for the model neurons is instantly derived x > T
as e !

h(o, X)=—-E[(r(8)-ro)s(t+0 X))] @7

s

Thus the linear neuron’s spectro—temporal impulse response (i.e. its STRF) can be

estimated directly by performing a crosscorrelation between the neuron’s response,
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r(t) ,and each of it’s N individual inputs, s,(¢) , for k=1, N .

For a neuronal spike train, 7 ()= Z,. 6(t—t) of M neuronal event times, ¢

i 9

Eq- (2.7) can be easily expanded as a spike triggered average

M
o, X)=—— s(t+0.X) .

(2.8)

s

In prractice, T corresponds to the experimental recording period which is in all instances a
finite quantity. Hence, from Eq. (2.6) and (2.8), the estimation of the linear STRF is
greatly simplified by considering a spectro—temporal stimuli with an impulsive spectro—
tempyoral autocorrelation function. One implication of this result is that the only
prerequisite for deriving the STRF for a linear model neuron via Eq. (2.8) is that the
grand average spectro—temporal autocorrelation function have impulse like properties,
regardless of whether the stimulus is stationary or non—stationary (Eq. (2.5) and (2.6)).
Consequently, one can consider classes of acoustic stimuli that retain the global
requirements necessary for deriving STRFs (i.e. impulsive global autocorrelation
function), but yet are ethologically derived. We will consider a class of nonstationary
Sounds with strongly biased instantaneous correlation statistics. In particular, such stimuli
may be of particular interest fur studying various classes of nonlinear auditory neurons
Which often do not respond efficiently to the white noise and m—sequence type stimuli
that are commonly used for reverse correlation procedures. The goal of such stimuli, as
Will be described subsequently, is to provide increased nonlinear driving force using

acoustic stimulus features that are known to efficiently drive auditory neurons.
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2.5 Testing for Nonlinearity

A common procedure for characterizing and determining the relative degree of
nomnlinearity of a neuronal systems is to estimate its higher—order system kernels. Using
such a procedure for estimating the nonlinear contributions of a system is analogous to
fitting a nonlinear function by a Taylor series expansion. The main distinction between
the Taylor expansion and Voltera systems representation is that the system’s Voltera

kermels describe a nonlinear filtering transformations, whereas the elements of the Taylor

expansion (ie. f,(x)=x , f,(x)=x" , f,(x)=x" etc.) describe a nonlinear
transformation without any filtering.

Most often this approach of characterizing system nonlinearities is generally not
extended beyond second—order due to experimental limitations which limit the amount of
recorded data. Although such descriptors are indeed useful for describing subtle
nonlinearities, they are nonetheless faced with practical limitations since they require
large amounts of data, are computationally intensive, and are often difficult to interpret.
Given the finite experimental recording time of neurophysiologic experiments, the

estimation of higher—order kernels is further confounded by the fact that white noise like
stimuli, which are prerequisite for deriving higher—order kernels, often do not provide
sufficient nonlinear driving force (e.g. higher—order correlations are weak) to activate
Very nonlinear system elements. Furthermore, for many neural systems relevant aspects
of the system transformation are best described by dynamic nonlinearities (Smirnakis et

al. 1997) which are often not easily described using a Voltera/Wiener series
Tepresentation.
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The described multi—input/single—output representation for the linear model
neuron of Eq. (2.3) and (2.4) can be formally extended to include nonlinear elements
and across—channel nonlinear interactions. The spectrographic multi—input nonlinear

representation for a model neuron can be expressed as

r(t)=ro+i rk(t)+i 2 ry(e)+-- (2.9)

k=1 I»k

where

rk(t)=i 7a(2) (2.10)

n=1

is the Voltera expansion of the ¥ input channel. The n" order term
rk"(t)=j.---_f x (1= ) x(t=T )b (T )0 T, )dT - dT, (2.11)

describe the nonlinear filtering contributions to the neuron’s firing rate that is produced

by the & input channel. Here x,(¢) is the input to the k filter channel and

hy.(t,--,7,) isthe n™ order nonlinear kernel for this channel. The n* order kernel
describes the nonlinear filtering transformation between the input and the output of this
channel. For the special case of a linear model neuron (Eq. (2.3) and (2.4)) the kernels
exist only for n=1.

In the third term in the series of Eq. (2.9)
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ru(t)=§ Pua(?) 2.12)

corresponds to a sum of the n™ order interaction products between the k* and ™ input
charyrels. These terms describe the functional interactions between any two channels. As
an example one can consider the second—order interaction product between the k* and /™

input channels. This is described by a second—order convolution
ruz(t)=.".‘.hu,2(71 s T)x(t=1)x(t—T1,)dT,dT, (2.13)

between the inputs x,(t) and x,(¢) and the second—order nonlinear cross—kernel,
B> (T, T,) , which describes the second—order nonlinear filtering function between

the k™ gpg o input channels. The output, r,,,(7) , corresponds to the firing rate
contribution that is produced by the nonlinear interaction between these two input
channels. All of these operations can be extended to include higher—order interactions
Products between any number of input channels.
The procedure for identifying the linear kernel of the system outlined in section

2.4 can be extended directly for identifying the higher—order and cross kernels of the
Nonlinear model neuron of Eq. (2.9) (Marmarelis and Marmarelis 1978). This approach

Tequires jdentification of the higher—order terms of the series expansion via a higher—
order reverse correlation procedure analogous to Eq. (2.7). Although this approach is in
theory we)) suited for rigorously identifying the higher—order nonlinear attributes of the
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sy stem under study, it is in general cumbersome, computationally intensive, and requires
large amounts of data. Thus in practical applications this method is not feasible and is not
extended beyond a second—order analysis of the system’s kernels (Yeshurun, Wollberg,
and Dyn 1987). Furthermore, unlike the linear model neuron scenario, where the reverse
corTelation procedure extracts the systems linear impulse response directly, the measured
S'ZRF is a no longer identical to the systems linear spectro—temporal impulse response.
Instead the estimated kernels are now a composite functions of the linear and the
nonlinear elements of the system. Also, the experimentally measured STRF is now a
function of the driving stimulus used to characterize the system.

For the described nonlinear neuron, the essential relationship between the
neuron’s Voltera kernels and the measured STRF is (if one ignores cross—channel

interactions and uses white noise) (Marmarelis and Marmarelis 1978, Eq. 4.50, pg. 150)

STRF,(,X,)=w/(0)= (2.14)

2 (2m+1)02"

a0 a0
m on "'Io h2m+1(Tl.Tl.'"’Tm’Tm’ol)dTl"'dTm

Where the experimentally measured kernels for each channel, w, (o) , are now referred

tO as Wiener kemels. The label STRF, is used to denote the Wiener kernel derived STRF.
Note that unlike the linear model neuron scenario, where the reverse correlation

Procedure produces the systems linear kernels directly, the derived STRF,, is now a sum

¥ Projections of the odd—order Voltera kemels, 4, ,and a functions of the stimulus
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power o .

In many instances, the derived Wiener kernel STRF is advantageous since it
comntains linear and nonlinear stimulus—response characteristics in one descriptor. Note
that the higher—order nonlinear projections are progressively weaker for higher—order
nonmnlinear elements (because of the overpowering denominator term in Eq. (2.14); also
see Fig. 1 for illustration) so that the Wiener—derived STRF largely captures linear
response characteristics. This descriptor is optimal in the sense that it provides maximal

information about the systems transfer characteristics (since it combines linear and

nonlinear information). In fact, it is possible to derive an STRF,, for a nonlinear system ': :‘f‘ivt
even in the absence of linear system elements. The drawback of this descriptor is that it :; - ,: ." ‘ D
needs to be reestimated for each stimulus condition and operating point in order to :.’, ;' " - ‘
Preserve its optimal properties. Alternately, the Voltera STRF representation is %: : M,Lh
advantageous in that all of the terms are distinct and invariant as a function of any " L, ~
stimmulus parameter (e.g., stimulus power and other high—order stimulus characteristics) 3 B
and, consequently, they never requires reestimation. : ' ’.‘ |
Given these basic properties we devise a scheme for identifying complex ; e |

Nomnlinearities that may be pertinent for neuronal encoding. As described, it is
theoretically possible to identify nonlinear response characteristics by estimating the
SY stexn’s higher—order kernel using a higher—order reverse correlation procedure.

HOWever, experimental and practical limitations prevents us from doing so. An indirect
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Figure 1: (A) Relationship between the input stimulus, Voltera system kernels, and the
Wiener system kernels. The input stimulus is represented by a sequence of higher—order
stimulus correlations. These are depicted as distinct inputs to the system or,
equivalently, the Voltera space. The Voltera space can be thought of as the physical
elements of the system where the order designates the order of the described
nonlinearity. For most reverse correlation stimuli, these higher—order inputs get

progressively weaker (with increasing order). The Voltera kemels project onto the
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measured Wiener kernels, w, . For the 1*—order Wiener kernel (e.g. the STRF) the

projections arise from all of the odd—order Voltera kemels (depicted in red). As for the
input patterns of the stimulus, these projection patterns get progressively weaker with
increasing order. (B) Altering the projection pattern onto the first—order Wiener kernel

by altering the fifth—order input of the stimulus (altered input depicted in red).

approach around this problem, is to systematically alter the stimulus higher—order
Spectro-temporal correlations, so that the effective projection pattern from nonlinear

terms (Eq. 2.14) is altered. This procedure is schematized in Fig. 1 for a single channel

x
of the nonlinear filter bank model. O
We consider two input signals, S,(#,X) and S,(z,X) and use these to perform g T
. T .
an _4/B comparison of the neuron’s response. By design the two signals are chosen so that - :,. T
their first-order autocorrelation functions R, (0',Z) are identical. Only the higher— s e
Order correlation functions are different and these can be chosen by the experimenter o
based ona priori knowledge of the higher—order correlations that may be pertinent. As an NI SR
SXammyple consider the projection arising from the fifth—order Voltera element of Fig. 1. Ty S .
We can magnify this projection by magnifying the fifth—order correlations of S,(2.X) - s_ = -

(Fig. B) while keeping them intact for S,(2X) . For the linear model neuron of Eq.

2. 3) and (2.4)itis expected that the derived STRF be identical for both sounds since for
a linegr neuron, the derived STRF is only a function of the first—order autocorrelation

fu‘nction (i.e. only dependent on the projection arising from the first Voltera element of

b S
=1 A), R, (0,C) (seeEq. (2.5)). For a nonlinear neuron, however, the derived
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STRF,, is a function of the higher—order correlations of the stimulus (Eq. (2.14)),

which are in this case distinctly different for S,(z,X) and S,(7,X) . In this case, the

projection arising from fifth—order Voltera element is magnified and this is reflected

directly in the STRF,, for S,(z,X) (Fig. 1B). More generally, this procedure can be

extended by performing any higher—order alteration of interest. Thus for a neuron that
has significant higher—order nonlinearities, the obtained STRFs for S ,(z,X) and

S,(2.X) reflect differences that can be attributed directly to the specific alteration

performed on the stimulus and its nonlinear interaction with the system.

2.6 Correlated Versus Uncorrelated Sounds

Little is known as to how the central auditory system of non—specialized .o
1 ammals decompose and processes complex stimuli that are common in natural s N
environments. Clearly not all natural sounds are alike, and it is of interest to understand ‘ '“ o
how different classes of natural sounds are represented and processed by the central : ‘ R

auditory system. As an example consider speech and vocalization sounds (Chapter 1: Fig.
5). Such sounds often have coherently activated spectral resonances, temporal
IModulations, and FM sweeps which together give rise to distinct perceptual qualities.
HX armonicity and fast temporal periodicities give rise to the unified percept of pitch
“Whereas slower temporal modulations that occur from disjoining speech segments and
WWord transitions are perceived as discrete auditory objects or acoustic rhythms (Plomp

1967 ) 983). The perception of timbre (Plomp 1970; Pols, Kamp, and Plomp 1969; Van
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Veen and Houtgast 1983), on the other hand, is largely dominated by spectral shape and

spectral resonances that arise in speech from postural adjustments of the vocal tract and

oral cavity.
In contrast, environmental noise sounds often do not share the same physical and

perceptual attributes inherent to vocalizations and speech. The water sounds emanating
from a small stream and the sound of ruffling leaves (Chapter 1: Fig. 6), for example,
have randomly modulated spectro—temporal envelope and lack most of the distinct

spectral and temporal cues that are common to vocalizations. Among these,

L2 I

environmental sounds often do not have strong coherent spectral resonances and e " ‘
temporal periodicities. Since such sounds generally do not arise from vibrating media i “‘: e
and air columns, such as for vocal fold vibrations and the vocal tract in human speech, : - d“ . ‘
they therefore also lack harmonic components. : : i , B

A common determinant of the perceptual and physical qualities of natural sounds R
are therefore determined by the level of correlation or redundancy that is present in the i .
acoustic signal. Vocalization sounds, for example, are locally highly structured and have =
Spectro-temporal envelopes which are highly redundant (Attias and Schreiner 1998a; Toe s
N elken, Rotman, and Yosef 1999; also see chapter 1). This is usually the result of <
Trepetitive temporal periodicities, comodulation, and spectral resonances which generally
do not occur in isolation and are all the result of the constraints imposed by the voice
£Een erating mechanisms. The non—speech sound arising from shuffling leafs or running
WWater lacks this high local correlation, likely because of the erratic patterns of air and
Tluid flow that give rise to such sounds. The running stream also lacks many of the

<<Ommplex dynamics present in the speech sound. The time—varying envelope of the
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running stream preserves statistically similar acoustic properties for all times. A snapshot
of the spectrogram for this sound at two distinct time instants would look largely the
same. This is in marked contrast to vocalizations and speech which have local correlation
properties that are continuously changing and markedly different for distinct time epochs.
Such spectro—temporal characteristics were quantified and explored in detail in
chapter 1. Here it suffices to note that these sounds represent two qualitatively different
and extreme scenarios of auditory processing. With this in mind, we would like to
understand how such stimulus characteristics are represented and processed by individual
auditory neurons and how these are ultimately represented in the spatio—temporal neural
discharge activity at various stations of the auditory system (e.g. the inferior colliculus,
auditory cortex ). Although we will not use natural sounds directly to achieve this (for
the reasons mentioned in section 2.3) our motivation is strictly guided by neuroethologic
principles. The remainder of this chapter focuses on the acoustic stimulus design. Two

acoustic stimuli are designed that incorporate the following key attributes of natural

Sounds:

1) Dynamic — As with natural sounds, the probing stimulus should be dynamic so that it
prevents response adaptation, activates dynamic nonlinearities, and so that its
Statistical structure changes with time. This is closely related to the notion of non—
Stationarity which requires that the autocorrelation function (here we consider only the

Spectro—temporal autocorrelation function) be time—varying (Hayes 1996; Marmarelis

and Marmarelis 1978).
<> Spectro-temporally complex — It is desired that the driving stimulus be sufficiently
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complex so that it embodies key spectro—temporal features of natural sounds. Some of

these include FM sweeps, spectral resonances, and temporal modulations.

3) Globally Unbiased — In order to provide a complete and statistically sound

4

5)

6)

7>

characterization of neuronal responses the long term spectro—temporal statistics

should be unbiased.
Locally correlated — As for speech and vocalizations, one sound will be designed to

explore responses to sounds that are local structured and biased. The global statistics

for this sound should nonetheless satisfy requirement 3.
Locally uncorrelated — This property is used to explore responses to sounds that are

qualitatively similar to the babbling brook example. As for the sound used in 4, this

sound is also globally unbiased.

Biologically plausible — This is our main source of motivation which is closely tied to

requirements 1 and 2.

Persistently exciting — This term is often used in the engineering literature (Ljung

1987) to refer to the amount of driving force. A persistently exciting stimulus should
continuously provide excitatory drive within the integration limits of the system. In
mneuroscience terms this requirement demands that the stimulus should also provide
sufficient excitatory and inhibitory drive. Hence the stimulus should continuously
Probe neuronal responses up to and above the relevant neural integration limits. This
is accomplished by designing acoustic stimuli that contain spectro—temporal acoustic
Features (onsets, offsets, resonances, FM sweeps, etc.) which continuously drive the

auditory system.
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2.7 The Dynamic Ripple and Ripple Noise Stimuli

Two broadband stimuli (Fig. 2 and 3) were designed to mimic some of the
speectral and temporal features characteristic of two classes of natural sounds. Although
theese stimuli do not capture the complete range of perceptual and acoustic properties (i.e.
comodulation, harmonicity, 1/ modulation spectrum etc.), they nonetheless capture
essential properties of their spectro—temporal envelope. Here, we sought to preserve the
local correlation properties of the spectro—temporal envelope of natural sounds because
these determine important perceptual qualities such as timbre (Plomp 1967; Pols, Kamp,

and Plomp 1969; Plomp 1970; Van Veen and Houtgast 1983 1985).

The dynamic ripple stimulus (Fig. 2) is motivated by the ripple spectrum noise et
used in human psychophysic studies (Houstgast 1977) to study lateral inhibition and S
morre recently for studying spectral and temporal receptive fields in the ferret and cat - Z , L
auditory cortex (Schreiner and Calhoun 1994; Kowalski, Depireux, and Shamma 1996a .- J“*

1 996b). The instantaneous spectrum for this sound is a sinusoidal grating on a log— .
frequency and log—intensity axis. It is analogous to spatial sinusoidal gratings used in
‘Visuaal experiments to investigate n<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>