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Abstract

Processing of dynamic ripple stimuli in the cat inferior colliculus: an ecological

approach to sound processing. by Monty A. Escabi: Natural sounds, such as speech

and vocalizations, are characterized by time-varying spectra that give rise to distinct

temporal periodicities, frequency transitions, and spectral resonances. These structural

features are decomposed by the primary sensory epithelium and give rise to a number of

perceptual attributes. Given the complexity of the auditory neuronal network and the fact

that the brain is in general extremely nonlinear, it is increasingly clear that simple

acoustic stimuli (e.g. pure tones and noise) can not be used to identify natural sounds

processing strategies. To understand how complex sound attributes are represented in the

brain, statistical properties of the spectro-temporal envelope of natural sounds (including

speech, vocalizations, environmental noise, and music) were studied in detail. Ensemble

statistics are marked by robust spectrographic correlations, logarithmic contrast, and

stimulus dynamics which are closely related to a number of perceptually relevant

acoustic variables. Hypothetically, these higher-order stimulus attributes can be utilized

by the auditory system for efficient sound processing and across-category

discrimination. To test this hypothesis, neuronal recordings were performed in the central

nucleus of the inferior colliculus (ICC) of cats using synthetic ripple stimuli that

incorporate the observed statistical attributes. Using spectro-temporal receptive field

(STRF) methods, it is found that ICC neurons efficiently utilize these higher-order

stimulus attributes for sound processing. Populations of neurons are distinguished based

on their degree of feature selectivity and their ability to time-lock to the spectro

iv



temporal envelope. A hierarchy of functionally distinct neuronal types is revealed based

on three possible neuronal codes. Further evaluation reveals that the operating range of

ICC neurons is physically matched to the spectro-temporal energy distributions observed

in natural sounds. When tested with stimuli that mimic natural sounds, neurons show

contrast tuning and improved spectro-temporal coding at time-scales comparable to the

neuron’s receptive field. These findings establish a link between acoustic ecology,

acoustic sound structure, and neuronal processing. Such processing strategies make use

of structural regularities in natural sounds and likely underlie human perceptual abilities.

l

Christoph E. Schreiner, Chair
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Spectro-Temporal Attributes of

Natural Sounds



Abstract

The time-varying spectrum of natural sounds and many man made sounds (e.g.

music) is marked by spectral resonances, edges, temporal modulations, and frequency

transitions, all of which give rise to distinct perceptual qualities. This study seeks to

provide insight into the ensemble characteristics of natural sounds by analyzing high

order statistics of the time-varying spectrum of speech, animal vocalizations, music, and

background sounds (wind, rain etc.). Low-order statistics such as the modulation

spectrum and temporal contrast (Attias and Schreiner 1998a) of natural sounds show

invariant statistics across various sound ensembles. Thus, such low-order descriptors can

not be used directly to distinguish and classify sounds. We show that ensembles of

natural sounds segregate if one takes into account cross-channel spectrographic

correlations, spectrographic contrast, and stimulus dynamics. The presented findings

allow us to define possible perceptually relevant acoustic variables and mechanisms for

across-category discrimination of natural sounds.



1.1 Introduction

In complex acoustic environments speech, vocalizations, and other competing

sounds often do not occur in isolation. Despite this, the auditory system of humans and

mammals is capable of distinguishing sounds in less than optimal conditions (Moore

1997). Mammals have evolved elaborate neural systems for analyzing the time-varying

spectrum of natural sounds, classifying sounds, and for distinguishing distinct perceptual

qualities present in natural sounds (e.g., pitch, timbre). Presumably, the evolved

processing strategies have been evolutionary influences by ecological constraints, and are

consequently, efficiently adapted for processing natural sounds (Rieke et al. 1995; Attias

and Schreiner 1999b; Nelken et al. 1999).

Given this basic hypothesis, one approach of studying auditory function, is to first

study in detail the structural characteristics of the acoustic ecology. This approach has

been employed for naturally occurring visual scenes (Ruderman and Bialek 1994; Dong

and Atick 1995; Ruderman 1997), for acoustically specialized mammals (Simmons,

Howell, and Suga 1975), and to a much lesser degree for natural sounds in general

(Attias and Schreiner 1999b; Nelken et al. 1999). In the case of the echolocating bat and

songbird auditory systems (Simmons, Howell, and Suga 1975; Theunissen Et al. 2000),

the acoustic ecology which is most often considered is largely limited to a small set of

highly stereotyped sounds that are prevalent in the animals vocal repertoire and that elicit

a precise behavior. The relevant acoustic ecology of less specialized animals has only

been studied to a small extent (Attias and Schreiner 1999a; Nelken, Rotman, and Yosef

1999) and it is, in general, not well understood.

In most animals the task of deciphering the relevant acoustic parameters in the



animals acoustic ecology is not a trivial task. Unlike the bat and songbird species, this is

in part attributed to the fact that a direct link between physical properties of a sound, the

animal’s behavior, and physiology can not be easily established. Such is the case for

acoustically nonspecialized animals such as the cat, rabbit, and possibly even for

primates. In other animals, such as the echolocating bat and the barn owl, the search for

relevant parameters is greatly simplified since these animals show a direct link between a

sound and behavior.

Because of the general lack of understanding of natural sounds, attempts at

understanding auditory function in most mammals is largely limited to studies that use

narrow band acoustic stimuli. In the case of pure tones, these sounds excite only a small

fraction of the primary sensory epithelium and, consequently, a small fraction of the

auditory neuronal network. In the special cases where broadband stimuli are used these

are essentially limited to white noise and clicks (e.g., Young and Browenell 1976; Yin,

Chan, and Irvine 1986). Natural sounds are clearly not well described by these basic

attributes. Instead, most natural sounds are broad-band, spectro-temporally complex,

and nonstationary. Consequently, the excitation patterns produced by natural sounds on

the cochlea and along the auditory neural network are significantly more complex than

for the simple stimuli that are used to study the auditory system.

Given this general observation, we seek to understand the patterns of excitation

that are produced by natural sounds at the level of the auditory periphery and at central

auditory stations. This approach is dually motivated: first we seek to identify robust

statistical characteristics which are prevalent in natural sounds and that allow one to

distinguish between various classes of natural sounds (e.g. speech versus a background



sound such as running water). Secondly, we would like to identify structural

characteristics of natural sounds that may be of perceptual relevance and which the

auditory system may use for efficient sound encoding. Since low-order statistics of

natural sounds show invariant modulation and contrast statistics (Attias and Schreiner

1998a), they alone are insufficient for distinguish among classes of natural sounds.

Analysis of higher-order comodulation statistics, however, reveals that vocalizations can

be distinguished from background sounds (Nelken, Rotman, and Yosef 1999).

In this study, the spectrographic statistics of natural sounds, including spectro

temporal correlations, contrast statistics, and stimulus dynamics, are therefore examined

in detail. First, it is shown that natural sounds have strong spectro-temporal correlations

across octave spaced frequency channels. Comparisons among speech, vocalizations,

background sounds, and music reveals that sounds can be segregated based on the degree

of correlation. Thus by analyzing spectro-temporal correlations, the auditory system can

potentially distinguish among classes of natural sounds. Secondly, we show that the

spectrographic representation of natural sounds has local amplitude fluctuations which

span several orders of magnitude. Using perceptually relevant time-scales (for loudness

perception) to model the dynamics and statistics of natural sounds, we show that these

amplitude statistics can be use to distinguish among classes of natural sounds. These

findings allow us to define possible perceptually relevant variables and allow us to

identify structural characteristics of natural sounds which the auditory system may use

for efficient sound encoding. These ideas are further tested and verified directly using

electrophysiologic recording methods in chapters 3 and 4.
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1.2 Spectro-Temporal Stimulus Decomposition of Sounds

The peripheral auditory system is characterized by a tonotopically arranged set of

hair-cells which are individually tuned to a small range of frequencies (Liberman 1982;

Greenwood 1990). Upon arriving the cochlea, incoming sounds are decomposed by a

bank of tonotopically arranged frequency channels into a complex spectro-temporal

excitation pattern (Sachs and Young 1979; Delgutte and Kiang 1984; Shamma 1985;

Carney and Geisler 1986; Geisler and Gamble 1989). Since this spectro-temporal

decomposition defines the inputs for higher-order processing centers in the brain, it is

useful to understand the basic parameters that are of possible relevance and the

constraints that are imposed on the auditory neuronal network by incoming natural

sounds.

Time–frequency representations, such as the spectrogram, have a long history in

engineering, the physical, and biological sciences. Initially, the spectrogram was

motivated by the need to devise physiologically plausible models of speech production

and perception during the advent of telephone and other communications systems. A key

aspect of the cochlear transformation is the conversion of a one dimensional acoustic

pressure waveform, by an array of bandpass filters (i.e. the cochlea), into a spectro

temporal excitation pattern. The resulting neuronal discharge pattern describes the

changes in the stimulus spectrum as a function of time, much like time–frequency

representations used to analyze dynamic signals (Cohen 1995). This spectro-temporal

neuronal discharge pattern is relayed by the eight nerve to the cochlear nucleus, which

serves as the inputs for higher-order processing centers in the brain. Thus, a key question

in auditory neuroscience deals with trying to understand how such inputs are utilized by



the brain for efficient sound encoding, sound recognition, and source segregation. We

specifically ask: what are the relevant spectro-temporal parameters for this stimulus

representation? And how is this complex excitation pattern further processed by the

brain? To understand this, it is first useful to understand statistical characteristics of this

excitation pattern in detail.

1.3 Spectro-Temporal Decomposition of Sounds Using an Auditory

Filter Bank

The spectro-temporal decomposition of sounds performed by cochlea is

characterized by octave spaced filters of nearly equal resolution (Liberman 1982; Kiang

et al. 1965). Numerous physiologically motivated auditory filter bank models have been

designed which mimic the acoustic stimulus decomposition performed by the cochlea.

These spectro-temporal decomposition are used in a variety of application, ranging from

design of auditory filter models (Carney 1993; Wang and Shamma 1995a 199b; Jenison

et al. 1991), to sound compression, and sound analysis algorithms (Picone 1997).

Here, an alternative spectro-temporal filter bank decomposition is designed that

satisfies two essential properties of the cochlear filter decomposition. It is required that

the component filters have 1) logarithmically spaced center frequencies and 2) constant

quality factor. The latter requirement essentially demands that the component filters have

equal resolution (bandwidth) on an octave frequency axis much like cochlear filter

resolutions. For completeness a slightly more refined filter model is used. This model

takes into account the fact that the frequency spacing and filter bandwidths along the

basilar membrane deviate slightly from this ideal logarithmic scenario at frequencies

.
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below about 1000 Hz (Liberman 1982; Greenwood 1990). The cochlear center

frequency versus cochlea position equation provided by Greenwood (Greenwood 1990)

is used to model the spacing of the auditory filter bank at low and high frequencies.

Along the cochlear partition, the inner hair cell (IHC) center frequency is

provided by (Greenwood 1990)

f=A(10**—k) (1.1)

where x is the normalized cochlear distance (normalized between zero and one) from the

apex (stapes) to the base of the basilar membrane. The constants A, a, and k are species

dependent. For humans A=165.4, a 2.1 (a–0.06 if x is expressed in millimeters, total

length of about 34 mm), k=0.88 whereas for the cat A=456, a-2.1, and k=0.8. At

intermediate frequency values, the frequency versus position curves for the human and

cat are for the most part identical (Fig. 1A) with a fixed offset along the cochleotopic, x,

axis. They only differ at the extremities where the lower and upper frequency limit are

determined by the constant A. For humans the lower and upper frequency limits are 20

Hz and 20 kHz respectively whereas for the cat they are 90 Hz and 60 kHz. Comparing

the curves in an intermediate range of frequencies, say 90 Hz through 20 kHz, one

notices that they are identical (with a fixed offset along the cochlear, x, axis). Since the

presented data analysis is confined for acoustic signals with a frequency range of 100 Hz

to 20 kHz, we arbitrarily use the parameters for humans in the filter bank design since it

nicely accommodates this range of frequencies.

Although such a filter bank design is appealing because its spacing and resolution

º º
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is matched to that of the human cochlea, it is not intuitive since the variable x (cochlear

distance) is not commonly used to describe auditory filter models. For example, it is not

clear what the spatial resolution along the cochlea, A x , is required to achieve a given

spectral resolution, AX , of say 1/3 octave. In most instances it is convenient to think

of spectral filtering and spectral bandwidths using an octave frequency convention where

the frequency doubles with each octave. Thus, the cochlear distance variable needs to be

related to the more conventional description of octave frequency. We define the octave

frequency axis by

x=log,(fl.f.) (1.2)

where f is a lower reference frequency, fis the frequency along the cochlear partition,

and X is an octave (logarithmic base two) spaced frequency axis. Substituting the inverse

of Eq. (1.2), f=f_2^ , into Eq. (1.1) and solving for X gives

X=log,[Alf]+log,[10"-k] . (1.3)

It is expected that for high frequencies the frequency variable, f, be precisely

logarithmically spaced. For high frequencies we note that 10*> k is strictly satisfied

and so allowing k = 0 results in

º



x=log,|Alf]+xalog,[10]
-

(1.4)

At high frequencies above about 1000 Hz, the octave frequency axis and cochlear

partition distance are therefore linearly related (Fig. 1B). These variables can, therefore,

easily be related for most of the hearing range using Eq. (1.4). Knowing this, the

cochleotopic resolution, A x , which is necessary to achieve a given or desired spectral

resolution of AX (in octaves) is expressed as

––º (1.5)
a log,[10]

A y B

: | x *
■ º |

£ H 5 .
3 | #

Cl- O
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j
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Figure 1: (A) Cochlea frequency versus cochlear position function for the cat (dotted)

and human (continuous). Both curves have identical shape and differ only by a fixed

offset which determines the minimum and maximum frequencies. (B) Human

cochleotopic position function versus octave frequency function (continuous) and linear

fit obtained using the octave frequency representation of Eq. (1.2). Note that the curves

deviate at low frequencies where the cochleotopic curve flattens.

:
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For the desired analysis, two filter banks are designed each with an equivalent

spectral resolution of AX=1/4 and AX=1/8 octave. This corresponds to a

cochleotopic resolution of Ax=0.0358 ( Ax= 1.254 mm) and Ax=0.0179 (

A x=0.672 mm) normalized units respectively. These two filter banks only differ in

the spectro-temporal trade off which is a direct consequence of the uncertainty principle

(Cohen 1995). The high resolution filter bank ( AX=0.125 ) can accommodate a

periodic spectral oscillations or a ripple frequency of up to, Q , of 4 cycles/octave yet

has low temporal resolution. Alternately, the low resolution filter bank ( AX=0.25 )

accommodates a ripple frequency, (2 , of up to 2 cycles/octave but allows for slightly

higher temporal resolution.

Although auditory filter bank models generally use filter bandwidths that adhere

to the perceptually based filter bandwidth, i.e. the critical band (1/3 octave,

Ax=1.672 mm) (Picone 1997), this convention is not used since the auditory system !
is actually sensitive to spectral frequencies beyond this range (up to ~8 ripples per

º

octave; Van Veen and Houtgast 1985; Supin et al. 1999; Chin et al. 1999). Analysis of º

vowel sounds, for example, has shown that vowels can have spectral modulations

(denoted by the ripple density, (2 ) of up to 4 cycles per octave. Yet it appears that

humans are most sensitive to spectral modulations of up to 2.5 cycles per octave (Van

Veen and Houtgast 1985) which would require a filter bank resolution of about 1/5

Octave to appropriately sample these signals (as suggested by the Nyquist sampling

theorem).
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Secondly, most of the filter banks used for auditory analysis are constructed for

simulating auditory neuronal responses and for understanding the perceptual and

psychophysical limits of the auditory system. Our purpose here is not necessarily to

simulate the auditory system, but instead to thoroughly characterize the spectro-temporal

content of natural sounds. Hence we seek to find out "what stimulus content the auditory

system is being exposed to?" How and if the auditory system makes use of this

information is a separate problem which must be solved as well.

We use Eq. (1.1) (Greenwood 1990) to design a linear filter bank with L

independent sub-bands. The cochleotopic axis is first discretized to a resolution of

A x (equivalent resolution of AX ). The center frequency (on the logarithmic

cochlear axis x), f, , of the "filter component are expressed as

f=A(10"—k) (1.6)

where x=x,+l Ax and 1=0...L–1 . For each filter the 3 dB cutoff frequencies,

denoted by f and f., for the "filter, are

fº-A(10”—k) (1.7)

where x=x,+(1–0.5)Ax and 1–0...L . The linear bandwidth of the lº filter is

therefore A f=f, 1–f-A( 10”— 10° *) . A two octave segment of the auditory filter

sºº"
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bank is shown in Fig. 2A. On a linear frequency axis the filter bandwidths, Af, , are

dilated (much like for a wavelet filter bank) with increasing frequency. Unlike a wavelet

decomposition, however, the amplitude of the filters do not scale and have a constant

gain. When displayed on the cochleotopic axis, x, the filters are effectively identical

having the same resolution, Ax .

1.4 Filter Selection and Design

Selection of filters for auditory models is generally based on choosing a filter

prototype function which captures the physiologic properties of the cochlea and eight

nerve auditory responses. Filters which model the steep high frequency rolloffs and

smooth low frequency transitions of eighth nerve auditory filter, such as the gamma-tone

filter (Lyon 1982), are often used. More refined filter models have been designed using

non-parametric methods which estimate the auditory nerve filter transfer function by

fitting experimental data (Jenison et al. 1991). Here, filter criteria and design

considerations for decomposing natural sounds into a spectro-temporal representation

are outlined. Although the chosen filter prototypes (B-spline) are not physiologically

motivated, they nonetheless offer several advantages over using physiologically derived

filter shapes and more conventional precision filters (i.e. Kaiser, Dolph-Chebyshev,

etc.). In particular, these filters are chosen since they are spectro-temporally compact.

They provide superior stopband and passband attenuation properties over all other filter

types, thereby preventing signal leakage from adjacent bands.

13



The chosen B-spline lowpass filter (Roark and Escabi 1998) has an impulse

response

TT no.

- - p (1.8)

h(n=tº+(*#)o, no.■ p

where n=–N,...,N-1, N , weaf./F, is the discrete-time filter cutoff frequency

(units of radians), f. is the desired filter cutoff frequency (in Hz), F, is the sampling

rate (in Hz), 2N-H 1 is the filter order (the number of coefficients), and c, and p are

filter parameters which control the filter transition width and the stopband and passband

attenuations. The frequency domain lowpass filter prototype function (i.e. for N– oo )

is given by

p (1.9)

no-1-#-r() {{#-)-.
where [x]. =max(0,x) . This filter can be thought of conceptually, as a spectral

convolution between the ideal lowpass filter transfer function and a p" order B-spline

window of width ow./p .

The B-spline filter design has several advantages over other commonly used

precision filters such as the Kaiser, Saramakii, and Dolph-Chebyshev. First, the filter

14



prototype is effectively temporally (temporal convergence factor of 1/N**' ) and

spectrally compact. This property requires that filter transfer function, H (w) , and its

corresponding impulse response function, h[n] , be zero outside some range of values

(for example |n|>N and for |wl-w" ). Secondly, unlike most precision filters which

generally have a constant attenuation throughout the passband and stopband, the B-spline

filter transfer function has an exponentially decreasing stopband error (ATT) at

frequencies away from the filter cutoff frequencies. An examples of the B-spline filter

and a Kaiser window with similar design criteria are shown in Fig. 2 B. Note that the

stopband error for the B-spline filter decreases at frequencies away from the filter cutoff

frequencies. Signals which pass through these filters are therefore effectively bandlimited

since these filters can achieve much higher attenuation than other filters with identical

design specification. This is particularly important to prevent strong signals at adjacent

frequency bands from leaking into bands which have very little energy. Such an artifact,

for example, would show up as correlated activity across frequency bands despite the fact

that these bands may not have any common signal. This would be a significant problem

if one where to estimate spectro-temporal content using physiologically derived filters

(since these filters generally have shallow rolloffs).

To construct the filter bank with desired cutoff frequencies as described in section

1.3, the lowpass filter impulse response of Eq. (1.8) is adapted so that it adheres to the

bandpass filter specifications (Oppenheim and Schafer 1989) in the filter bank design.

The impulse response for the "bandpass filter is given by
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b,[n]=h, [n]—h,[n] (1.10)

where hºu■ n] and h[n] are the impulse response of the component lowpass filters

with cutoff frequencies w, H2t f.../F, and w=2t f/F, . The transition width

of the "filters is chosen as TW=(f,1-f)/4 . For all filters the minimum stopband

and passband attenuation is set to 60 dB so that signal leakage is prevented. An example

of such a bandpass filter is provided in Fig. 2 B. Equations for choosing the parameters

o, and p are provided by Roark and Escabi (1998).

osh; -60 |i
Frequency (Hz) Frequency (Hz)

Figure 2: Cochleotopic filter bank used for spectro-temporal sound decomposition (A)

shown for a two octave segment. The filter bandwidths grow with increasing center

frequency. (B) Example B-spline filter (continuous line) used for spectro-temporal

decomposition compared to a Kaiser filter (dotted line) using identical filter order

(N=848). The Kaiser filter has a higher first and second sidelobe attenuation (72 dB)

than the B-spline filter (60 dB). The B-spline filter, however, has a decreasing

stopband attenuation at frequencies away from the filter cutoff frequency whereas the



Kaiser filter stopband attenuation levels off at 100 dB. This property helps reject signal

leakage from adjacent filter bands.

1.5 Signal Decomposition and Envelope Extraction

Using the filter bank design of sections 1.3 and 1.4, acoustic signals, x(n) ,

where decomposed by filtering each sounds with the filter impulse response b,In]

using the discrete time convolution operator

y[n]=X b|n-k]x[k] (1.11)
k=-N

For each input signal, x[n] , a series of L outputs, y, [n], y,■ n],...,y,[n] , is

therefore produced. Since the acoustic signals, x|[n] , were often extremely long (tens

of minutes and therefore tens of mega samples) this operation was performed using the

overlap save method which partitions the signals into blocks of a small fixed size upon

performing this operation (Jackson 1989). This guarantees that one does not exceed the

memory requirements of the computer. This method does not introduce any error to this

Operation.

For each band, the envelope was extracted using the Hilbert transform operator.

To do this we approximated the analytic signal representation using (Cohen 1995;

Oppenheim and Schafer 1989)
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2,[n]=b,[n]+H|b|[n]]=a,[n]e” (1.12)

where 2,[n] is the discrete time analytic signal, H1xin]]= X. hín-m]x[m] is the

90 degree phase shifter operation, otherwise known as the discrete time Hilbert

transformer (Cohen 1995; Oppenheim and Schafer 1989), and

2 sin ("n/2) (1.13)

is the corresponding impulse response for the 90 degree phase shifter. Using this

formulation, the envelope for the "band is given by a |[n]=|: |[n] . Since the filter

bandwidth, Af, , of the "output is dilated with increasing l, the bandwidth for each

corresponding envelope, a■ n] , is also dilated an can be approximated by Af,

(Oppenheim and Schafer 1989; Cohen 1994). As a consequence, the l" temporal

envelope has a maximum modulation rate of Af/2 . It is desired that the maximum

modulation rate for each band be uniform so that their temporal properties can be

compared across bands. This is achieved by lowpass filtering each band using a B-spline

lowpass filter, h[n] , with cutoff frequency of 100 Hz (parameter for the filter are:

or=0.1037 , p=2.3391 , N=4973 , ATT=60 , TW=20 )
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on-5. Ma-ºla's (1.14)
k=- N

The lowpass filtered temporal envelope, e■ n] , therefore accommodates the same

range of temporal modulations for all bands.

Since acoustic features and sound perception are generally well described using a

decibel intensity description, we also consider the zero mean decibel spectro-temporal

envelope

e"[n]=20log,(e.[n])-u, . (1.15)

where us is the mean value of 20logg(e.[n]) and the expectation is taken across all

time, n, and along the spectral axis, l. The mean normalization is performed to facilitate

comparison and analytic assessment across frequency channels and across stimulus

ensembles.

1.6 Spectrographic Envelope

To characterize linear spaced features of natural sounds the short-time Fourier

transform signal representation is used (Cohen 1995; Oppenheim and Schafer 1989). The

discrete time version of this transform is given by

N
- -X[n,w,)= X x(n+m]w[m]e "" (1.16)

m = — N
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where as before n and we are the discrete time and discrete frequency variables,

w[n] is a time limited window sequence, and xIn] is the discrete time sampled

signal. As for the filter bank design of sections 1.3 and 1.4, the corresponding B-spline

window function is used

(*#) (1.17)
w[n]=| ++

Trc: n/p

where n=–N,...,N. , N is the window order (number of coefficients), c is a

parameter which controls the window bandwidth ( Af), and p control the window

attenuation (ATT). This window is chosen for the same set of reasons and design

considerations as for section 1.4. The spectrogram is obtained by evaluating the

magnitude

Sin, w,)=WX[n, w, XIn, w," (1.18)

of the short-time Fourier transform. Here XIn, w J’ is the complex conjugate of the

short-time Fourier transform.

The stimulus spectro-temporal envelope, Sin, w,) , obtained by dividing the

spectrogram by a detrending function SIw,]
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SIn, wel 148th.”. (1.19)saw-Hi S|a),

The quantity AS|n, wal-Sin, wel-SIw,] is the difference spectrogram about the

detrending function. The detrending function is obtained by applying a linear fit (in mean

square sense) of general form Awk-H B to the stimulus mean ensemble decibel power

spectrum, 201ogio (EISIn, well) (expectation taken with respect to n). The detrending

function is therefore expressed as

(0. -- 1.20sw,)=10" ,4-B)/20 (1.20)

Note that after combining terms from Eqs. 1.19 and 1.20 the overall decibel spectro

temporal envelope is conveniently expressed as

(1.21)
º

Sa[n, w,)=201ogo (SIn, w,1)-Aw,-B

Although linear trends are subtracted from the stimulus decibel spectrogram using this

procedure, the detrended stimulus is not white. Note that in general strong spectral

oscillations are still present. Examples are shown in Figs. 8 and 12–14.

The outlined detrending procedure is applied for several reasons. First note that

natural sounds generally have very little energy at high frequencies. On a logarithmic
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(decibel) plot the power spectrum is usually strongly biased at low frequencies despite

the fact that relevant stimulus components are also present at high frequencies. This

procedure therefore removes spectral trends which are characteristic of natural sounds.

Note that the auditory system effectively performs a similar detrending operation, since

frequency tuning and integration bandwidths in the sensory epithelium of the cochlea are

logarithmically spaced (e.g. Kiang et al. 1965; Evans 1972; Liberman 1982; Greenwood

1990). Because of this, similar detrending procedures are often employed for speech

modeling and in speech recognition systems (Picone 1997). Secondly, this transformation

is crucial for quantifying contrast statistics of natural sounds in sections 1.9–1.10. Unlike

the spectrogram which depicts absolute energy variations of the stimulus, the defined

spectro-temporal envelope depicts relative energy variations along time and frequency.

This is not an unreasonable descriptor since it is arguable that relative quantities are far

more important for the auditory processing than absolute quantities (for example

Weber's law). Note that similar reasoning is also applied to visual processing since visual

contrast is likewise defined as a relative quantity ( C=(Iva-Iw,)/(Iva--Ivº) ).

As for the spectro-temporal envelope of Eq. (1.15), we also consider the zero

mean logarithmic amplitude spectro-temporal envelope

Sº■ nºw.l=20log,(SIn w,)-u, (1.22)

where u is is the mean of 20 logº■ SIn, w J) . This descriptor is used since the

perception of intensity differences is ordered on a logarithmic space (Miller 1947; Harris
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1963; Viemeister and Bacon 1988) and since temporal fluctuations of natural sounds are

likewise logarithmically distributed (Attias and Schreiner 1998a).

1.7 Low-Order Stimulus Statistics – The Power Spectrum

For all soundscapes we estimated the stimulus power spectrum using a Welsch

average periodogram (Hayes 1996). Prior to estimating the periodogram, each sound

sequence was normalized as s(n)/0, . Here 0, is the stimulus standard deviation.

This normalization is performed so that all sounds have unity standard deviation

therefore allowing for ease of comparison. The spectral resolution, Af, was set to 86

Hz. The ensemble power spectrum was then estimated by averaging over all sounds in

the ensemble using the equation

N (1.23)

Here, P.Iw,] is the Welsch average periodogram for a particular sound in the

ensemble. Upon computing the ensemble periodogram, a least-squares linear fit of the

form SIw,]=Aw,4-B was applied to each ensemble in order to obtain descriptive

parameters.

Fig. 3 shows results obtained for five sound ensembles (human conversational

speech (A), environemental background sounds (B), animal vocalizations (C), pop music

(D), and classical music(E)). In all instances, the power spectrum had a decreasing trend
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as a function of increasing frequency. The constants A and B are given in Table 1.

A (dB/kHz) B (dB)

Human Speech –2.68 7.1

Animal Vocalizations —1.41 8.9

Background Sounds —1.71 7.2

Pop Music –2.29 7.9

Classical Music –2.87 5.5

Table 1: Power spectrum statistics for five natural sound ensembles. Mean slope, A, and

y-intercepts, B. All sounds had negative slopes and positive intercepts.

;
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Figure 3: Power spectrum (continuous line) for five natural sound ensembles show a

20 20
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decreasing trend in energy as a function of frequency with similar intercepts and slopes
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(see Table 1). The least-squares regression fit is shown as dotted line for all ensembles.

Shown for: human speech (A), environmental background sounds (B) (e.g. wind,

running water, etc.), animal vocalizations (C) (both primate and non-primate sources),

pop music (D), and classical music (E).

1.8 Across Band Correlations of Natural Sounds

Throughout the remainder of this chapter we consider a generic spectro-temporal

envelope variable, s,■ n] . For any of the described spectro-temporal measure (the

linear and logarithmic spectro-temporal envelopes as well as the logarithmic and linear

filter bank envelopes described in sections 1.5 and 1.6 respectively) can be substituted

for s,■ n] . Specifics as to which envelope is used are noted in the figure legends and

throughout the text.

For all natural sounds the crossband correlation was estimated using the

correlation coefficient. For the k" and "envelope outputs, s,[n] and s,[n]

respectively (or the k” and I" spectrogram channels), the correlation coefficient is

computed as

1 (1.24)M
2 1 — T 12 — I 12 1 — T 12 – T 12pi-—: El 5,[n]s,[n]*|= --> 5,[n]’s,[n]
kl o; or |s. k | jº k

where the time average expectation, E[...] , is taken with respect to n,

5|| n]=s,[n]-u, is the zero mean spectro-temporal envelope, u, is the mean value of
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the "channel envelope taken across all time, and o, and o, are the corresponding

standard deviations for the k” and "channels respectively. This measure quantifies the

amount of redundancy or similarity that exists across frequency channels. The procedure

for computing the across-channel correlation matrix is depicted in Fig. 4. The temporal

envelope for each channel is first extracted, at which point a channel by channel

comparison is performed using the correlation coefficient. Regimes in the correlation

map with high correlation coefficient values designate channel combinations that show

highly correlated temporal modulations.

|

Figure 4: Computing the across-channel correlation matrix, p, . The stimulus

Time (Sec)

waveform (top left) is decomposed into a spectro-temporal stimulus representation

(bottom left). The spectro-temporal envelope (shown for human speech) is then used to

construct the across-channel correlation matrix. For each frequency-channel (total of

52 channels), the temporal envelope is extracted and compared with all of the other

temporal envelopes. This comparison consists of computing the correlation coefficient

between any two channels. This measure provides an unbiased estimate of the degree of
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corresponding channels are highly correlated whereas values near zero (blue) indicate

that the temporal envelopes for the compared channels are highly dissimilar.

Correlation coefficient matrices, p, , were computed for all sounds in the

chosen ensembles using both the decibel and linear amplitude spectro-temporal

envelope. Likewise, across-channel correlation matrices were also computed for the

spectrographic and the octave filter bank spectro-temporal decompositions. In all

instances the results were qualitatively similar. Results are therefore presented only for

the octave filter bank design decibel spectro-temporal envelope.

Fig. 5–7 depicts typical across-correlation matrices, pg , for the different sound

ensembles. Clear and distinct trends were observed across the different ensembles. Of all

the sound categories, vocalization sounds had the most diverse range of correlation

matrices, pu . Across-channel correlation matrices for vocalizations have highly

structured oscillatory patterns, indicative of complex patterns of correlation across

distinct frequency channels (Fig. 5 D and F). Likewise, speech sounds also had a

complex pattern of spectrally correlated channels although, unlike the vocalization

sounds, overall pattern of the correlation matrix was homogenous for the different sound

segments used (compare the correlation matrices for Fig. 5 B and Fig. 4). By

comparison, white noise has no across-channel correlations (Fig. 7F).

By far the weakest correlations were observed for environmental background

sounds. Examples are shown for running water (Fig. 6 A and B), wind (Fig.6 C and D),

and shuffling leaves (Fig. 6 E and F). These sounds generally showed very weak

correlation patterns. For the shuffling leaves example (Fig.6 F) a high degree of
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correlation was observed among the high frequency channels. This finding is evident in

its spectro-temporal envelope (Fig. 6 E) which shows a series of sharp brad-band

features that are most prominent at high frequencies.

Figure 5: Spectro-temporal correlations for speech and primate vocalizations. Spectro

temporal envelope segment (A) and across-channel correlation matrix of human speech

segment (B). Across-channel correlation matrix for primate vocalizations (D) and (F)

and a short segment of the corresponding spectro-temporal envelopes (C) and (E)

respectively. Both speech and animal vocalizations showed significant and highly

structured patterns of across-channel correlations, indicative of complex interactions

across spectral channels.
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Figure 6: Spectro-temporal correlations for environmental background sounds.

Spectro-temporal envelope segments for the sounds emanating from a moving stream

(A), wind (C), and shuffling leaves (D) and the corresponding across-channel

correlation matrices (B, D, and F respectively). Both the moving stream and the wind

have very little across-channel correlations. The shuffling leave sounds have

significantly higher correlations. This was most obvious at high frequencies were

transient broadband click-like sounds create comodulated temporal components.

As for speech and vocalizations, both pop and classical music showed a high

degree of correlation across frequency channels (Figs. 7 B and D), although the observed

patterns for the different sound segments did not show pronounced differences. As for

speech, correlations were strongest at high frequencies. This is evident from the spectro
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temporal envelopes (Fig. 7A and C) which show comodulated components at high

frequencies.
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Figure 7: Spectro-temporal correlations for music and white noise. Spectro-temporal

envelope segments for classical music (A) and pop music (C) show a high degree of

structure. By comparison white noise (E) has little spectro-temporal structure. The

corresponding across-channel correlation matrices for classical music (B) and pop

music (D) show significant wide scale correlations. These are most prominent at high

frequencies likely because of broadband temporally comodulated components. The

across-channel correlation matrix for white noise (F) shows no correlation across

frequency channels.

---

---
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1.9 Spectro-Temporal Contrast of Natural Sounds

Visual contrast is defined as the percent deviation relative to the mean intensity of

a spatial sinusoid grating. Mathematically it is expressed as C=(Imax-Imm) / (Imax+Imin)

where Imax and Imin correspond to the maximum and minimum stimulus intensities

(Albrecht 1995; Nordmann, Freeman, and Casanova 1992; Troy et al. 1998). In the

auditory literature the analogous quantity is the modulation depth or modulation index,

■■ –(Imax-Imin) / Imax. Such a description suffices for the case of sinusoidal, square wave,

and other simple stimulus gradations since these waveforms are fully specified by their

minimum and maximum intensities. For natural signals, where the amplitude gradations

can cover several orders of magnitude, such descriptions fail to fully characterize

amplitude fluctuations since they only take into account the minimum and maximum

envelope intensities. They do not tell us anything about intermediate values and higher

order amplitude statistics of the modulation signal. To overcome this we adopt a more

general definition of contrast to denote the probability distribution of the relative

amplitude gradations.

A large ensemble of natural sounds was analyzed which included human speech

(Excerpts from Hamlet), music (pop and classical), environmental sounds (wind, rain,

thunder, etc.), animal vocalization (primate, bird, cat, crickets etc.) and mixtures of the

latter two. These sounds were taken as representative examples of the vast acoustic

biotope (Smolders et al. 1979) which mammals and humans are typically exposed to. For

comparison, white noise was included in this analysis as a control. For all sounds the

relative spectro-temporal envelopes of Eq. (1.19) and (1.21), S(t,f) and S,(t,f) ,
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were compute and the corresponding envelope contrast distributions, C-p(S) and

Cas- p(Sa) , were estimated for thousands of sound segments.

Fig. 8 shows the decibel and linear amplitude spectro-temporal envelopes for a

human speech segment. The linear amplitude spectro-temporal envelope (Fig. 8 A)

shows little detail and largely consists of amplitude values near zero (blue). The

measured linear modulation depth for this speech segment is exceptionally high (99.9994

%), whereas the measure standard deviation, or, is relatively small (0.019 normalized

amplitude units for an amplitude range that spans 0 to 1). Together these two descriptors *--
sº

provide a conflicting and misleading description of the envelope fluctuations. The large * -

modulation index suggests that the sound components for this segment span a large range :=
of the 0 to 1 linear amplitude dimension, whereas the small standard deviation suggest º
that it only covers a small portion of this linear amplitude space. By comparison, the º:

decibel amplitude spectro-temporal envelope (Fig. 8 B) shows significant more * ----

structure. A close inspection of the logarithmic decibel envelope, º
Sa(t,f)=201ogi,(S(t,f)) , reveals that the speech signal has spectral and temporal “...

*******

amplitude fluctuations that span several orders of magnitude (roughly 50 dB, Fig. 8 B).

To quantify these observations, we computed the linear and decibel contrast

distributions for all sounds by collapsing all pixels values of the linear and decibel

spectro-temporal envelopes respectively into a probability histogram. These are shown

collectively for all sound ensembles in Figs. 9 and 10. The linear amplitude distribution

was obtained by normalizing the spectro-temporal envelope so that it has a maximum

value of unity, S,(t,f)=S(t,f)/max(S(t,f)) , therefore obeying the general
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convention used to define a modulation signal (Cohen 1995). For all natural sounds the

linearly defined envelope has a skewed amplitude distribution such that loud (near unity)

sound segments are sparse whereas soft segments (near zero) are much more common

(Fig. 9). In contrast, white noise (Fig. 9 F) has a linear amplitude distribution which is

broadly distributed and partially symmetric. Upon performing a logarithmic decibel

transformation of the envelope to construct the decibel contrast distributions,

Cas- p(S a) , the relative amplitude gradations of natural sounds are roughly

symmetric, have an average standard deviation of 10.9 dB, and span an overall range of

more than 25 dB (Fig. 10) for the natural sounds ensembles. Traditional definitions of

contrast, such as the modulation depth or the envelope standard deviation, fail to

characterize such higher-order statistics associated with the shape and the overall range

of the envelope gradations.

The transformed logarithmic decibel amplitude ( San ) magnifies the soft and

moderately loud sound segments relative to the very loud sounds. Thus one can discern

the fine detail in the amplitude distribution over several orders of magnitude. This

descriptor is perceptually motivated since the perception of loudness and intensity

discrimination thresholds are ordered on a decibel space (Miller 1947; Stevens 1957;

Harris 1963; Stevens 1972; Jesteadt, Wier, and Green 1977; Viemeister and Bacon

1988). For all sounds the distribution of logarithmic-contrast is broadly distributed. To

quantify the range of relative amplitudes we measured the average spread of the

distribution, o as . With the exception of the background sounds, all natural sounds had

relatively large standard deviation values: 11.0 dB for speech, 13.3 dB for vocalizations,

7.4 dB for background sounds, 11.2 dB for pop-music and 11.8 dB for the classical

*** --------º-º-º:

ºº *
-- sº-º-º-º-º-º:

* º - .* -** º
*-s ºf ... *
.*** *** *.
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music ensemble. By comparison, the white noise control ensemble has a small standard

deviation of only 5.6 dB.
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The decibel spectro-temporal envelope has significant more detail and has amplitude

Figure 8: Detrended spectrographic envelope for a short speech segment. Shown using a

linear amplitude, S ,(t,f) , and a decibel amplitude convention

S a(t,f)=201ogo■ S(t,f))-u as . The linear amplitude spectro-temporal

envelope, shows little detail and most of the signal values are concentrated near zero.

fluctuations which span a large dynamic range of more than 50 dB.
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Figure 9: Linear contrast statistics for natural sound ensembles. The linear amplitude

distribution, p(S) , for speech (A), animal vocalizations (B) (both primate and non

primate sources), background sounds (C) (e.g. wind, running water, etc.), pop-music

(D) classical music (E) and white noise (F). All sounds are normalized so that they have

a maximum amplitude of unity. Natural sound ensembles have a highly skewed

exponential-like linear amplitude distributions. The spectro-temporal envelope of

natural sounds has a significantly larger proportion of soft to loud sound components.

By comparison, white noise has a broad distribution (F).
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Figure 10: Decibel contrast statistics for natural sound ensembles. The decibel

amplitude distribution, p(S, ) , for speech (A), animal vocalizations (B) (both

primate and non-primate sources), background sounds (C) (e.g. wind, running water,

etc.), pop-music (D) classical music (E) and white noise (F). All natural sound

ensembles have normal-like decibel distributions. Of these, environmental sounds has

the narrowest distribution indicating that the overall range spectro-temporal

fluctuations are significantly smaller than for speech, vocalizations, and music. By

comparison, white noise has the narrowest distribution indicative of a narrow range of

spectro-temporal amplitude fluctuations (F).

The statistical homogeneity of the shape of contrast distribution across the four
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natural sound ensembles suggests that logarithmic amplitude fluctuations are an invariant

acoustic property across natural stimuli (Attias and Schreiner 1998a). Natural sounds are

therefore characterized exponential-like amplitude distributions and normal-like

logarithmic contrast which extends over a dynamic range of 14–25 dB (i.e. 20, ).

This fundamental property of natural sounds closely resemble natural image statistics

which show similar spatial amplitude fluctuations (Ruderman and Bialek 1994; Dong and

Atick 1995; Ruderman 1997).

1.10 Contrast and Intensity Dynamics of Natural Sounds

Although such a description gives us insight into the global amplitude statistics

of sensory signals, it nonetheless presents us with a static picture of the acoustic world

which has been averaged for a large ensemble over all time. In reality, natural signals

such as speech are time-varying and non-stationary. It therefore makes sense to consider

the dynamic behavior of these signals at time-scales which are relevant for neuronal and

perceptual integration. A realistic model of contrast therefore takes into account time

dependencies that arise from multiple sound sources which radiate in and out of the

acoustic scene.

To characterize such time dependencies we defined a time-dependent contrast

distribution, Ca(t)=p(Salt) . This statistic was computed by discretizing the time

axis of the spectrographic signal representation into 47 msec frames (Fig. 11) and

computing the contrast distribution for each frame. A frame size of 47 milliseconds is

chosen since intensity perception has a maximum integration time-scale which is slightly
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larger (in the order of 200–500 msec) (Hughes 1946; Garner and Miller 1947). Thus by

choosing this time-scale we can sample and track the dynamic behavior of intensity

fluctuations within a perceptually relevant time-scale.

A

;
i

C

i ;
Time (sec)

Figure 11: Constructing the time-varying contrast distribution, Ca(t)=p(Salt) .

The sound's spectro-temporal envelope (shown for human speech) is broken up into
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overlapping frames of 47 msec width. Two such non-overlapping frames are shown at

a separation of roughly 3 sec (A). For each frame, the local contrast distribution is

estimated by collapsing the pixels in the chosen frame into a probability histogram (B).

The corresponding contrast distributions are shown in (B) for the green and red frames

of (A). Note that the shape of the distribution (including the mean and standard

deviation) differ from frame to frame. For all time instants, the probability distributions

are collapsed into a three-dimensional plot (C) where the colorscale denotes the

relative probability. This plot depicts the progression of the contrast distribution with

time. The resulting time-varying contrast distribution is non-stationary, changing both

in its mean value and its standard deviation as a function of time. *...,
º

The time-dependent contrast distribution, Ca(t)=p(Salt) , was computed º:
for all soundscapes in the chosen ensembles. Examples of each are provided in Figs. 12– º:
14. For most environmental background sounds the shape of the contrast distribution was *-ºs

globally stationary. An example is shown for the sounds emanating from a waterfall in
***

Fig. 12 A. The shape of the contrast distribution is constant throughout the sound º
segment. Analogous properties are observed for white noise (Fig. 12 B). *º

Speech, mixtures of vocalizations, and music, on the other hand, had the character ~

where the mean value, u ..(t)=E|s all , and the standard deviation,

2.0-EI(s.-u()|, ofthe decibel contrast distribution (see Fig 11 and Fig. 13)
were time-dependent and largely determined by the specific sound which dominates the

acoustic scene. Fluctuations in the mean of the contrast distribution reflect changes in

the mean intensity of the sound whereas fluctuations in the standard deviation reflect the

local variability of the amplitude gradations within a 47 msec sound segment. Note that
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the intensity fluctuations associated with the mean are themselves a form of contrast (on

a large time-scale) which reflects the fact that the contrast distribution is a function of

the time-scale over which it is defined.

Vocalization and speech sounds are characterized by non-stationary / time

dependent contrast distributions. Examples are provided in Fig. 11 and 13. The speech

segments of Figs. 11 and 13 A oscillate between loud (high ua ) and soft sound

segments (low use ) in a time-dependent manner. Furthermore, the width of the

contrast distribution ( 0 as ) also varies with time. Thus the dynamic range of the local

spectro-temporal gradations (within the 47 msec analysis frame) change in a time

dependent manner.

Mixtures of vocalizations and environmental noises likewise followed non

stationary contrast statistics. Fig. 13 B shows such an example for an animal vocalization

(giant anteater Myrmecophaga tridactyla) superimposed on mixture of a background

noise. The contrast distribution oscillates between two states which are individually

determined by the properties of the noise and the vocalization. In this particular example,

the time-dependent mean and standard deviation covaried with each other in a negatively

correlated fashion – although this was not always the case. During the vocalization (loud

portion of the stimulus) the contrast distribution is narrowest (small oas(t) ) whereas

during the background sound (soft segment, low us(t) ) it is significantly narrower

(large ora(t) ). For this example this trend resulted from departure of S(t,f) about

the detrending function S(f) .
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As for the speech and vocalization sounds, both classical and pop music have

non-stationary contrast distributions, Ca(t) , with a time-dependent mean value,

us(t) , and standard deviation, Oas(t) . Examples are provided in Fig. 14. Classical

music has contrast statistics which appear as random oscillations of the contrast

distribution. By comparison the oscillations of Cas (t) for the pop music ensemble

appear to be significantly more structured. For this example, oscillations of the contrast

distribution are quasi-periodic and locked to the rhythmic pattern of the music, as

evident from the spectrographic representation. Furthermore, fluctuations in the mean

and standard deviation were generally much slower for classical music.

;
i

Time (sec) Time (sec)

Figure 12: Time-varying contrast distribution for environmental background sound and

white noise. The sounds emanating from a waterfall (A) have stationary contrast

statistics (C). The time-dependent contrast distribution for this sounds is homogenous

for all time (C). Likewise, white noise (B) has stationary contrast statistics (D).
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Figure 13: Speech (A) and animal vocalizations (B) have non-stationary (time

dependent) contrast statistics with complex dynamics. The time-dependent contrast
****

distributions, (C) and (D), for the corresponding segments of (A) and (B) oscillates *****
* -

wildly between loud and soft sound segments. Furthermore, the width of the contrast 5->
*:::

distribution, C(t) , also oscillates in a time-dependent manner suggesting that the ■ º
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dynamic range of the local spectro-temporal fluctuations varies with time. fl.
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Figure 14: Classical (A) and pop (B) music have non-stationary contrast statistics with

complex dynamics. As for speech and vocalization sounds (Fig. 13), the time

dependent contrast distributions, (C) and (D), oscillate between loud (high u as ) and

soft segments (low u, ). The dynamic range of the local contrast statistics (denoted

42



by or a ) are also time-varying.

1.11 Contrast and Intensity Ensemble Statistics

To quantify the observed contrast dynamics for the various sound ensembles, the

time-dependent contrast distribution Cas (t) was parametrized by computing its time

dependent mean value ua (t) , and its standard deviation oas (t) , (Fig. 15). For all

sounds in a given ensemble the joint histogram for these quantities was computed. The

joint histogram was normalized so that its cumulative sum gives unity probability. This

descriptor approximates the joint distribution function, p(uas, ora) , and characterizes

the statistical dependence and the relative occurrence of these parameters at time-scales

of 47 m.sec. Ensemble histograms for both parameters are shown in Fig. 16 for human

speech, animal vocalizations (primate and non-primate sources), environmental noise

sounds (rain, running water, wind, etc.), classical music, pop music, and white noise.

Human speech and animal vocalizations have the character where the relative

intensity fluctuations, designated by pas , and the local contrast fluctuations, designated

by Oas , are significantly broader and span a larger range of values than environmental

noise sounds. This is evident in the speech and vocalization examples of Fig. 11 and 13

where the contrast distribution oscillates wildly in its mean value and its overall width.

The parameter oras is significantly larger (t-test, p<10”) for speech and vocalizations

than for environmental sounds indicating that the local spectro-temporal fluctuations in

these sounds are broader than for environmental sounds. Thus, relative intensity

fluctuations and the local contrast statistics present in environmental noise sounds are
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relatively homogenous when compared to vocalization sounds and music. Likewise the

white noise control stimulus shows little fluctuations in these parameters when measured

at time-scales of 47 m.sec.
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Figure 15: Parametrizing the contrast distribution into its time-varying parameters,

o,(t) and u,(t) . Shown for the vocalization sound of Fig. 13 B (A, C, and E)

and the running water sound of Fig. 12 A (B, D, and F). The time varying mean,

u,(t) , designates the instantaneous relative intensity of the sound. The time

varying standard deviation, or,(t) , is determined by the instantaneous width of the

contrast distribution and is therefore representative of the instantaneous dynamic range

of the sound. For the vocalization example the mean (C) and standard deviation (D)

parameters oscillate wildly as a function of time. By contrast, these parameters are

stationary and have no obvious fluctuations for the water sound (D and F).

For comparison a one dimensional histogram was computed for oas (t) . This

is shown for the different sound classes in Fig. 17. Note that the distribution and the

corresponding mean values for speech and vocalizations are almost identical (mean value

******
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of 9.3 dB for speech and 9.5 dB for vocalizations, t-test p-0.9) whereas the distribution

for the environmental sound is significantly narrower and has a significantly lower mean

value (mean of 7.6 dB, t—test p-10’). The distributions for classical music and pop

music were slightly overlapped although the mean value was higher for classical music

(10.0 dB versus 8.7 dB, t—test p-10’). To distinguish possible differences between

primate and non-primate animal vocalizations, we additionally broke up the parameter

signals into those arising from primate and non-primate sources. The distribution for

use (t) versus oas (t) were highly overlapped and covered a similar range of values.

As for human speech, the corresponding mean value for Oas(t) were also not

significantly different (mean of 9.6 dB for primates and 9.4 dB for non-primate,t-test ***

p-0.9). ****
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Figure 16: Intensity versus contrast statistics for (A) human speech, (B) animal

vocalizations, (C) environmental sounds, (D) pop music, (E) classical music, and (F)

white noise. The time-dependent trajectories for the mean and standard deviation of the

contrast distribution (Fig. 15) are collapsed into a joint probability histogram. The

standard deviation designates the local variability of the spectrographic signal within a

47 msec frame (Fig. 11). The mean designates the average intensity for each frame.

Both speech (A) and vocalizations (B) cover a significantly broader range of values

than environmental sounds (C) and white noise (F). Classical music shows a

significantly broader range of values for a a than pop music. In addition, the

histogram for classical music is obliquely oriented indicative of a negative correlation.
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Figure 17: Contrast statistics for the sound ensembles of Fig. 16 (A-E). The standard ::

deviation trajectory distribution is shown for speech (continuous), vocalizations .*

(dotted), and environmental sounds (dashed) in (A). The distribution for speech is :
highly overlapped with the distribution for vocalizations (mean value of 9.3 and 9.5). --
The distribution for environmental sounds assumes significantly lower values (mean

7.6). (B) The standard deviation trajectory distribution for pop (continuous) and

classical (dotted) music.

The dynamic behavior of these parameters was determined by computing the

power spectrum of u/s (t) and oas (t) for each ensemble. The power spectrum for

these parameters are shown in Fig. 18. In all instances, the power spectrum had a
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decreasing trend as a function of frequency that followed a 1/f type functional

relationship. The strongest fluctuations in these parameters for all sounds therefore

occurred below 1 Hz. In the instance of pop music, the power spectrum also has a strong

peak centered about 6 Hz. By listening to this music it was evident that all soundtracs

used for this analysis had a strong rhythmic pattern near 6 Hz.

-1 10° -1 10° 10'

Frequency (Hz) Frequency (Hz) Frequency (Hz)

Figure 18; Power spectrum for the parameters or,(t) (continuous) and u,(t)

(dashed-dotted) shown for (A) human speech, (B) animal vocalizations, (C)

environmental sounds, (D) pop music, (E) classical music, and (F) white noise. Both

parameters have power spectrums with similar trends. With the exception of white
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noise, all sounds have a 1/f like trend in energy as a function of increasing frequency.

For all ensembles, the power spectrum for use (t) and o a (t) were visually

very similar (Fig. 18). Thus it is possible that both parameters are temporally correlated

following similar trajectories. An alternate possibility, however, is that both parameters

do not covary in time and the similarity in the power spectrum arises because the

parameters follow similar statistics. To ascertain this possibility, we first computed the

Pierson correlation coefficient (Zar 1999) between use (t) and o,(t) . If both

parameters follow similar trajectories it is expected that the correlation coefficient be

near unity. If the parameters are temporally uncorrelated, the resulting correlation

coefficient will be near zero. Correlation coefficients near negative one alternately

indicate that the trajectories are temporally correlated but differ in polarity. Results are

provided in Table 2.

Example trajectories for ua (t) and oas (t) are provided in Fig. 15. For all

ensembles, particular examples could be found that showed an anticorrelated (r-0),

positively correlated (r-0), and uncorrelated (ra-0) relationship between these two

parameters. Thus the described correlation coefficient provide the average statistics for

the whole ensemble. Both the pop and classical music ensembles showed a significant

negative correlation (bootstrap, p<10"). Thus when the spectro-temporal intensity,

us(t) , was high the local contrast standard deviation, oras (t) , was reduced and

vice versa. In contrast the human speech, vocalization, and environmental sound

ensembles have a small but significant positive correlation (bootstrap, p<10").
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It is possible that the measured contrast standard deviation, or,(t) , reflects a

departure from the mean ensemble spectrum (as for the example of Fig. 15A), as

opposed to local fluctuations about the mean spectrum. Recall that the detrended

spectro-temporal envelope was obtained by performing a global detrending operation on

the spectrogram by subtracting the best-fit linear trend of the ensemble spectrum (Eq.

(1.21). To determine if this is so, the local spectro-temporal envelope, Sa[n,w,) ,

was further detrended using a linear spectral fit of the general form Awº-- B-ups

(estimated for a 47 ms frame). The detrended spectro-temporal envelope is then given by

Sa[n, w,)=201oglo■ s[n, wil)-Aw,-B+un, where A and B now represent the linear

regression coefficients for the local spectrum and uº is the local mean. This procedure

removes the local spectral trend but, unlike the detrending operation of Eq. (1.21), it

preserved the local mean value, plus . All of the presented statistics were reestimated

using this procedure. Although specific instances were found where exceptionally high

values of oras (t) were attributed to departure of the detrending function from the local

spectrum this was not the general rule. In most instances the obtained results were

qualitatively similar for the two detrending procedures although oras (t) was slightly

smaller in value for the local detrending. This parameter followed similar trajectories for

either of the performed detrending operations suggesting that fluctuations of the contrast

standard deviation do not arise solely from departure between the local and the global

ensemble spectrum. Instead, this result argues that a significant amount of the observed

spectro-temporal variability arises from spectro-temporal oscillations about the mean
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spectrum. Furthermore, the obtained population statistics of Figs. 16–18 were

qualitatively identical indicating that either detrending procedure captures the essential

statistical properties for the described ensembles.

| Pearson Correlation
Coefficient (r)

Human Speech 0.141 + 0.003

Animal Vocalizations 0.034+ O.004

Background Sounds 0.040+ 0.008

Pop Music – 0.254 + 0.003 ****

Classical Music – 0.646+ 0.003 * : º

****

Table 2: Ensemble correlation statistics between o’,(t) and u,(t) . Instantaneous * …,
£

contrast and intensity parameters for human speech, classical music, and pop music are *::
highly correlated across time. Animal vocalizations and background sounds show little º:
covariation among these parameters. *** **

To further understand the dynamic behavior of these higher-order stimulus --

parameters we computed the coherence function (Marmarelis and Marmarelis 1978; ---
tº-º-º-º:

Hayes 1996; Bendat 1990). This descriptor measures the degree of linear association

between two signals as a function of frequency. A value near unity for the coherence

indicates a high degree of linear association whereas a value near zero is indicative of no

linear association. Since the correlation coefficient averages over all sounds and over all

temporal segments, information about the time-scales of interaction between these two

parameters is discarded. Thus, the correlation coefficient measure can not identify what

regime of the power spectral density (Fig. 18) is responsible for the temporal
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covariations between the trajectory signals ugs(t) and ora, (t)
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for human speech (A), animal vocalizations (B), environmental sounds (C), pop music

(D), and classical music (E). Speech, animal vocalizations, and background sounds

show a weak coherence between these two parameters consistent with the measured

correlation coefficients of table 2. These parameters show a large amount of correlated

signal activity in the vicinity of 6 Hz for pop music and at frequencies below 6 Hz for

classical music.

The ensemble coherence functions between the mean and standard deviation

*******

vºte
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trajectory signals are depicted in Fig. 19. All signals showed a statistically significant

coherence (bootstrap, p<0.05) indicating some amount of temporal covariation for these

parameters. Consistent with the measured correlation coefficients for the different sound

ensembles, pop and classical music had the strongest coherence function. For both of

these ensembles, the coherence was localized to a small regime of the frequency axis.

Classical music had the strongest coherent oscillations between o'º (t) and un,(t) at

frequencies below six Hz. Pop music alternately had coherent activity in the vicinity of

six Hz. Vocalizations, speech, and backgorund sounds alternately had weak coherence

functions that were not localized along the frequency dimension.

1.12 Discussion and Conclusion

The spectro-temporal envelope of natural sounds is a mathematical construct

which describes the spectro (spatio)-temporal neuronal excitation pattern produced by

the acoustic sensory epithelium. Because of this it is thought to contain much of the

pertinent acoustic information which the brain uses for complex sound analysis and

encoding. To date a quantitative evaluation of the relevant statistical components of the

spectro-temporal envelope of natural sounds is lacking. In this study, we analyzed a

number of higher-order statistical characteristics for five natural sound ensembles. The

presented data demonstrates that natural sound ensembles share a number of spectro

temporal characteristics but yet differ in terms of their associated dynamics and the

degree of coherency across spectral channels.

Comparisons among natural sound ensembles show that vocalizations, speech,

and music have a significant amount of correlated signal components across spectral
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channels. These sounds therefore activate the auditory neuronal network with a complex

spectro-temporal excitation pattern composed of redundant signal components. By

comparison, the across-channel correlation matrices of environmental sounds show

significantly lower levels of across-channel correlation and spectro-temporal

redundancy. The role of redundant signal information for acoustic processing is in

general not well understood although it may bestow the auditory with its robust

characteristics for sound processing under a number of adverse conditions. Redundant

acoustic information, for examples, may be necessary for detecting relevant acoustic

signals in background noise and reverberant environments. How the brain uses such

redundant information directly for complex signal analysis and source segregation still

needs to be determined, although initial insights are provided by human psychoacoustics

studies for speech perception.

Psychoacoustics studies support the observation that speech is highly redundant

and that pertinent acoustic information is preserved across spectral channels. By

performing a number of modifications of the speech waveform studies have

demonstrated that speech contains a large amount of redundant information that is not

necessary for detection and classification of speech. Perception of speech, for example, is

robust to a number of spectral, temporal, and amplitude alterations. Filtered speech

changes significantly in its overall quality when filtered above or below 1.8 kHz. Despite

this, much of the necessary information for identifying and distinguishing speech

segments is retained when such filtering is performed (Moore 1997). Other alterations

include infinite peak clipping of the amplitude waveform which converts the speech

waveform to a binary sequence. Despite the loss of amplitude information such highly
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distorted speech can be understood by listeners (Moore 1997) who achieve word

articulation scores of 80–90%.

Spectro-temporal correlations likely play a significant role in auditory groping

and auditory scene analysis. Psychoacousticians have demonstrated that sound

components that are presented in temporal unison often "group" together to form an

unified percept or an acoustic stream (Moore 1997). A classic example is the case where

two pure tones at distinct frequencies are coherently modulated by a common envelope.

The two sounds are perceived as a part of a whole and can not be distinctly identified. If

the same pure tones are instead modulated by independent temporal envelopes, the two

sounds segregate and are each perceived as a distinct entity. Given the observed spectro

temporal correlations and differences among natural sound ensembles, it is likely that

such signal statistics are pertinent for sound source segregation. From a neuronal coding

perspective it is plausible that the observed different levels of spectrographic correlations

may be pertinent for signal detection, inter-category discrimination, and sound source

segregation by the auditory neuronal network.

Physiologic studies on cats and songbirds have further demonstrated the

importance of the spectro-temporal envelope and the inherent redundancy which exists

across spectral channels (Theunissen and Doupe 1998) of natural sounds. Using

procedures which degrade the spectral and/or temporal resolutions of a sounds

spectrogram, these studies have demonstrated that neuronal responses of auditory

neurons to natural sounds are robust under various adverse conditions. Neuronal

responses appear to be extremely robust against spectral degradations but are

significantly more sensitive to temporal modifications. These findings stress the relative

º
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importance of temporal over spectral information for acoustic processing and further

demonstrate notion that natural sounds contain a significant amount of redundant signal

information.

A secondary acoustic property which may facilitate signal detection and the

reliability of sensory coding is the signal contrast. Contrast is a fundamental property of

all sensory signals including visual, somatosensory, and acoustic. In most instances the

contrast of a sensory signal is specified by the signal’s peak to minimum intensities or its

standard deviation. In vision, for example contrast is generally specified by the ratio

between the difference signal intensity and the mean level or luminance. Visual contrast

is therefore specified by the equation: C=(Iva.-Ivº)/(Iva.--Ivº) where Iva, and

Ivan designate the maximum and minimum signal intensities. In general such

description are insufficient since they can’t account for the intermediate values of the

sensory signal which may be equally and possibly more physiologically relevant than the

extremum values. We provide a more complete description of the spectro-temporal

contrast or the amplitude gradations of natural stimuli by considering the complete

probability distribution, as opposed to simpler descriptions such as the modulation index

or the standard deviation.

The contrast distribution was examined for both the linear amplitude and the

logarithmic (decibel) amplitude spectro-temporal envelope. In the first case, the

amplitude distribution of natural sounds are skewed towards zero containing a high

proportion of the signal’s amplitude values at low levels. By comparison, the linear

º
tº

amplitude distribution for white noise is broadly distributed and therefore does not share

this statistical attribute observed for natural sounds. The decibel spectro-temporal
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envelope amplitude distribution of all natural sound ensembles was broadly distributed

qualitatively resembling a normal distribution of amplitude values. The average range of

values, as measured by the standard deviation, was broadest for vocalizations (13.3 dB),

music (11.5 dB) and speech (11.0 dB) and narrowest for environmental sounds (7.4 dB).

Not surprisingly the overall range of values spanned by white noise was significantly

smaller (5.6 dB).

Given that the auditory system of humans has a dynamic range of more than five

orders of magnitude it is of interest to determine how and if the observed decibel

distributed amplitude fluctuations are utilized for efficient sound encoding and/or sound

categorization. One hypothesis of sensory encoding asserts that the dynamic range of the

input sensory stimulus must be physically matched to the operating range of the neural

system in order to maximize the information transfer and encoding ability (Rieke et al.

1997). The work of Attias and Schreiner (1998 a and b) demonstrates the importance of

the complete statistics of the amplitude signal and the effects on the neuronal encoding

ability. From the presented data one interesting observation which is consistent with this

hypothesis is the observation that the average range of values spanned by natural sounds

( 20 as ) and the 90" percentile range (roughly 30 as ) is comparable in magnitude to

the average dynamic range of peripheral auditory neurons which typically span a

dynamic range 30–60 dB (Evans and Palmer 1980; Veimeister 1988). Furthermore

since the rate-level dependencies of auditory neurons of the peripheral auditory system

have a linear dependence with decibel intensity, an efficient probing sound would span a

the decibel amplitude dimension. In fact, from an information theoretic perspective the

stirnulus which would most efficiently drive such a system (i.e. with a linear rate versus
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level (SPL) dependency) would follow normally distributed decibel contrast statistics as

is the case for natural sounds.

Although all of the studied natural sounds had logarithmic distributed contrast

fluctuations and therefore shared a common attribute, the measured variability and

dynamics were distinctly different across the five sound ensembles. By comparing these

sounds at pertinent time-scales for neuronal and perceptual integration of intensity, it is

shown that environmental sounds are time-invariant and have little spectro-temporal

variability whereas vocalized sounds and music have non-stationary contrast statistics.

Using a perceptually relevant time-scale of 47 ms the contrast distribution was

decomposed into temporally disjoint segments. The running contrast distribution was

then analyzed by computing the time-varying mean, un, (t) , and the contrast standard

deviation, oras (t) . These descriptive parameters describe the intensity fluctuations and

the instantaneous contrast statistics of the stimulus respectively. Analogous to white

noise, environmental background sounds (e.g. running water and wind) showed narrow

distributions for both of these parameters suggesting that they are relatively homogenous

over the analyzed time-scales. By comparison, the distribution of values for these

parameters, p(ugs, ora) , was significantly broader for vocalizations, speech, and

music. Consequently these sounds show strong intensity and contrast fluctuations at the

analyzed time-scales.

Further evaluation of the temporal dynamics and temporal covariation among

these parameters for the different ensembles reveals that the intensity and contrast

fluctuations have 1/f like spectrum with most of the parameter signal energy residing at
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low frequencies (below 1 Hz). Similar observations have been described for the intensity

fluctuations of speech and music (Voss and Clarke 1975; Voss and Clarke 1978)

although a clear picture of the temporal covariations among the spectro-temporal

contrast and the spectro-temporal stimulus intensity has not been described. Here we

additionally show that the time-varying mean value, una (t) and standard deviation,

oras (t) , parameters obtain from the spectrographic envelope show significant amounts

of covariation. By comparing the coherence function between these two parameters it is

demonstrated that vocalized and environmental sounds have weak coherence functions

whereas musical sounds have the strongest covariations among these parameters.

Furthermore the strong covariations observed in musical sounds were most strongly

isolated at particular frequencies below 10 Hz whereas for speech, vocalizations, and

background sounds the temporal covariations appear to be less frequency specific.

The described spectro-temporal statistic show that natural signals have a wealth

of information which can be feasibly used by the auditory system for stimulus coding and

categorization. Currently, due to the limited knowledge of the general properties of

natural sounds little is known as to weather these acoustic parameters are pertinent for

sound perception and stimulus encoding in the central nervous system. Judging from

human psychophysics data and the fact that the response of central auditory neurons is

strongly affected by closely related stimulus parameters (including intensity, modulation

depth, and spectral correlation), it is expected that these parameters may be pertinent for

Sound processing. The dependence of the neuronal response on the described acoustic

parameters will be studied in the following sections. Chapter 3 addresses the issue of

spectro-temporal correlations and their effect on the response of inferior colliculus

59



neurons. The dependence of the neuronal response as a function of the stimulus contrast

is evaluated further in chapter 4.
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Abstract

Complex acoustic stimuli, such as speech and music, have time-varying spectrum

that give rise to rapidly changing frequency transitions and temporal periodicities.

Despite this, central auditory representations are most often probed using simple acoustic

stimuli which lack many of the structural components of natural sounds. Given the

complexity of the auditory neuronal network and the fact that the brain is in general

extremely nonlinear, it is increasingly clear that simple acoustic stimuli can not be used

directly to identify many of the processing schemes which the auditory system uses for

complex sounds analysis. Thus the question arises: should one use natural sounds directly

to study central auditory representations? Or, should one use complex synthetic stimuli

that are specifically tailored for a particular application?

In this chapter we consider how complex acoustic stimuli can be systematically

tailored to incorporate basic attributes present in natural sounds and how these can be

used to identify nonlinear processing abilities of auditory neurons. Throughout, we

outline a number of necessary experimental, ecological, psychoacoustical, physiological,

and theoretical considerations which should be taken into account when designing such

complex stimuli. We proceed by designing two sounds that incorporate a number of low

order and high-order characteristics of natural sounds, are parametrically accessible, and

are theoretically compatible with reverse correlation procedures. Analogous to natural

Sounds, these stimuli are broad-band, spectro-temporally complex, and are particularly

Well suited for studying various nonlinear transformations that may exists along the

auditory pathway. The usefulness of this approach and its applicability for physiological

Systems is verified in chapters 3 and 4.
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2.1 Probing the Auditory System with Simple Sounds

Much of our understanding of central auditory function is derived from studies

which use simple sounds to probe neuronal sensitivities. With the exception of the bat

and songbird auditory systems, ethologic considerations have had only a minor impact in

our general understanding of central auditory function. However, the neuroethologic

approach used in the bat and songbird has taught us that simple sounds can not reveal

many of the neural specializations which the auditory system uses for natural sound

processing (Suga et al. 1975; Suga and Jen 1976; Margoliash 1983; Olsen and Suga

1991 a 1991b; Margoliash and Fortune 1992; Ohlemiller et al. 1996; Razak et al. 1999).

With the exception of a handful of studies (Aersten 1980 1981; Schreiner and Calhoun

1994; Kowalski, Depireux, and Shamma, 1996a 1996b; Attias and Schreiner 1998a

1998b; Nelken, Rotman, and Yoseflº29), the use of natural sounds and complex stimuli

which incorporate statistical and structural sound features has not been readily adopted in

other mammalian species. Although such an approach may be advantageous it has

nonetheless eluded much of the auditory community.

By far the most widely used acoustic stimulus for studying central auditory

representations is the pure tone. This stimulus is commonly used to map the frequency

response area of neuron. The pure tone has a basic appeal to most auditory physiologist

since peripheral and central auditory neurons respond to a restricted range of frequencies

and since the lemniscal auditory pathway is organized with respect to frequency in a

tonotopic fashion (Liberman 1982; Greenwood 1990; Fay and Popper 1992). Hence it is

not uncommon to think of the auditory pathway as performing a Fourier-like

decomposition of incoming acoustic sounds. Since a pure tone excites a restricted portion

****
ºs-s-s

º **

** **-******
ºw-a was ºs---

- ***** zº* : º
*****., *****

**** ºtº-º-º-
*** *******-*-*-

tº ºn *--º *: º
********-->
***** **** -º-º-

**
in

*** ***º-ºº:

* *
** º
* - ºr aiº-º-º-º:

-** *- * -º
- * ** º •.*we:- ºf --- *

.**** *** *.
** -

*** *** ****
**** *** **** *** = -

tº-tºe tººk --"

s

º

67



of the primary sensory epithelium, pure tones allow one to investigate and map local

neuronal sensitivities.

Unfortunately natural sounds are seldom narrow-band and they rarely resemble

pure tones. Instead, natural sounds are often broad-band, spectrally complex, and time

varying with rapidly changing onsets and offsets. To understand how such characteristic

features are represented in the brain, auditory scientists have used a vast number of

simple sounds which independently probe each of these stimulus dimensions. Temporal

preferences, for examples, are most often studied using sinusoidal amplitude modulated

tones (e.g., Schreiner, Urbas, and Mehrgardt 1983; Rees and Moller 1987; Langner and

Schreiner 1988) or repetitive clicks trains (e.g. Eggermont 1999). These sounds can test

the ability of a neuron to follow rapidly changing sound transitions and periodic events.

Sounds such as frequency modulated sweeps are additionally used to investigate neuronal

responses to transient events with time-varying frequency transitions (e.g., Rees and

Moller 1987; Mendelson et al. 1993).

Spectral selectivity of auditory neurons are alternately tested using various

broad-band stimuli and combinations of narrow-band stimuli. White noise and clicks,

for example, provide a simple complement to the pure tone which allow one to

characterize neuronal responses to broad-band sounds (e. g., Ehret and Moffat 1985;

Young and Browenell 1976; Yin, Chan, and Irvine 1986). Two tone response tuning

°urves are often constructed to probe excitatory and inhibitory neuronal response

characteristics. Ripple noise stimuli were introduced by Houtgast (Houtgast 1977) to

Study the psychophysical limits of spectral filtering and lateral inhibition of the auditory

System. Recently these sounds have been used to thoroughly characterize spectral
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response sensitivities and lateral inhibition of primary auditory cortex neurons (Schreiner

and Calhoun 1994; Calhoun and Schreiner 1998; Kowalski et al. 1996a 1996b).

2.2 Nonlinear Auditory Processing

Although all of these stimuli can provide valuable insight into the workings of

auditory neural networks and their spatial arrangements, results using such sounds can

not be easily compared or extended to more complex and dynamic stimulus scenarios.

This is in part due to the fact that the brain is highly nonlinear. If the brain were to

perform a linear decomposition of incoming sounds, then the responses to complex

stimuli (i.e. vocalizations, speech, sound mixtures etc.) could be understood by simply

observing responses to its constituent components. The superposition principle of a linear

system guarantees (Marmarelis and Marmarelis 1978) that the systems behavior for

complex stimuli can be extrapolated by studying the systems behavior for simpler

stimuli.

A complex stimuli x(t) , for example, can be decomposed using some basis set

of local stimulus features, x, (t) , which occur at delays, T, . The complex stimulus is

therefore represented by

N L,

x(t)= X. X. x,(t-t') (2.1)
k= 1 1-1

where Lºis the number of occurrences of the k” feature at temporal delays T, and N

is the number of acoustic features which the sound is decomposed into. The response of
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a linear time invariant system to such a stimulus is given by

L
r

r(t)=XXX r,(t-t') (2.2)
k= 1 la 1

where the response, r(t) , of a complex stimulus is simply the sum of responses to its

individual components, r, (t) .

For a nonlinear system, Eq. (2.2) will in general not hold and the true responses

to a complex sound will deviate from Eq. (2.2). The amount of departure from Eq. (2.2)

depends on the nature of the nonlinearity. In general, three types of response components

contribute to this departure: response interaction terms in which the response of one

feature, x, (t) , can be strongly affected by a nearby component, x,(t) . Response

gain terms can alternately magnify the response of a single component by a nonlinear

gain factor causing large departures from Eq. (2.2). Such a nonlinear level dependence is

a common feature of nonlinear systems and the central auditory system as a whole (Ehret

and Merzenich 1988; Eggermont 1989). Thirdly, dynamic nonlinearities, which are

prevalent in neural systems, can alter the shape of the systems nonlinearity and filtering

characteristics in a time dependent manner (Smirnakis et al. 1997). Consequently,

although the complex stimulus can be decomposed as a superposition of many simpler

stimuli (Eq. (2.1)), the response of a nonlinear system to such can not be decomposed

into the sum of the individual response components. Hence the functional rules which the

brain uses for natural sound processing can not be easily and fully extrapolated using

simple stimuli such as pure tones, clicks, modulated tones, etc.
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2.3 Neuroethology Versus the Systems Approach

Linear system theoretic approaches are commonly used in conjunction with such

sounds to characterizing auditory neuronal responses. Of these, the transfer function

method (Rees and Moller 1983; Langner and Schreiner 1988; Schreiner and Calhoun

1994; Calhoun and Schreiner 1998; Kowalski et al. 1996a 1996b) is by far the most

widely used functional descriptor. This is attributed to the fact that this methodology is

theoretically well defined, easy to interpret, and experimentally tractable (i.e. sounds are

easy to design and the data analysis is simple). More recently the linear spectro-temporal

receptive field (impulse response estimates) (Aertsen et al. 1980 1981; Hermes et al.

\981; Yeshurun, Wollberg, and Dyn 1987; deCharms, Blake, and Merzenich 1998;

Theunissen et al. 2000; Klein et al. 2000) has also been used for studying central

auditory neuronal response properties.

Although such methods do reveal quasi linear processing characteristics of

auditory neurons, either of these methods generally lack the ability to discern "hard"

nonlinear response characteristics which may be prevalent in central auditory neurons

(Young 1998). In part this is attributed to the types of spectro-temporal sound ensembles

(spectro-temporal m-sequences, randomly distributed tone pip ensembles, modulated

tones, click trains etc.) which are used to study neuronal responses with such methods.

For STRF methods, for example, the stimuli which are most prevalent generally have

spectro-temporal white-noise like properties but the envelope spectrum, otherwise

known as the characteristic function (Cohen 1995), is significantly reduced. This is done

so that the range of modulation frequencies and spectral periodicities is matched to the
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range for which the specific brain region is responsive. Although such "white-noise" like

stirrauli are in principle well suited for such analysis, occurrences of higher-order

acoustic features and combinations, which may be necessary to drive highly nonlinear

(selective) neurons, are rare at high power levels within the limited experimental

recording time.

In the bat auditory system, for example, nonlinear processing provides a

substrate for processing behaviorally relevant sounds. Central auditory neurons for such

species can show strong selectivity to behaviorally relevant sounds (Suga, Simmons, and

Jen 1975; Suga and Jen 1976; Margoliash 1983), combination sensitivity to conjunctions

of biologically important acoustic stimuli (Suga, O’Neil, and Manabe 1978; Margoliash

and Fortune 1992; Olsen and Suga 1991a 1991b; Doupe 1997) and context dependent

response characteristics (Ohlemiller, Kanwal, and Suga 1996; Razak, Fuzessery, and

Lohuis 1999). All of these response characteristics clearly arise from highly nonlinear

phenomena such as neural inhibition, thresholding, and adaptive response mechanisms

which are common to neural systems (Casseday, Ehrlich, and Covey 1994; Kuwada et

al. 1997; Spiro, Dalva, and Mooney 1999; Bringuier et al. 1999). When tested with

simpler stimuli such as pure tones and white noise, these neurons often show little or no

response (Theunissen et al. 2000). Hence such neurons are not easily characterized with

simple stimuli and the linearizing approaches associated with them.

Because of this, system theoretic approaches are not widely used to study species

with highly specialized acoustic behaviors. Instead neuroethology has been the prominent

driving force for scientist who study bat echolocation and avian song recognition.

Ecological considerations are generally employed in the selection of the search stimuli
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and features that are used to probe neuronal responses. For such species this task is

relatively simple largely because of the stereotyped calls which these animals use during

their vocalizing behavior. Although these approaches have proved noteworthy

idleratifying nonlinear response characteristics and mechanisms, they are not infallible and

can easily lead to misconceptions and oversimplifications of the neural capabilities of

these animals. Given that such systems are generally extremely nonlinear, any knowledge

gained with a given sound about the systems properties will likely hold true only for that

sound and experimental condition. An example of such, is provided by the same

investigators which previously showed that the bat auditory cortex possesses a high

degree of neural specialization for echolocation tasks. FM-FM neurons of the mustache

bat respond selectively to combinations of FM segments in that species’ echolocation

calls GSuga, O’Neil, and Manabe 1978). Recently Suga and his collaborators

demonstrated that these neurons also respond selectively to a variety of communication

Sounds and therefore serve an important secondary function (Ohlemiller et al. 1996). In

Certain instances, the sounds that are used to study auditory processing for such species

*e therefore much too constrained to fully characterize more general response attributes.

As for the bat and songbird, similar principles have also been employed for

studying the audio-vocal behavior of primate species (Winter and Funkenstein 1973;

Slass and Wolberg 1983; Ploog 1981;Wang et al. 1995) although these have not

**vealed similar neuronal specializations. Studies in the squirrel monkey have shown that

*hearly all neurons respond to simple sounds (pure tone, pips, and noise) and to species

*Pecific vocalizations although they respond to the latter unselectively (Winter and

**nkenstein 1973). Unlike the bat and songbird neurons which can respond almost
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exclusively to a single sound, primate cortical neurons generally respond to numerous

sounds and the neuronal responses appear to be correlated with low-order features of the

driving stimulus (i.e. spectral energy distribution, temporal structure, etc.) (Winter and

Furth Kenstein 1973; Glass and Wolberg 1983; Ploog 1981; Wang et al. 1995). This may

reflect operating principles for primates that are vastly different than those for the bat and

songbird species were neurons can respond exclusively to a single sound component or to

corralbinations of such. However, these primate studies were largely conducted in primary

auditory cortex whereas the specialized processing in bats is most clearly expressed in

stations outside of AI.

In mammals in which the auditory system lacks obvious specializations and

relevant acoustic behavioral paradigms (i.e. many terrestrial mammals such as the cat and

possibly including primates), neuroethology has had little impact, since the set of

biologically relevant stimuli is enormous. Consequently, linearizing methods which use

engineering principles (such as reverse correlation and the transfer function method) by

testing neuronal responses to a wide range of simple sounds are most often employed. A

handful of studies have shown that nonlinear phenomena underlie the ability of central

*ditory neuron to extract information inherent in natural sounds (Nelken et al. 1999;

Attias and Schreiner 1998b). Aside from these, however, much of central auditory

D*ysiology in the cat has proceeded by using stimuli which are for the most part

*ologically uninteresting.
Hence a clear dichotomy is established between neuroethology and the more

seneral systems approach used to characterize auditory neuronal responses in the cat.

Yvhile the systems approach utilizes a vast collection of simple sounds to probe multiple
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stirrhulus conditions and operating points, the ethological approach uses a biased and

Highly restricted stimulus set which only probes a limited operating regime. At least two

rrnajor limitations are anticipated, the first arising from the methodology and the second

arising from the types of stimulus used to characterize the system.

In the systems approach, the types of stimuli used may not provide enough

driving force, especially if the neuron’s nonlinearities are specifically adapted ("hard"

normlinearities) for processing a given stimulus feature and/or combinations. Such is the

case for feature selective neurons in the bat and songbird and for bat combination

sensitive FM-FM neurons. Hence this leads us to the notion that to "see" or characterize

such a nonlinearity you must first provide sufficient driving force along the appropriate

stimulus dimension. Simple sounds often lack many of the higher-order statistics and

correlations necessary to properly drive such auditory neurons. Hard nonlinearities that

are present for specific scenarios of sound processing are therefore not easily

characterized using such sounds. In many instances, especially scenarios where the

System has a "soft" or weak nonlinearity, the systems approach can be advantageous

since it offers a simple parametric description of the stimulus-response relationship and

*ince each stimulus dimension can be explored quasi-independently.

The ethological approach likewise has advantages and disadvantages. As

Previously mentioned, application of neuroethologic principles has shared large amounts

Of Success for studying hard nonlinearities in the bat and songbird species. This is largely

*tributed to the fact that identifying the "right" stimulus is a fairly simple task for

*imals which actively vocalize because of the obvious behavioral needs and biological

**portance of their vocalizations. In mammals which rely heavily on passive listening,
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e-g- for hunting and avoiding predators, this passive mode hampers the identification of

relevant sounds and acoustic features. Consequently for such animals (i.e. the cat) finding

the right stimulus is not a trivial task since the set of biologically relevant stimuli is very

1arge. For these animals behaviorally relevant stimulus paradigms have not been

revealed. Hence although this methodology is readily applicable for the bat and songbird

species, it is not easily applicable for nonspecialized and acoustically passive terrestrial

marrimals.

In theory one can imagine taking a huge collection of natural sounds and playing

thern continuously to an animal in order to overcome this limitation. Such attempts

(Srinclders et al. 1979), however, have not revealed similar specializations that arise from

hard nonlinearities. This is partly due to the fact that for such sound schemes on must

contend with the high dimensionality of the stimulus. When using natural sounds one

inevitably probes the auditory system with many physical dimensions that include

Carrier structure (e.g. harmonic vs. inharmonic), spectral and temporal envelope (first,

Second, and higher-order statistics), intensity, binaurality (both interaural intensity and

*mporal differences). Likewise one may conceive of this process as probing the system

with the corresponding perceptual dimensions which include comodulation, pitch,

*ythms, loudness, streaming, and timbre (which itself is a multidimensional percept

*pending on the spectral envelope, temporal changes in time, and whether the sound is

*armonic or inharmonic (Plomp 1969 1970). Either way, it is clear that there is a

Seometric explosion of stimulus parameters and response possibilities. This makes it

Particularly difficult from the analysis point of view since it ultimately increases the

Somplexity of the analysis required to identify hard nonlinearities and to disassociate
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rheuronal responses and mechanisms.

Another limitation for this approach is that for natural sounds all of the physical

stirrhulus dimensions are already highly biased and these may be different for different

stirraulus ensembles. For example, the temporal modulation spectrum has a 1/f

characteristic (Attias and Schreiner 1998a 1998b; chapter 1) as does the spectral envelope

(chapter 1) and intensity fluctuations of the stimulus (Voss and Clarke 1975).

Cornsequently, in many natural sounds low frequencies predominate over higher

frequency components for these stimulus parameters. Although one can in principle

circumvent these problems by detrending (via deconvolution) the stimulus bias when

using reverse correlation methods (Theunissen et al. 2000), this may not be feasible for

the full range of sounds especially if the signal power for a relevant parameter is so

Small that the response signal to noise ratio is below chance. Under such conditions the

Stimulus correlation matrix will be non-invertible and the actual transfer function for the

given parameter can not be determined reliably. Practically, this situation is quite

Common due to the high modulation index of natural sounds (Van Veen and Houtgast

1 985), and the effects of background noise and environmental acoustic (Schroeder,

Sottlob, and Siebrasse 1974).

For experimental paradigms where one is interested in identifying neuronal

*echanisms, one instantly realizes the bottleneck and limitations that can arise from

"sing continuous soundscapes and the simple stimuli used for the systems approach. For

*unds which are designed to be compatible with reverse correlation methods (such as

*Pectro-temporal m-sequences), relevant higher-order acoustic features (e.g. spectral

*Ssonances, FM sweeps) which are necessary to efficiently drive auditory neurons are
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connmonly underrepresented. The use of natural soundscapes can partly overcome this by

Iiriniting structural sound components to those which are likely more relevant. For certain

Inatural sound components (e.g. high frequency envelope components), however, this

rrnay not be reasonable since these can be relatively scarce (because of the stimulus bias

and high dimensionality of natural sounds) preventing the observer from achieving

sufficient statistical power. Moreover, because of the geometric complexity of natural

sourids, statistical bias, and large number of acoustic dimensions it is exceedingly

difficult to dissociate responses arising from a single acoustic feature and/or dimension.

One must therefore jointly consider the limited amount of experimental recording time

which is available (this is ultimately determined by the electrode stability of the

experimental setup and it is usually in the range of tens of minutes to several hours) and

the stimulus space of interest. Either way, when using such sounds to derive STRFs one

may ultimately be wasting precious recording time by exploring only a small subspace of

the target objective or parameter, while driving the neuron or system (for most of the

recording epoch) with numerous other sound features that are not of immediately

interest. Although natural sounds may be efficient stimuli to drive the auditory system as

* Whole, the statistical bias of their spectro-temporal composition and high

*imensionality can prohibit a clear understanding of the underlying neuronal principles.

*-4 stimulus Requirements for Deriving STRFs
The spectro-temporal receptive field (Aertsen et al. 1980 1981; Hermes et al.

198 l; Yeshurun et al. 1987; Nelken et al. 1997; deCharms et al. 1998; Theunissen et al.

2Ooo: Klein et al. 2000) provides a linear model for characterizing the response area of
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auditory neurons. In the visual system, the analogous functional descriptor is the spatio

temporal receptive (Jones and Palmer 1987; Deangelis, Ohzawa, Freeman 1993;

Anzai et al. 1999; Reich et al. 2000) field. This linear descriptor has been successfully

used to describe the response areas of visual neurons along the space-time dimensions.

Conceptually, the STRF can be thought of as the optimal linear descriptor which jointly

characterizes a neuron's spectral (spatial for the visual system) and temporal preferences.

In general, the STRF serves as a linear model which can be used to predict

neuronal responses to arbitrary stimuli. For a quasi linear neurons, the STRF serves as an

invaluable tool since it retains much of the neuron’s transfer function characteristics

which are necessary for predicting neuronal responses. For a nonlinear neuron, however,

the STRF may not fully generalize and will often fail at describing the neuron's transfer

function attributes. The ability to characterize highly nonlinear neurons therefore depend

Strongly on the neurons operating point and on the driving stimulus used to derive the

STRF. Here we consider the stimulus requirements which are necessary for deriving

auditory spectro-temporal receptive fields.

We consider a multi-input single output linear filter bank (Marmarelis and Naka

1974) as a model representation for auditory neuronal filtering. This representation

Consists of a set of Nadjacent linear filters tonotopically arranged along the primary

Sensory epithelium (e.g. the cochlea). This representation is motivated by the fact that the

Primary sensory epithelium performs a spectro-temporal decomposition of incoming

Sounds and consequently all further processing along the auditory system is constrained

by this output pattern.

Given a spectro-temporal representation for a sound, S(t,x,)=s,(t) , the signal
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s, (t) describes the temporal modulations for the k" input channel (tonotopically

arranged). We use a filter model to describe the neuronal integration and temporal

dynamics of response for a given channel. The spectro-temporal filter bank model

consists of a set of Noctave spaced linear filters, [h,(t), h,(t), ..., hy(t)} , where

Az, (t)=h(T, XA) is the impulse response of a linear filter centered about the frequency

band X, and T corresponds to the temporal lag of the filter. Here X, corresponds

to the center frequency of the k" filter in units of octaves. Taken together, the spectral
****

array of N filters describe the spectro-temporal integration dynamics for a single º
***

In Culron. * :

For such a model neuron the overall response output, r(t) , is obtained by k
º

º

º

****Summing the response for each of the tonotopically arranged frequency channels
****

N *
r(t)=r,4-X r,(t) (2.3) *

k=1 **s

**

wº

g-tae

where ro is the neuron's mean firing rate (zeroth-order kernel),

r,(t)=■ s,(t-t')h,(T)dt-Fe, (t) (2.4)

is the output for the k” frequency channel, s, (t)=s(t, X) is the input of the k" filter

channel, and e *(t) is a noise term that arises from measurement error and the neuron's
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internal noise. For practical reasons, we assume that e, (t) has zero mean and standard

deviation denoted by G. . Furthermore, e,(t) is statistically independent of the input

signal s,(t) . The response of the k" frequency band corresponds to the linear temporal

convolution between the k" input, s, (t) , and the k" impulse response, h,(T) , as

described by Eq.(2.4). Note that the input stimulus, s, (t) , varies along the temporal

and spectral axis and therefore corresponds to a spectro-temporal stimulus

representation, more commonly referred to as the spectro-temporal envelope (Kowalski

et al. 1996a; Klein et al. 2000).

In practical applications, it is desired to estimate the spectro-temporal receptive

field of a neuron using the reverse correlation procedure. This procedure consists of

performing a crosscorrelation between the neuronal response and input driving stimulus.

Unlike the one dimensional stimulus case, where the response difference output,

r(r)- ro , is crosscorrelated with a single input, the described spectro-temporal

representation requires that the response be crosscorrelated with each of the Ninputs. For

the linear model neuron this procedures is expressed as

e■ trº-ºº-o-; E[r,(t)s,(t+0)]= (2.5)
k=1

X. J E[s,(t-t')s,(t+o)]h,(t)dt-E■ e,(t)s,(t+o)]-

5. J R.(t–o , X, -X)h,(T)dt
k -
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- /21 ■ T
- -

where E[]= "...#■ . dt is the time average operator, 1–1,...,N , and R. (T, g)

is the stimulus spectro-temporal autocorrelation function. For a sufficiently large

recording period, T, the error crosscorrelation E■ e, (t)s,(t+o]] approaches zero since

e, (t) and s,(t+0) are statistically independent and both have zero-mean. If the

spectro-temporal autocorrelation of the stimulus has the unique property that it has

impulse like characteristics, that is R.,(r, g)=0;6(r,t), then the spectro-temporal

crosscorrelation between the stimulus and the output simplifies to

N

E[(r(t)—r.)'s(t+o,x)]=0; X ■ 5(1-0,x,−x)h(t,x,)dr=0; h(o, Y) (*)
k = 1

Here o, is to the standard deviation of the stimulus spectro-temporal envelope. The

Spectro-temporal receptive field, h(or, X.) , for the model neurons is instantly derived

aS

Mox)=#E(rù)-rºs■ -ox) (2.7)

Thus the linear neuron's spectro-temporal impulse response (i.e. its STRF) can be

estimated directly by performing a crosscorrelation between the neuron’s response,
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r(t) , and each of it's Nindividual inputs, s, (t) , for k=1,...,N .

For a neuronal spike train, r(t)= X., 6(t-t') of M neuronal event times, t i ?

Eq. (2.7) can be easily expanded as a spike triggered average

h(or, X)= : T 2. s(t)+o, X) . (2.8)1

In practice, T corresponds to the experimental recording period which is in all instances a

finite quantity. Hence, from Eq. (2.6) and (2.8), the estimation of the linear STRF is

greatly simplified by considering a spectro-temporal stimuli with an impulsive spectro

temporal autocorrelation function. One implication of this result is that the only

prerequisite for deriving the STRF for a linear model neuron via Eq. (2.8) is that the

grand average spectro-temporal autocorrelation function have impulse like properties,

regardless of whether the stimulus is stationary or non-stationary (Eq. (2.5) and (2.6)).

Consequently, one can consider classes of acoustic stimuli that retain the global

requirements necessary for deriving STRFs (i.e. impulsive global autocorrelation

function), but yet are ethologically derived. We will consider a class of nonstationary

Sounds with strongly biased instantaneous correlation statistics. In particular, such stimuli

nay be of particular interest fur studying various classes of nonlinear auditory neurons

which often do not respond efficiently to the white noise and m-sequence type stimuli

that are commonly used for reverse correlation procedures. The goal of such stimuli, as

will be described subsequently, is to provide increased nonlinear driving force using

*ustic stimulus features that are known to efficiently drive auditory neurons.

, a. **

**
**
**
sº

º * ....* * *
-- **** --> .*

º *** -,

*** ****** *

ºxº~ *** **** -

***********

83



2.5 Testing for Nonlinearity

A common procedure for characterizing and determining the relative degree of

nonlinearity of a neuronal systems is to estimate its higher-order system kernels. Using

such a procedure for estimating the nonlinear contributions of a system is analogous to

fitting a nonlinear function by a Taylor series expansion. The main distinction between

the Taylor expansion and Voltera systems representation is that the system’s Voltera

kernels describe a nonlinear filtering transformations, whereas the elements of the Taylor
º**

expansion (i.e. f(x)=x , f,(x)=x , f,(x)=x' etc.) describe a nonlinear i.
transformation without any filtering.

-
º:
gº

#.
extended beyond second-order due to experimental limitations which limit the amount of tº is

Most often this approach of characterizing system nonlinearities is generally not

***

recorded data. Although such descriptors are indeed useful for describing subtle
º

- - - - - - - - - - - - - - - *nonlinearities, they are nonetheless faced with practical limitations since they require * -
**
ºve

large amounts of data, are computationally intensive, and are often difficult to interpret. :-
º

Given the finite experimental recording time of neurophysiologic experiments, the ..
estimation of higher-order kernels is further confounded by the fact that white noise like

stimuli, which are prerequisite for deriving higher-order kernels, often do not provide

sufficient nonlinear driving force (e.g. higher-order correlations are weak) to activate

Very nonlinear system elements. Furthermore, for many neural systems relevant aspects

of the system transformation are best described by dynamic nonlinearities (Smirnakis et

al. 1997) which are often not easily described using a Voltera/Wiener series

*Presentation.
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The described multi-input/single-output representation for the linear model

neuron of Eq. (2.3) and (2.4) can be formally extended to include nonlinear elements

and across-channel nonlinear interactions. The spectrographic multi-input nonlinear

representation for a model neuron can be expressed as

r(t)=r, X. r,(t)+X. X rø(t)+... (2.9)k= 1 lººk

where

r,(t)=X r...(t) (2.10)
n=1

is the Voltera expansion of the k” input channel. The n” order term

r...(t)=■ …■ 3,0-T) ºx,(t-t')h...(t),...,t.)d Tºdt, (2.11)

describe the nonlinear filtering contributions to the neuron's firing rate that is produced

by the k” input channel. Here x, (t) is the input to the k" filter channel and

he,(T...,t,) is the n" order nonlinear kernel for this channel. Then" order kernel

describes the nonlinear filtering transformation between the input and the output of this

channel. For the special case of a linear model neuron (Eq. (2.3) and (24)) the kernels

exist only for n=1.

In the third term in the series of Eq. (2.9)

**

gas
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r,()=X. ru,(t) (2.12) sº

corresponds to a sum of the n” order interaction products between the k" and I" input

channels. These terms describe the functional interactions between any two channels. As

an example one can consider the second-order interaction product between the k" and I"

input channels. This is described by a second-order convolution

** *

ru,(t)=■■ ha,(r,t)x,(t-t')x,(t-t')dridt, (2.13) ºr *º-º-º-º: *

between the inputs x,(t) and x,(t) and the second-order nonlinear cross-kernel, f. ******* …----- *: -- ~
he, 2 (T. , T.) , which describes the second-order nonlinear filtering function between ----

at- **ºne-ºn- }

the k” and Ph input channels. The output, ru,(t) , corresponds to the firing rate i. º

*** -- *** - sº *

°ntribution that is produced by the nonlinear interaction between these two input . .* ... , -

°hannels. All of these operations can be extended to include higher-order interactions - ºr \, , ,
tra º ~

--------" l | !Products between any number of input channels.

The procedure for identifying the linear kernel of the system outlined in section
~,

24 can be extended directly for identifying the higher-order and cross kernels of the *

*nlinear model neuron of Eq. (2.9) (Marmarelis and Marmarelis 1978). This approach >

*uires identification of the higher-order terms of the series expansion via a higher- -º-º:
* * * *

*er reverse correlation procedure analogous to Eq. (2.7). Although this approach is in

theory well suited for rigorously identifying the higher-order nonlinear attributes of the
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system under study, it is in general cumbersome, computationally intensive, and requires

1arge amounts of data. Thus in practical applications this method is not feasible and is not

extended beyond a second-order analysis of the system’s kernels (Yeshurun, Wollberg,

and Dyn 1987). Furthermore, unlike the linear model neuron scenario, where the reverse

correlation procedure extracts the systems linear impulse response directly, the measured

STRF is a no longer identical to the systems linear spectro-temporal impulse response.

Instead the estimated kernels are now a composite functions of the linear and the

nonlinear elements of the system. Also, the experimentally measured STRF is now a
*te

- - - - - * - --

function of the driving stimulus used to characterize the system. - ------
º **-------

** *******

1: …-->==
*** -----,

For the described nonlinear neuron, the essential relationship between the

f*
**

-

*** *-*.sºs.-----

º *-i-interactions and uses white noise) (Marmarelis and Marmarelis 1978, Eq. 4.50, pg. 150) ... ----,
º *** **sº

ºteº-a-

neuron’s Voltera kernels and the measured STRF is (if one ignores cross-channel **~~

*** --

-, *s--------

SZTRF.(t, X)=w,(0)= (2.14) i. n

-- º
sº **** ** ***

(2m+1)!or."
oc oo5. | Om s

-x■ . “■ . h. (T.T.", T., T.,0) dry-dr, * * ---.
m=0 m!2 ** * --

tº ººze" ---- -

**

**
** **** ---"

Yhere the experimentally measured kernels for each channel, w *(q) , are now referred

*P as Wiener kernels. The label STRF, is used to denote the Wiener kernel derived STRF.

Note that unlike the linear model neuron scenario, where the reverse correlation

*****cedure produces the systems linear kernels directly, the derived STRF, is now a sum

*** Projections of the odd-order Voltera kernels, h and a functions of the stimulus2 m + 1 >
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power o:

In many instances, the derived Wiener kernel STRF is advantageous since it

contains linear and nonlinear stimulus-response characteristics in one descriptor. Note

that the higher-order nonlinear projections are progressively weaker for higher-order

nonlinear elements (because of the overpowering denominator term in Eq. (2.14); also

see Fig. 1 for illustration) so that the Wiener-derived STRF largely captures linear

response characteristics. This descriptor is optimal in the sense that it provides maximal

information about the systems transfer characteristics (since it combines linear and
**

nonlinear information). In fact, it is possible to derive an STRF, for a nonlinear system *
tº

even in the absence of linear system elements. The drawback of this descriptor is that it tº:

needs to be reestimated for each stimulus condition and operating point in order to º
º

preserve its optimal properties. Alternately, the Voltera STRF representation is º
advantageous in that all of the terms are distinct and invariant as a function of any ■ º

stirrhulus parameter (e.g., stimulus power and other high-order stimulus characteristics) i.

and, consequently, they never requires reestimation. º
Given these basic properties we devise a scheme for identifying complex º

*Cºrnlinearities that may be pertinent for neuronal encoding. As described, it is

theoretically possible to identify nonlinear response characteristics by estimating the

*Ysterm's higher-order kernel using a higher-order reverse correlation procedure.

*However, experimental and practical limitations prevents us from doing so. An indirect

ºr ºr -ºº-º-º-º:

º .** re
*** --> *
º *----,

3.
* --ºn-ºtº-"

tº sº as a

** **** -**

88



Figure 1: (A) Relationship between the input stimulus, Voltera system kernels, and the

Wiener system kernels. The input stimulus is represented by a sequence of higher-order

stimulus correlations. These are depicted as distinct inputs to the system or,

equivalently, the Voltera space. The Voltera space can be thought of as the physical

elements of the system where the order designates the order of the described

nonlinearity. For most reverse correlation stimuli, these higher-order inputs get

progressively weaker (with increasing order). The Voltera kernels project onto the

*º-
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measured Wiener kernels, w, . For the 1*-order Wiener kernel (e.g. the STRF) the

projections arise from all of the odd-order Voltera kernels (depicted in red). As for the

input patterns of the stimulus, these projection patterns get progressively weaker with

increasing order. (B) Altering the projection pattern onto the first-order Wiener kernel

by altering the fifth-order input of the stimulus (altered input depicted in red).

approach around this problem, is to systematically alter the stimulus higher-order

Spectro-temporal correlations, so that the effective projection pattern from nonlinear

terms (Eq. 2.14) is altered. This procedure is schematized in Fig. 1 for a single channel

of the nonlinear filter bank model.

We consider two input signals, S,(t, X) and S,(t, X) and use these to perform

* -1/B comparison of the neuron's response. By design the two signals are chosen so that

their first-order autocorrelation functions R. (or, g) are identical. Only the higher

*der correlation functions are different and these can be chosen by the experimenter

based on a priori knowledge of the higher-order correlations that may be pertinent. As an

Sºarraple consider the projection arising from the fifth-order Voltera element of Fig. 1.

We can magnify this projection by magnifying the fifth-order correlations of Ss (t,x)

CFig. 1 B) while keeping them intact for S,(t.X) . For the linear model neuron of Eq.

C2- 3D and (2.4) it is expected that the derived STRF be identical for both sounds since for

* linear neuron, the derived STRF is only a function of the first-order autocorrelation

*** raction (i.e. only dependent on the projection arising from the first Voltera element of

l{R =
* = - 1 A), R., (or, g) (see Eq. (2.5)). For a nonlinear neuron, however, the derived

:

.
* -
sº ****** **

º tº-º-º-º-º:
º ******
-****
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STRF, is a function of the higher-order correlations of the stimulus (Eq. (2.14)),

which are in this case distinctly different for S,(t, X) and Ss (t, X) . In this case, the

projection arising from fifth-order Voltera element is magnified and this is reflected

directly in the STRF, for Sa(t, X) (Fig. 1B). More generally, this procedure can be

extended by performing any higher-order alteration of interest. Thus for a neuron that

has significant higher-order nonlinearities, the obtained STRFs for S,(t, X) and

S,(t, X) reflect differences that can be attributed directly to the specific alteration

performed on the stimulus and its nonlinear interaction with the system.

2-6 Correlated Versus Uncorrelated Sounds

Little is known as to how the central auditory system of non-specialized

rrnammals decompose and processes complex stimuli that are common in natural

environments. Clearly not all natural sounds are alike, and it is of interest to understand

how different classes of natural sounds are represented and processed by the central

auclitory system. As an example consider speech and vocalization sounds (Chapter 1: Fig.

5)- Such sounds often have coherently activated spectral resonances, temporal

in C clulations, and FM sweeps which together give rise to distinct perceptual qualities.

Harmonicity and fast temporal periodicities give rise to the unified percept of pitch

Y^^hereas slower temporal modulations that occur from disjoining speech segments and

Y’ºrd transitions are perceived as discrete auditory objects or acoustic rhythms (Plomp

1 s 67 1983). The perception of timbre (Plomp 1970; Pols, Kamp, and Plomp 1969; Van
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Veen and Houtgast 1983), on the other hand, is largely dominated by spectral shape and

spectral resonances that arise in speech from postural adjustments of the vocal tract and

oral cavity.

In contrast, environmental noise sounds often do not share the same physical and

perceptual attributes inherent to vocalizations and speech. The water sounds emanating

from a small stream and the sound of ruffling leaves (Chapter 1: Fig. 6), for example,

have randomly modulated spectro-temporal envelope and lack most of the distinct

spectral and temporal cues that are common to vocalizations. Among these,

environmental sounds often do not have strong coherent spectral resonances and

temporal periodicities. Since such sounds generally do not arise from vibrating media

and air columns, such as for vocal fold vibrations and the vocal tract in human speech,

they therefore also lack harmonic components.

A common determinant of the perceptual and physical qualities of natural sounds

are therefore determined by the level of correlation or redundancy that is present in the

accustic signal. Vocalization Sounds, for example, are locally highly structured and have

spectro-temporal envelopes which are highly redundant (Attias and Schreiner 1998a;

Nelken, Rotman, and Yosef 1999; also see chapter 1). This is usually the result of

repetitive temporal periodicities, comodulation, and spectral resonances which generally

cio rhot occur in isolation and are all the result of the constraints imposed by the voice

Bernerating mechanisms. The non-speech sound arising from shuffling leafs or running

Yºrater lacks this high local correlation, likely because of the erratic patterns of air and

fluid flow that give rise to such sounds. The running stream also lacks many of the

****mplex dynamics present in the speech sound. The time-varying envelope of the
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running stream preserves statistically similar acoustic properties for all times. A snapshot

of the spectrogram for this sound at two distinct time instants would look largely the

same. This is in marked contrast to vocalizations and speech which have local correlation

properties that are continuously changing and markedly different for distinct time epochs.

Such spectro-temporal characteristics were quantified and explored in detail in

chapter 1. Here it suffices to note that these sounds represent two qualitatively different

and extreme scenarios of auditory processing. With this in mind, we would like to

understand how such stimulus characteristics are represented and processed by individual

auditory neurons and how these are ultimately represented in the spatio-temporal neural

discharge activity at various stations of the auditory system (e.g. the inferior colliculus, g---> **

auditory cortex). Although we will not use natural sounds directly to achieve this (for : ---
the reasons mentioned in section 2.3) our motivation is strictly guided by neuroethologic : -->

- º

principles. The remainder of this chapter focuses on the acoustic stimulus design. Two *
.

acoustic stimuli are designed that incorporate the following key attributes of natural ! º*** *** -º-º:

SOunds: . "...sº ...
* * *---,

* **, *-is-a- "
x- tº sº a sº- a -

* ---------"1 D Dynamic – As with natural Sounds, the probing stimulus should be dynamic so that it

prevents response adaptation, activates dynamic nonlinearities, and so that its

statistical structure changes with time. This is closely related to the notion of non

stationarity which requires that the autocorrelation function (here we consider only the

spectro-temporal autocorrelation function) be time-varying (Hayes 1996; Marmarelis

and Marmarelis 1978).

2D Spectro-temporally complex – It is desired that the driving stimulus be sufficiently

*
*

Rºº.
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complex so that it embodies key spectro-temporal features of natural sounds. Some of

these include FM sweeps, spectral resonances, and temporal modulations.

3) Globally Unbiased – In order to provide a complete and statistically sound

4)

5)

6)

7)

characterization of neuronal responses the long term spectro-temporal statistics

should be unbiased.

Locally correlated – As for speech and vocalizations, one sound will be designed to

explore responses to sounds that are local structured and biased. The global statistics

for this sound should nonetheless satisfy requirement 3.

Locally uncorrelated – This property is used to explore responses to sounds that are

qualitatively similar to the babbling brook example. As for the sound used in 4, this

sound is also globally unbiased.

Biologically plausible – This is our main source of motivation which is closely tied to

requirements 1 and 2.

Persistently exciting - This term is often used in the engineering literature (Ljung

1987) to refer to the amount of driving force. A persistently exciting stimulus should

continuously provide excitatory drive within the integration limits of the system. In

rheuroscience terms this requirement demands that the stimulus should also provide

sufficient excitatory and inhibitory drive. Hence the stimulus should continuously

probe neuronal responses up to and above the relevant neural integration limits. This

is accomplished by designing acoustic stimuli that contain spectro-temporal acoustic

features (onsets, offsets, resonances, FM sweeps, etc.) which continuously drive the

auditory system.
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2-7 The Dynamic Ripple and Ripple Noise Stimuli

Two broadband stimuli (Fig. 2 and 3) were designed to mimic some of the

spectral and temporal features characteristic of two classes of natural sounds. Although

these stimuli do not capture the complete range of perceptual and acoustic properties (i.e.

comodulation, harmonicity, 1/f modulation spectrum etc.), they nonetheless capture

essential properties of their spectro-temporal envelope. Here, we sought to preserve the

local correlation properties of the spectro-temporal envelope of natural sounds because

these determine important perceptual qualities such as timbre (Plomp 1967; Pols, Kamp,

and Plomp 1969; Plomp 1970; Van Veen and Houtgast 1983 1985). :~
The dynamic ripple stimulus (Fig. 2) is motivated by the ripple spectrum noise ---

used in human psychophysic studies (Houstgast 1977) to study lateral inhibition and : ---
more recently for studying spectral and temporal receptive fields in the ferret and cat : ---
auditory cortex (Schreiner and Calhoun 1994; Kowalski, Depireux, and Shamma 1996a º

––.

1996b). The instantaneous spectrum for this sound is a sinusoidal grating on a log- . -º---

frequency and log-intensity axis. It is analogous to spatial sinusoidal gratings used in : ºº
Visual experiments to investigate neural sensitivities (Victor and Purpura 1998; Girman, : ---º

S.
*** **** ******

Sauve, and Lund 1999). A key characteristic of the dynamic ripple is evident upon

*Xarmining its local statistics. Note that the spectro-temporal envelope is locally highly

Structured (having distinct temporal modulations, spectral resonances, and FM sweeps)

***uch like the features found in vocalizations and speech. Similar to animal vocalizations

****i speech, this envelope shows nonrandom spectral resonances and temporal

****>dulations at a characteristic spectral and temporal frequencies. This sound has strong

S■ acrt term correlations which are locally determined by its instantaneous stimulus
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Figure 2: (A) The dynamic ripple spectro-temporal envelope has complex dynamics,

spectral resonances, and temporal modulations which coexist along the spectral and

temporal axis. (B) Temporal cross sections of the spectro-temporal envelope shown at

locations marked by arrows. Note that the instantaneous modulation rate, Fr. , changes

dynamically with time (bandlimited to 1.5 Hz). (C) Spectral cross-section shown at

locations marked by arrows. At a given time instant, the stimulus envelope has a

sinusoidal shape on a logarithmic frequency - logarithmic amplitude axis where the

instantaneous ripple frequency, Qi (bandlimit frequency 3 Hz), determines the number

of resonances (cycles / octave) along the spectral axis. The acoustic pressure waveform

(D) for the dynamic ripple envelope of (A) has a noisy character similar to white noise.

Shown for Q, =4 cycles/octave and F, -70 Hz.
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parameters (temporal modulation rate and ripple density).

Fig. 2a shows the spectro-temporal envelope of a segment of the dynamic

moving ripple stimulus. At a fixed time instant (Fig.2c) the spectral envelope has a

sinusoidal shape on a logarithmic-amplitude and logarithmic-frequency axis where the

envelope frequency, ■ 2(t) (units of cycles per octave), varies dynamically with time.

Along the temporal axis (Fig. 1b), the envelope turns on and off dynamically so that the

temporal modulation rate, F,(t) (units of Hz), varies as a function of time. The

dynamic ripple stimulus is of particular interest since it mimics the dynamic spectral ! -->

profiles created by formants (spectral resonance of the vocal tract) in speech production is

and animal vocalizations. , -------,
**.***

º *
A second stimulus was designed which has weak local correlations and therefore . …

has complementary local statistics to the dynamic ripple envelope. Unlike the dynamic " *******

ripple, the ripple noise (Fig. 3a) envelope is locally weakly correlated (unstructured)
º

resembling background and environmental noise like wind and rain (see chapter 1). -- --
sº tºº º

Hence, this sound is equivalent to traditional reverse correlation stimuli. Spectral and - ~,
" ***** *

temporal cross sections for this envelope are shown in Fig. 3b and c. Unlike the cross *~~s" ºr :--------"

Sections for the dynamic ripple, which have spectral and temporal oscillations at a

characteristic frequency, the ripple noise cross sections are noisy and resemble a

Paradlimited uniformly distributed noise signal. Hence, this sound lacks the high

***iundancy which is present in animal vocalizations, speech (Attias and Schreiner 1998;

^ =lleen, Rotman, and Yosef 1999; see chapter 1), and the dynamic ripple envelope.

*Peseite these local properties the ripple noise sound probes the same range of temporal

lºci spectral modulations as the dynamic ripple sound.
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Figure 3: (A) The ripple noise spectro-temporal resembles a bandlmited spectro

temporal white noise signal with weak local correlations. Temporal (B) and spectral (C)

cross-sections have a noisy character and are statistically uncorrelated. (D) Acoustic

sound pressure waveform resembles a white noise signal. Shown for Q, E4

cycles/octave and F, -70 Hz.

In addition to preserving some spectro-temporal features that are common to

distinct classes of natural sounds, the dynamic ripple and ripple noise stimulus are

clesigned to retain the basic properties of white noise that are necessary for obtaining

reverse correlation measurements: i) Flat power spectrum and impulsive autocorrelation
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function, r(t), in the vicinity of T=0, ii) Flat envelope spectrum and impulsive spectro

temporal envelope autocorrelation functions. We distinguish these two constraints and

note that property (i) is imposed on the signal carriers requiring that they have a white

noise character. To account for the fact that the auditory sensory epithelium is arranged

logarithmically in frequency along the basilar membrane (Liberman 1982; Greenwood

1990), the acoustic stimulus is designed so that requirement (i) is satisfied on a octave

frequency axis. Constraint (ii), on the other hand, is imposed on the spectro-temporal

envelope, a second-order property of the stimulus (Cohen 1995; Hermes et al. 1981;

Klein et al. 2000). It is required that the stimulus envelope be globally unbiased, so that

all spectral envelope and temporal modulation frequencies are equally represented within

the physiologically relevant range. In addition, we also required that the stimulus be

globally uncorrelated along these two dimensions, allowing us to perform reverse

correlation measurements with respect to the stimulus spectro-temporal envelope.

Despite this global correlation property, the dynamic ripple stimulus is locally correlated

at any time–frequency instant (as is the case with many natural stimuli). It will be shown

in subsequent sections that the local correlation structure of the dynamic ripple stimulus

changes dynamically and is determined by the ripple density, (2(t), and temporal

modulation rate parameters, Fn(t), at a given time instant.

2.8 Ripple Stimulus Design
The ripple noise and moving ripple stimuli are generated using a bank of N=230

sinusoid components of increasing frequency, fl. Each sinusoid component is individually

arraplitude modulated by the linear amplitude spectro-temporal envelope St.(t,x,)
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and summed to produce the time waveform s(t). The noise signal is represented by

N

s(t)=X. S,(t,x,)sin (2Trf, t--q},) , (2.15)

where q), is an uniformly distributed random phase in the interval [0,2Tr] which gives s(t)

noise like properties. The variable X, represents an octave frequency axis and is related

to the individual carrier frequencies, f, by X, −log, (f/f) . Here f=500 Hz

corresponds to the lower spectrum frequency and fºº() kHz is the maximum frequency

of the ripple signal. The octave defined carrier components, Xi, are equally spaced on an

octave axis and span a range of 5.32 octaves. This guarantees that the primary sensory

epithelium is uniformly excited and equal energy is provided per unit octave (adhering to

criterion (i)). To satisfy this property the carrier frequencies, f. , must be geometrically

spaced. The k” carrier is related to adjacent frequency components by fac. f. , ,

where cº-1.01617 is a constant strictly greater than unity, and related to the first carrier

component, fi, by f=c." f . This general form for fresults in linearly spaced octave

elements where X,-(k-1)AX and AX=log, (c.) is the spectral separation between

adjacent components. For the chosen c., 43 carrier components are summed per unit

Octave at a spectral resolution of AX=0.0231 octaves.
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2.9 Design of the Dynamic Moving Ripple Envelope

The dynamic moving ripple envelope is an extension of the moving ripple used

by Kawolski et al. (1996a and 1996b). The time-varying spectro-temporal envelope for

this stimulus is shown in Fig. 2a. Temporal and spectral cross sections are shown in Fig.

2b and 2c. The spectral cross section, which is taken at fixed time instant, has a

sinusoidal shape on an octave frequency and logarithmic amplitude axis (units of dB).

Since the ripple spectrum noise excites the primary sensory epithelium with a sinusoidal

energy distribution, it is therefore analogous to visual spatial gratings commonly used to

study visual neurons which likewise excite the sensory epithelium in the retina with a

sinusoidal energy distribution. The temporal cross section is time-varying and designed

to probe different temporal periodicities.

The decibel amplitude spectro-temporal envelope is expressed as

s(x)=#sin(*notox, *()–: (2.16)

where M is the modulation depth in units of decibels, and (2(t) (units of cycles/octave) is

the time—varying ripple density (i.e. the number of resonances per octave). The ripple

phase, p(t), is time-varying and determines the instantaneous phase of the spectral

envelope relative to the first component X1. This parameter additionally determines the

instantaneous modulation rate, F.(1), (units of Hz) and the frequency modulation sweep

rate of the spectro-temporal envelope. The parameters, (2(t) and F,(t), vary randomly in

time (Fig. 4), are statistically independent and unbiased within a chosen parameter range
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(Fig. 5). The resulting spectral profile is therefore dynamic (as is the case with natural

signals), globally spectro-temporally uncorrelated, and statistically unbiased and

therefore adheres to criterion (ii). These stimulus characteristics are described in detail in

sections 2.12–2.23.
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Figure 4: Time trajectory for the ripple frequency (A) and modulation rate (B)

parameters vary randomly in time. Note that the parameter signals are confined to the

F respectively and are bandlimited (3 Hz and 1.5range [0, (2,..] and [-F, , Fual

Hz respectively). The ripple density and modulation rate parameters (C) (shown as a

space trajectory for the corresponding time trajectories of A and B) simultaneously

probe the stimulus spectral and temporal acoustic space.

Because Eq. (2.16) is written in units of decibels (see Fig. 2) it is clear that the

moving ripple envelope probes logarithmic amplitude variations. Most acoustic stimuli

used in auditory experiments, however, probe spectral and temporal preferences using
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linearly distributed amplitude gradations (e.g. Kowalski, Depireux, and Shamma 1996a).

We choose logarithmic amplitude scale (e.g. SPL measured in decibels) for the relevant

stimulus dimension since natural sounds have relative intensity gradations that cover a

decibel space (Attias and Schreiner 1998a; chapter 1) and since neuronal response areas

generally span several orders of magnitude (Ehret and Merzenich 1988; Eggermont

1989). Recent evidence additionally suggests that auditory (Attias and Schreiner 1998a)

neurons are adapted and respond efficiently to such spectro-temporal gradations.

Although the moving ripple envelope defined in Eq. (2.16), S(t,x,) , spans a

decibel amplitude axis, Eq. (2.15) requires a linearly defined spectro-temporal envelope,

S,(t,x,) . We must therefore transform and relate the envelope defined in Eq. (2.16),

which is given in units of decibels, to a linear amplitude signal. The two signal

descriptions are related by S(t,x,)=201oglo■ s,(t,x,)] where the reference amplitude

used to define the decibel quantity is unity. Hence we only consider amplitude variations

relative to a maximum amplitude of unity. During experiment sessions this unity

reference point is chosen as the stimulus maximum sound pressure level, SPLM... Note

that the minimum and maximum relative decibel intensities of the spectro-temporal

envelope of Eq. (2.16) are —M and 0. In absolute units these will be SPLM…—M and

SPLua. The linear spectro-temporal envelope is therefore bounded between 10 ”

(near zero) and unity satisfying the general conventions used to define amplitude

modulation signals which limit the maximum and minimum signal amplitudes to range 0

and 1 (Cohen 1995). The linear spectro-temporal envelope used in Eq. (2.15) is obtained

from Eq. (2.16). Taking the inverse logarithm of S(t,x,) results in the desired quantity:
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M : Msº ºne-ºx,”) ;
-

(2.17)Sº,(t,x,)= 10

2.10 Parameter Design for the Dynamic Ripple

Since the spectro-temporal envelope varies along the temporal and spectral

dimensions of the stimulus, we would like designate a parametric description of the

stimulus a priori. Secondly we would like to derive the relationships of the time-varying

parameters (20t), Fn(t), and p(t) from first principles. Conceptually the dynamic moving

ripple envelope corresponds to a moving wavefront, along the spectral axis X, , with

time-varying velocity and wavelengths. The rate of change of the spectral envelope,

Q(t) , is obtained by differentiating the argument of Eq. (2.16) with respect to X, and

dividing by 2it (Cohen 1995). Doing so it is easy to verify that

a()–:#2100x, "()
-

(2.18)
k

The instantaneous ripple density, (2(t), therefore determines the number of sinusoidal

Peaks per octave along the spectral axis, X, which exist at a given time instant. Since this

Parameter is time-varying, it allows one to dynamically probe neuronal responses to

numerous spectral resolution.

Having derived the spectral properties of the envelope it is of equal interest to

determine its temporal properties. The instantaneous rates of change of the temporal
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envelope is similarly obtained by differentiating the argument of Eq. (2.16) now with

respect to time and dividing by 27t. The instantaneous temporal modulation rate, F,(t), is

therefore given by

F.()–:#2100x10-0 (0x, Hº () (2.19)

Ideally, the two parameters (20t) and F,(t) are chosen a priori so that the spectral and

temporal properties of the envelope are statistically independent and unbiased. Clearly : *****

F.(t) is not statistically independent of Q(t) since from it is a function of Q'(t)x 1 (Eq. - *****
º * ... ---

(2.19)). To overcome this, we allow : Y
* *-*.
gº ºs---

º
ºn tºº1 . . r+-b'(t):= Q'(t)x, , (2.20)

2 TT
º

ºn tº lºw---sº

º e."

so that F,(t) has its largest contribution from p(t). The ripple phase is obtained by ----'

solving Eq. (2.19) for p(t) and allowing (2′(t)x, — 0. Using this approximation, the

instantaneous phase signal is designated as

*(t)=2m J. F.(t)at (2.21)

Where F. (t) is the desired temporal modulation rate profile. Hence as previously
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mentioned the phase signal has a dual role. First it controls the temporal modulation rate

of the dynamic ripple envelope by Eq. (2.19). Secondly, it serves to randomize the

relative phase of the spectral envelope. Although the absolute phase is given by Eq.

(2.21), the distribution of phases is best expressed as a relative quantity since the position

of the spectral envelope is circularly symmetric (repeats every multiple integer of

2 TT ). The phase distribution is obtained by considering the modulus phase,

q’,(t)=mod(4 (t), 2 TT) , where mod (, , a] designates the modulus operator base a.m

Using this quantity the phase signal, P., (t) , is confined to the interval [0, 2 ■ t] and

the ripple phase probability distribution is expressed as p(p.) . A segment of the

phase trajectory and its distribution are shown in Fig. 5. Note that as for the ripple

density and the temporal modulation rate parameters, the ripple phase is likewise

uniformly distributed (statistically unbiased) so that it probes all spectral phases.

The actual modulation rate profile for the dynamic ripple is expressed as

F.(t)=F(t)+Q'(t)x, (2.22)

where the error or bias between the actual and desired modulation profiles is

AF.(t)=F.(1)–F(t)=Q(t)x, (2.23)

Note that A.F.(t) is a function of the spectral location, X. This bias can be minimized
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to any degree of accuracy by simply reducing the bandwidth of the signal (2■ t), thereby

limiting its rate of change. If (2(t) is chosen as a constant for all time (bandwidth of

zero) then Q (t)=0 and F.(t)=F(t) . Although we can in theory minimize the

stimulus bias in this manner, this is not strictly desired since choosing a signal for (20t)

that is too slow will compromise the stimulus dynamics. A tradeoff must therefore be

established between making the envelope dynamic, so that it preserves properties of

natural sounds, and making the stimulus unbiased over the chosen range of temporal

preferences.

As a basis for preserving stimulus dynamics in the range of natural sounds, the

parameter bandwidths are chosen so that they overlap the word rates, syllable rates, and

stressed syllable rates of speech, all of which fall in the range of 1–8 Hz (Plomp 1983;

Greenberg 1998). The parameters F.(t) and (2(t) vary randomly and independently,

where F,(t) takes uniformly distributed values in the interval [–350,350 Hz (negative

modulation rates indicate that the ripples move from low to high frequencies producing

upward FM sweeps) and (2(t) takes uniformly distributed values in the interval [0,4]
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Figure 5: Time trajectories for the ripple phase, p(t) , (A) and the relative modulus *- -: -- 7***----

º *~~~
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phase, P.+ mod (p (t), 2m) , (B). As for the ripple density and modulation rate n ye- -
-: º ---> t º

parameters (Fig. 4 and 6), the relative ripple phase, q, , follows an uniform º
pri * ***** >

distribution and is therefore statistically unbiased.
- -º- ----

º * : - "

cycles per octave. To optimally excite auditory neurons in the range characteristic for -
-

speech we designed these parameters so that they continuously vary in time at a nominal * ~~~~~

rate of 1.5 Hz and 3 Hz, respectively. Note that the stimulus spectro-temporal correlation

function likewise varies at this rate and the sound is therefore non-stationary (Hayes

1996; Marmarelis and Marmarelis 1978). Fig. 4 shows the parameter signal trajectories

for a short time segment. The corresponding parameter distributions and their power

spectra are shown in Fig. 6. Using a bandwidth of 1.5 Hz for F.(t) and 3 Hz for (2(t),

satisfies our dual motivation to preserve the stimulus dynamics in the range for speech
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while minimizing the parameter error for F,(t). For these values, Eq. (2.20) is

approximately satisfied and the parameter F,(t) has a mean RMS error of 5%.
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Figure 6: The parameter distributions for the ripple density (A) and modulation rate (B)

parameters shown in Fig. 4. Both parameters are uniformly distributed and statistically

unbiased over their defined range. Power spectrum of the ripple density parameter (C),

Q(t) , and modulation rate parameter (D), F.(t) , signals. The time-varying

ripple density parameter has a cutoff frequency of 3 Hz while the modulation rate

parameter has a maximum turnover rate of 1.5 Hz.
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2.11 Design of the Ripple Noise Envelope

The ripple noise spectro-temporal envelope is generated as a superposition of

L= 16 independent dynamic ripple envelopes. Each dynamic ripple is constructed

from L statistically independent ripple density, (2 {k} (t) , and modulation rate,

dº■ t) , parameter signals. For any integer valued k+l , it is therefore required that

the parameter autocorrelation functions satisfy E[(2,0)-u,)(a)(t+1)-u,)]=0 and

l—lim ■ º ..., , ; ot:|-}..+■ , dt is the expectation orE|F.I.,()F. ( 11)|=0 for all T . Here E■

time average operator. Consequently, the k" dynamic ripple envelope is constructed so

that it is statistically independent of the l" dynamic ripple envelope (i.e.

E[s,(t,x)S (t+T.Y-c)]=0 for all T and g where E[ ] is now a spectro{l}

temporal average). The signal

S (1,X) S111 2m (2,\t)X d º,(t) (2.24)

is the zero—mean dynamic ripple envelope for the k" ripple component.

Formally the ripple noise envelope is expressed as

(2.25)
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where

f(0-4er■ tºo..]-4 (2.26)

- -
2 * -,

- -

is a contrast transformation, er■ ()-- e dT is the error function, andTT 0

orps-M/ V8 is the dynamic ripple standard deviation. The function f(x) transforms

the amplitude distribution of the ripple noise from a normal distribution with standard

deviation orps to an uniform amplitude distribution in the interval [–M,0] (Fig. 7).

This transformation is performed for two reasons: first f(x) matches the range of

stimulus intensities for the ripple noise signal to those of the dynamic ripple envelope so

that the two signals have almost identical amplitude distributions (Fig. 7). Both stimuli

therefore probe the same amplitude operating range and have identical contrast statistics.

Secondly, and more importantly, there is a potential problem that arise when

characterizing neuronal responses, since central auditory neurons can have a strong non

linear dependency with the stimulus intensity (Ehret and Merzenich 1988; Eggermont

1989). Since the goal of this study is to characterize spectro-temporal nonlinearities at a

fixed operating point, this normalization helps prevent simultaneous activation of other

nonlinearities which arise from independent response components (i.e. intensity, contrast,

etc.). Without this transformation, the long tails of the normally distributed ripple noise

stimulus could possibly excite intensity nonlinearities that would not be excited by the
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dynamic ripple stimulus.
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approaches a band—limited spectro-temporal white noise envelope. Since the component

dynamic ripple envelope components, S,(t,x,) , and their corresponding parameters,

(20 (t) and F,0)(t) are statistically independent stochastic processes, the central

limit theorem guarantees that the sum inside f(x) converges to a normal distribution of

variance ois . The transformation, f(x) , serves only to alter the amplitude

distribution and does not alter the spectro-temporal content. In a subsequent section it is

show that this transformation does not alter the shape of the stimulus autocorrelation

function. Hence, similar to the dynamic ripple stimulus, the ripple noise stimulus is in

principle well suited for reverse correlation procedures.

2.12 Dynamic Ripple and Ripple Noise Spectro-Temporal

Correlation Statistics

By design, the dynamic ripple and ripple noise stimuli have a general appeal for

studying nonlinear auditory processing and for studying central auditory representations.

In particular, their suitability for reverse correlation combined with the numerous

ethologic considerations (i.e. spectro-temporal characteristics, temporal and spectral

envelope frequency ranges, stimulus dynamics, and logarithmic contrast) make them

ideal for studying various aspects of central auditory processing. Of interest is the fact

that by using such sounds one can study processing of spectral and temporal stimulus

features simultaneously. In the remainder of this section we focus on thoroughly

characterizing the local correlation properties of the spectro-temporal envelope as well

as the dynamic properties of the two stimuli.
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Although the stimulus design, chosen set of parameters, and stimulus dynamics

for these two stimuli are ethologically motivated, it needs to be determined whether the

resulting spectro-temporal statistics (of the resulting spectro-temporal envelopes) are

biologically reasonable and well suited for reverse correlation. These concepts are

highlighted in the following section. It is shown that both stimuli have identical second

order statistics and differ only in their higher-order moments and stimulus dynamics.

Since the identification of linear system is dependent only on the second-order stimulus

features and independent of the stimulus dynamics, we would expect identical systems

characterizations for both sounds. This argument was proved analytically in section 2.4. ; : * = -- a
t **** --> ºf

Hence we can use this knowledge about the stimulus to learn about nonlinear auditory * * *, **** *
- - * *** ~~

processing and response dynamics to such sounds. • *.***
• *.*.*.*

t *~~ *
* ** *-*-

a sº-ºº:
* -2.13 Dynamic Ripple Local Approximation -----

The dynamic ripple spectro-temporal envelope, Eq. (2.16), can be expressed as *__

, ºr
~ º

s(x)=#in (Arg ()–: (2.27) º ...”

where the argument inside the sine function is

Arg(t)=2T (2(t)x+p(t) . (2.28)

Note that this argument is time-varying as a consequence of the slowly varying stimulus
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parameters which control the spectral and temporal envelope properties. Since the

temporal modulations of the dynamic ripple envelope are exceedingly fast (up to 350 Hz)

in comparison to the stimulus parameters time rate of change (1.5 Hz for F,(t) and 3 Hz

for (2(t)), one can easily model a local fit to the spectro-temporal envelope. To do so

Arg(t) is locally expanded using a Taylor series approximation about t=t,

Arg(t), , =4(t)+2m (2(t )X+q'(t)(t–1)+2tt Q'(t)x(t–1)+... . (2.29)

Since the parameters (2(t) and F,(t) are slowly varying in time, the higher-order

terms in the expansion will tend to be small in the vicinity of t-ti. One can therefore

ignore all terms in the expansion of higher than 1" order. An additional simplifying

assumption can be made by noting that F.(t) tº Q'(t) Xt = AF_(t)t (Eq. (2.20) and

(2.23)). Hence the first-order term in the Taylor expansion containing (2'(t)xt is

likewise ignored. After rearranging terms and simplifying, the inner argument of the

dynamic ripple profile is approximated by

Arg(t), , -2m Q(t)x+p'(t) tº (1)–p'(t)t-2m O'(t)x1, . (2.30)i i

Noting that p"(t)=2T F,(t) and that P(t)–p'(t)t, 2 TT (2'(t)xt, are constant

terms, Arg(t) is then expressed in the general form
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Arg(t), , -2m Q, K+2m F.t-p. (2.31)

where p,-p(t)–p'(t)t,-2 m Q'(t)xt, , (2,-(2(t) , and F.-F.()–: "(...) are

the instantaneous stimulus parameters. The dynamic ripple spectro-temporal envelope,

S(t,x) , is locally approximated by

**** * ~ *.**

---

*
}: -a ----*** * *S(t,x),..., s S(t,x|t) (2.32)t=1.
are .-- ***

*

*--~~~
t *------- -**

where

s(x)=\sin(270x127F. º-º: (2.33) s sº." -- * *

is a static moving ripple envelope of constant ripple density, Q, , temporal modulation

rate, F, , and spectral phase, q}, .

The dynamic ripple envelope is therefore a generalization of the static moving

ripple gratings used by Kowalski et al. (1996a 1996b). These stimuli are of interest since

they form a joint basis set for spectral and temporal acoustic stimulus features. Although

individual ripple gratings of the static moving ripple stimulus can move, following an

upward or downward trajectory, they are nonetheless referred to as static since the
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stimulus parameters are constant throughout the stimulus presentation. The dynamic

ripple differs principally in that the parameters are chosen as time-varying stochastic

processes. The resulting spectro-temporal grating is consequently dynamic, having

structural components and combinations which are not probed by the static moving ripple

gratings. This is especially true at points in time were the stimulus parameters are rapidly

changing and, consequently, the spectro-temporal content transitions from one parameter

regime to another in a continuous manner. Given that the dynamic ripple is locally well

approximated by a static moving ripple of constant parameters, it can therefore be

thought of as a local basis set decomposition which spans the ripple density and temporal *** * ~ *

modulation rate parameter space in a dynamic fashion.

!---.
2.14 Dynamic Ripple Local Autocorrelation Function 3.º

As demonstrated in Fig. 2a and Fig. 4, the dynamic ripple envelope is locally *--

structured and has complex spectro-temporal dynamics that are determine by the ripple º

density and temporal modulation rate parameters. To further understand such , ---

characteristics of the dynamic ripple envelope which make it ideal for characterizing ~ *

auditory neurons, it dynamic auto-correlation properties are further investigated (Cohen

1995). This theoretical framework will serve as a foundation for determining its

suitability for general systems identification and for studying auditory system function

with this sound.

Given that the dynamic ripple envelope is instantaneously approximated by Eq.

(2.33), one can approximate the instantaneous spectro-temporal autocorrelation (Cohen

1995) function about t=t, by
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R.(r.cli)=E|S(t++,x+cli)w (t+1.x+c)S(x|)w,(LX)] (2.34)

- -
1 r T rz

-where the spectro-temporal average operator, E■ l=r." .77' , J., d dx , is taken

with respect to t and X. The signal

s(x|I)-s(xi). Miz-4sin(270x127F. -º) (2.35) *** ----

*-*. * --->
*** --

*** * * * *

is the instantaneous zero-mean spectro-temporal envelope approximation, and . * -- . .-** **
*** - - ***

w,(t,x) is an unity energy two dimensional real valued window function centered *** - -
** ****--

- - - - *** *** -- as
about t=t, and X=X. This spectro-temporal window serves a similar purpose as for a t

**-tºº----. .

spectrogram representation (Cohen 1995), were the local signal is restricted in time using
*

a tapered window function. For practical reasons we will consider 2-D Gaussian º …

window of the general form (Cohen 1995) *ºne- '■

w(x)=-H-exp(-(– 1)/20–(x-x)/20]
3. (2.36)

Tro, or,

although other 2-D rational window functions can be used. The variables O., and Ox

correspond to the standard deviations of the window along the temporal and spectral

dimensions respectively. This window is chosen primarily because it facilitates much of
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the analysis that will follow. Since the chosen window has a finite energy of unity (i.e.

T !"
do

■ ■ . w( t,X) dt dx=1 ) the two dimensional expectation operator can be

expressed as E []=|im ■ º ■ . dt dx . Throughout we primarily consider the

autocorrelation function (Eq. (2.34)), which in all instances has a squared window term

embedded inside the expectation (e.g. wi(t, X) ). Hence the energy normalized

expectation will ease the general interpretations because the resultant window

components will have maximum amplitude of unity.

To facilitate the subsequent derivations an analytic signal representation (Cohen

1995) of the spectro-temporal envelope, Eq. (2.35), is used. The spectro-temporal

envelope is expressed as

S(x|I)=Im(A)(.x)] (2.37)

where

M
-A(x)=#exp■ j(2max+2m F-14 b)] (2.38)

is the analytic signal version of S(1,X|t) . Note that S(t. X|t) can be recovered

directly from A,(1,X) via Eq. (2.37) since z=e’’=cos(9)+jsin (9) and

Im(z)=sin(9) for any complex variable or function 9 . Using this analytic signal
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representation, the spectro-temporal autocorrelation function is given by

R.(r.clº)=E|Im|A(i+1,x+z)||m|A(x)]w (11.x+c)w(x)] . (2.39)

Expanding Eq. (2.39) using the identity

1 • T 1
Im|z|im [...]-}Re■ .,.]-}Re[: z. (2.40)

where z, and z, are imaginary numbers results in

iR.G.cº)==[Rela (t+T .x+z)A(x)}w ( tr.,x+ ow(x)]- (2.41)

i i#[Re(A(i++...×c)4(x)]w (11.3 row(x)]
-

Before proceeding it is necessary to expand and simplify the terms

Re■ a (t+1.x+c)4(x)] and Re|A(i+1,x+z)A (LX)] inside Eq. (241).i

Substituting Eq. (2.38) and combining terms gives

2

A(i+1.x-c)a(x)=#exp■ i(21 or 12, F-1) (2.42)
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and

A,(t+T,X+g)A,(t,x)=

2

+exp■ i(rox+an F.1210-2n F. 29)
-

Taking the real part of Eqs. (2.42) and (2.43) results in

2

RelA (+1.x-c)4(x)]-#cos(270-27 F.T.)

and

Re|A(i+1,x+z)A (ºx)|=
2

+cos(*nox in F.12nor-21 F.2%)
-

These identities can now be substituted into Eq. (2.41).

(2.43)

(2.44)

(2.45)

Finally the instantaneous spectro-temporal autocorrelation function is expressed

aS

*** * *...*

i. ----T
* ***** ---a
sº ºr "--

º

** = **-- *
** *** * *
**-------

º-º-º-e

**** -- -

*** * *-s ºn

wº-ºº-------
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2

R.G.<!)-4 e■ co (2nor-21 F.)" (ºr .x+z)w (ºx)]– (2.46)

2

*E■ cos(2n(20x12F. or F.H2+)-(+1.x-ow (x)]

where the second term in the sum cancels because it has a mean value of zero (i.e. the

mean of cos() multiplied by a positive valued rational window of the form of Eq.

(2.36) is approximately zero). Note that the first term in the sum does not cancel since

the arguments of the cosine term, T and C , are independent of the integration

variables, t and X. After simplifying and combining all terms the dynamic ripple

instantaneous autocorrelation function is expressed as

2

R.(T ºl)-4-cos(270-21 F.1)R.(r ,c) (2.47)

where

T” g?
40, 40.

is the 2-D autocorrelation of the Gaussian window (Cohen 1995) of Eq. (2.36). Note that

Eq. (2.48) is exactly a Gaussian window of unity amplitude (since the window energy
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was constrained as R.(0,0)=■ ■ w (t,x) didK=1 ) and standard deviations N2 or, and

N20, .
Examples of the instantaneous autocorrelation function are shown in Fig. 8. As

for the dynamic ripple spectro-temporal envelope, the spectro-temporal autocorrelation

function is time-varying. Note that the instantaneous correlation distance (i.e. the

distance between peaks in the autocorrelation function) is inversely proportional to the

instantaneous spectro-temporal parameters, (2, and F, , which are themselves

time-varying. This fundamental property of the dynamic ripple signal is captured by Eq. ºn ~ *-* *

***** ** º

(2.47) since the instantaneous correlation function is determined by the instantaneous º -_º
sº º a tº

* - -***-- - -stimulus parameters. By design, the dynamic ripple signal therefore captures an essential -----

property which is common to natural signals over short time scales: non-stationarity. By

definition non-stationarity entails that the autocorrelation function is time dependent ** * *

(Hayes 1996; Marmarelis and Marmarelis 1978) as is the case for the dynamic ripple an ex-----. .
º

envelope. Natural sounds, such as speech and animal vocalizations, are clearly time— º ; : -

varying since the instantaneous properties of the signal (e.g., formant locations and º
º ":

temporal modulations) vary from one time instant to another. º º
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Q=1, F.-50

Delay (msec)

Figure 8: (A-E) Examples of the instantaneous spectro-temporal autocorrelation

function for the dynamic ripple envelope. Shown for various parameter combinations at

distinct time instants. (F) Global autocorrelation for the dynamic ripple envelope.

Shown for F, -100 Hz and Q,-4 cycles/octave.

2.15 Dynamic Ripple Global Autocorrelation Function

From the analysis of section 2.14, it is clear that the instantaneous spectro

temporal envelope of the dynamic ripple is locally biased since its local spectro-temporal

autocorrelation function oscillates at a characteristic spectral and temporal frequency as

shown in Fig. 8. A key characteristic of this signal, however, is that its parameters are

continuously changing and, consequently, its local correlation changes in a time

dependent manner. For example, at one time instant the dynamic ripple signal is largely

determined by its two parameters, say Q=2 and F. - 125 , whereas at a later time
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(e.g. fractions of a second) its parameters have changed to say Q=0.5 and

F.--250 . Given that these local stimulus characteristics are continuously changing,rrn

it is of interest to understand what happens in the long run. Thus, we need to examine the

global statistics of the dynamic ripple spectro-temporal envelope. This characterization

is crucial to determine the suitability of the dynamic ripple signal for use with reverse

correlation procedure. The necessary constraints and stimulus statistics which make the

dynamic ripple theoretically sound and statistically unbiased for such procedures are

outlined here.

The global autocorrelation function of the dynamic ripple is obtained by

averaging its instantaneous correlation function over all time. Formally this is expressed -----

aS

o

R(...)-E[r.(rºl)]-4-e■ co (270-21 F-1)]R.(...) (2.49)

where the time average expectation, E[ ] , is taken with respect to the instantaneous … "

time, t, . Since the only parameters that depend on t, are (2–2(t) ,

F, - F.(t) , and P. , this is equivalent to performing an ensemble average

(denoted by () ) over the stimulus parameter space. This transformation can be

performed since the parameters signals are defined by a stationary and ergodic stochastic

process.

This observations seems to be at odds with the described non-stationarity
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properties of the dynamic ripple envelope (section 2.14). The apparent conflict is

resolved by noting that stationarity is a time-scale dependent property of a signal. As

mentioned in the previous section, the spectro-temporal envelope parameters are defined

by an uniformly distributed band—limited stochastic process. The parameter signals have

an upper cutoff frequencies of 1.5 Hz for F,(t) and 3 Hz for Q(t) and, therefore,

vary slowly in time. Over long time scale (i.e. presumably tens of seconds) the stimulus

parameters are characterized by an ergodic and recurrent process with stationary statistics

(Hayes 1996; Marmarelis and Marmarelis 1978). Over short time scales (i.e. those over

which neuronal integration occurs, in the order of tens to hundreds of milliseconds),

however, the parameter trajectories change dynamically and consequently the dynamic

ripple envelope is locally biased and non-stationary.

I proceed by averaging Eq. (2.47) over the stimulus parameter space. As for

section 2.14, the analytic signal representation of Eq. (2.38) is employed. The time

average expectation of Eq. (2.49) is expressed as an ensemble average

E■ cos(2m of 12m F.T)|=(cos(2m of 12m F.T))= (2.50)

Re{(exp■ i(21 or 12, F-1))}
-

Since the stimulus parameters are statistically independent, the expectation is separable

(exp■ i(210,12m F-1))=(exp(i 2m ac)) (exp(i2m F.T)) (251)

* -- *-* *

as a tº *
sus--- _s

sº. --> **
º

º
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and the temporal and spectral autocorrelation functions are independent. This

simplification allows one to compute the expected correlation function independently for

both stimulus dimension.

Since the local autocorrelation function is given by the ensemble average of Eq.

(2.51), the global autocorrelation function will be determined by the relative occurrence

of each parameter. As previously mentioned, the probability distribution function for the

ripple density and modulation rate parameters are uniform and are given by

p(F.)= 1/2 FM, - FM, s F, SFM, (2.52)
0 otherwise

p(Q)= 1/2 (2M, -(2M, s (2s (2M, (2.53)
0 otherwise

where FM, and {2,n, are the upper cutoff parameters for each distribution. The

spectro-temporal autocorrelation is obtained by substituting the parameter distributions

into Eq. (2.51). Using the spectro-temporal distributions, the autocorrelation functions

are given by

exp(i2m ac))=■ p(Q)e^*"“d Q=sinc(2(2,t) (2.54)

(exp(j2■ , F.T))=■ p(F.)e"d F.—sinc(2F,t) (2.55)

* * - sº

gº ---> -

*** = ---
sº a tº -º-º:

* *-*.
re- ºr º

*** - ---

* --- *-

* * - - - - -

:
tº ºt-------

º
** - - -

*
*

---

ºn -

* -
-

* * ****
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where sinc(x)=sin(It X)/TT X . Note that Eq. (2.54) and Eq. (2.55) are equivalent to the

impulse response of an ideal lowpass filter function of bandwidth [-F, F, and

|-QM, QM..] and gain 1/2Fv, and 1/2 (2, respectively. Hence the ripple

density and temporal modulation rate parameter distributions determine a priori the shape

of the stimulus spectro-temporal power spectrum (otherwise known as the characteristic

function, Cohen 1995). The dynamic ripple envelope therefore achieves a flat power

spectrum over the predefined range of ripple densities and temporal modulation rates.

After combining Eqs. (2.49), (2.54), and (2.55), the spectro-temporal
* -- - - sº

autocorrelation function is given by *** *-* r

*** * * *

2

R.(…)-4-incGF.) incQa.or.(…) (2.56) ---

where the constant M*/8 is exactly the variance (i.e. RMS value) of a sinusoid signal

of amplitude M/2 . The window autocorrelation function, R. (T
*
g) , is a residual

term from performing the instantaneous analysis of section 2.14. If one chooses a

window of infinite or, and Ox the window term drops out. As for Eq. (2.54) and

(2.55), note that Eq. (2.56) is effectively the impulse response of an ideal 2-D lowpass

filter (if one ignores the residual window term) with the described cutoff frequencies and

gain M/ (V8 -(2,…, F.) (Fig. 8 F). The dynamic ripple envelope therefore probes in

an unbiased manned the chosen spectral and temporal envelope fluctuations as described

by the parameter distributions.
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2.16 Ripple Noise Local Autocorrelation

As for the dynamic ripple envelope we would like to estimate the instantaneous

and global statistics of the ripple noise envelope. We consider the ideal zero—mean ripple

noise signal

rº-ºs.ºx. (2.57)

where the contrast transformation, f(x) , and finite number of dynamic ripple

envelopes, L= 16 , are ignored for simplicity of the analysis. These effects are

examined in detail in section 2.17.

We proceed as for section 2.14, by estimating the local autocorrelation function

for the ripple noise envelope. The ripple noise local autocorrelation is given by

R,(r,xlt)=E|Y(x),w,(ºx)Y(t++,x+c)w,(t++,x+c)] (2.58)

where the rational window function, w,(t,x) , of Eq. (2.36) is used to extract the local

ripple signal. Substituting Eq. (2.57) into Eq. (2.58) results in

R,(T, g|t)=

.*.*,

.
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k = 1 l=1

L L**(i. S,(1,X)). sºo)-º-º-ºxº . (2.59)

Expanding the inner argument of the expectation

5.R,(r, g|t)=". E|S,(LX)S,(t+T.Y-c)w,(LX)w,(t++,x+c)]+ (2.60)
l
L F 1

L

+XX. Els,(x)S,( tr.x+z)w(x)w,( tr.x+x)] .
L T, TT.

gº ºst- º

Note that the second sum drops out when using a window, w,(t,x) , of infinite extent ::. º
- -

tiº... r. --sº

since S, and S, are statistically uncorrelated by definition. This is valid only for ----.

sufficiently large windows, however, where presumably a large number of cycles of º
***** *

S, and S, are averaged. For the window of finite extent used here this does not l

strictly hold and the second term must be considered. Since the individual elements,
... 3

S, and S, , are statistically independent by design the sum of the cross products of

these terms will resemble (second term in Eq. (2.60)) a bandlimited spectro-temporal

noise signal which we refer to as the error term, e(t,x) . For now we only consider the

first term of Eq. (2.60). The effects of the error term, e (t,x) , which arise from using a

window of finite extent are outlined in Section 2.17.

Following the procedure for section 2.13, each individual dynamic ripple

envelope is approximate using Eq. (2.32). The k" dynamic ripple envelope is therefore
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given by S,(t,x|t)= S,(t,x),..., . Proceeding as for section 2.14 the ripple noise localt = r

autocorrelation function is expressed as

(t,x|t)S,(t+T,X+g|t)w,(t,x)w,(t+T, X+C)]+e (t,x) (2.61)
L -- oo } 5. E[ S

The expectation inside the sum is the autocorrelation function for the k" dynamic ripple
*** ---

and is therefore identical to Eq. (2.47). Substituting Eq. (2.47) the ripple noise local gº ºur-f
*** ----

autocorrelation is *::==
* - - *-º
a. * * *
*** --

L * *** ----

X. R., (r.clº)+c(t,x)= (2.62) * *** -- an
k = 1

**ºne---

... 1

R,(t , Ç)= ...;

lim
L– Go

L 2

Ž4-cos(2nook 2nf...,t)R.(…)+c(x)
k=1

}

where Rs. s (t,x |t) is the local autocorrelation function for the k" dynamic ripple * -->

envelope and (2,1, and F, tº are its instantaneous parameters.

Finally we note that the parameters (2,1, and F.I., are random variables

with distributions defined by Eq. (2.52) and (2.53). The sum of Eq. (2.62) therefore

approaches the ensemble average operator, (..) , as L– oo and the first term of Eq.

(2.62) is effectively identical to Eq. (2.49). Using the result from section 2.15 we arrive
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Delay (msec)

Figure 9: (A-E) Examples of the instantaneous spectro-temporal autocorrelation

function for the ripple noise envelope shown for F. - 100 Hz, Q, E4

cycles/octave, or, = 20 ms and a ,-0.5 octaves. Local autocorrelation for L-16

(A-C), L=256 (D), and L=1024 (E) at distinct time instants. (F) The ripple noise global

autocorrelation function is impulsive and identical to the dynamic ripple global

autocorrelation (Fig. 8 F).

at the final result

2R.(rºll)--sine(2F.)sine(20.0R.(r,t)+c(x) (2.63)

The local autocorrelation of the ripple noise signal is therefore a "noisy" version

------

-------
*-----
-----

-
-

º ---
-----

-----
---

º
* --
-----

--
--

*-*

|--
------

--
---

---
º

-----

------

----
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of the dynamic ripple global autocorrelation function. Examples of the instantaneous

ripple noise autocorrelation function are shown for different time instants in Fig. 9.

Analogous to the dynamic ripple global autocorrelation, the instantaneous

autocorrelations have a central peak but now the surround is corrupted by noise. Hence,

the overall effect of summing Lindependent dynamic ripple envelopes is that it generates

a signal which is locally weakly correlated. The locally strong spectro-temporal

correlations which are prevalent for the dynamic ripple (Fig. 8), speech, and numerous

other vocalization sounds, are therefore absent in this sound.

2.17 Ripple Noise Local Autocorrelation: Effects of Finite Number of

Dynamic Ripples (L=16) and Finite Window Size ( or, and o, .)

Here we consider the effects of summing a finite number of dynamic ripple

envelopes to generate the ripple noise envelope as well as using a window of finite extent

to estimate the local correlation statistics. It is desired to construct a ripple noise signal

that closely matches the statistical properties described in the previous section ( L– oo

). The large computational demands required to generate this signal, however, prohibits

us from using very large values of L. As an example, the twenty minute segment of the

ripple noise signal used in this series of experiments took roughly 7 days to generate on a

DEC Alpha series 500 (500 MHz CPU) workstation using MATLAB 5.1 (@, Mathworks

Inc.).

Fig. 9 compares the target (Eq. 2.56) and the actual ripple noise local

autocorrelation functions obtained using L=16, L=256, L=1024. Note that for all cases

*** -- a

*.*.*.*.*
***** ****
* ºr -º

*** --
**.***
** ** --
*** --

* * *-*.
***** -->

--
* *

*****

*********
* ***

- - *

* * *

*****

* * * *

* --->

*-
- *
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2. ,

the local autocorrelation varies on a trial to trial basis. This variability depends on the

signal length used to estimate the local autocorrelation function (i.e. the window size

o, and ox ) and the number of averages, L, performed to construct the ripple noise

signal. The autocorrelation estimates for very short segments are clearly much more

variable than for long segments where the error is no longer reduced. Since auditory

neurons integrate stimulus information over a restricted range of spectral and temporal

scales, it is of interest to choose values of 0, and Ox which are physiologically

plausible.

The key feature of the ripple noise autocorrelation which is relevant for

characterizing auditory neurons is its impulse like properties. It is desired that the ripple

noise local autocorrelation function approximate this property as closely as possible.

From Fig. 9, it is clear that the central peak for the different values of L are qualitatively

similar. The surround, however, is slightly more variable for lower values of L. We can

quantify this behavior by measuring the peak-to-surround ratio, n=5/0 , which

characterizes the amplitude of the central peak, 6=M */8 , relative to the surround

standard deviation, or

To do so, we need to derive the variance of the ripple noise autocorrelation

function, R.,(T, g|t) , for finite L and finite window dimensions or, and Ox . We

turn to Eq. (2.62) and note that both terms contribute to the autocorrelation error. We can

express Eq. (2.62) as

tº ºr *=

* *
ºtwº

**** ****

** = **

**** ---
** ****
aws -------
agº. --

*

* *.*.*.*.*

***--ºn

*** * *

tº ºr sº º

* * > .

*---.

are:-

.*
* * ****
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2 * ,

L

R, , (T cº)-3. R. (T. cli)+ X. X. R., (t , Ç|t.) (2.64)
1

k=1 L - 7.

where R S, s(t , Çlt) is the crosscorrelation between the k" and the "local dynamic *

ripple signals, and L is now a finite quantity. The second quantity of Eq. (2.64) is exactly º --

the error term, e (t,x) , described in section 2.16. The autocorrelation variance is

expressed as

2 tº scº º

i–var(R.,.]== 15. ly. (2.65) … s.r.º. * YO = var|R = —V E|| || — X R. ... + — R. ... — R
- *** - sº - *.

L yy (L) E[R.] L ºn S.S, L ºn Nº. S, S, yy **- 2 . . . .
**** * * *

* * *

*** * *-*. d

* --,
-

- ****-º-º-º: º ->

where the shorthand notation R, , = R, , (T, g|t) , R,-R,(T, g|t) ****
--~~ yR, s =R, s (T, g|t)

»
R, s =R., (t , Çlt)

3. and R.-R.,(T , Ç) is used. Note that

tº *-*. º
we normalize by the energy of the window autocorrelation function, º

* * * -

E[R.]=2 ■ to, a , , since unlike w,(t, x) , which has unit energy, the window ... ? s
º

autocorrelation, R., , has a finite energy which biases the variance estimate. The trial **** L.
x

º
to trial variance is estimated by performing a spectro-temporal average with respect to

•
T and C and subsequently an ensemble average with respect to the L element

dynamic ripple ensemble. The spectro-temporal average computes the variance from the
-* A

residual noise signal for a single trial. Note that the local ripple noise signal consists of 7 ºn
-* . º E.

-

the sum of L statistically independent moving ripple envelopes which are randomly

chosen for each trial. Each trial therefore produces a local ripple noise autocorrelation * , T
135 2



function (and consequently an error term) which varies from trial to trial. Here we are

interested in determining this average trial to trial variability by computing the ensemble

average for this error term.

We continue by dropping cross product terms. Since these are statistically

independent and small we have

The first term (Term 1) of Eq. (2.66) contains the dominant source of error arising from

the finite number of dynamic ripples which are summed to create the ripple noise signal.

The second term (Term 2), corresponds to the variance of the error signal, e(t,x) . This

term contains a finite combination of cross product terms, and hence will be the

dominant source of error from choosing a finite window size. Note that if the window is

made infinite in its extent, the expectation EIR S, s]=0 since the k" and I" envelope are

statistically independent. Here we proceed by evaluating Term 1 and subsequently Term

2.

Term 1: Note that R y, can be expanded as in Eq. (2.62). The first term can therefore be

expanded as
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2

1 1 & in 1 & 2.67

oi= E
(#~~ £º.)

º (2.67)
N → 00

k = 1 k k N T.

N

1
|} (EIR.D.: +3 (EIR...]-º: #ººl.Nº Ti N - * NL k = 1

N L

1
|} (EIR.D.: #X (EIR...]-," #ºL” ºr N- N2 - N- NL:-

im (EL&I) 1 1 2 (EIR...])
L' N N ||

li

** E[R.] E[R.] L

where the cross product terms and all terms from N to oo drop out. We need to evaluate

(EIR: ,]) . Proposition: (EIR...])=E[R.}M/128 .

Proof: Consider a two dimensional Gabor function of general form s(x, , x,) w(x1, x2)

where s(x, , x,)=A cos(2 TT fix +2 if, x,)= Re|Aexp■ i(2n■ x+2 i■ ,...)|| and

w(x, , x.)=exp(-x/4/ori-x/4/o:) . Using the identity

Re■ ºlre■ s.]-}Re■ .,...}}|Re■ .,.] (2.68)

we can expand s(x,x) w(x,x) as

* -----

*****
.********

i. sº***-- *
*****

* * *-
* - -

ºf

*** - sº

***** **

**-- sº
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2 2

#w(x, ºyré wº, , x.) Re [exp■ i(4m f. x +4T f, x)] . (2.69)

Since the second term of Eq. (2.69) has zero-mean and w(x,x) is independent of the

parameter ensemble, the expectation gives

1 : “2(E[s(x Jº-ºe■ º
-

(2.70)

where E[w(x,x) |=2tto, or, for the given window. Extending these results for the

more general case we note that R S, S, is a Gabor function of amplitude A= M*/8 so

that (EIR...])=E[R.}M/128 .
The final result is obtained by substituting this equality into Eq. (2.67). This

results in

or’s 2 (2.71)

the error variance of the first term of Eq. (2.66).

Term 2: The variance of term 2 is approximated as

J. : ,

º
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L

o:====(E (i. º)
23 (2.72)

where the cross terms drop out and the expectation is taken with respect to T , ( ,

and then with respect to the parameter ensemble. Although E [R S, s] is strictly zero for

infinite size windows ( 0,- o and Ory - or ) this is not true for the finite duration

window used here.

Combining Eq. (2.71) and (2.72), the overall error variance is expressed as *-- .

2

M” 10-1)*(*) M. ." "º".] (2.73) ~.
128. L LEIR...] L | 128 E[R.]

2
o, s

where Rs, is the autocorrelation function for a ripple noise signal with M=1 and M' *** *

- - - - -
– A42

-was factored out using the identity Rs.s-MºR, . Note that the error variance has
* I

two components, one which is strongly dependent on 1/L and another which has only a

weak dependence on L ( (L–1)/L ). As previously stated, the error variance from the

first component arises from choosing a finite value of L and is therefore the dominant

source of error from adding a finite number of dynamic ripples to generate the ripple

noise signal. The second source of error, however, is largely dependent on the integration
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window used to derive the local autocorrelation function.

Although we do not solve for Eq. (2.73) analytically, we numerically estimated

2 - - - - -the error, or , as a function of the integration window size ( 0 x and O, ) and as a

function of the envelope bandwidth ( FM, and (2 y.º. ). In all instances it was noted

that the average error was invariant of the window size and of the envelope bandwidth

when measured as a function of the products N, =0, Fy, and Nx=0, (2), . These

unit—less quantities are proportional to the maximum number of spectral and temporal

cycles that fit in a window of standard deviation Ox and O, respectively.

The overall errors, o; , are shown in Fig. 10 for various values of the N, and

Nx . The initial decrease in the curves corresponds exactly to the errors that arise from

choosing a finite number (L) of dynamic ripple envelopes. Upon reaching the critical

value L=1+E[R.]/( 128 (EIR...]) the curve quickly saturates. At this point, the

errors associated with choosing a window of finite extent dominate and the curve

becomes independent of L.

We again consider, the peak-to-surround ratio, n , which is a direct measure of

the SNR for the ripple noise autocorrelation obtained for a fixed window size and finite

L. Using the error variance of Eq. (2.73) we instantly obtain the peak-to-surround ratio

as a function of L and window size. After combining terms

Ö 2 L
n; + º -* Woºd, HRFTTH (2.74)

* - - -

- **sº-º-º-

** ****

1. --*** *
****
* -----

* --

*****

ºf

º

gº-a---
-

º
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where the limiting values are n-NEIR..] (64(EIR...) for L-L and nº W2L 2

for Ls L., . Of interest is the fact that the bound initially increases proportional to

NL but upon reaching the critical value, L=1 +EIR:..]/(128 (EIR...]) , is * . . .

subsequently independent of L and only determined by (EIR S, s]) and E[R.] . At

this point, the peak-to-surround ratio is strictly a function of the integration window size

used to estimate the autocorrelation. *** * *-

Several implications follow: First we consider the problem of how many dynamic º: * .
** 7 º’

ripple envelopes are necessary to generate a ripple noise signal which closely º
-****

* * *-*.

approximate the ideal ripple noise envelope ( L– oo ). Since auditory neurons integrate - . *

*** - - - * ,
- - - - - - - * * - -stimulus information over a restricted spectral bandwidth and temporal extent, it makes º

sense to consider an idealized linear neuron of finite memory say 20, and finite
**-*-*
:* .

spectral integration bandwidth 20 x . We consider the physiologically relevant times º * *

º º

scales of or, −50 ms for cortical neurons and or, = 10 ms for subcortical neurons. In *** 3.

either case an integration bandwidth of Ox=0.5 octave is used.

It is of interest to determine whether such a neuron could distinguish two

arbitrary ripple noise signals, Si(t,x) and S,(t,x) , which are composed from L.

and L, dynamic ripple envelopes respectively, by performing a local analysis of the

sound. Since a linear neuron can at most detect local 2" order statistics of a stimulus,
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Eq. (2.73) tells us that such a neuron can in theory detect differences between S (t,x)

and S,(1,X) as long as the SNR, nº, and ni , are different for the two envelopes.

Note that upon reaching the critical value, L= L. , the signal to noise ratio is fixed for

all L2 L. and is independent of L. The idealized neuron can therefore only distinguish

the two ripple envelopes as long as one of the two envelopes has a signal to noise ratio

which falls on the increasing portion of the peak-to-surround ration curve.

As an example, consider a ripple noise signal which is designed to excite
* ----

subcortical neurons with parameters F.M.–350 Hz, (2M,-4 cycles/octave, and *****

.."
L= 16 . For a linear neuron which has an integration bandwidth of 20 x=1 octaves º

****

** -.
and temporal memory of 20,– 15 ms, the corresponding scale invariant parameters are ----

*---a

Nx=4 and N, =5.25 . From Fig. 10, note that for the chosen parameters, the peak— tº sº.

* -- * *

to—surround ratio me falls on the increasing portion of the curve and is therefore * ,
º

statistically different than for L=oo . Hence such a neuron can in principle detect …”

difference between the ideal and L=16 ripple noise envelopes since n.ºs 3-nie . In

addition, note that the local statistics of the L=16 ripple noise envelope are likewise

significantly different than for the dynamic ripple case, L=1, where mis-3.7 m, for this

set of parameters.

Hence when designing ripple noise envelope to approximate bandlimited spectro

temporal white noise it is necessary to jointly consider the relevant parameter (i.e.
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FM ax and (2M, ) scales as well as the neuronal integration scales ( or, and ory )

since these set the limits for choosing reasonable value of L for a given application.

Although we can in principle choose very large values of L to guarantee that we achieve

statistical similarity to the ideal spectro-temporal ripple noise, such a procedure is not

practical because of the large computational demands necessary to generate the ripple

noise stimulus.

A

~

|
10

;
Figure 10: Ripple noise instantaneous-correlation error (A) and peak to surround noise

ratio (B). Correlation error decreases monotonically with increasing L. Upon reaching a

critical value of L the correlation error plateaus due to the finite integration window

size, or, and a , . Shown for 20, = 15 msec (continuous), 20, -30 msec

(dashed-dotted), and 20, = 20 msec (dotted) for a spectral integration window o

20 , = 1 octave and ripple parameters F, -350 Hz and Q, =4

cycles/octave. The correlation peak to surround noise ratio (shown for identical

conditions, B) increases monotonically and flattens upon reaching L.

** -

tº-º-f
* * *
* -º

* * *
****

* ****

wº

****** *

tº:--

**-*-*
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2.18 Fipple Noise Global Autocorrelation

As for the dynamic ripple, the ripple noise global autocorrelation function is

obtained by averaging the instantaneous autocorrelation function, Eq. (2.63), over all

time. Explicitly, this is expressed as

R,(+, c)=E|R,(r,x|)|= (2.75)

2+sincQF.) incQa.or...(tº)-ele(x))

where the first term is independent of the time expectation and the error signal has zero

mean. Consequently the second term of Eq. (2.75) drops out and the ripple noise global

*Correlation is identical to the dynamic ripple global autocorrelation function, Eq.
(2.56).

2.19 Compressed Ripple Noise Autocorrelation Function (Effects of

f(x))

The compressing nonlinearity, f(x), was applied to the ideal ripple noise stimulus,

ECH- C2.57), for experimental and practical considerations. This transformation serves as a

“Pntrast transformation which converts the amplitude distribution of the ripple noise

"****, an normally distributed amplitude of variance M*/8 to an uniformly distributed

"**** litude confined to an overall range [0,—M] (in a decibel amplitude space). The

** litude distribution for this ripple envelope therefore has a slightly smaller variance of

- * *

> * *
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M*/12. Two arguments are presented for performing such a transformation: first, this

transformation is performed so that one can consider the spectro-temporal processing

capabilities of individual auditory neurons under identical intensity and contrast

operating conditions. Secondly this nonlinearity serves to undermine any possible effects

and nonlinearities which may arise form sound level dependencies in the neuronal

responses (e.g. monotonic and nonmonotonic rate level curves) (Ehret and Merzenich

1982; Eggermont 1989).

Despite these arguments and experimental considerations, it is possible that

performing such a transformation on a signal can have deleterious effects by significantly *º----

is ºf

altering its spectro-temporal correlation characteristics. Although this transformation * ---
- ***

may be experimentally reasonable, it is possible that our experimental paradigm (in --

which the dynamic ripple and ripple noise stimuli have identical autocorrelation

functions) is compromised. Here we present an analytically derived proof which shows * =
!

that this is not so and that the compressed ripple noise autocorrelation function is *-i- -

essentially unaltered. :* -

Consider a one dimensional ripple noise like signal, in this case a normally º

distributed bandlimited noise signal with unity standard deviation (Fig. 11). A one º

dimensional counterpart of the ripple noise envelope is used in order to facilitate the

following derivation and since the following results can be directly extended to the more

general two dimensional signal case (because the ripple noise signal has identical

amplitude distribution). We start by considering the contrast transformation of Eq. (2.25)

which can be expanded into a Taylor series. Upon substituting the Taylor series

expansion (Gieck 1974)

a
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do _1 \" 2n

e "=X. Hº- (2.76)n = 0

into Eq. (2.26), the error function is expressed as a power series

(2.77)

-º- ºr

***A B
* --
ºn tº

* -->
l | **

* ---

§ #
*-*.

|
-

*** -a.

| = ~ *

O Time (sec) 0.06 O Time (sec) 0.06 * . .

Figure 11: (A) Normally distributed bandlimited noise signal, x(t). Compressed

uniformly distributed signal, f(x(t)). Both signals have a bandwidth of 350 Hz. **

As for the correlation analysis of sections 2.14–2.18, the quantity of interest is the

autocorrelation function

ºn-e■■ (■ )/((-)-4-ele■■ )-■ tºr) as
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where f(x)=f(x)+M/2 has zero mean, and x(t) is a bandlimited normally

distributed stochastic process with zero mean and unity standard deviation. Substituting

Eq. (2.77) into Eq. (2.78) and expanding gives

o
M* 1

27 Helºr's■ ºr". (2.79)n = 0 -

ry■ ), ()(t)=

M* 1 2n + 1 2k+1
-

—E| x(t X ( t + T -#3x. n!k!(2n+1)(2k+1) [ ( ) ( ) ]

*.*.*

Several points are immediately of interest. First the autocorrelation function of the *:
º:

transformed signal f(x(t)) is a sum of the autocorrelation functions of x(t)”''' and a * -->
****

****

sum of the crosscorrelation between x(t)” and x(t)*'' for n + k . Since 2n+1 *.

and 2k+1 are odd, we are therefore dealing with odd powers of x(t). Note that the º
*** *

correlation between two odd order powers of x(t) is an even order moment of the signal
*** *

and Eq. (2.79) is a sum of even order moments of x(t) which are always positive non zero * ..

valued (Marmarelis and Marmarelis 1978). Consider the identity (Laning and Battin, º
1956) **"

E[x,x,”x,]=X. TI E[x,x] (2.80)

where N is an even number, x1, x, , , xy are normally distributed random numbers

with unity standard deviation, and the operator X II corresponds to the sum of all
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possible products of E[x,x,] (a total of (2N)/N12" distinct combinations). This

identity tells us that the expectations in Eq. (2.79) can be expanded as a sum of products

of all the possible permutations of E[x,x] where x, and x, take the values of

x(t) or x(t+T) . With this in mind Eq. (2.79) is conceptually a composition of the

following elementary building blocks

E[x(t) x(t)]= 1

E[x(t+T)x(t+T)]= 1 (2.81) ---

E[x(t)x(t+T)]=r...(t) . ** -tº tº

It follows that the autocorrelation for f(x(t)) , Eq. (2.78), can be expressed as a power
****

Series of general form ~.

*-i- ºr

rºyo (t)=X w.r.(t)' . (2.82) º
n=1 e ":

* s

Although no attempts are made to evaluate the series coefficients, c., , it is worthwhile

to point out some observations. First the series coefficients are monotonically decreasing

since the arguments in the sum of Eq. (2.79) have factorial terms which predominate in

the denominator. Secondly, the elementary components which make up the power series

are the autocorrelation function of the normally distributed signal, x(t). Since the

dominant terms are of low order (since the coefficients are rapidly decreasing with
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increasing n), it is expected that the autocorrelation of the contrast transformed ripple

noise does not differ much from that of the ideal normally distributed ripple noise.

Fig. 12 shows the experimentally derived autocorrelation functions for x(t) and

f(x(t)). As expected, the two curves are in close agreement. Likewise the power spectrum

of x(t) and f(x(t)) are also in close agreement. This result also generalizes for the two

dimensional ripple noise case which is shown in Fig. 13. The contrast transformation

therefore does not significantly alter the shape of the ripple noise autocorrelation function

and its power spectrum. It can therefore be used without any deleterious effects.

* -->

***

ºne
gº tº

A B

t---
1

- -
**

* -a-

***
| •º

*****
* -

0.5

***|
–0.5

L

o– ; :
–0.05 0 0.05 O 200 400 600 º

Delay (Sec) Frequency (Hz) ..?

Figure 12: (A) Autocorrelation function for the uniformly distributed signal º

(continuous), x(t), and for the compressed uniformly distributed signal, f(x(t)), of Fig.

11. The autocorrelation are in close agreement and are virtually indistinguishable for

the two signals. (B) The corresponding power spectra are likewise in close agreement.

* * *
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Figure 13: Theoretical spectro-temporal ripple noise autocorrelation function (A) and

experimentally derived autocorrelation function for the compressed ripple noise (B).

The autocorrelations are in close agreement and have identical spectro-temporal

patterns.

2.20 Dynamic Ripple Cross-Channel Correlations

The dynamic moving ripple and ripple noise stimuli have an appeal for studying

the auditory system because they thoroughly probe a large range of spectro-temporal

envelope correlations and stimulus dynamics. Although this is a necessary stimulus

requirement for thoroughly testing out the responses preferences of a system, additional

requirements are also necessary when one wishes to use a stimulus to derive spectro

temporal receptive fields (STRF) via reverse correlation procedures. In particular, it is

prerequisite that distinct frequency channels, of the system under study, are

independently activated by the driving stimulus. Here we derive the necessary conditions

which show that the dynamic ripple is well suited for deriving STRFs via reverse

correlation.

From Eq. (2.33), the dynamic ripple is locally expressed by a static spectro

---

-->

-----
- tº

t----
-**

-----

---

tº-a---

** =
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temporal sinusoid of spectral and temporal frequencies (2, and F, , . Here we are

interested in computing the instantaneous cross-channel correlation function

R,(rlt)=E|S(t+1,x,t)w (t+1)S(x|I)w,(1)] (2.83)i

where k and l are the carrier channel indices, w,(t) is a temporal Gaussian window (1–

D version of Eq. (2.36)) of unit energy, and E[ ] is taken with respect to the time

variable only (unlike sections 2.14–2.18 where the expectation is taken with respect to ---

sº

the temporal and spectral variables). Unlike the analysis of sections 2.14–2.18, where the *****
gº

spectro-temporal correlation was computed jointly, here we are interested in the º

temporal correlations that exist between two distinct channels ( k+l ). Proceeding by *

replacing S(t, X,t) with Eq. (2.83) we get º

--as-s

M’ ºR.Gl)-4-Elsin(an,( )sin(an ()w■ ºw.() (2.84) º

where Arg, (t)=2tt (2,3,4-2T F, t-4, is the instantaneous argument (Eq. (2.31)).

Following a procedure almost identical to section 2.14 reveals that the instantaneous

cross-channel correlation function is given by

2

R.Gl)-4-co (2nd (x-x)=2n F.7); (t) (2.85)ww.

--

º

sº
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where

2
T

40%
t

R..(t)=E|w,(t+1)w,()|=exp
-

(2.86)

is the unit energy Gaussian window temporal autocorrelation function.

It is noted that the local cross-channel temporal correlations of the ripple signal

are strongly influenced by the spectral displacement, X-X, between different channels.

As for the analysis of natural sounds (chapter 1), we are interested in the cross-channel

local correlation coefficient which quantifies the similarity of the temporal modulations

across spectral bands. Using Eq. (2.85) it is easy to show that local cross-channel

correlation coefficient is given by (see chapter 1)

placos(2T (2,OK.-X)) . (2.87)

Hence the instantaneous temporal modulations of the dynamic ripple have a local

correlation distance which is continuously changing and determined by (2, . Note that

the correlation coefficient oscillates between –1 and 1 indicating that the dynamic ripple

temporal modulations are continuously phase shifted from −180 to 180 degrees across

distinct carrier channels. These cross-channel influences are reminiscent of those

observed for vocalization sounds which can show strong across-channel interactions (see

chapter 1).

****
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Although the local cross-channel correlations are strictly dependent on the

instantaneous ripple density parameter, the global cross-channel correlations do not obey

this rule. Following a procedure analogous to section 2.15, the global cross-channel

correlation function is expressed as

o

R,G)=4-incGF.t) incúa.(x-x)R.G. , Ç) . (2.88)

The cross-channel correlation coefficient is likewise obtained as

pu (T)=sinc(2 (2,OK.-X))
-

(2.89) º

Although the instantaneous temporal modulations of distinct carrier channels are º
strongly correlated for the dynamic ripple as described by Eq. (2.87), Eq. (2.88) and

(2.89) tell us that the dynamic ripple envelope nonetheless preserves the property by º

which the temporal modulations of distinct carrier channels are globally uncorrelated up ,

to the limits set by the spectral bandwidth ( (2,…, ) of the spectral gratings. The

dynamic ripple envelope therefore satisfies the necessary conditions for deriving STRF

which require that the temporal modulations of distinct channels are globally

uncorrelated. Note that this is true assuming that the neurons under study have a spectral

integration bandwidths of at least 1/(2), which corresponds to the spectral correlation

distance of this stimulus. For our case, (2M.F.4 cycles/octave, which corresponds to a

- * N

2 :!",
* -
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spectral resolution of 1/4 octaves. * .

2.21 Ripple Noise Cross-Channel Correlations

Similar to the dynamic ripple, it is likewise necessary to consider the local and

the global cross-channel correlations for the ripple noise envelope in order to determine * , ,

its suitability for estimating STRFs. Consider the instantaneous cross-channel correlation
-

function

R,(rlt)=E|Y(t++,x,t)w (t+1)Y(x|I)w,(1)] (2.90) *** * ,

º: * , , , ,

for the idealized ripple noise envelope, Y(t,x) , of Eq. (2.57). Following a similar º
approach to sections 2.16, it is easy to show that º

-

*** }

M* .
- \ ------R.Glº)--sine(2F.)sincúa.(x-x)R.(r,t)+c(t) (2.91)

- •
º *

º . . .
º *-

- - - - - - - - L! :
the instantaneous cross-channel correlation function is simply a "noisy" version of the º

dynamic ripple global cross-channel correlation function. By averaging over all time º
º

instants, t, , it is clear the error term, e(t) , averages out and so the global cross- º

channel correlations are identical to the global cross-channel correlation for the dynamic
-

Q Tº

ripple envelope, Eq. (2.88). Similar to the arguments presented in sections 2.14, 2.15, 2 ºp.

2.16, and 2.18 the dynamic ripple and ripple noise envelopes differ only in their local
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statistics and are identical in their global statistics. Both the ripple noise and dynamic

ripple are therefore equally suited for estimating STRFs, assuming that the neuron under

study responds in a linear or quasi-linear fashion.

2.22 Dynamic Ripple and Ripple Noise Higher-Order Correlations

As previously mentioned, the response properties of a nonlinear system can be

strongly influenced by the properties of the driving stimulus. Response gain terms,

response interaction terms, and response dynamics all interact in a complex manner

which determines the mode of operation of a dynamic nonlinear system. Example of such --"

**

include nonlinear rate level dependencies of auditory neurons (Ehret and Merzenich tº

1982; Eggermont 1989), response adaptation (Smirnakis et al. 1997), feature selectivity

(Suga, Simmons, and Jen 1975; Suga and Jen 1976; Margoliash 1983), and combination ****

sensitivity (Margoliash and Fortune 1992; Olsen and Suga 1991a 1991b). Consequently, º º

it is necessary to understand, at least conceptually, the higher-order characteristics of the

driving stimulus since these are responsible for activating nonlinear response components
º

and since these serve as constraints on the possible modes of operation of the system

under study.

In sections 2.15 and 2.18, the spectro-temporal autocorrelation function was

derived and shown to be identical (with the exception of a multiplicative constant of 1.5)

for the ripple noise and the dynamic ripple envelopes. This stimulus characterization

showed that both stimuli satisfy the necessary requirements which are prerequisite for

systematically identifying and characterizing central auditory neurons via reverse

correlation. Although the grand average autocorrelations are identical for these two

\ ,
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stimuli, it was noted that the stimulus dynamics are nonetheless vastly different since the

dynamic ripple has a time-varying autocorrelation function with locally correlated

statistics. For a system with nonlinear response dynamics, such dynamic stimulus

attributes can alter the effective operating regime of the nonlinear system in a time

dependent manner, therefore altering its response characteristics and efficiency.

A second source of motivation for understanding the higher-order stimulus

characteristics arises from the fact that the estimated linear impulse responses, obtained

using reverse correlation methods, are actually a joint characterization of the linear and

nonlinear elements of the system (section 2.5). When estimating a systems "linear" --

impulse response via reverse correlation, higher-order response terms are projected onto º
the first-order Wiener kernel (see Fig. 1 and section 2.5; Marmarelis and Marmarelis º

1978). Although the estimated linear kernel provides an efficient linear descriptor of the :
system under study, it is nonetheless corrupted by nonlinear response components. The º
computed Wiener kernel is actually a composition of the system’s first-order Voltera

kernel (the true linear part of the system) and all of the higher-order odd Voltera kernels

of the system which are functionally driven by higher-order characteristics of the ;

stimulus (Marmarelis and Marmarelis 1978). Although this property makes Wiener *

kernel a very efficient estimator (since linear and nonlinear characteristics are combined

into one descriptor), it makes it difficult dissociate linear and nonlinear response

mechanism. A thorough understanding of the higher-order Stimulus properties facilitates

this process by setting constraints on the types of responses that can be elicited.

For a given spectro-temporal envelope, S(t,x,) , consider the n" order

autocorrelation function

sº
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R(t,x,y,1,r)=E|S(t,x)s(t+r,x+c)-s(t++,x+c.)]. (2.92)

Although it is not within the scope of this manuscript to derive an analytic solution for

the stimulus higher-order autocorrelation functions, it is nonetheless of interest to point

out some general observations.

A clear distinction between the ripple noise and dynamic ripple stimulus is the

presence of cross product terms in the stimulus higher-order autocorrelations. Since the

ripple noise stimulus is a composition of Lindependently chosen dynamic ripple

envelopes, a nonlinear system which is probed using the ripple noise is subjected to such

interaction components. As an example consider a second-order nonlinear system

exposed to a ripple noise stimulus with L=2. At a given time instant it is noted that the

ripple noise is composed of two static moving ripple envelopes with temporal modulation

rates of say F. - 183 and F, ,-23 Hz and ripple densities of (2,-0.2 and2

(2,+2.3 cycles/octave. Upon examining the response of such a system to the ripple

noise (L=2), one can in principle find linear responses to the stimulus 1" order

components, F. and F, , , as well as nonlinear responses to the stimulus higherm, 1

order components which include DC terms, frequency doubling terms, 2 F., and1

2 F —F
m, 1 m, 2, and cross product terms, F and F, 14 F, , . The same ideas holdm, 2

for the possible types of responses and interaction terms along the spectral axis if the

system has a similar nonlinearity along that dimension. In general the ripple noise
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stimulus preserves all possible parameter interaction terms of up to L'" order.

By comparison, the dynamic ripple envelope represents a subset of the ripple

noise with L=1. In accordance with the above observations, the dynamic ripple stimulus

does not have any interaction terms in its higher-order autocorrelation function. This

does not indicate that the dynamic ripple envelope lacks all of the higher-order

autocorrelation functions. On the contrary, the dynamic ripple has well defined higher

order autocorrelations functions that are simply missing the interaction terms which are

prevalent in the ripple noise stimulus. Following the example for the ripple noise

envelope, we note that for a general nonlinear system of n" order which is exposed to the -

dynamic ripple with driving frequency F, (L=1) at a fixed time instant, one can in g

theory observe DC response components as well as response components at integer **-

*

multiples of the driving frequency k F, for k=1,..., n . With the exception of the º

1“order component, F., , which arises at the output partly from the systems linear

elements and partly from the odd order nonlinear elements, all other response º,

components arise solely from the systems nonlinearities (Marmarelis and Marmarelis º
}*1978).

In addition to considering the possible interaction products for the ripple noise

and dynamic ripple stimuli, we likewise need to consider the subtle differences in the

amplitude distribution for the two envelopes. It is conceptually clear, for example, that

increasing the contrast or modulation depth of a signal increases the effective power and,

hence, the effective driving force. Note, however, that in addition to the low-order

statistics of the amplitude distribution (e.g. the variance) higher-order moments of the
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envelope can increase or decrease the effective nonlinear driving force by activating

nonlinear contrast dependencies, all of which can change the effective operating point of

the system. Hence it is necessary to devise a measure of the effective nonlinear driving

force which the stimulus provides. We do so in the next section by considering the

higher-order moments of the ripple noise and dynamic ripple stimuli.

2.23 Dynamic Ripple and Ripple Noise Higher-Order Correlation

Strength
zº

As a measure of the strength of correlation we consider the higher-order º

moments of the spectro-temporal envelope º
º

E[S(t,x)"''] . (2.93) º
sº

The n" order moment is derived from Eq. (2.92) by evaluating the n" order spectro- * *

temporal autocorrelation function at zero delay, T-0 , and at zero spectral º

3
displacement, Q = 0 , for i=1,..., n . Since the n" order moment of a two

dimensional signal is independent of the signal’s spectro-temporal correlations

(independent of T, and Ç, ), and is only a function of the amplitude statistics (e.g.

contrast statistics), we can evaluate Eq. (2.93) by considering the ensemble average of a

random variable with identical amplitude distributions as for the signals of interest. For

the dynamic ripple envelope one can therefore consider a random variable

---.

* ,

s
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y-4sin(ºr 9 (2.94)

where x is an uniformly distributed random variable in the interval [0,1]. Since the

amplitude distribution for this random variable is identical to the amplitude distribution

of the zero mean dynamic ripple envelope (Fig. 7) one can therefore use it to evaluate its

higher-order moments. Evaluating the ensemble average gives

n+1

Ky”")= # (sin"''(2 m x)=

M"*"
2n+1

n+1

■ m"Gropºds-º■ -in"Groa. (2.95)

Since y has a zero—mean symmetric amplitude distribution, all odd order moments (n

even) are zero valued. We can therefore evaluate (2.95) for odd n only.

For the ripple noise envelope, consider a random variable

z= — X (2.96)

where x is uniformly distributed in the interval [-1,1], and z is uniformly distributed in

the interval [–M/2, M/2]. The amplitude distribution of z is identical to that of the zero

mean ripple noise envelope. The n" order moment is given by

:
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n+1 M"' n+1 M"' 1 n+ M"'
(z")= 2" | J x"p(x)dy- 2" | J", a *-i-Hi (2.97)

for odd n. Similar to y, z also has a symmetric zero mean amplitude distribution and

n+1consequently (z"'')=0 for even n.

Having derived the n" moments for the dynamic ripple and the ripple noise

signals, it is useful to compare the relative magnitude of these quantities since these

partially determine the amount of nonlinear driving force. To do so we consider the ratio

of the n" moments º

zº

º

_(y"') ' n+1 º
n, F =(n+2).■ . sin"(2m x)dy (2.98)

n (z" ') 0 -

for odd n. The moments are available for odd n only since (y"') and (z"") are zero * *

valued for even n. Fig. 14 shows a plot of the correlation strength ratio, m, , for odd *: ,

º

values of n. Of interest is the fact that m, is a monotonically increasing function of n. º
This indicates that the dynamic ripple envelope has considerably more drive force to

activate nonlinear elements of a system. This source of functional drive arises solely

from the amplitude (contrast) statistics of the signal and is independent of the spectro

temporal content.
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Figure 14: Ratio of the n"—order moment for the dynamic ripple relative to the ripple

noise, n, . Shown for even values of n only. For all values of n the dynamic ripple
º

n"—order moment is larger than for the ripple noise and the correlation strength ratio is º
*

therefore above unity. - 5
sº
º

ºr.

º *

2.24 Ripple Noise and Dynamic Ripple Stimulus Alterations º *
º

Although a number of structural components and parameters distributions of the * * y

dynamic ripple and ripple noise stimuli are ethologically derived and are well suited for * *

studying numerous aspects of auditory processing, they nonetheless do not posses all of º
**

the structural characteristics present in natural sounds. Of interest is the fact that certain º ×
| | |

high-order spectro-temporal statistics of these sounds are not representative of those >

found in natural sound environments. These include harmonicity, comodulation, and 1/f ~,
-

º

modulation spectrum, to name a few. Clearly, these sounds can not be used to study *

auditory processing for these acoustic parameters. In principle one can study auditory >

-º-º:
processing to such structural sound components independently of those features found in 2 tº ,

the dynamic ripple and ripple noise signals by using simple sounds which incorporate
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these structural components. However, since environmental sounds generally consist of a *

mixture of many structural components, all of which can in principle modify the

neuronal response characteristic of central auditory neurons to other sounds components

(because of nonlinear interactions), it is necessary to consider sounds which can

simultaneously probe numerous stimulus dimensions in a theoretically sound manner.

Here we consider several of numerous sound alterations which can be performed on the

dynamic ripple and ripple noise stimuli to accommodate a more general analysis of

auditory processing. Such sound generation considerations are necessary for understand

the general operating principles which the auditory system utilizes for complex sound º

º

encoding. : - * ,
> y *

º
*

2.25 Harmonic Ripple : ". .

In both instances the dynamic ripple and ripple noise envelope were derived using !. >

logarithmically spaced carrier components which were individually amplitude modulated

by the sounds spectro-temporal envelope. This carrier distribution was principally º .*

º
-

chosen so that the stimuli excite the primary sensory epithelium with an uniform energy y ■ ' "
} s

distribution. In many natural signals, such as voiced speech, animal vocalizations, and L. I

other environmental sound sources, such carrier distributions are not observed. Instead,

such sounds generally have harmonically spaced carrier components which arise from

vocal fold vibrations in the larynx and other vibrating media. Such harmonically spaced

carrier elements convey important acoustic cues which determine the quality (e.g. pitch)

and other perceptual properties of the sound (Plomp 1967).

A simple alternative to using octave spaced carriers is derived by incorporating
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harmonically spaced carrier elements. To do this, one can use Eq. (2.15) but now the

carrier elements are chosen according to the rule: fºr k-fo , where fo is the

fundamental frequency of the harmonic stack, k=1,2,...,N , and Nºf, is the

maximum frequency of the signal. Despite the fact that the carrier elements are now

equally spaced on a linear frequency axis, the spectro-temporal envelope is still

described on an octave frequency axis. The overall properties of the spectro-temporal

envelope are not altered and all of the derivations for the autocorrelation and STRF

measurements still hold since the carrier components do not affect these.

:

2.26 Comodulated Ripple *

Comodulation is a common source of functional driving force present in

numerous environmental sound sources (Nelken, Rotman, and Yosef 1999) by which º
# *

distinct spectral channels are coherently turned on or off. Psychophysical studies (Hall,

Haggard, and Fernandes 1984) have demonstrated that across channel comparisons of

such characteristic features can increase detection thresholds. Clearly, since the auditory }

system makes use of such structural sound features it makes sense to incorporate these if

one is interested studying neuronal responses to such.

We considering a comodulation function, C(t) , which is constructed so that it

is independent of the dynamic ripple spectro-temporal envelope, S (t, X) . In particular,

we require that the temporal crosscorrelation function of these two signals satisfy

re,(T)=E[C(t+T)S(t,x)]=0 for all t , so that it does not interfere with the

correlation statistics of the dynamic ripple envelope. The comodulated dynamic ripple
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envelope is expressed as Sc(t,x)=C(t):S(t,x)

0. 1

0|| –0.

0.1

1.25

1.25

Figure 15: Comodulated dynamic ripple stimulus. The comodulation function, C(t) ,

is used to turn the dynamic ripple stimulus on and off. Shown for two comodulation

sequences: m-sequence comodulation signal (A, top) and a bandlimited uniformly

distributed signal (B, top). The comodulation function turns the sound pressure stimulus

waveform, s(t) , on and off in a random fashion (A and B, middle). The

comodulated spectro-temporal envelope (A and B, bottom) shown for the comodulation

sequence of A and B respectively.

In adhering to our general design formulation, we consider several functional

forms of C(t) which are compatible with reverse correlation procedures. It is required

that, in addition to the independence criterion res(t)=0 , the temporal autocorrelation
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function of C(t) , rec(t)= E[C(t+T)C(t)} , have impulse like properties.

Examples of such are shown in Fig. 15 for an m-sequence and for a bandlimited

uniformly distributed noise sequence. Clearly, the overall effect of such a comodulation

component is to turn the spectro-temporal envelope on and off in a coherent fashion,

independently of the spectro-temporal envelope.

2.27 1/f Envelope Spectrum Ripple

As previously mentioned natural sounds often have modulation spectrum which

show a strongly biased 1/f dependency (Attias and Schreiner, 1998a). This is unlike the

flat modulation spectrum of the dynamic ripple and ripple noise, which have equal

energy distribution for all modulation frequencies. To design ripple stimulus with a

biased 1/f energy distribution we simply need to consider the probability distribution of

the stimulus parameters. Recall that the shape of the modulation rate parameter

distribution, Eq. (2.52), determines a priori the shape of the modulation spectrum for the

ripple envelope. We can therefore consider a dynamic ripple and ripple noise envelope

with a 1/f modulation rate parameter distribution

– or 2.p(F.)= |*. Fyns F.ls Fy. (2.99)
0 otherwise

where c is the spectral exponent which determines the slope of the power spectrum (on

*

166



a doubly logarithmic plot) and the constant C=2/[(1–0) (F.—F.)] is chosen so

that ■ p(F.)d F.-1

An example of the 1/f ripple envelope is shown in Fig. 16 for FM,< 1 and

Fla. H50 Hz and cº-2 . Unlike the flat modulation spectrum ripple noise of Fig. 3,

the 1/f modulation spectrum ripple envelope has higher energy for the low frequency

modulations.

Time (sec)

Figure 16: 1/f temporal modulation spectrum ripple noise signal. Low frequency

temporal modulations are more prevalent than for the flat modulation spectrum ripple

noise of Fig. 3.

2.28 Conclusion

Although the reverse correlation procedure has been readily used in a number of

neuronal systems (including visual and auditory), little attention has been given to its

practical limitations and its general compatibility with neuronal systems. Recently the

STRF procedure has gained overwhelming popularity in audition because of its overall
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simplicity and because it provides more complete estimate of the neuronal

transformations performed by central auditory neurons (when compared to the

conventional tuning curve). Because of the increasing complexity of the neuronal circuits

in central stations and the subsequent increase in complexity of the neuronal processing it

is possible that standard reverse correlation procedures may fail when performed with

conventional stimulus (e.g. white noise, m—sequence etc.) (Theunissen et al. 2000).

Despite this possible limitation, little attention has been given to proper stimulus design.

Here we address both ecological and theoretical issues related to the compatibility of this

procedure for identifying general mechanisms for complex sound processing.

To overcome possible limitations we designed two complex acoustic stimuli with

spectro-temporal correlation statistics that mimic those observed in natural sounds (see

chapter 1). These stimuli circumvent many of the theoretical and practical limitations of

conventional reverse correlation stimuli. Although they preserve some of the basic

correlation characteristics observed in natural sounds, they are nonetheless significantly

simpler to quantify. Because of this, they allow for direct experimental control over a

number of stimulus parameters while allowing us to determine which spectro-temporal

parameters are of relevance to the auditory system. Realistically, the dynamic ripple and

the ripple noise sounds can be used to test the hypothesis that instantaneous spectro

temporal correlations are of significant importance to the auditory system (and possibly

to all sensory systems). A number of higher-order stimulus correlations and stimulus

dynamics where independently evaluated for the ripple noise and the dynamic ripple

sounds. These included global versus instantaneous correlations as well as low-order and

high-order correlation statistics. These sounds are functionally distinct insofar as their
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stimulus dynamics and instantaneous correlations are concerned. Given that both sounds

have identical global and low-order statistics, the overall effects of stimulus dynamics

and higher-order correlations can therefore be evaluated experimentally (see chapter 3).
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Abstract

Neurons in the central auditory system of acoustically specialized animals, such

as bats and songbirds, are often highly nonlinear and specialized for processing specific

aspects of behaviorally important sounds (Suga and Jen 1976; Suga, O’neil, Manabe

1978; Margoliash 1983; Margoliash and Fortune 1992; Olsen and Suga 1993a 1993b;

Casseday, Ehrlich, and Covey 1994; Doupe 1997). In most mammals, including cats and

monkeys, a similar link between acoustic sound structure, neuronal processing, and

behavior has not been established. Consequently ecological paradigms have not been

exploited to study their auditory system. Alternative methods and conventional stimuli

have not revealed equivalent higher-order neuronal processes for sound encoding in such

mammals. Using synthetic acoustic stimuli, that incorporate some basic features common

to a wide range of natural sounds, we demonstrate that reverse correlation methods can

reveal nonlinear neuronal response classes that can not be identified with conventional

reverse correlation stimuli. Neuronal recordings in the Inferior Colliculus of cats reveals

three distinct response classes. One class of neurons showed nearly linear response

characteristics resembling simple cells in the visual cortex. Two additional response

classes were distinctly nonlinear: one type of neuron showed selective responses that are

not time—locked to the stimulus spectro-temporal envelope, resembling visual complex

cells. The other neuronal class responded exclusively to specific spectro-temporal sound

components, resembling feature sensitive cells of the bat auditory systems. These

findings indicate that the mammalian auditory midbrain, in general, contains neuronal

specializations for higher-order sound processing that have previously been considered

to emerge at the cortical level and only in acoustically specialized animals.
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3.1 Introduction

A fundamental requirement of auditory processing is the extraction and

decomposition of spectral and temporal information. Identification of a complex acoustic

signal is highly dependent on the analysis of the time-varying spectrum. Natural sounds,

such as human speech and animal vocalizations, are characterized by a structurally rich

and complex time-varying spectrum. This is most evident in the spectrographic

decomposition of natural sounds that is performed by the cochlea (Sachs and Young

1979; Delgutte and Kiang 1984; Shamma 1985; Carney and Geisler 1986; Geisler and

Gamble 1989) and, consequently, serves as inputs to higher-order processing stations in

the brain. Furthermore, natural sounds are characterized by a a number of spectro

temporal correlations (Voss and Clarke 1975; Attias and Schreiner 1999a; Nelken,

Rotman, and Yosef 1999; chapter 1) all of which play important roles in perception

(Plomp 1967, 1970, 1983; Pols et al. 1969) and neuronal encoding (Plomp 1983; Attias

and Schreiner 1999b; Nelken, Rotman, and Yosef 1999). These take the form of spectral

resonances, temporal modulations, comodulation, and time-varying frequency

conjunctions.

Despite the structural complexity of natural sounds and its presumed importance

for natural sound processing, much of central auditory neuroscience has proceeded by

using stimuli that are structurally simple, lacking many of the structural features

characteristic of natural sounds. Furthermore, the most widely used stimuli consist of

single frequency component which excite a small portion of the auditory neuronal

network, a scenario not common for natural sounds. Due to the general nonlinear nature

of the auditory system it has become apparent that structurally simple stimuli can not be

7 º’,

º

* -

5 º º }.
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used directly for identifying neuronal mechanisms which the auditory system uses for

natural sound analysis (Nelken and Yosef 1998; Nelken et al. 1999; Theunissen et al.

2000).

Recent methodological advances have demonstrated that complex natural sounds

can be used directly to identify nonlinear auditory neurons in the avian forebrain using

spectro-temporal receptive field (STRF) methods (Theunissen et al. 2000). The STRF

has a long history in auditory neurophysiology (Aertsen et. al. 1980 1981; Hermes et al.

1981; Yeshurun, Wollberg, and Dyn 1987; Nelken et al. 1997; deCharms et al. 1998;

Theunissen et al. 2000; Klein et al. 2000) and has been shown to have numerous

advantages over more conventional stimulus—response characterizations (Eggermont

1993; Klein et al. 2000). This method allows one to estimate the linear processing

capabilities of auditory neurons for complex and spectro-temporally rich stimulus

ensembles. Unlike conventional methods, which break up the stimulus—response function

into a separable combination of spectral and temporal components (Schreiner, Urbas, and

Mehrgardt 1983; Langner and Schreiner 1988; Schreiner and Langner 1988;), the STRF

allows one to jointly estimate the spectro-temporal preferences without any apriori

assumptions about separability and independence of the stimulus—response relationship.

Despite the attractiveness of these methods, the STRF method by itself is largely limited

in that it has been associated with quantifying only "linear" response characteristics

(Young 1998). Although more elaborate methods can be use to identify the presence of

response nonlinearities (Theunissen et al. 2000), it is not clear how such methods can be

used for parsing out higher-order response attributes and identifying the nature of the

underlying nonlinearities. Thus it still remains to be seen whether this approach can be

),

179



extended for systematically identifying and parsing out complex nonlinearities, such as

those arising from higher-order stimulus attributes (e.g. contrast and high-order

spectro-temporal correlations).

The most direct approach for parsing out response nonlinearites is to use simple

stimuli while systematically changing some stimulus parameter (e.g. intensity,

modulation depth, etc.) (Rees and Møller 1983; Møller and Rees 1986; Rees and Møller

1987; Rees and Palmer 1988; Rees and Palmer 1989; Krishna and Semple 2000).

Although this approach is useful, it is essentially limited to low-order nonlinearites that

are activated by low-order features of the sound waveform (e.g. intensity, modulation

depth, carrier frequency etc.). Furthermore, given the complex structure of natural

sounds and the general dependence of neuronal responses to a number of response

parameters these results are not easily extended to more complex stimulus scenarios. To

date, more complex and possibly relevant nonlinearities, related to higher-order spectro

temporal correlations and structural components of natural sound have not been

described in detail (Nelken et al. 1999).

To overcome such limitations, we employ an alternate and more direct approach

for analyzing spectrographic response nonlinearities. Motivated by understanding how

arbitrary natural sounds and vocalizations are represented, we designed a set of

structurally rich ripple noise sounds that emulate some basic statistics of natural sounds.

The relative degree of instantaneous coherency of these sounds was systematically

altered while controlling for the overall statistics of these sounds. Using spectro

temporal reverse correlation methods, it is shown that midbrain neurons are highly

adapted to analyze specific aspects of the stimulus spectro-temporal envelope. We

-* A
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identify a number of higher-order nonlinearities related to the degree of local coherency

of the sound and use these to classify neuronal populations in the inferior colliculus of

the cat. The presented findings demonstrate the presence of distinct spectro-temporal

nonlinearities while identifying possible mechanisms used for complex sound analysis in

the inferior colliculus.

3.2 Methods

Experimental Methods: Data was obtained from n=84 single units in the central

nucleus of the inferior colliculus (ICC) of three ketamine (10 mg/kg) and diazepam (0.5

mg/kg) anesthetized cats. The ICC was exposed by removing the overlying cerebrum and

part of the bony tentorium using a dorsal approach. Electrode penetration trajectories

were at 45° relative to the sagittal plane and approximately orthogonal to the

isofrequency band lamina. Spike trains were recorded using parylen coated tungsten

electrodes (1–3 MQ at 1kHz) onto a digital audio tape (Cygnus CDAT16) at a sampling

rate of 24.0 kHz (41.7 pusec resolution) for off line analysis.

Stimuli were presented binaurally with an independent sound sequence for each

ear. This allowed us to compute independent STRFs, RTFs, and conditional—response

histograms for the contralateral and ipsilateral ears. Single neurons and/or clusters of

neurons where isolated audio-visually by presenting pure tones and/or white noise. The

dynamic ripple stimulus was presented for a period of 20 minutes, followed by 18

minutes of the ripple noise at 30–70 dB above the neurons response threshold. Both

sounds were presented at identical intensities. For 6 neurons that did not respond to the

ripple noise stimulus, the dynamic ripple stimulus was again presented at the end of the
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recording session to verify that the given neurons where still responsive and to verify the

stability of the electrode placement. For 66% of the recording sites, a five- or seven

second segment (repeated 40 or 100 times respectively) of the dynamic ripple and ripple

noise were also played at the end of the recording sessions. All experiments were

conducted in an acoustically sealed sound chamber (IAC). All surgical methods and

experimental procedures were approved by the committee on animal research, UCSF.

Off line analysis consisted of digital bandpass filtering (0.3–10 kHz) all spike

trains and individually spike sorting the action potential traces using a Bayesian spike

sorting algorithm (Lewicki 1994) before computing STRFs, RTFs and conditional–

response histograms.

Acoustic Stimuli. Detailed description of the ripple noise and dynamic ripple acoustic

stimuli are provided in chapter 2. A brief description is provided here for convenience.

The acoustic stimulus time waveform, s(t) , is generated via a bank of 230 frequency

carriers (linearly spaced on an octave frequency axis) which are individually amplitude

modulated by the dynamic ripple or the ripple noise spectro-temporal envelopes (Figs. 2

and 3; chapter 2). Mathematically the acoustic waveform for this general class of signals

is expressed as s(t)=X, Sº,(t,f)sin (2 TT f, t + bi) where p, is a randomly chosen

phase ( 0–2 m ), f, correspond to the frequency carrier elements (spacing resolution

of 0.0231 octaves) and Sr.,(t,f) corresponds to the linear amplitude spectro-temporal

envelope of the dynamic ripple or the ripple noise stimulus.

The dynamic ripple spectro-temporal envelope is designed as a dynamic

-
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sinusoidal grating on a octave frequency and decibel amplitude axis. It is expressed as

S,(t, X)=M/2-sin (2 m Q(t)x,++(i)) where the decibel amplitude spectro

temporal envelope, Sws (t , X.) , is related to the linear amplitude spectro-temporal

envelope by Sys(1,X)=201ogo (S,(t, X)+M/2 (note that S, is bounded

between zero and one). Here X, −log, (f/500) is an octave frequency axis (the

frequency variable f doubles with every octave above 500 Hz), M=30 or 45 is the

modulation depth of the envelope in decibels, Q(t) is the time varying ripple density

which determines the number of sinusoidal peaks per unit octave, and

q}(t)=2 m ■ F.(t)dt controls the time varying temporal modulation rate, F (t) .
0 rn m

of the envelope. Both parameters are independent, time varying (bandlimit 3 dB

frequency of 1.5 Hz for F, and 3.0 Hz for Q ) uniformly distributed stochastic

processes ( (2=0 to 4 cycles / octave and F.E–350 to 350 Hz).

The ripple noise envelope is generated as a superposition of L=16 independently

chosen dynamic ripple envelopes, S,(t X.) ,

#3. sº (3.1)
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where the amplitude distribution is compressed (using a contrast transformation

f(x)=M/2-erf(x/orps) , where erf() is the error function) so that it covers a range

of M=30 or 45 dB uniformly in a similar manner as the dynamic ripple envelope. Thus,

both sounds probe the same intensity operating range, allowing one to isolate spectro

temporal nonlinearities from intensity or contrast dependent ones.

Spectro–Temporal Receptive Field (STRF): STRFs are computed by averaging the

pre—event spectro-temporal envelope. For a sequence of N neural events at times, t,

(sampled at 41.7 pusec resolution), the STRF is obtained as

STRF(t,x,)=1/(g·T)X. S(1,–1,X.) (3.2)

where T is the experimental recording time in seconds, t is the temporal delay of the

stimulus relative to the neural event time, and or. is the variance of the decibel

spectro-temporal envelope S (t, X) for the moving ripple or the ripple noise stimulus.

Both envelopes were sampled at a rate of 4.0 ksamples/sec (temporal) and 43

samples/octave (spectral). The STRF is formally given in units of spikes / second /

decibel. We use a normalized version of the STRF, or, STRF(T, XA) , which

corresponds to the mean difference output produced at time zero, in units of

spikes/second, for the average differential stimulus (units of dB) presented within the

receptive field. The statistically significant portion of the STRF (p<0.002) is obtained by

keeping all values of the STRF which satisfy
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2 \,

|o T. STRF(t,x,)/ NN- 3.09.0, and setting all other values to zero. No smoothing

was performed prior to or after thresholding. For further detail refer to section 3.4.

Ripple Transfer Function (RTF): The statistically significant ripple transfer function is

obtained directly from the significant STRF (p<0.002) by applying a two-dimensional

Fourier transformation: RTF(F, Q)=|s ,{STRF(r,x .) where 5, [...] designates the

two-dimensional Fourier transform and |
-

| is the magnitude. This transformation

converts the STRF into a Fourier domain transfer function. Upon performing this

transformation, the time axis of the STRF is transformed into a temporal modulation rate

axis ( F, ) and the frequency axis (given in units of octaves) to a ripple density axis (

(2 ). Refer to section 3.14 for further detail.

Conditional—Response Histogram: The conditional—response histogram provides a

measure of the number of responses for each parameter combination ((2 and Fº)

(dynamic ripple only). For a given neuronal response (spike) at time t, the response

histogram is computed by determining the instantaneous dynamic ripple parameters

(2(t.) and F,(t.) at the time of the neuronal event. The bin of the response

histogram corresponding to that range of parameters is then incremented by +1 (Fig. 19).

The exact position used to estimate the parameters relative to the neuronal spike time, t,

did not alter the resulting histogram (tested for a time lag of 0–50 ms) since the

parameters vary in time at a slow rate (1.5 Hz and 3 Hz) compared to the integration time
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of ICC neurons (tens of milliseconds). This measure differs from the RTF since it does

not require that the neuronal response be precisely aligned with respect to the fast

temporal modulations of the stimulus envelope (up to 350 Hz) (recall that the RTF is

derived from the STRF which requires precise time—locking). The response histogram

provides an estimate of the conditional distribution p(F, , (2|t,) from the time varying

dynamic ripple parameters (2(t) and F,(t). This conditional distribution function

describes the likelihood of a given set of parameters, given the occurrence of a single

spike. See section 3.15.

Null hypothesis: The relative degree of nonlinearity is tested against the expected

response characterizations for a linear neuron. Since the ripple noise and dynamic ripple

both have an identical impulsive autocorrelation function (Chapter 2; Sections 2.15 and

2.18), a hypothetical linear neuron would produce identical STRFs and RTFs for these

sounds (Chapter 2; Section 2.4; Eq. (2.5)). Lack of or statistically significant differences

in these descriptors for either sound are indicative of response nonlinearities.

3.3 Binaural Receptive Fields

The standard procedure for evaluating spectro-temporal receptive fields was

extended by using a two—input reverse correlation procedure that allows one to jointly

estimate STRFs bilaterally. Using this procedure response sensitivities for the

contralateral and ipsilateral ears could be estimated within a single trial of the

experiment. The devised method consists of presenting independent spectro-temporal
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sound sequences bilaterally. After recording neuronal responses, these two inputs are

then used to construct STRFs for each ear independently using the standard reverse

correlation procedure. A similar scheme was first described by Marmarelis (1974) for

computing Wiener kernels (for the more general case of a multi-input multi-output

system) and has since been employed for characterizing binocular sensitivities of visual

cortex neurons (Anzai et al. 1999).

For all recording locations, sounds were presented ototically via speakers that

were inserted into the acoustic meatus – each ear stimulated by an independent sound

sequence. Across-channel independence was forced on the dynamic ripple and ripple

noise stimuli by choosing statistically independent contralateral and ipsilateral sounds.

This was achieved by choosing independent carrier phase components for Eq. (2.15)

(chapter 2) and independent ripple density and modulation rate parameters between the

two ears. The first order stimulus crosscorrelation and the spectro-temporal

crosscorrelation between the contralateral and ipsilateral stimuli thus satisfy

r (t)=E[s, (t)s,(t+T)]=0 (3.3)

R. (T, g)=E[S. (1,X)S,(t+T,X+g)]=0
C

were the subscripts c and i designate the contralateral and ipsilateral ears respectively.

Given the independence of the contralateral and ipsilateral inputs, the standard

procedure for computing STRFs can then be employed. Binaural STRF.s were derived as
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STRF (t,x,)=1/(G.T)X. S (1,–1,X.) (3.4)

STRF,(r,x)=1/(G.T)X. S (1,–1,X).

Note that the contralateral and ipsilateral STRFs are obtained by crosscorrelating the

output spike train with different input channels.

Example binaural STRFs are provided in Fig. 1. Binaural sensitivities were

largely varied and showed spectro-temporal response patterns that are consistent with

classical definitions of binaurality (EE, EI, IE, EO, OE etc.) (Goldberg and Brown

1969). These include neurons which show a strong excitatory component for one ear and

inhibitory component for the adjacent ear (IE; Fig. 1 C/D) as well as neurons that have

similar excitatory response patterns for both ears (EE; Fig. 1 A/B and E/F). Neurons can

also show strong response components to one ear and none for the opposite ear (EO; Fig.

G/H). A handful of neurons alternately showed response components that are highly

dissimilar in shape across the contralateral and ipsilateral ears.
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Figure 1: Example binaural receptive field patterns. The vast majority of neurons º
showed binaural response patterns with similar STRFs across both ears (A/B, E/F).

>

Other neurons had binaural response patterns with a strong excitatory component in one

ear and strong inhibitory component in the adjacent ear (C/D). Some neurons had no
-

•

obvious binaural response, responding only to the contralateral or the ipsilateral ear. All *

neurons are shown using the same color scale for the contralateral and ipsilateral ears. ×
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A Contralateral B Ipsilateral

0 50 100 0 50 100

0 50 100

Delay (msec)

Figure 2: The contralateral (A) and ipsilateral (B) STRFs obtained during bilateral

stimulation are effectively identical to the contralateral (C) and ipsilateral (D) STRFs

obtained for monaural stimulation at identical intensity (80 dB SPL).

For six neurons, a series of controls were performed to assure that STRFs with

bilateral stimulation were identical to those obtained with monaural stimulation, thus

verifying that this procedure is experimentally and theoretically sound. Dynamic ripple

and/or ripple noise stimuli were first presented bilaterally at 20–80 dB above neuron's

response threshold. The corresponding sound sequences was then presented monaurally,

either for the contralateral ear or for the ipsilateral ear, at an identical intensity. For one

~

ºy
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of the six neuron both the contralateral and ipsilateral ear were tested monaurally.

Example result for these controls is shown for the neuron in Fig. 2. The obtained

contralateral and/or ipsilateral STRFs for binaural and for monaural stimulation were

generally identical in shape and differed only in magnitude, suggesting that the binaural

stimulation procedure does not introduce any artifacts. Similar results were obtained for

all neurons tested with this control.

3.4 Testing For Significance of the STRF

A procedure for testing significance of the computed STRFs was derived in

closed form.

Given a neuronal response of N spikes and the measured STRF, the statistically

significant portion of the STRF was derived by considering a null condition in which a

set of N random spikes is put through Eq. (3.2). Since the input spectro-temporal

envelope for the dynamic ripple and ripple noise have uniformly distributed amplitudes,

the test for significance can be derived by randomly summing independent identically

distributed (iid) random variables.

Consider the uniformly distributed iid random variable X, eu■ -M/2, M/2]

where u designates an uniformly distribution random variable in the chosen interval.

The amplitude distribution for a random spike train STRF is given by py.(y) where

2 N _ N-" , N is the number of spikes considered for theY,+1/(o.T)X..., X =X., Z. p

significance test, and Z,e u■ –M/(20 T),M/(20:T)] is an uniformly distributed

s
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random variable. The distribution for Yx is derived by convolving the uniform

distribution of Z, N times (Ross 1993). Recursively this is expressed as

p. (y)=J p, (x-y)p,(x)d, (3.5)

where p, (x) is the amplitude distribution of Z, . Upon modifying a formula

provided by Chui (Chui 1992, pg. 84) the amplitude distribution for the null condition is

given by

N 'o'T 3.6p.9-6.(ºtº-Nº)-H. eº■ (; º).
(3.6)

where b,(x) is the N" order B-spline function (Chui 1992; Roark and Escab■ 1999)

and [x]=max(0,x) . For a given significance probability, p , the significant portion

of the STRF is found by considering the STRF values which exceed a the two tail

significance test (Zar 1999). Thus wee seek to find the threshold value, t, which satisfies

t

, p, (x)dº-1-p . (3.7)

The significant STRF is immediately provided by finding all amplitude values which

exceed this threshold value

º:

> * * *
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|STRF(t,x)|> t . (3.8)

The search for t is simplified by noting that for sufficiently large values of N the

amplitude distribution for YN approaches a normal distribution with mean zero and

O y = NN/(To.) . Using this approximation the significant STRF is obtained by
w

finding all amplitude values which satisfy

|o.T.STRF(r x)/NN- 3.09.0, (3.9)

for ap value of 0.002. Although most neurons had reasonably large values of N (usually

thousands to tens of thousands), a significant number of neurons had low spike rates with

spike counts of Nº. 1000 spikes. We need to determine if this approximation is sufficient

for such low values of N. We verify this by plotting the normal approximation against the

actual distribution for Yw for a value of N=50. The two curves are visually

indistinguishable (Fig. 3 A) and differ only at the extremities (Fig. 3 B). For a chosen

significance value of p <0.002 , this approximation yields an actual significance value

of p <0.0019 for N=50. Thus this approximation is valid for all neurons tested which

in all instances had spike counts greater than 50 spikes.
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Figure 3: Testing for significance of the STRF. The statistically significant STRF is

estimated by performing a two tail probability test against a null condition of randomly

chosen spikes. The null STRF amplitude probability distribution function for N=50

spikes (dotted line) and for the ideal case ( N = 20 spikes, continuous line). On a

linear probability axis (A) the two distributions are indistinguishable. The distribution

for Y., , however, has finite support and differs from p, (y) at the extremities

(shown on logarithmic probability axis, B).

3.5 STRF Comparisons – Moving Ripple versus Ripple Noise

As a means to identify nonlinear response components of ICC neurons, the

spectro-temporal receptive field (STRF), ripple transfer function (RTF), and conditional

response histogram were computed for the moving ripple and ripple noise stimulus. To

avoid intensity dependent nonlinearities, both sounds were presented at identical

intensities and contrast. The relative degree of nonlinearity was determined for all

neurons by comparing responses to the structured dynamic ripple and the unstructured

ripple noise stimuli. Since both of these stimuli have identical low-order statistics (e.g.,

º
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intensity, global spectro-temporal autocorrelation function, and contrast) it is expected

that a hypothetical linear neuron produce identical STRFs and transfer functions for these

two sounds. Using this test as a null hypothesis, significant response differences between

the two stimuli therefore result from nonlinear response components which are activated

by the higher-order stimulus statistics (see chapter 2.4 and 2.5).

Example STRF.s for the dynamic ripple and the ripple noise stimulus are shown in

Figs. 4 and 5. By comparing responses to the dynamic ripple and ripple noise it was

possible to identify two classes of spectro-temporal feature selectivity based on the

relative strength of responses to either of these two sounds. The first class of neuron (52

%), (s-cells) generally had high firing rates to both sounds (mean spike rate: 12.3

spikes/s for dynamic ripple and 11.4 spikes/s for ripple noise) and had quasi-linear

response characteristics. That is, such neurons responded to the locally unstructured

ripple noise much as they did to the structured dynamic ripple, thereby producing similar

STRF.s.

Examples for this type of neurons are shown in Fig. 4. In all instances, slight

differences in mean spike rate and STRF energy were observed for these neurons. The

shape of the STRF for either condition and its overall strength, however, were similar. As

depicted in Fig. 4 all neurons showed similar spectro-temporal patterns. Neurons are

shown on identical colorscales for the dynamic ripple and ripple noise stimulus (for ease

of comparison). The presence of a well defined statistically significant STRF (p<0.002)

indicates that s—neurons respond in a phase-locked fashion to the stimulus spectro

temporal envelope. The fact that similar STRFs are produced by the ripple noise and

dynamic ripple stimulus further demonstrates that these neurons behave quasi-linearly.

sº

-Q ||
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A Dynamic Ripple

Delay (msec)

B Ripple Noise

Delay (msec)

Figure 4: Spectro-temporal receptive fields for neurons that showed quasi linear

response characteristics (s—neurons). All neurons were tested with the dynamic ripple

(left column, A,C,E,G) and the ripple noise (right column, B,D,F,FI) stimulus.

Receptive fields have similar shapes and strength as determined by the color scale. For

ease of comparison, all neurons are shown with the same color scale for the ripple noise

and the dynamic ripple conditions. Significant patterns of the STRF are denoted by red

contours (p<0.002 contour). The neurons of A, E, G showed almost identical receptive

field patterns for both conditions. The neuron of C has a common excitatory area for the

dynamic ripple and ripple noise but is missing the post-excitatory suppression for the

ripple noise stimulus.
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Figure 5: spectro-temporal receptive fields for neurons that responded specifically to

the dynamic ripple sound (left column, A,C,E,G) but responded weakly or had no

response to the ripple noise stimulus (right column, B,D,F,FI). Significant STRF

patterns are denoted by red contours. The neuron of A responded to both the moving

ripple (Rate=1.1 spikes/sec) and the ripple noise stimulus (Rate=0.41 spikes/sec). The

STRF for this neuron has similar shape for the dynamic ripple and ripple noise sounds

( SI cº-0.78 ) but is significantly weaker in its magnitude for the ripple noise

stimulus ( ASI = 7.98% ). The neuron of C responded to both sounds but its response

to the dynamic ripple was significantly stronger (1.4 spikes/sec vs. 0.2 spikes/sec) and

the ripple noise STRF does not show a significant spectro-temporal pattern (

SI =0.56 , ASI=3x 10°% ). The neurons of E and G had significantDR.RN

responses to the dynamic ripple (0.45 spikes/sec and 0.11 spikes/sec respectively) but

did not respond to the ripple noise (Rate=0 spikes/sec, SI ossw-0 , ASI=+oo 9% ).
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Since these response properties resemble those of simple cells in the visual cortex, in

which neurons phase-lock to spatio-temporal gratings and respond to both structured

gratings/bars (Victor and Purpura 1998; Girman, Sauve, and Lund 1999; DeAngelis,

Ghose, and Ohzawa 1999) and to unstructured visual inputs, such as spatio-temporal m—

sequences (Anzai et al. 1999; Reich et al. 2000), they are thus labeled as s—neurons.

In contrast to s—nueorons, which responded strongly to both the dynamic ripple

and ripple noise, a second class of neurons (18%) (Fig. 5) responded exclusively to the

dynamic ripple stimulus. These cells generally had low firing rates to the dynamic ripple

and little or no response to the ripple noise. The mean spike rate to the dynamic ripple

was approximately 10% (1.4 spikes/sec) of that of the average s—neuron response. The

mean response rate to the ripple noise, however, was approximately 2% (0.2 spikes/sec)

of that of s—neurons. Despite their low spike rates STRFs to the dynamic ripple were

highly significant (p<0.002) despite the fact that only a few spikes were elicited over the

experimental recording period. No significant STRF.s were obtained for the ripple noise.

Because of the their apparent high feature sensitivity to structured sound inputs these

neurons are designated as f-neurons.

F—neurons appear to be unresponsive when studied with unstructured noise

sounds commonly used for reverse correlation (deCharms, Blake, and Merzenich 1998;

Theunissen, Sen, and Doupe 2000). Accordingly the ability to characterize these neurons

depends on the chosen stimulus and analysis method. The neuron of Fig. 5 A/B and C/D,

responded to both the dynamic ripple (1.1 spikes/sec and 1.4 spikes/sec) and the ripple

noise sound (0.4 spikes/sec and 0.2 spikes/sec) but their firing rate to the dynamic ripple
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was significantly stronger. The neuron of Fig. 5 A/B had a significant STRFs (p<0.002)

to both sounds but the ripple noise STRF was significantly weaker. The neuron of C/D,

however, had a significant STRF pattern only for the dynamic ripple sound indicating

that it was not efficiently activated by the ripple noise. The neurons of Fig. 5 E-H had

extremely low spike rates (0.45 spikes/sec and 0.11 spikes/sec respectively) to the

dynamic ripple sound and no response to the dynamic ripple sound. The STRFs for these

neurons were constructed using only 276 (Fig. 5 E) and 139 (Fig. 5 G) spikes for the

dynamic ripple over a 10 and 20 minute recording period, respectively. Nevertheless, the

STRFs obtained for these f-neurons are as noise free as those of s—neurons with much

higher firing rates. This suggests that these neurons responded exclusively to a specific

features of the dynamic ripple sound and consequently may require a high degree of local

structure as found in FM sweeps and broadband clicks. Although such sound features are

indeed present in the ripple noise stimulus (since this sound is constructed directly from

the dynamic ripple) they generally occur at a low power levels and are not present in

isolation. The low firing rate, high response specificity to the dynamic ripple,

unresponsiveness to ripple noise demonstrate that these cells are extremely nonlinear and

highly selective.

Such high specificity can, generally, not be detected with conventional methods

unless there is a neuroethologic reason to use a specific stimulus for testing a neuron's

response specificity. In such instances, sounds that are known to elicit a specific

behavior, such as echolocation calls and species specific vocalizations, are used to

quantify a neuron's response selectivity (Suga and Jen 1976; Suga, O’neil, Manabe 1978;

Margoliash 1983; Margoliash and Fortune 1992; Olsen and Suga 1993a 1993b;

--,
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Casseday, Ehrlich, and Covey 1994; Ohlemiller, Kanwal, Suga 1996; Doupe 1997). Such

procedures require spectral and/or temporal modification of the native sound: these

include playing the normal sound followed by time—reversed, time-dilated (stretched),

and/or frequency-shifted versions of the native sound. Selectivity is then determined by

comparing the relative response strength for the normal and altered versions of the sound.

Unlike such procedures, the described feature selectivity was determined with a general

stimulus sequence with little a priori knowledge of the relevant stimulus features needed

to efficiently activate the studied neurons. The apparent high selectivity of these neurons

likely arise from intracellular thresholding, as has been demonstrated for somatosensory

and visual cortex neurons (Moore and Nelson 1998; Bringuier et al. 1999). Details for

verifying and quantifying feature selectivity using the described sounds and reverse

correlation procedures are outlined in detail sections 3.8-3.13.

3.6 STRF Similarity for the Moving Ripple and Ripple Noise Stimulus

To quantified the observed response differences between the ripple noise and

dynamic ripple stimuli, we consider a procedure which quantifies the observed STRF

differences. Given two experimental conditions (A and B) to be tested, we consider the

vectorized RFs which consists of all sample values of STRF, and STRF.s which

exceed a significance test ( P ×0.002 ) (see methods) for condition A or for condition

B. The vectorized RFs, RF, and RF, , thus consists of the sample values of

STRF, and STRF, for which either of the STRFs exceeded the significance test. To

quantify the similarity of the STRF.s we use the correlation coefficient or similarity index

º,
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(SI) (DeAngelis et al. 1999; Reich et al. 2000)

(RF, RF,)
a-HTH; (3.10)* |RF, H|RF,

where RF, and RFs are the significant STRFs for condition A and condition B

respectively, ( , ) corresponds to the vector inner product, and || designates the

vector norm operator. The similarity index quantifies the STRF shape differences or

similarity independently of STRF amplitude. The SI assumes a numerical value

normalized to the range –1 to 1. Values near 1 indicate maximal shape similarity

between STRF, and STRF, , whereas values near 0 indicate that the STRFs have

nothing in common and are thus orthogonal. SI values near –1 indicate that both RFs

have similar spectro-temporal patterns but differ by a sign inversion.

For reference similarity index values are provided for the neurons depicted in Fig.

4 and 5. The s—neurons of Fig. 4 had relatively high SI values indicating that the shape of

the STRFs for the ripple noise and dynamic ripple conditions were similar. The SI values

for these responses pairs are: A/B-0.77, C/D=0.78, E/F=0.94, G/H=0.7. The high SI

values indicates that these neurons responded to similar sound components for either

condition. Two of the f-neuron response pairs of Fig. 5 likewise had high SI values

(A/B=0.78, C/D=0.56) indicating that these neurons likewise responded to similar sound

components for the ripple noise and dynamic ripple. Despite this STRF shape similarity,

the response strength was significantly stronger for the dynamic ripple condition. Thus
2}}, .
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these neuron show response sensitivity by virtue of their increased response strength for

the dynamic ripple condition. The f-neuron response pairs of Fig. 5 E/F and G/H had SI

values that were identically zero since no response was observed for the ripple noise

stimulus.

Fig. 6 shows the similarity index distribution for all neurons which showed

significant STRFs for the dynamic ripple and/or ripple noise stimulus conditions. The

distribution of SI values is bimodally distributed. The vast majority of neurons (n=49)

had large SI values, SI-0.5 . The mean SI value for this subset of neurons was

relatively high, 0.75, indicating the shape of the obtained STRFs for the dynamic ripple

and ripple noise sound bear a large degree of similarity. The remaining neurons (n=13)

showed SI values less than 0.5. Of these, two neurons had values of SI that were nearly

0.5 (0.49 and 0.48), and six neurons had SI values that were identically zero. These

neurons responded to the dynamic ripple sound and produced statistically significant

STRFs, but did not respond to the ripple noise sound. Consequently these were classified

as f-neurons. The STRFs for the Subset of neurons with SI values less than 0.5 either

showed no shape similarity (SI=0) or alternately showed a low degree of shape similarity.

25 ". .
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Figure 6: Similarity index distribution for all neurons that had spectro-temporal

receptive fields for either the dynamic ripple and/or the ripple noise conditions. The

distribution of similarity indices is bimodally distributed. Most neurons (n=49) had high

SI values ( SI-0.5 ) indicating the ripple noise and dynamic ripple STRFs were

similar in structure. Eleven neurons had low SI values of which 6 had values identically

Zero.

3.7 Response Strength - Moving Ripple versus Ripple Noise

In addition to considering the differences in STRF shape for the moving ripple

and ripple noise stimulus conditions, it is likewise important to consider differences in

the neuron's mean firing rate and the neuron’s STRF amplitude for these two conditions.

It is possible that a neuron produces STRFs with similar shape (high SI values) for the

ripple noise and dynamic ripple sounds (Fig. 5 A/B, C/D) but the overall response

strength and driving efficiency is significantly higher for one condition. Thus the

similarity index is insufficient insofar that it can’t tell us anything about the overall

response strength for a given condition.

From our null hypothesis, recall that for an ideal linear neuron the shape of the
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STRFs should be identical for the dynamic ripple and ripple noise since the shape of their

autocorrelation functions are identical (see chapter 2; section 2.4; Eq. (2.)5). For a linear

model neuron, the expected STRF amplitude should likewise be the same for the dynamic

ripple and ripple noise conditions assuming that the STRF is computed and normalized

according to Eq. (3.1). The STRF computed directly from Eq. (3.1) is an impulse

response descriptor and thus it has units of output/input (spikes/sec/dE), where the

neuron's output is measured as a rate (spikes/sec) and the input driving stimulus

amplitude is measured in units of dB. For a linear neuron, the transfer function

characteristics are independent of the input stimulus, and, thus, it is expected that the

measured transfer characteristics of the neuron are identical for any given input.

Although this STRF normalization captures the effective gain of the stimulus—response

relationship, it is nonetheless instructive to consider alternate normalizations for the

STRF magnitude.

Given that the output of sensory neurons is generally measured as a spike rate, it

is desirable to consider a normalization for the STRF which more closely describes a

sounds driving efficiency in units that are intuitive from a nuerophysiological

perspective. An alternate normalization for the STRF is obtained by considering the

average response output produced for the average stimulus presented. The normalized

rate STRF, STRF, =0, STRF(T, X.) , corresponds to the neuron’s STRF (units of

spikes/sec/dE) scaled by the input stimulus standard deviation, or, (units of dB). The

normalized rate STRF thus describes the average firing rate change (units of spikes/sec)

about the neuron's mean firing rate that is produced by presenting a sound of average
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differential intensity (i.e. or, ) within the neuron's receptive field. Unless otherwise

stated we consider STRF, throughout.

As a means to relate the mean firing rate of a neuron to the average difference

output as predicted from the neuron’s STRF, we again consider the linear model neuron

of Eqs. (2.3) and (2.4) where the filter for the k" input channel is related to the neuron's

STRF by h,(t)=STRF(T, X.) . We would like to derive an equation for the expected

output standard deviation or, equivalently, the neuron’s firing rate variance that is

predicted by its STRF. Thus the desired metric should provide a measure of the energy

in the response that is captured by the neuron's STRF. For the linear model neuron the

predicted firing rate variance is expressed as

N

o;=E[(r(t)-r)|=XX E[(r,(1)–r.) (r.(t)—r)] (3.11)
j=1 k=1

where r(t) is the predicted firing rate of the neuron (chapter 2; Eq. (2.3)), ro is the

neuron's mean firing rate, and r, (t) is the predicted output for the k" filter channel,

h, (t) . Substituting Eq. (2.4) into Eq. (3.11) we get

E■ (r)(1)–r) (r.(1)-r)|=E[■ s,(t-t')h(r)dt, j s,(t-t')h,(t)at, (3.12)

=■ ■ E[s,(t-t')s,(t–T,)]h,(T)h,(T,)dt, dT,

=J J R(t,T, X-X,)h,(T)h,(T,)dt, dT,
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where R(T-T, ,X-X,)=0; sinc(2 Fy.(T-T,)) sincC2 (2,OK)-X)) for the

ripple noise and dynamic ripple stimuli (chapter 2, Eq. (2.56) and Eq. (2.75)). If the

neurons spectro-temporal integration scale is slower than the fastest spectro-temporal

components present in the ripple noise and dynamic ripple stimuli, the stimulu's

autocorrelation function can be approximated by a spectro-temporal impulse:

R(t,T,X-X,)=0.6(T-T,) 6(X,-X,) . Substituting into Eq. (3.12) yields

EI(r)(1)—r) le■■ of 6(r-t)h,(t)h,(r.)dt, dT,-o'■ h,(t) dr (3.13)

for k= j and

E[(r,(1)–r) (r.(t)—r)|=0 (3.14)

for k + j .

Combining with Eq. (3.11) the firing rate variance which is captured by the neuron's

STRF is expressed as

|N N

gº-gº X ■ h,(t) dr-X ■ STRF,(r,x) dt , (3.15)
k=1 k=1

.*
º:

** * * * *_º.
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where or, can now be computed directly from the STRF, by computing its RMS value.

Although the expected STRFs for the ripple noise and the dynamic ripple

conditions have identical shape and amplitude for a linear model neuron, the expected

normalized rate STRF, STRF, and the expected driving efficiency differ slightly in

magnitude for these conditions. Consider the STRF, and the response variance that is

captured by the STRF, or, (Eq. (3.15)). The expected ratio of these metrics for the

moving ripple and ripple noise conditions

o, ■ o, -STRF, /STRF, -o, ■ o, (3.16)
R Mr. Rw dr

is strictly determined by the ratio of standard deviations for both stimulus conditions for

an ideal model neuron. Note that these ratios assume identical values.

Despite the fact the dynamic ripple and ripple noise signals have spectro

temporal autocorrelations with identical shape and identical maximum and minimum

amplitude values, their spectro-temporal standard deviation are slightly different. The

moving ripple has a standard deviation of O. =M/ N8 , where M is the maximum

modulation depth of the signal (units of decibels), and the ripple noise has a standard

deviation of O. =M/ N12 . Hence the expected differential response for a hypothetical

linear neuron that is captured by the neuron's rate STRF, should in theory differ by a

multiplicative factor of O', ■ o , = V2/3=0.81 . Thus, the measured STRF, for the

dynamic ripple condition should be roughly 20% stronger in magnitude than for the
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ripple noise condition.

Given the expected response properties for a linear model neuron, we can

measure how the response statistics of inferior colliculus neurons differ from those

expected for the null hypothesis. To quantify the observed differences between the

dynamic ripple and ripple noise conditions, we consider three metrics which describe the

mean and differential response activity of a neuron. Given two conditions to be tested, A

and B, we measured the mean spikes rates, r, and re , the measured STRF, RMS

values, o, and o, , and the peak to peak STRF, magnitudes, ARF, and

ARF, , where A RF=max (STRF.)–min (STRF.) . The peak to peak STRF,

magnitude, ARF , and the STRF, RMS values, or, , provide a direct measure of the

neuron's driven phase-locked activity (in units of spikes/sec) that is captured by the

neuron’s STRF, whereas the mean spike rate provide a measure of the average activity,

regardless of whether the activity is specific or nonspecific.

Statistics for these three response parameters are shown for the dynamic ripple

and the ripple noise stimulus in Fig. 7. The measured mean firing rates, STRF, peak to

peak magnitudes, and RMS values were significantly correlated ( r=0.86+0.07 ,

r=0.81+0.08 , r- 0.6+0.1 respectively) for the dynamic ripple and ripple noise

conditions. Thus, on the average, neurons that responded strongly (weakly) to the ripple

noise likewise responded strongly (weakly) to the dynamic ripple. The neurons' phase

locked activity as measured by O., and A RF also showed similar trends although

these trends seemed to be less apparent for neurons with very low spike rates (< 2.0

Spikes/sec).

208



A B C

3. 3.
Co Co ,-

* § `,
3. 3. §

*-* C
: & J2.

92 §: &
co toDC <!

O 10 20 30

Rate, (spikes/sec) ARF, (spikes/sec) o, (spikes/sec)

Figure 7: Scatter plot of the measured response parameters for single neurons in the

ICC shown for the ripple noise and dynamic ripple conditions. Ripple noise versus the

dynamic ripple mean firing rate shown for single neurons (A). STRF peak to peak

magnitudes (units of spikes/sec) shown for the dynamic ripple versus ripple noise (B).

Scatter of the STRF, RMS value shown for both stimulus conditions (C).

The interrelations among the three response parameters is shown in Fig. 8 for

both the dynamic ripple (blue) and ripple noise (red) conditions. All parameters show a

significant correlation (Fig. 8 A–C; dynamic ripple: r=0.82+0.7 , r- 0.88+0.06 ,

r=0.95+0.04 ; ripple noise: r=0.91 +0.05 , r- 0.74+0.09 , r- 0.86+0.07 ).

On the average, neurons that had high (low) firing rates also had high (low) values of

o, and ARF, . The overall range of values of ro , or, , and ARF, were highly

overlapped for the ripple noise and dynamic ripple conditions. The largest deviates from

this trend were observed for neurons with low firing rates (<2 spikes/sec) where the

º
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Figure 8: Response statistics for the dynamic ripple (red) and ripple noise (blue)

conditions showing the interrelation among the mean firing rate, STRF, RMS value,

o, , and the peak to peak STRF, amplitude, ARF . Scatters plots for the three

response parameters shown for all neurons (A-C). All parameters are significantly

correlated and cover similar ranges for the ripple noise and dynamic ripple conditions.

Thus the overall population response strength was similar for both conditions. For

neurons with mean spikes rates of less than 2 spikes/sec (D-F; same as A-C but

zoomed in), however, the ripple noise mean and difference response rates ( or, and

A RF )are considerably weaker.

ripple noise condition seemed to elicit weaker responses (smaller values for the three

parameters; see Fig. 8 D-F). The large amount of overlap for the ripple noise and

dynamic ripple conditions indicate that the overall activity for these two stimulus

conditions is comparable for the neuronal population. The data as presented in Fig. 7 and

te
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Fig. 8, however, does not indicate that the dynamic ripple and ripple noise provide equal

functional driving force for any given single neurons. Note that although the range of

values for these three parameters are comparable, individual neurons could show large

changes in their response parameters between the dynamic ripple and ripple noise

conditions. Consequently the data of Fig. 8 does not convey the extent of dissimilarity in

these parameters for single neurons when tested for both stimuli.

To quantify differences in the mean firing rate and O, for individual neurons,

we constructed two metrics that quantify the percent difference in response strength

between the considered conditions (condition A=moving ripple and condition B=ripple

noise). STRF amplitude differences are characterized by the amplitude similarity index

(ASI)

■ / \' l

ASI, ,—s ||—|| – | 100% (3.17)

where s–sign (o, -o, ) . This metric measures the percent change in STRF energy for

condition A and B. The ASI metric assumes values between negative and positive

infinity. A value of zero indicates that o, ø, whereas values greater than zero

indicate that O, P O', . Values less than zero alternately indicate that O’, ‘OF r, The

magnitude of ASI, , is numerically equivalent to the percent difference between 0.

and G, where the sign of ASIA, indicates an increase in the STRF energy referenced

s

211



on condition A (for negative values) or B (for positive values).

A similar metric was also used to characterize the mean response rate differences

for the two experimental conditions. We consider the rate similarity index (RSI)

RSI Agas. (+)-
x 100% (3.18)F B

where s-sign (ra-ra) . This metric is numerically identical to the ASI where the mean

rates for conditions A and B are substituted for the STRF norms for those conditions. The

RSI and ASI differ since the RSI measures mean rate changes between stimulus

conditions whereas the ASI measures differences in stimulus driven activity (note that the

STRF is a direct measure of the stimulus phase-locked differential spike rate produced

by a given stimulus pattern).

Statistics for the mean and difference spike rates are shown in Fig. 9. For display

purposes, values of ASI or RSI with magnitudes greater than 1000% are set to 1000%.

Response rates and STRF energies were substituted for the dynamic ripple into r, and

o, and for the ripple noise into r, and o, . Values of ASI and/or RSI grater than

zero indicate that the dynamic ripple sound produced higher firing rates and/or

differential response rates. The vast majority of neurons (n=45) had ASI and RSI values

centered about zero ( |ASI |< 500% and | RSI |<500% ) indicating that the firing rates

and STRF.s were comparable in strength for both conditions. A large number of neurons

(n=16) either showed significantly higher firing rates (RSI->+500%) and/or significantly

Y.,
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higher STRF energies (ASP+500%) for the dynamic ripple sound. Three of these
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Figure 9: Rate and amplitude sensitivity index statistics for phase-locked neurons. ASI

(A) and RSI (C) histograms show a large central peak centered about zero. These

neurons consisted of s—neurons which responded with similar firing rates and produced

similar STRF strengths for the dynamic ripple and ripple noise conditions. A large

number of neurons additionally showed large ASI and/or RSI values. Neurons which had

values for either of these metrics that were numerically greater than 1000% are shown

with the ASI or RSI values set to 1000%. These largely consisted off-neurons which

responded most specifically to the dynamic ripple stimulus. Scatter plot for ASI and RSI

(B) shows the interrelation among these metrics. For neurons that had small ASI and
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RSI magnitudes ( ~500 % ), the two metrics were highly correlated

( r+ 0.79-1-0.056 ; bootstrap). The correlation coefficient for the two metrics was

significantly lower for the remaining neurons ( r+0.4+0.12 , bootstrap: p30.05).

neurons had ASI values in between 500% and 1000% while the remaining neurons had

ASI values grater than 1000%. Of these, six neurons had values of RSI and ASI

identically +oo 96 since they responded to the dynamic ripple stimulus but produced

zero spikes for the ripple noise sound. These are shown collectively as a single point

centered about ASI=+1000% and RSI=+1000%. Two additional neurons had values of

ASI and RSI that were greater than +500%. The remaining neurons in this category had

comparable firing rates for the dynamic ripple and ripple noise whereas the phase-locked

component of their response was significantly stronger for the dynamic ripple sound

(ASI-4500%). One neuron alternately had a large negative ASI value (ASI=–7570%)

despite the fact that its overall firing rate was similar for the two stimulus conditions

(RSI=—208%), indicating that its envelope phase-locked response was stronger for the

ripple noise.

3.8 Quantifying Response Specificity to Structured Sound Patterns

The fact that some neurons respond preferentially to the dynamic ripple sound

and are unresponsive to the ripple noise sound suggest that these neurons may require a

high degree of local sound structure, as found in FM sweeps and spectral resonances, to

efficiently activate them. Given that precise STRFs are generated for these neurons when

º
s
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using the dynamic ripple and no STRFs are produced for the ripple noise stimulus (large

positive ASI values) for these neurons is consistent with this observation. Here we further

address issues related to neuronal response selectivity by quantifying the specificity of a

neuron’s response to particular sounds pattern. This analysis serves as a consistency

check, allowing us to relate observed mean— and difference-spike rate properties of the

response (between the dynamic ripple and ripple noise), to the neuron's overall response

specificity.

The feature detector hypothesis was first proposed by Barlow (1953) during his

early works of the amphibian retina. His ideas eventually lead to the doctrine that

sensory neurons encode behaviorally relevant stimuli. In his early works, Barlow noted

that the responses of ganglion cells in the amphibian retina responded specifically to

small flashes of light. This elementary response pattern was sufficient and led Barlow to

the proposal that neurons in the amphibian retina function as "fly detectors". The

stereotyped "on-off" response patterns of single neurons at this early level of processing

could in theory serve as a stimulus trigger for invoking the frog's "strike and swallow"

feeding behavior. Although this simple hypothesis is attractive, due to its simplicity and

its direct link between sensory coding and behavior, numerous competing theories of

sensory coding, include network theories and the idea that single neurons encode

stimulus information as linear filters (Jones and Palmer 1987; Deangelis et al. 1993;

Versnel and Shamma 1998), predominate. With possible exceptions of the echolocating

bat's and birdsong's auditory systems, few convincing examples of true feature

selectivity have been described. Currently, it is not clear to what degree the feature

selectivity plays a role in sensory coding in part because a general definition and
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quantitative methodologies for quantifying feature selectivity are lacking. Here we

specifically consider: To what degree do single neurons behave like linear filters? Or do

single neurons more closely resemble ideal feature detectors? Are neurons that function

like feature detectors common and, if so, what functional purpose do these serve?

Response selectivity is generally quantified by measuring a neuron’s firing rate

for a given sound. Selectivity to a native sound is determined by performing a spectral

and/or temporal modifications in which a behaviorally relevant sound is reversed (Glass

and Wollberg 1983; Doupe 1997), stretched (Wang et al. 1995), and/or filtered

(Theunissen and Doupe 1998). Other paradigms and/or stimulus modifications are also

possible: these may include testing for response specificity to combinations of sound

components (Suga, O’neil, and Manabe 1978; Olsen and Suga 1993a 1993b; Doupe

1997), signals in noise, and testing for specificity to conspecific calls (Ohlemiller,

Kanwal, Suga 1996; Doupe 1997). The disparity of the response between the native and

modified stimulus is then used to quantify the overall degree of response selectivity. In

general such procedures generally require a priori knowledge of the relevant sound

component to be tested. Although these methodologies have proven useful for studying

echolocating bats and songbirds, similar attempts have failed to reveal highly specific

neurons in primate species (Winter and Funkenstein 1973; Glass and Wollberg 1983)

despite the fact that these animals exhibit a diverse audio-vocal behavior (Ploog 1981).

For most animals, including cats and possibly primates, there is no a priori basis for

choosing a particular sound or stimulus component. Thus the search for feature selective

neurons is limited by the fact that the probe stimulus is not well defined for most

animals.
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The presented procedure for quantifying feature selectivity differs in that no a

priori knowledge is necessary for defining the degree of feature selectivity of a neuron.

Secondly, the presented procedure assigns a numerical value to the observed response

pattern were the devised metric is defined in reference to the ideal feature detector and

that of a randomly firing neuron.

Given a large subset of possible stimuli an ideal feature detector neuron would

respond to one an only one sound component. Thus if one were to average over all the

stimuli that evoked a neuronal event (in order to estimate the neuron’s STRF or its

impulse response) one inevitably obtains an STRF that identically matches the sound

pattern of interest. For such an idealized scenario the response covariance (Rieke et al.

1997), a measure of the overall variance of the sound patterns that produce a neuronal

response, is zero since the sound patterns are identical for each neuronal event. Although

this ideal scenario is unlikely to occur in a physiologic system, it nonetheless serves as a

useful reference for defining response specificity.

It is required that the probing stimulus be persistently exciting and spectro

temporally rich so that it probes numerous stimulus possibilities over sufficiently long

test period. The motivation for this requirement is twofold: first a sufficiently rich

stimulus is required so that estimation of the neuron’s STRFs is performed in a

statistically sound and unbiased manner. Furthermore, this requirement is necessary so

that the response specificity is tested with respect to a large subset of possible sound

patterns. The dynamic ripple and ripple noise stimuli satisfy this basic requirements. We

determine the degree of feature sensitivity relative to the subset of all possible sound

patterns that are present in the dynamic ripple and/or ripple noise stimulus space.

2
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Recall that the STRF corresponds to the average of all the sound patterns

preceding every spike. In principle this corresponds to a first-order estimate of the

"optimal" first-order sound pattern that evoked neuronal responses for the given neuron

and does not tell us anything about the variability of the constituent sound patterns that

compose the STRF. Here we ask how variable are these sound patterns on a trial to trial

basis: are these neurons feature selective, responding exclusively to sound patterns that

identically match their STRF.s or are they non-specific? What are the basic differences in

response specificity between the described f- and s—neurons? The presented procedures,

seeks do derive the variance in the constituent sound patterns that is attributed to the

spectro-temporal content or shape, and is independent of amplitude and contrast.

The computation of the feature selectivity index (FSI) metrics is described in

Figs. 10 and 11. Consider the statistically significant vectorized receptive field, RF, ,

where p <0.002 is the level of confidence in determining the significant STRF. Given

this vectorized STRF the spectro-temporal sound pattern which preceded the k" spike

and is spatially overlapped with the vectorized receptive field, RF, , is designated as

Sº . We ask how similar is this sound pattern to the neuron’s STRF2k

The degree of similarity between a sound pattern and the neuron’s STRF is

derived by computing the correlation coefficient or similarity index (SI) between the k"

sound pattern, S, , and the neuron's vectorized receptive field, RF, . This operation

is expressed as
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_{*, *)
* |RF, HS, (3.19)

Presumably if there is a high degree of similarity between the neuron's receptive field

and the constituent sound pattern, the similarity index will be close to unity. Alternately,

if the similarity index is near zero, the constituent sound pattern bear no resemblance to

the neuron’s STRF. This operation is repeated for every neuronal event, resulting a

similarity index for each spike. The similarity index measure differs from the variance

calculation used to determine the response convariance since it only accounts for

variability that is inherent in the spectro-temporal shape independent of amplitude

differences (Fig. 10).

AS1

Figure 10: Abstract representation of the STRF and the relationship between the

covariance and the similarity index. The STRF is expressed as the average vector

defined in an N. × N., dimensional space (A): where N, =400 and N , =230

correspond to the number of temporal and spectral samples used to compute the STRF

respectively. Here the vectors S, designate the sound patterns used to construct the
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STRF. The covariance is computed by computing the difference vector (B),

AS, =STRF-S, , and averaging its squared values, A S; . This measure

therefore accumulates differences between the STRF and the constituent

sound patterns, S, , that arise from magnitude and shape differences (associated

with the direction of the STRF and S, ). The similarity index is computed by

normalizing all sound vectors and the STRF so that they have unity variance (C). This

measure therefore only takes into account shape differences between the STRF and the

individual sound patterns (irrespective of magnitude differences). The similarity index

is defined as SI, =cos(x) , where cº, is the angle between the STRF and the k"

sound pattern.

Given the array of similarity indices, SI =[SI, , SI, , ..., SIN) , for a total of N

neuronal responses, the overall specificity of a neuron is assessed by considering the

overall response statistics for the dynamic ripple and/or the ripple noise sound ensemble.

Given this array, one can construct a similarity index histogram (SIH) by collapsing the

array of similarity indices, SI, into a probability histogram (Fig. 11). This measure

provides an estimate for the similarity index distribution, p(SI) , for a given sound and

experimental condition. The relative degree of feature selectivity is determined by

considering the degree of skewness of the similarity index distribution relative to the

expected distribution for an ideal feature detector neuron and to a null response condition

in which a neuron fires randomly.

220



#

;
;

i 4

3
* -

telay (msec) 0

Similarity Index
Histogram

SH-0.95 O O. O.

Figure 11: Computing the similarity index histogram. The neuron's significant STRF is

used to define the neuron's "optimal" sound pattern. Selectivity is tested against this

reference sound pattern. For each occurrence of a spike, the pre-event spectro

temporal envelope is extracted (third row). These sound segment are individually

compared with the neuron's significant STRF ( p.<0.002 ). Using the sound

segments that are spatially overlapped with the neuron's significant STRF (top),

designated by white contour, the correlation coefficient or similarity index is computed

between the STRF and each sound segment. For each spike, the similarity index

provides a metric with numerical values between -1 and 1. Zero indicates that the

STRF and sound pattern bear no resemblance whereas unity indicates maximal

similarity. Values near-1 alternately indicate that the sound pattern resembles the

STRF but has a sign inversion. The similarity index histogram is obtained by collapsing

the array of similarity indices obtained for each spike into a histogram (bottom right).

This descriptor provides an accurate picture of the neuron’s response specificity for the

stimulus ensemble under consideration (shown for the dynamic ripple sound).
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For an ideal feature detector, the trial to trial variability between the neuron’s

STRF and the sound patterns that evoked neuronal responses is zero. Such a neuron

responds if and only if the presented sound pattern identically matches the neuron's

STRF. For such an idealized neuron, the trial to trial similarity index is unity. The

corresponding SIH will thus consist of a single impulse centered about unity:

p,(SI)=6(SI-1) , where p,(SI) is the expected distribution function for the ideal
feature detector.

In contrast, we also consider a null condition in which a neuron fires randomly

and the spiking output bears no direct relationship to the input sounds. A purely random

neuron produces a zero valued STRF since the neuronal response is not functionally

related to the driving stimulus. Consequently, the similarity index distribution consists of

a single impulse centered about zero: p. (SI)=6(SI) , where p,(SI) designates the

similarity index distribution for the random neuron.

Although this ideal scenario is appealing as a reference for defining selectivity,

we will instead consider the SI distribution obtained for a random set of spikes and the

non zero-valued STRF for the neuron under investigation. In general, this distribution is

centered about zero but it is slightly broader than the obtained distribution for the

described scenario (Fig. 14). We consider this distribution, as opposed to the ideal

distribution for the random neuron, because the SI distribution for the neuron under

investigation, p(SI) , is obtained directly from the significant STRF which is in all

cases non zero-valued. If, for example, a subset of the neuron’s spikes are non-specific,

the SI value for these spikes will be derived using an STRF which is not zero. Although

this subset of spikes is not causally related to the input sound patterns, the resulting SI
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values can differ from zero because the STRF is real valued. Hence, the contribution

from random spikes in the neuron's response have SI values which differ from zero. For

the null condition, we therefore consider the distribution of SI values obtained using the

neuron's significant STRF, RF, , and a random set of spikes since this distribution

closely resemble the properties of non-specific spikes in the neuronal data.

The SI distribution for a randomly firing neuron, p. (SI) , is thus

experimentally derived for each individual STRF by randomly choosing a set of 12,000

spikes and constructing the SI distribution. Because of the differences in STRF shape and

the relative energy of its excitatory and inhibitory domains for individual neurons, the SI

distribution differs for each STRF and thus it must be reestimated for each neuron. An

example of the experimentally derived distribution is shown in Fig. 14 (additional

examples are shown in Figs. 12 and 13). Although the ideal and experimentally derived

distributions are both centered about zero, the experimental distribution is slightly

broader and has values other than zero.

3.9 Similarity Index Histogram of s- and f-Neurons

Similarity index histograms were computed for all neurons that showed a

significant STRF in order to determine the relative degree of specificity for the dynamic

ripple and ripple noise conditions. As described, the similarity index histogram quantifies

the specificity of the response directly by comparing the neuron’s response similarity

index statistics to those expected for an ideal feature detector and a random firing neuron.

In section 3.7, s– and f-neurons were categorized according to the measured response

strength differences between the dynamic ripple and the ripple noise. The similarity
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index histogram method serves as a consistency check, allowing us to compare the results

of section 3.7 directly with a theoretically sound measure of selectivity.

Fig. 12 and 13 shows the similarity index histograms for the s— and f-neurons of

Figs. 4 and 5 respectively. SI histograms are shown for both the dynamic ripple (left

column) and the ripple noise (right column) as continuous lines. Control SI histograms

are also shown for the random firing assumption (red-dotted lines).

S—neurons have SI histograms that are largely overlapped with the random

control condition. With the exception of two of the forty-five s—neurons (one of these

neurons is shown in Fig. 12 C (dynamic ripple) and D (ripple noise)), this trend was

evident for both the dynamic ripple and the ripple noise signals. These neurons have SI

distributions that resembles those observed for f-neurons (compare to Fig. 13). For all

neurons SI distributions for the dynamic ripple were, in general, narrower than for the

ripple noise condition. This is also evident in the random control distribution, p. (SI)

for the examples of Fig. 12, indicating that this is a stimulus dependent property of the

similarity index histogram.
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Figure 12: Similarity index distributions for the s—neurons of Fig. 4 – estimated for the º

dynamic ripple (A, C, E, H) and for the ripple noise (B, D, F, H). For most s—neurons

(43/45) the derived similarity index distributions (continuous line) are highly *
- **

overlapped with those of the random control simulation (red, dashed-dotted line). This y . . .”
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is true for both the dynamic ripple (left column) and the ripple noise (right column) | | |
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Figure 13: Similarity index distributions for the f-neurons of Fig. 5 – estimated for the

dynamic ripple (A, C, E, H) and for the ripple noise (B, D, F, H). Similarity index

histograms for the dynamic ripple are positively skewed towards +1 and have little

overlap with the random control SI distribution. Ripple noise SI histograms (B and D)

are similar to the random control SI distribution, suggesting that these neurons respond

with higher selectivity to the features present in the dynamic ripple. The neurons of E

and G did not respond to the ripple noise (F and H).

By comparison, a large number off-neurons had SI histograms for the dynamic

ripple that were positively skewed (9/17) towards +1 and were not overlapped with the

random firing condition. Such neurons are depicted in Fig. 13 (A, C, E, G). Comparing
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with the ripple noise condition, these neurons either did not respond to the ripple noise (F

and H) or produced SI histograms that resemble the random control distribution, but were

only slightly positively skewed towards +1, thus suggesting that they responded more

precisely to the dynamic ripple sound.

3.10 Quantifying Feature Selectivity

The similarity index histogram devised in section 3.8 allows us to measure the

variability of the input sound patterns that evoke neuronal responses. These can be

compared directly to the results expected for an ideal "feature detector" neuron and for a

random neuron. Comparisons among the different cell classes in the ICC shows that the

similarity index histogram of some cells are skewed relative to the random condition –

indicative of higher selectivity. Here we devise a numerical metric that distinguishes and

quantifies the relative selectivity of a neuron directly from the similarity index histogram

and the reference similarity index histograms.

Using the ideal feature detector and the randomly firing neuron's SI distributions

as a reference point, we devise three feature selectivity index (FSI)

■ ", P.(S)-P(S)dSI _■ , P.(SI)—P(SI)dSIFSI,-- 1 (3.20)
J. P.(SI)-P,(SI)dSI J. P.(SI)dSI

FSI,--t-t- (3.21)
HaTH,

m–m,
FSI, + (3.22)

ma–m,

; :
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SI SI

—1 —1where P.(SI)=■ p,(x) dx and P(SI)=■ p(x).dx are the cumulative SI

distribution functions (CDF) for a random spiking condition and for the neuron under

study respectively, P,(SI)= u(SI-1) is the CDF for the ideal feature detector neuron,

and u(x) is the unit step function. The symbols p and m correspond to the mean

value and the median value of the SI distributions. The subscripts r and fa designate the

random and feature detector control neurons respectively.

The construction and significance of these metrics is depicted in Fig. 14. In all

instances the CDF has a monotonically increasing sigmoidal shape. The transition points

at which the CDF reaches a value of 0.5 (the median value) designates the value of the SI

at which the PDF has accumulated half of the total probability. Example CDFs for the

considered conditions P, (SI) , P.,(SI) , and P(SI) are shown in Fig. 14 B. For the

random spiking condition (dashed-dotted line) the median value of SI is reached near

zero whereas for the ideal feature detector (dashed line) it is reached at unity. For the

neuron under study (continuous line) this transition generally occurs at an intermediate

value of SI, usually between zero and unity. For an ideal feature detector, this transition

point occurs at SI=+1. Likewise, the mean value of the respective distributions obey

similar rules assuming that the distributions for the null, feature detector, and

experimental condition are not skewed (they are symmetric). The FSI (FSI, and FSIA)

derived directly from the mean (median) value of these three distributions designates

distance between the means (median) of the null and experimental condition (red arrow;

Fig. 14 A) normalized by the distance between the mean (median) of the null and feature
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detector condition (blue arrow; Fig. 14 A). Since u,<0 ( m, “0 ), ua-1 (

ma=1 ), and 0<u,<1 ( 0< m,<1 ) these FSI metrics takes values between zero
- *

and unity. Values near zero indicate that the neuron’s response is non-specific whereas º
<

values near unity indicate a high degree of specificity to sound patterns that resemble the
º

neuron’s STRF. y . . .
º
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Figure 14: Defining the feature selectivity index (FSI). The definition of the FSI is

derived from the neuron's SI distribution function, p(SI) , and the expected SI

distribution for an ideal feature detector, p,(SI) , and a randomly firing neuron,

p. (SI) , both of which serve as reference points (A). The reference SI distribution
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for an ideal feature detector neuron is an impulse centered at +1. The reference

distribution for a randomly firing neuron is centered about zero. The tested neuron's SI

distribution, p(SI) , is generally broad taking values between zero and unity. The

simplest versions of the FSI metric (FSI, and FSIA) are derived directly from the mean

or median values of the respective SI distributions. These metrics are derived by ---,

computing the ratio of the distances between the means (median) of the tested neuron

and the random neuron (shown as a red arrow, A), and between the feature detector and

random neuron (shown as a blue arrow, A). An alternate FSI metric is derived by

considering the cumulative SI distribution functions (FSI, ,B). This metric is derived by

measuring the area in—between the tested neuron's CDF and the random neuron's CDF º

(red region, C) normalized by the area in-between the ideal feature detector and *

random neuron's CDF (blue region, D). 25).

Although, the value of these simple metrics serves as an indicator of the overall º

response characteristics of a neuron, a more accurate metric is obtained by considering º

the entire shape of the respective CDF curves. This is done by considering the

accumulated area between the respective CDF curves to derive the metric FSI. The *"

denominator of Eq. (3.20) designates the area in—between the sigmoidal CDF curves for S. ■ '."

the random spiking neuron and the ideal feature detector neuron conditions (Fig. 14 D; L

blue region). The numerator alternately corresponds to the accumulated area in—between º,
the CDFs for the random spiking neuron and the neuron under study (Fig. 14 C; red >

region). Thus, the FSI metric has numerical value between zero and unity. FSI, values > |

near unity are indicative of a neuron with "feature detector" like qualities whereas values * R
º, .

of FSI, near zero are indicative of a neuron which fires with little precision.
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3.11 Binaural FSI Metric

The described procedure for deriving the feature selectivity index of a given

neuron was derived on the assumption that the neuron’s STRF was measured monaurally.

For neurons that responded only to one ear (contra or ipsi), the described procedure can

be applied directly to the sound channel that produced a significant STRF. If, however,

the given neuron has a significant contralateral and an ipsilateral STRF the described

procedure can in theory significantly underestimate the actual feature specificity of the

given neuron.

As an example, consider a highly selective neuron which responds independently

for the contralateral and ipsilater ears. Given that the input stimuli are bilaterally

independent, a fraction of the overall spike train consists of events that are specific only

for the contralateral ear. The remaining spikes are specific only for the ipsilateral ear.

Given independence of the contra and ipsilateral stimuli and independence of the

responses to both ears, the spikes that show specificity for the contralateral ear are

nonspecific for the ipsilateral ear and vise versa. Thus when one constructs the feature

selectivity histogram for the contralateral STRF, it will show a large peak centered about

zero (non-specific) arising from neuronal events that are actually specific for the

ipsilateral ear and vise versa (see Fig. 15). Thus to properly quantify the specificity of the

response for such a neuron one needs to take into account the interdependence between

the contralateral and ipsilateral ear.

As a first step to remedy the limitations of computing a monaural FSI

measurement for a binaural response condition, we consider joint FSI measurements for

the contralateral and ipsilateral ears. Given a set of neuronal responses for a bilateral
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stimulus condition, the outlined procedure of section 3.8 and 3.10 can be used to

compute the FSI first for the contralateral ear, FSI. , and subsequently for the

ipsilateral ear, FSI, . The overall specificity of a neuron can then be described as

binaural feature selectivity vector, FSI,-[FSI. FSI.] , where the subscript b designate

a binaural feature selectivity measurement. The subscripts c and i designate the

contralateral and ipsilateral ears respectively. To assign a numerical value to this vector

the vector norm is computed:

|FSI,[= W FSI+FSI: (3.23)

This metric corresponds to the vector distance relative to reference binaural feature

selectivity index value of [0 0} . Since the contralateral and ipsilateral FSI can assume

values between zero and unity, the quantity ||FSI, assumes values between zero and

N2 .

We further extend the procedure for estimating the monaural SI distribution,

p(SI) , and the corresponding monaural FSI by considering the joint SI distribution

for the contralateral and ipsilateral responses. For each neuronal event the similarity

index is computed as described in section 3.8 for both contralateral and ipsilateral ears.

Thus for each spike two similarity index values, one for the contralateral and the other

for the ipsilateral ears, are derived. The two values of the similarity index, SI, and

SI, , are then used to construct the joint similarity index distribution, p(SI., SI) .

:
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The joint cumulative SI distributions is computed as

P(SI., SI)= ■ ”. ■ ” p(x,x)d x d x, This procedure is repeated for the null

conditions of a random firing neuron, P., (SI., SI.) , and the ideal feature detector

neuron, P.,(SI., SI.) . For the later case, the joint SI distribution

p,(SI., SI)=6(SI.-1)6(SI-1) takes the form a two dimensional impulse centered

at the vector location [SI. SI.]=[1, 1] . The corresponding joint CDF is given by

P,(SI., SI)= u(SI.-1) u(SI-1) where as before u(x) is the unit step function.

Examples of the monaural PDFs, the joint PDFs, and the corresponding joint

CDFs are shown for the neuron of Fig. 1 C/D in Fig. 15. The monaural PDF for this

neuron, p(SI.) and p(SI) , has a non-specific peak centered at SI values near zero

for the contralateral ear. A careful look at the joint SI PDF, p(SI., SI |) , reveals that

this "non-specific" responses is actually specific for the ipsilateral ear. The joint CDF,

P(SI., SI.) , takes the shape of a two dimensional sigmoidal surface (Fig. 16). For

reference, the joint PDF and CDF are also shown for the null condition, p. (SI., SI.) ,

in Fig. 15 B and Fig. 16 B respectively.
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Figure 15: Relationship between the binaural SIPDF, p( SI., SI) (C), and the

monaural SIPDFs, p(SI) (A) and p(SI) (D). Contralateral (A) and ipsilateral

(D) monaural SIPDFs shown for the binaural f-neuron of Fig. 1 C/D. Both the

contralateral and ipsilateral responses have SI PDFs which are suggestive of feature

sensitive type responses. The contralateral SIPDF has a "non-specific" response peak

centered at SI.-1. The joint SIPDF (C) displays the interrelation between the

contralateral and ipsilateral responses. The joint SIPDF reveals that the "non-specific"

contralateral response is actually specific for the ipsilateral ear. Unlike the joint PDF for

the tested neuron, which has contralateral and ipsilateral SI values that are skewed

towards unity, the joint SIPDF for the random control condition (B), p.(SI., SI) , is

narrowly distributed (impulsive) and centered about SI.-0 and SI-0.
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Figure 16: The joint SI cumulative distribution function (CDF) is obtained directly from
-
s

the neuron's joint SIPDF by integrating across the contralateral and ipsilateral axis. An A Nº

example CDFs is shown for the neuron of Fig. 1 C/D (same neuron shown in Fig. 15), Djº.

P(SI., SI) (A), and for its random control condition, P.(SI., SI) (B). The

neuron’s joint CDF (A) resembles a sigmoidal surface with a broad transition occurring

at SI. and SI, values between zero and unity. The random control CDF (B) also

resembles a sigmoidal surface but its transition is sharp and centered about SI.-0 and

SIF-0. This neuron has a high FSI value (0.62 for the dynamic ripple), consistent with

its feature sensitive response properties.

The binaural feature selectivity index is constructed as for the monaural case by

considering the volumes in-between the CDFs for the ideal feature detector neuron, the

null random neuron, and the neuron under investigation. The binaural FSI is obtained as º
º

-Q.

- - º,

■ ■ º P.(SI., SI)-P(SI., SI)d SI.d.SI, 23%),
FSI,--H (3.24)

P.(SI., SI)-P,(SI., SI)d SI.dSI, -
— 1 J – 1

º,
º

º
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–1 re-1J J P.(SI., SI)-P(SI., SI)dSI, dSI,
= –1 re-1J J P,(SI., SI)d SI. dSI,

where the integrated volume in—between SI values of –1 and +1 is zero for the ideal

feature detector neuron: ■ ', J', P,(SI., SI)dSI, dSI,-0 . Since the SI distribution

for the feature detector condition is centered at the vector location [SI. SI.]=[1, 1] ,

the metric FSI, can assume values in between zero and N2 .

3.12 Distribution of FSI Values

To determine the degree of response specificity for the ripple noise and dynamic

ripple conditions, values of FSI, were estimated for an all neurons for both conditions.

Histograms and a scatter plot are shown in Fig. 17. The distribution of FSI, values for

the dynamic ripple stimulus is shown in Fig. 17 A. The distribution for this condition is

bimodally distributed with a threshold that was visually determined at FSI, +0.4 . The

vast majority of neurons (n=51) had low FSI values (mean value of 0.18) whereas 11

neurons had significantly higher values of FSI ( FSI, 0.4 and mean value of 0.56).

In Fig. 17 B, the distribution of FSI, values for the ripple noise shows a large

amount of scatter when compared to the distribution for the dynamic ripple. For the

ripple noise condition, only seven neurons had values of FSI, greater than 0.4. Of

these, 1 neuron had an FSI, that was much higher for the ripple noise (0.75 ripple
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Figure 17: Measured FSI, vales for the ripple noise and dynamic ripple conditions. -

(A) The distribution of FSI, values for the dynamic ripple condition is bimodally

distributed. (C) The distribution of FSI, values for the ripple noise stimulus is highly sº
scattered. (B) Scatter plot showing the interrelation of FSI, values for the ripple noise L! !

and dynamic ripple. º,
5

noise versus 0.12 for the dynamic ripple). By this measure this neuron seemed to º
respond more precisely to the ripple noise. At odds with this observation, however, was – º –

zºo,the fact that this neuron had a significantly higher firing rate and difference response

strength for the dynamic ripple condition (Rate=12.62 spikes/sec, or, −0.84 spikes/sec,
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and ARF=8.4 spikes/sec) versus the ripple noise (rate=0.03 spikes/sec, or, −0.015

spikes/sec, and A RF=0.05 spikes/sec). Of the remaining neurons, n=48 responded

with similar specificity for both conditions and a smaller subset of neurons (n=7) had

FSI, values for the dynamic ripple condition that were more than ten times larger

compared to the ripple noise.

3.13 Independence of the Binaural SI Distribution

The chosen reference position for the ideal feature detector neuron,

[SI. SI.]=[1, 1] , requires that such a neuron respond if and only if the optimal

contralateral and ipsilateral sounds are presented simultaneously. Thus, for such a neuron

to respond, the sound features which identically match the neuron’s binaural STRFs must

be presented. Given that ICC neuron’s respond most strongly to the contralateral inputs

(e.g. Irvine and Gao 1990) it is unlikely that such binaural specificity will be

encountered. Thus expecting a value of FSI, as high as N2 is likely an unfair

expectation.

To further investigate the degree of binaural specificity, the independence for the

contralateral and ipsilateral responses was measured by constructing a separable FSI,

measure FSI . . We ask: Are the joint PDFs and CDFs separable independent functions

for the contralateral and ipsilateral ears? Do neurons require structured inputs that

coactivate both ears, or are the contralateral and ipsilateral responses independent? To

address this question, we consider Eq. (3.24) and assume that the joint similarity index
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CDF is separable: P(SI., SI.)=P(SI)P (SI) , implying that the SI, and SI, are
* -

independent of each other. By construction it is clear that P. (SI., SI.)=P, (SI)P, (SI)

since the input sounds for the contralateral and ipsilateral ears are independent and since

the neuronal spike trains were randomly generated for this condition. Substituting into

Eq. 3.24, the expected FSI, for a neuron with independent joint FSI distribution is

given by

—1 —1 1 1

J. P.(SI.)dSI.'■ P.(SI)dSI,-■ ", P(SI)d SI.'■ ", P(SI)dSI, . (3.25)
—1 –1J. P.(SI.)d SI.'■ P.(SI)dSI,

FSI, E

By default we expect that FSI,-FSI . if and only if the neuron’s joint PDF is

separable. Thus, if this condition is satisfied, the measured values of SI. and SI, are

independent of each other.

Fig. 18 shows a scatter plot between FSI, and FSI, . The two parameters are

highly correlated ( r=0.985+0.015 , linear regression: B=0.98, A=0.01) indicating

that the binaural interactions for the similarity index parameter are statistically

independent between the two ears.
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Figure 18: Separability of the binaural similarity index histogram. Binaural feature > Nº

selectivity index, FSI, , versus the separable binaural feature selectivity index, _* ºf
Dº

FSI, . Shown for the moving ripple (triangles) and the ripple noise (circles)

stimulus. Both metrics are highly correlated ( r^ =0.97 ) with unity slope (linear •.
º

regression B = 0.98+0.01 , p<0.001 confidence interval) indicating that the º

>
contralateral and ipsilateral binaural SI measures are statistically independent of each

other.

3.14 The Ripple Transfer Function

As can be seen from the preceding chapters, the STRF is a useful descriptors that

allows one to determine the response area of a neuron. In addition, this descriptor is

useful for describing the patterning of spectral and temporal excitation, inhibition,

binaurality, spectro-temporal specificity, and the overall response strength to complex

spectro-temporal stimulus as demonstrated in the preceding sections. Thus, if one is

interested in characterizing the response area of a neuron and its spectro-temporal
-
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patterning along the sensory epithelium the STRF is likely the most viable descriptor.

As with any descriptor, however, the STRF also has both theoretical and practical

limitations. Although a number of response parameters (such as best frequency, temporal

delay, response strength, and binaurality) can be derived directly from the STRF, higher—

order response parameters such as the neuron's best ripple frequency and temporal

modulation rate, are not directly accessible. To evaluate a neuron's response preference

with respect to these higher-order stimulus parameters, we therefore consider the

spectro-temporal ripple transfer function (RTF) (Klein et al. 2000).

The ripple transfer function is a two dimensional Fourier representation of the

STRF. The RTF describes the input-output characteristic of a linear neuron to any

arbitrary ripple signal and combination of ripple parameters F., and (2 . Formally

the RTF exists only for the special case of a linear integrating neuron. However, as for

the STRF, its applicability is not limited to linear systems.

Recall that a neuron’s STRF is analogous to its impulse response described along

time and along the sensory epithelium (i.e. the frequency axis). Alternately, the RTF

describes neuron's transfer function characteristics as a function of the temporal

modulation rate, F, and spectral envelope frequency, (2 . Together the STRF and RTF

form a Fourier transform pair

STRF(t, X) e-C■ ., -> H(F., (2) (3.26)

where the forward and inverse transforms are defined by:

C
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5,[]=■■ .e.”"-"*"d dx and 5, '[...]=■ ■ e”"-"*"d F. do respectively.

Upon performing this transformation the time axis of the STRF is converted to the

temporal modulation rate ( F, ) axis of the RTF and the spectral axis ( X ) is

converted to the ripple frequency axis ( (2 ) of the RTF (see Fig. 19).

When using the RTF, the neuron's input-output characteristic is expressed

directly as a complex quantity and is described as a function of F, and (2 . For a

linear neuron the RTF can be expressed in the general form

H(F.,0)=M(F.,0)exp|-jø(F.,0)] (3.27)

where M (F, , (2) is the magnitude response and P(F, , (2) is the phase response.

The magnitude of the RTF determines the strength of the response as a function of

spectral, (2 , and temporal, F, , frequencies for a given input stimulus of fixed

energy. If, for example, the magnitude response of a neuron has a gain of three units, for

a given ripple combination, the response to that ripple stimulus will be three times as

strong in amplitude as the incoming input signal. Alternately, the phase response

determines the spectro-temporal patterning observed directly in the STRF as a function

temporal and spectral frequency. As an example, consider the off-on neuron of Fig. 4

A/B. One can imagine a similar neuron, with identical spectro-temporal shape, but with

an inverted on-off response profile. Such a neuron has identical magnitude response and

differs only in its spectro-temporal phase profile by a constant of TT radians (180°).
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Figure 19: The ripple transfer function (RTF) (B) is a two dimensional Fourier

representation of the STRF(A). The RTF is derived directly from the significant STRF

via a two dimensional Fourier transformation. This descriptor depicts time-locked

energy in the response as a function of temporal modulation rate, Fn, and spectral

envelope frequency, (2. Red indicates parameter combinations which evoked a strong

243



time-locked response whereas blue indicates a weak response. We also computed the

conditional-response histogram (D) in order to quantify nonlinear response
&

characteristics that are not time-locked. The response histogram is similar to the RTF
º

º
but it is computed directly from the instantaneous dynamic ripple parameters (Q(t) and

F.(t)) by counting responses to each parameter combinations (C) (only possible for the º

dynamic ripple). For each neural event, such as the one depicted by the dotted line in Sº
-

(C), the spectral and temporal dynamic ripple parameters, (2(t) and F.(tº), are .-
determined at the time instance of the neural spike, tº. The values of Q and F, are then

used to increment the corresponding bin in the joint histogram by +1 (D). For a linear
-

system, the RTF magnitude response and the response histogram are virtually identical.

The two descriptors differ since the response histogram can access nonlinear

information.

Conceptually the magnitude response of the ripple transfer function describes the

spectro-temporal filtering characteristics of the neuron. Regimes in the magnitude

response, M (F, , (2) , with non-zero values designate combinations of F, and (2

that efficiently activate the neuron. Likewise, a given neuron responds weakly to

spectro-temporal combinations wherever the magnitude response is zero-valued. Using

this simplified description, any given neuron can therefore be described as a spectro

temporal filter which rejects sounds with certain parameter combinations and accepts all

others.

To visualize the neuron’s response as a function of F. and (2 , we consider
prl

the magnitude response. The magnitude response is obtained directly from the RTF,

H (F, , (2) , as
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M(F.,0)=|H(F.,0)|=WH(F.O.) H(F.O.) (3.28)

where H (F, , (2) is the complex conjugate RTF and the neuron's RTF is derived from

its STRF via a 2-D Fourier transform.

Given that the RTF defines the spectro-temporal filtering operation of a neuron,

the overall patterning of the response can be determined by independently considering

the spectral and temporal dimensions. Thus the neuron's stimulus—response transfer

function characteristics can be described as a a lowpass and/or bandpass filtering

operation along the spectral and/or temporal dimension. Using this convention to

categorize spectro-temporal response properties, a total of our filtering combinations are

possible: LL., LB, BL, BB, where the first letter designates the temporal filtering

operation and the second letter designates the type of spectral selectivity. The symbols L

and B designate lowpass and bandpass filtering operation respectively. If one additionally

considers the possibility that the neuron’s STRF can be spectro-temporally separable or

inseparable a total of eight possible combinations are presented, LL, LB, BL, BB, LLS,

LBS, BLI, BBI, where the third symbol, S or I, designates separable and inseparable

respectively.

Example STRFs and their corresponding RTFs are shown for the possible

different scenarios in Fig. 20. Spectral bandpass filtering neurons have alternating

patterns of excitation and inhibition along the spectral axis (F and D). Likewise, neurons

that show bandpass RTFs along the modulation rate axis, F, , axis (A, C, D, and E)
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have STRFs with "on-off" (A, D, and E) or "off-on-off" (C) temporal profiles. Neurons

with lowpass spectral (A, C, E, and F) and/or temporal (B and F) RTFs lack alternation

patterns of "on" and "off" components along the appropriate dimension. Finally,

inseparable neurons (D and E) have asymmetric RTFs and oblique STRFs – indicative of

a preference for upward going (E, negative F, ) or downward going (D, positive

F, ) ripple profiles.

STRF STRF RTF

In § 54-

g g
tº 2 tº 2
q. º

| 3 | 3.
- -

cº o Dr. O
0 10 20 30 40 –200 0 200 0 10 20 30 40 –200 0 200

Delay (msec) Modulation Rate (Hz) Delay (msec) Modulation Rate (Hz)

Figure 20: Example STRFs (left) and the corresponding RTF (right) – chosen to reflect

the diversity of ripple transfer functions observed for the population. Projections of the

RTF are shown for reference along the modulation rate and ripple frequency axis.

Neurons with BL response selectivity (A and C) are characterized by an "on-off"

temporal profile and lack alternating patterns of excitation and inhibition along the

spectral axis of the STRF. The neuron of (B) shows almost orthogonal LB response

characteristics to the neurons of (A and C). Its temporal patterning is characterized by

->
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an "on" component and its spectral "off-on-off" profile. Cells with inseparable STRFs

have asymmetric RTFs (D and E). The neuron of D responds best to downward going

ripple profiles (positive F, ) and has a BBI response pattern. The neuron of (E) has

a BLI response to upward going ripple profiles (negative F., ). Neurons with LL

responses (F) lack alternating patterns of excitation and inhibition along the spectral

and temporal axis. Shown for a neuron with purely inhibitory "off" response profile.

3.15 Non-phase-locked Neurons (C–Neurons)

A basic requirement for computing an STRFs is that the neuron under

investigation time—lock to the stimulus spectro-temporal envelope. The term phase- or

time—locking is used to describe a neuron’s ability to follow, on a cycle to cycle basis,

the amplitude modulations of the stimulus. Sinusoidal amplitude modulations studies

show that many auditory neurons in the ICC and along the auditory pathway phase-lock

to the stimulus modulation waveform (Plomp 1983; Rees and Møller 1983; Schreiner,

Urbas, and Mehrgardt 1983; Jones and Palmer 1987; Rees and Møller 1987; Krishna and

Semple 2000). Consequently, it is of no surprise that a large number of neurons in this

study phase-locked to the spectro-temporal envelope and consistently produced

statistically significant STRFs.

Up to now, we have described only neurons that show statistically significant

STRFs, indicative of quasi-linear processing and time—locking to the spectro-temporal

envelope. In some instances (n=22 of 84), however, the estimation of the STRF failed to

produce statistically significant STRFs (p<0.002) with a distinct spectro-temporal

patterning, despite a significant overall firing rate (mean firing rate=7.5 spikes/sec). Two

"
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possible explanations are presented: first it is possible that the observed neurons were

spontaneously firing and did not respond in a time-dependent manner to the spectro

temporal modulations of the dynamic ripple and ripple noise stimulus. Alternately, it is

also possible that these neurons respond in a highly nonlinear manner to these sounds and

the STRF is an insufficient functional descriptor. Such would be the case for even-order

nonlinearities, dynamic nonlinearities, and nonlinearities arising from combination

products. If this is so, we can overcome this limitation of the STRF by devising an

alternate functional descriptor that can capture the nonlinear stimulus-response

transformation performed by these neurons.

As described in the previous section, an alternate approach for characterizing the

stimulus—response relationship of a neuron is to compute the ripple transfer function of

the neuron directly in the spectro-temporal frequency domain. This method, however, is

limited by the fact that the described procedure for computing the magnitude response

function, M.(F., (2)= NH(F., (2) H'(F., (2) , requires a significant STRF for its

computation. Since the described neurons do not produce significant STRFs this

procedure can not be used directly.

A closely related method for estimating the magnitude response function involves

performing a spike-triggered average with respect to the stimulus parameters for the

dynamic ripple stimulus to construct a conditional—response histogram (refer to Fig. 19).

This method accumulates signal parameters rather than the spectro-temporal stimulus

waveform and is, therefore, insensitive to spike timing jitter, unlike the conventional

STRF method. Given that the time varying parameters, Q(t) and F,(t) , for the

dynamic ripple stimulus are known a priori we use these to estimate the conditional

º
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distribution function P(F, , (2|t,) . This distribution describes the probability of

observing a set of ripple parameters, F, and Q , given the presence of a spike at

time t, . For a linear time—invariant system this distribution function should be

identical to the systems magnitude response.

We approximate this distribution by discretizing the spectro-temporal ripple

domain into bins of resolution A.F., X A (2 . For a sequence of neuronal spikes, t, ,

we perform a spike-triggered average

N

P,-X I(KAF.<F.(t)-(k+1)AF.) I(lA Qs (2(t.)<(1+1)AQ) (3.29)kl
n=1

where P, is the discrete version of P(F, , (2|t,) and I () is the identity function.

The identify function takes a value of unity whenever the condition inside its argument is

satisfied. Otherwise it assumes a value of zero. Thus for any given bin of Pa , the

response histogram is incremented by +1 if and only if the instantaneous parameters,

F.(t) and (2(t.) , fall within the required intervals,rt

k A F,<F,(t.)<(k+1)AF, and l AQs (2(t.)<(l-H1)A (2 , at the time of the

neuronal spike, t, (see Fig. 19 for further explanation).
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Figure 21: C-neurons are characterized by a highly nonlinear stimulus-response

relationship. The STRF for such cells is absent or weak providing little or no

information (p<0.002). Two such STRFs are shown in A and B. Note that no significant

spectro-temporal patterns stand out. Since the STRFs provide no information about the

response characteristics of these neurons, spectro-temporal feature selectivity for these

neurons was established by examining the conditional-response histogram, which

always showed a tuned response not observed directly from the STRF or the RTF. The

response-conditional histograms is shown in C and D for the c-units of A and B. The

c—neuron shown in C, responded best to high ripple densities (>1 cycle/octave) and

temporal modulation rates greater than 50 Hz. The neuron shown in D responded best to

low ripple densities (<0.25 cycles/octave) and to fast temporal modulation rates (~200–

300 Hz). These responses can not be visualized using the STRF.
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Using the conditional—response histogram, we tested whether the observed

neurons do respond selectively to complex sound attributes but do not meet the necessary

stimulus—response requirements for producing STRFs. Surprisingly, the conditional—

response histogram for these neurons revealed strong responses to particular stimulus

parameter combinations (Fig. 21 C and D) despite the lack of linear time—locking to the

spectro-temporal envelope (resulting in no STRF). Thus the responses of these neurons

can not follow the fast spectro-temporal modulations of the stimulus envelope (up to 350

Hz) but were able to track very slow changes of the stimulus parameters (1.5 Hz for the

temporal modulation rate and 3 Hz for the ripple density).

For the examples of Fig. 21, the STRFs are absent (A and B) despite a significant

overall firing rate. If one were to judge these neurons based on the STRF and mean firing

rate alone one inevitably concludes that these neurons are spontaneously firing and do

not serve any functional purpose for encoding information about complex sound

attributes. A more careful evaluation of the stimulus—response relationship, however,

revealed that this is not so, since the neurons show tuned responses when described using

the conditional—response histogram. Because of the analogous functional properties to

complex cells in the visual cortex, which likewise do not produce STRFs (see

discussion), these neurons are referred to as c-neurons.

3.16 Spectro-Temporal Population Statistics

To evaluate the processing capabilities of the three identified cell types (s—, f-,

and c-neurons), we measured the best ripple density and best modulation rate parameters

for each neuron. The best ripple density and temporal modulation rate are defined by the

\.

251



"hot-spot" in the RTF with strongest magnitude. Since most neurons responded

symmetrically to upward going (negative Fm) and downward going (positive Fm) ripples,

two values of the best parameters were extracted (one for each quadrant of the RTF). For

neurons that did not phase-lock to the spectro-temporal envelope, and consequently did

not produce STRFs and RTFs, these parameters were estimated directly from the

conditional—response histogram for the dynamic ripple.

The three identified cell types differ not only in the described response

characteristics but also in their encoded spectro-temporal parameter range. A scatter plot

of the preferred temporal modulation rate, Fn, and preferred spectral envelope frequency,

(2, (Fig. 22) reveals that time—locked neurons (s—cells and f-cells) appear to trade

temporal for spectral resolution. Cells that responded selectively to fast temporal

modulations (high F.) were generally spectrally broad (low values of (2), while narrow

spectral resolutions (high (2) were seen only in cells that were temporally slow (low F.).

This trade-off was not seen for c—neurons, which displayed a wide range of spectral and

temporal preferences.
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Figure 22: Scatter plot of the preferred ripple frequency and best temporal modulation

rate (A) for the observed neural response types ( , s—neurons, A f-neurons, [] c

neurons). S- and f-neurons showed overlapping best response areas. C-neurons, which

lack the time-locked responses observed for s- and f-neurons, responded preferentially

to sound instances with fast temporal modulation rates, Fn, and/or high ripple

frequencies, (2.

3.17 Discussion

The main goal of this study was to understand how the time-varying spectrum of

complex sounds, such as speech and animal vocalizations, are represented and processed

at the level of the feline auditory midbrain. We describe a number of nonlinear

processing strategies employed for the analysis of the time-varying spectrum, which

have traditionally been described as occurring only in higher-order cortical stations and

only for acoustically specialized animals. Aside from the overall utility of using the

STRF for describing the "linear" stimulus-response relationship of central auditory

neurons, we have demonstrated how a principled approach, grounded on linear (Klein et
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al. 2000) and nonlinear systems theory (chapter 2), can be utilized directly for

identifying complex nonlinearities. Furthermore, we demonstrate the importance of

stimulus design and ecological considerations for identifying such higher-order response

properties.

Unlike most approaches, which try to identify nonlinearities directly by

performing higher-order analysis of the stimulus—response function, we used an A/B

comparison paradigm using structurally complex signals with known statistical

properties. The rational behind this approach was to use complex broadband stimuli to

efficiently activate the auditory neuronal network using know structural components that

are physiologically (Schreiner and Calhoun 1994; Calhoun and Schreiner 1998;

Kowalski, Depireux and Shamma 1996; Klein et al. 2000), psychophysically (Van Veen

and Houtgast 1983 1985), and possibly ecologically relevant. Simpler sounds, such as

spectro-temporal tone pips (de Charms, Blake, and Merzenich 1998; Theunissen et al.

2000), and sum of ripple sounds sound (the ripple noise; Klein et al. 2000), lack many of

the structural components present in natural (e.g. spectral resonances and FM sweeps)

sounds and may not efficiently activate relevant nonlinearities. Thus employing higher

order analysis schemes for such sounds can fail to identify relevant aspects of the

stimulus—response function due to insufficient activation (Theunissen et. al. 2000).

Although natural sounds can be used to overcome some of these limitations (Theunissen

et. al. 2000), they are currently limiting from an analysis perspective since they are in

general difficult quantify due to their parametric complexity.

Using the dynamic ripple and ripple noise stimulus, we show that neurons in the

inferior colliculus can be classified as phase-locking and non phase-locking neurons.

* *
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Phase—locking neurons showed varying degrees of response specificity to the dynamic

ripple and the ripple noise sounds. Accordingly these neurons were subdivided into s—

and f-neurons. S-neurons are characterized by high firing rates and comparable rates

(RSI; Fig. 9) to the moving ripple and ripple noise sounds. Given the similarity of the

STRFs, both in energy (ASI; Fig. 9) and shape (correlation coefficient; Fig. 6) for these

neurons suggests that they behave more or less as expected for a linear system.

Alternately, f-neurons responded most strongly to the dynamic ripple noise and

either showed very weak responses or no responses to the ripple noise sound (ASI; Fig.

9). Despite the general low firing rate (mean spike rate=1.4 spikes/sec dynamic ripple

and 0.2 spikes/sec for the ripple noise), it was surprising that receptive fields for the

dynamic ripple were above chance, extremely precise, and noise free.

In addition to comparing the responses to the dynamic ripple and the ripple noise

stimuli, we devised a secondary measure that allowed us to test for feature selectivity by

quantifying the variability of the neuronal response to these sounds. The feature

selectivity index (FSI) quantifies degree of specificity to a particular sound feature given

the occurrence of a spike. The FSI is derived directly from a covariance—like measure

(the similarity index histogram) of the stimulus preceding neuronal responses. Unlike

other conventional measures of variability, which quantify the variability of the output

spike train (e.g., see Rieke et al. 1997), the described metric measures the variability at

the input. Furthermore, the FSI measure of selectivity does not require any apriori

assumptions about the relevant stimulus or feature, and can be derived directly with the

data set used to derive the STRF.

The population FSI distribution for the dynamic ripple sounds was biomodally

S.
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distributed with means of 0.18 and 0.56. More than half of the reported f-neurons (9/17)

showed high values of FSI (FSI-0.4) whereas only (2/45) of the reported s—neurons had

similar high FSI values. These findings are consistent with the basic hypothesis that

feature selectivity, at least for these instances (9/17 f-neurons), manifests itself directly

in the average firing rate, differential response rate of the STRF, and the disparity of

firing rate between the dynamic ripple and ripple noise sounds. For the described s—

neurons, their low FSI values (43/45 had values less than 0.4; mean value 0.18) is

consistent with their described quasi-linear processing capabilities, since a linear system

can responds to sound patterns that do not precisely match the systems impulse response,

in this case the STRF. This is also evident in the similarity index histograms of Figs. 12

and 13 obtained for f- and s—neurons. F- neurons have SI histograms that are highly

skewed towards +1, indicating that the sound patterns used to construct the STRF were

largely similar on a trial to trial basis. Alternately, s—neurons had SIH that resemble the

random control condition, suggesting that the contributing sound patterns are are not

"identical" to the neuron’s STRF. This finding can also be interpreted as arising from

different ratios of specific versus non-specific spikes for the s— versus f-neurons.

However, this is unlikely given that in all instances s—neurons produced strong,

statistically significant STRFs with differential spikes rates that are comparable in

magnitude to the mean firing rate of the neuron (see Figs. 8 A and B).

If a neuron is highly feature selectivity, it is expected that the overall firing rate

be limited by the number of occurrences of the neuron's preferred sound pattern.

Presumably the more selective the neuron, the fewer the number of patterns that meet the

requirements to invoke a response. Thus, it is not unprecedented that f-neurons
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responded with low firing rates, indicating that few patterns meet the requirements to

invoke a response. Furthermore the disproportionate response specificity to the dynamic

ripple, is explained by the fact that this sounds has correlated structural components that

are not present in the ripple noise and which may ultimately be more relevant for such

Ileu■ OnS.

The motivation for the simple A/B comparison between the dynamic ripple and

ripple noise sounds is grounded on the fact that these two sounds have identical long—

term statistics (see chapter 2; section 2.15 and 2.18). Consequently, a hypothetical linear

neuron would produce identical STRFs and similar response rates for both sounds (see

section 2.4; Eq. 2.5). Although the long-term autocorrelation function is identical for

both sounds, the dynamic ripple has strong local spectro-temporal correlations whereas

the ripple noise is locally weakly correlated (chapter 2; Fig. 8 and 9). Thus, at the time—

scales that are relevant for neuronal integration (in the order of a few to tens of

milliseconds for ICC neurons), the dynamic ripple sound has maximal power

concentrated at a particular set of ripple parameters. The fact that f-neurons are

efficiently activated under these conditions is suggestive of a threshold like nonlinearity.

This is supported by intracellular studies in the visual cortex which show that supra

threshold receptive fields are more precise and spatially localized in comparison to sub

threshold receptive fields (Moore and Nelson 1998; Bringuier et al. 1999).

It is important to note that the described nonlinearities can not be identified

directly with pure tones and other simple narrow-band stimuli. In all of these

experiments, all neurons were initially identified audio-visually with pure tones and

clicks. Despite the selectivity to the dynamic ripple, the described f-neurons also

!) .
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responded to pure tone stimuli. This seems at odds with the described "feature

selectivity" of these neurons. However, one must take into account that the dynamic

ripple and ripple noise sounds represent a distinct operating condition for the auditory

neuronal network (Miller and Schreiner 2000). It is very likely that the observed

response selectivity is an effect induced by the complex broadband excitation pattern of

the dynamic ripple and ripple noise stimuli (in comparison to the focal excitation pattern

of a pure tone). This is supported by studies in the auditory cortex with the dynamic

ripple sound which show an induced modification of the operational and dynamic state of

the auditory neuronal network (Miller et al. 2000; Miller and Schreiner 2000).

In the visual system, the fundamental operations performed by visual cortex

neurons were not revealed until the pivotal discovery of simple and complex cells by

Hubel and Wiesel (1962). Since these results were largely attributed to the fact that

complex stimuli (bars and edges) were used (as opposed to simple spots of light)

it is no wonder why the visual field has taken the notion of using complex visual

stimuli quite seriously. It is likely that similar steps will be necessary for

understanding the functional rules which the auditory system uses for natural

sounds processing. Accordingly, the observed findings have direct implications for

natural sound processing since the broadband excitation patterns of the ripple sounds

likely represents a more realistic scenario of auditory processing — providing joint

activation of excitatory and inhibitory neuronal inputs with a complex spectro-temporal

activation pattern. Further studies and more direct comparisons with pure tone tuning

curves and AM stimuli are necessary to elucidate on these points. Such a study may

likewise be necessary to disambiguate the projection patterns to the ICC from
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subcollicular neurons (Ramachandran, Davis, and May 1999), and to relate the known

neuronal types with the described spectro-temporal processing abilities of these neurons.

Unlike the described populations of phase—locking neurons, a significant number

of neurons showed weak or no phase-locking to the stimulus spectro-temporal envelope.

Despite the general lack of time—locking to the stimulus spectro-temporal envelope, the

described neurons were shown to respond selectively to the stimulus spectral and

temporal parameters.

This represents an interesting functional analogy between the visual and auditory

systems since the described response properties are analogous to those of complex cells

in the primary visual cortex which have even order nonlinearities, do not linearly time—

lock to spatio-temporal visual patterns and, consequently, do not produce linear spatio—

temporal receptive fields (Emerson et al. 1987; Szulborski and Palmer 1990). Whether

the described neuronal responses arise from even-order nonlinearities and similar

projecting patterns of input as for visual complex cells (Alonso and Martinez 1998;

DeAngelis 1999), still needs to be determined. Preliminary analysis (not shown),

however, suggests that these neurons may indeed have interleaved on and off response

subfields (temporally oriented), analogous to visual complex cells in layer II/III

(Szulborski and Palmer 1990; DeAngelis 1999). Because of this analogy, we refer to

these as non phase-locking or c—neurons.

Sinusoidal AM studies in the inferior colliculus indicate that sinusoidal AM

tuning characteristics may be best defined for some neurons by a rate code as opposed to

a synchrony code (Rose and Capranica 1985; Epping and Eggermon 1986; Langner and

Schreiner 1988; Schulze and Langner 1997). The exact function of this basic
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transformation is not clear although it may be necessary because of the limited capacity

of the auditory cortex to follow fast temporal modulations beyond about 50 Hz. This may

in turn be attributed partly to intrinsic properties of the cortical cell membrane

(Eggermont 1999) and functional transformations of the corticothalamic network

(Creutzfeldt, Hellweg, and Schreiner 1980). Consequently, it is possible that these

temporal encoding limitations of the auditory cortex give rise to a spatially distributed

rate code for temporal modulations (Schreiner and Langner 1988). Such a representation

is already partly present at the level of the central nucleus of the inferior colliculus

(Schreiner and Langner 1998; Langner and Schreiner 1998).

A secondary hypothesis for the observed segregation of phase-locked (f-neurons

and s—neurons) and non-phase-locked encoding (c.—neurons), is provided by the fact that

the described c-neurons respond to a distinct range of spectro-temporal parameters (see

Fig. 22) in comparison to the phase-locked neurons. These differences may be necessary

for encoding various ranges of perceptually relevant temporal modulations. For example,

the following rate abilities of the auditory cortex are precisely overlapped with the range

of temporal modulation rates that give rise to the perception of slow temporal rhythms

(Royer and Garner 1966 1970). It has been suggested that AI neurons can encode

information about fast and slow temporal modulations, such as those that give rise to the

percept of pitch and rhythms respectively, using a spatially distributed rate—place code

(Schulze and Langner 1997). Thus, it is possible that auditory cortex neurons encode

slow temporal modulations directly using a temporal code, whereas they simultaneously

encodes fast temporal modulations, using a rate code. Given the encoded ranges for

phase-locked and non-phase-locked c-neurons, it is likewise possible that similar

J. J.
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segregation occurs at the level of the ICC. These neuronal encoding differences may

have direct implications for how various perceptual quantities are encoded.

3.18 Conclusion

This study contributes a general approach that was able to reveal classes of

neurons with linear and nonlinear response characteristics along with the underlying

spectro-temporal acoustic structure that activates these nonlinear responses. The

comparison of neuronal responses to structured and unstructured noise stimuli (with

identical low-order statistics) combined with a parametric characterization of the

neuronal responses allowed us to identify several nonlinear neuronal response classes

which conventional reverse correlation stimuli, such as unstructured noises (spectro

temporal m—sequences and white noise), and STRF mapping techniques alone can not

reveal.

Because of the distinct response properties to structured and unstructured sounds,

these physiologically defined neural classes can, in principle, relay information about

different types of natural sounds to higher auditory areas in codes that are either sparse,

dense, synchronized, and/or desynchronized. The possible stream of information arising

from f-neurons is temporally (low spike rate) sparse and highly synchronized.

Consequently, it is well suited for detecting temporal transitions, biologically relevant

sounds, and for feature segmentation. In contrast, s—neurons can provide a dense and

continuous flow of time—locked activity which is ideal for general processing. C-neurons

can alternately provide a dense and desynchronized rate code for spectral and temporal

stimulus features that are beyond the range of time—locked neural activity at this stage of
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processing. The three distinct coding strategies employed in parallel at this level of

processing in addition to differences in the preferred spectro-temporal stimulus

parameters may be prerequisite for processing higher-order stimulus features and

establishing distributed spatial representations (Schreiner 1998; Rauschecker 1998).

Together, such distinct nonlinear processing modes can offer computational advantage

for acoustic feature decomposition, for signal segregation, and for tasks which are

otherwise intractable with simple linear filtering strategies.

The fact that these functionally distinct neural types occur in a subcortical station

is surprising, in light of the general views of auditory and visual processing where such

higher-order functions are either reserved for, or most prominent in, cortical stations.

The visual system, however, is anatomically different than the auditory pathway and has

no integrative structure analogous to the ICC. The ICC receives convergent projections

from more than 20 neural types in at least 10 ascending brainstem nuclei as well as

descending projections from the auditory cortex (Fay and Popper 1992). Consequently,

the ICC is ideally situated to play a key functional role of neuronal integration and

acoustic transformation as reflected in the identified response types. The notion that the

central auditory system is adapted for processing structural features of natural sounds is

well supported by behaviorally guided studies in the bat and songbird auditory systems

(Suga and Jen 1976; Suga, O’neil, Manabe 1978; Margoliash 1983; Margoliash and

Fortune 1992; Olsen and Suga 1993a 1993b; Dope 1997) although these methods are not

easily transferred to species that lack obvious behavioral specializations. Our findings

demonstrate that a general and systematic analysis of central auditory function in a

purportedly non-specialized mammal is possible, revealing specializations for sound
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Abstract

Human perception is remarkable both for the range of stimulus intensities that we

can perceive sounds and for our ability to detect small intensity difference. Humans, for

example, perceive sounds of absolute intensities which span a range of more than 110

dB. Yet the human ear is extremely sensitive to intensity differences and can detect

changes of as little as 0.5 dB (Miller 1947; Harris 1963; Jesteadt et al. 1977; Florentine

et al. 1987) throughout most of this range of absolute intensities. It is well accepted that

the auditory sense utilizes its large operating range for loudness coding (e.g. Evans and

Palmer 1980; Ehret and Merzenich 1988; Viemeister 1988; Eggermont 1989). Human

psychophysics also indicates that the auditory system can exploit large intensity

fluctuations related to contrast, in time and along the sensory epithelium, thereby

improving intelligibility, discriminability, and detection thresholds of speech (Van Veen

and Houtgast 1983 1985). The neurophysiological correlates of dynamic range, intensity

discrimination, and contrast are poorly understood. Here we demonstrate that, on the

average, natural sounds have logarithmically distributed spectro-temporal amplitude

fluctuations. Single unit neuronal recordings in the cat auditory midbrain demonstrate

that auditory neurons efficiently utilize the spectro-temporal energy distributions

observed in natural sounds. When exposed to dynamic broad-band stimuli with

logarithmic intensity gradations, midbrain neurons show contrast tuning and improved

spectro-temporal coding at time scales comparable to the neurons' receptive field. This

finding suggests that the operating range of auditory neurons is physically matched to the

statistical structure inherent in natural sounds. Such a neural adaptations makes use of

structural regularity of natural sounds and, likely, underlies human perceptual abilities.

} \,
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4.1 Introduction

A central hypothesis of sensory coding asserts that sensory systems efficiently

make use of statistical structure inherent in naturally occurring signals. The possibility

that sensory systems are adapted for encoding natural signals has been a topic of

discussion since the early works of Barlow (Barlow 1953; Barlow 1961). Recent works

have revealed that naturally occurring visual (Ruderman and Bialek 1994; Dong and

Atick 1995; Ruderman 1997) and acoustic signals (Voss and Clarke 1975; Voss and

Clarke 1978; Attias and Schreiner 1998a; Nelken et al.; Escabí 2000 Chapt. 1) show

robust statistical properties such as scale invariant contrast statistics and 1/f power

spectrum. Although numerous works have looked at these statistical characteristics of

natural signals, only a few studies have addressed how such statistics can be used for

efficient sensory coding (Rieke et al. 1995; Dan et al. 1996;Attias and Schreiner 1998b;

Nelken et al.; Stanley et al. 1999). Direct application of information theoretic approaches

has revealed that sensory neurons respond most efficiently to sensory signals with natural

statistics, although the exact mechanisms responsible for these observations have not

been studied in detail. Here we address issues of contrast and intensity coding in the

central auditory system using signals that emulate the statistical characteristics observed

in natural Sounds.

Contrast is a fundamental component of all sensory signals which the brain uses

to encode stimulus information. By definition contrast is the overall range of intensity

gradations which coexist along time and along the sensory epithelium normalized by the

mean stimulus intensity or luminance. In vision, contrast corresponds to the range

spatio-temporal gradations along retinotopic space whereas in audition we can consider
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the spectral–temporal intensity gradations which excite the basilar membrane. In natural

vision and hearing, our senses are exposed to sensory stimuli which span many orders of

magnitude in their mean and instantaneous intensities. Since energy gradations, either

along time or the sensory epithelium, represent much of the information—bearing

components of sensory signals, it is expected that the auditory system utilizes structure

present in natural signals for efficient sound encoding. Despite these general facts,

auditory and visual scientist generally use stimuli with linear amplitude gradations and of

limited dynamic range.

In audition, the ability of the auditory system to encode amplitude differences has

been studied almost exclusively in the context of intensity discrimination and loudness

coding (Palmer and Evans 1979; Evans and Palmer 1980; Ehret and Merzenich 1988;

Viemeister 1988; Eggermont 1989) for pure tones and white noise. Little is know as to

how the spectral, temporal, and intensity dimensions of a complex sounds are jointly

represented by auditory neurons. Auditory neurons, for example, often show a monotonic

input-output relationship where the mean response rate increases linearly as a function of

sound pressure level (SPL) (Palmer and Evans 1979; Evans and Palmer 1980) over a

range of stimulus intensities. Such neurons typically show rate level functions with 30–

60 dB operating range (Palmer and Evans 1979; Evans and Palmer 1980). Neurons at

central auditory stations can additionally show tuned input-output response curves

(Eggermont 1989; Ehret and Merzenich 1988). All of these studies use static stimuli (i.e.

noise and pure tones) which lack many of the relevant acoustic features common to

natural sounds (i.e. spectro-temporal fluctuations). Such studies maintain that input

output curves of auditory neurons largely convey intensity information. According to this
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general model, temporal modulations and spectral gradations are encoded independently

of level.

Using a naturalistic ripple noise stimuli that emulate statistical characteristics of

natural sounds (see chapter 1) along with spectro-temporal reverse correlation methods

we show that inferior colliculus neurons utilize the large dynamic range of natural sounds

for efficient sound encoding. By comparing responses to ripple noise stimuli of different

dynamic range we observe contrast tuning, increased spike rates, and reduced variability

of the spiking output. The auditory system can therefore potentially use contrast

information as a secondary acoustic cue to encode stimulus information. Additionally it

is shown that auditory neurons exploit the dynamic range and the relative spectro

temporal energy distribution observed in natural stimuli to accurately extract spectral and

temporal information at time scales comparable to the neuron's spectro-temporal

receptive field. These findings suggest that neurons in the central auditory system are

matched, by virtue of their operating range, to analyze acoustic stimuli with similar

logarithmically distributed amplitude fluctuations.

4.2 Contrast Statistics of Natural Sounds

Visual contrast is defined as the percent deviation relative to the mean intensity of

a spatial sinusoid grating. Mathematically it is expressed as C=(Imax-Imin) / (Imax+Imin)

where Imax and Imin correspond to the maximum and minimum stimulus intensities

(Albrecht 1995; Nordmann, Freeman, and Casanova 1992; Troy et al. 1998). In the

auditory literature the analogous quantity is the modulation depth or modulation index,

{}=(Amas–Amin) / Ama, where Amax and Amin correspond to the maximum and minimum
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stimulus amplitudes. Such a description suffices for the case of sinusoidal, square wave,

and other simple stimulus gradations since these waveforms are fully specified by their

minimum and maximum intensities. For natural signals, where the amplitude gradations

can cover several orders of magnitude, such descriptions fail to fully characterize

amplitude fluctuations since they only take into account the minimum and maximum

envelope intensities. They do not tell us anything about intermediate values and higher—

order amplitude statistics of the modulation signal. To overcome this we adopt a more

general definition of contrast to denote the probability distribution of the relative

amplitude gradations.

A large ensemble of natural sounds was analyzed which included human speech

(excerpts from Hamlet), music (pop and classical), environmental sounds (wind, rain,

thunder, etc.), animal vocalization (primate, bird, cat, crickets etc.) and mixtures of the

latter two. All sounds were obtained from digitally recorded or remastered media (see

methods). These sounds were taken as representative examples of the vast acoustic

biotope (Smolders et al. 1979) which mammals and humans are typically exposed to. For

comparison, white noise was included in this analysis as a control. For all sounds the

relative spectro-temporal envelopes, S(t,f) and Sun (t,f)=201ogº (S/.(t. f.) ,

were computed and the corresponding envelope contrast distributions, C=p(S) and

Cº-p(Sn) , were estimated for thousands of sound segments (see methods).
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Figure 1: Detrended spectrographic envelope for a short speech segment. A brief speech º
º

segment is shown using a linear amplitude (A) and a decibel amplitude convention (B). O

The linear amplitude spectro-temporal envelope shows little detail and most of the º
º

signal values are concentrated near zero. The decibel spectro-temporal envelope has ~

-

more detail and has amplitude fluctuations that span a large dynamic range of more ºS.///
than 50 dB. <-

L1 E
D

º,
Fig. 1 shows the decibel and linear amplitude spectro-temporal envelopes for a º */

human speech segment. The linear amplitude spectro-temporal envelope (Fig. 1 A) º
º

shows little detail and largely consists of amplitude values near zero (blue). The
º

measured linear modulation depth for this speech segment is exceptionally high (99.9994 Dº,

%), whereas the measure standard deviation, or, is relatively small (0.019 normalized
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amplitude units for an amplitude range that spans 0 to 1). Together these two descriptors

provide a conflicting and misleading description of the envelope fluctuations. The large

modulation index suggests that the sound components for this segment span a large range

of the 0 to 1 linear amplitude dimension, whereas the small standard deviation suggest

that it only covers a small portion of this linear amplitude space. By comparison, the

decibel amplitude spectro-temporal envelope (Fig. 1 B) shows significant more

structure. A close inspection of the logarithmic decibel envelope,

Sº,(t,f)=201ogº (S(t,f)) , reveals that the speech signal has spectral and temporal

amplitude fluctuations that span several orders of magnitude (approximately 50 dB, Fig.

1 B, see colorscale).

To quantify these observations, we computed the linear and decibel contrast

distributions for all sounds by collapsing all pixel values of the linear and decibel

spectro-temporal envelopes, respectively, into a probability histogram. These are shown

collectively for all sound ensembles in Figs. 2 and 3. The linear amplitude distribution

was obtained by normalizing the spectro-temporal envelope so that it has a maximum

value of unity, S,(t,f)=S(t,f)/max (S(t,f)) , therefore obeying the general

convention used to define a modulation signal (Cohen 1995). For all natural sounds the

linearly defined envelope has a skewed amplitude distribution such that loud (near unity)

sound segments are sparse whereas soft segments (near zero) are much more common

(Fig. 2). In contrast, white noise (Fig. 2 F) has a linear amplitude distribution which is

broadly distributed and partially symmetric. Upon performing a logarithmic decibel

transformation of the envelope to construct the decibel contrast distributions,

A. N.
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Cº-p(S, ) , the relative amplitude gradations of natural sounds are roughly

symmetric, have an average standard deviation of 10.9 dB, and span an overall range of

more than 25 dB (Fig. 3) for the natural sounds ensembles. Traditional definitions of

contrast, such as the modulation depth or the envelope standard deviation, fail to

characterize such higher-order statistics associated with the shape and the overall range

of the envelope gradations.

The transformed logarithmic decibel amplitude ( Sas ) magnifies the soft and

moderately loud sound segments relative to the very loud sounds. Thus one can discern

the fine detail in the amplitude distribution over several orders of magnitude. This

descriptor is perceptually motivated since the perception of loudness and intensity

discrimination thresholds are ordered on a decibel space (Miller 1947; Stevens 1957;

Harris 1963; Stevens 1972; Jesteadt, Wier, and Green 1977; Viemeister and Bacon

1988). For all sounds the distribution of logarithmic-contrast is broadly distributed. To

quantify the range of relative amplitudes we measured the average spread of the

distribution, O ºn . With the exception of the background sounds, all natural sounds had

relatively large standard deviation values: 11.0 dB for speech, 13.3 dB for vocalizations,

7.4 dB for background sounds, 11.2 dB for pop-music and 11.8 dB for the classical

music ensemble. By comparison, the white noise control ensemble has a small standard

deviation of only 5.6 dB. The overall range of values as determined by the 95" percentile

range also covered a large extent of the decibel amplitude space: a total range of 53 dB

for speech, 52 dB for vocalizations, 44 dB for background sounds, 46 dB for pop-music

and 54 dB for the classical music ensemble.

T. -

º
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Figure 2: Linear contrast statistics for natural sound ensembles and white noise. The

linear amplitude distribution, p( S) , for speech (A), animal vocalizations (B) (both

primate and nonprimate sources), background sounds (C) (e.g. wind, running water,

etc.), pop-music (D) classical music (E) and white noise (F). All sounds are normalized

so that the spectro-temporal envelope has a maximum amplitude of unity. The linear

amplitude distribution of all natural sounds is skewed such that soft sound segments

(near zero) occur with high probability. By comparison, white noise has a broad

distribution (F).
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Figure 3: Decibel contrast statistics for natural sound ensembles. The decibel amplitude º
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distribution, p(S a) , for speech (A), animal vocalizations (B) (both primate and cº
y

nonprimate sources), background sounds (C) (e.g. wind, running water, etc.), pop- º
*-- ■

music (D) classical music (E) and white noise (F). All natural sound ensembles have | | |}
D.

Gaussian-like decibel distributions. Of these, environmental sounds has the narrowest º
º

distribution indicating that the overall range of spectro-temporal fluctuations are S .

significantly smaller than for speech, vocalizations, and music. By comparison, white º
sº

noise has the narrowest distribution indicative of a narrow range of spectro-temporal > *

- -
º

amplitude fluctuations (F).
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The statistical homogeneity of the shape of contrast distribution across the four

natural sound ensembles suggests that logarithmic amplitude fluctuations are an invariant

acoustic property across natural stimuli (Attias and Schreiner 1998a). Natural sounds are

therefore characterized by exponential-like amplitude distributions and Gaussian-like

log-contrast which extends over average dynamic range of 14–25 dB (i.e. 20, ) and

an overall range of values of roughly 50 dB. This fundamental property of natural sounds

closely resemble natural image statistics which show similar spatial amplitude

fluctuations (Ruderman and Bialek 1994; Dong and Atick 1995; Ruderman 1997).

4.3 Contrast Versus Intensity Response Characteristics

To test the possibility that the central auditory system is adapted for such higher

order amplitude statistics, we designed naturalistic ripple noise stimuli that mimic the

logarithmic amplitude fluctuations observed in natural sounds (15, 30, 45, or 60 dB

dynamic range) and an artificial control stimuli (linearly distributed contrast, modulation

index=0.968) (see methods, Figs. 4 and 5). Both the naturalistic and artificial stimuli

have identical spectro-temporal envelope content and differ only in their amplitude

statistics (see methods). Recordings were performed from n=63 single neurons (su) and

n=40 multi units (mu) in the central nucleus of the inferior colliculus. Fifteen-second

sound segments were presented in a pseudo-random order for the five contrast

conditions and for five RMS sound pressure levels (SPL) over a range of 50 or 75 dB

(step size of 10 or 15 dB respectively). Each 15 sec sound segment was presented four

times for a total of 60 seconds at any intensity–contrast condition. Intensity versus

contrast response curves were derived for each neuron by measuring the mean spike rate
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at all operating conditions (see methods). º
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Figure 4: Artificial (linear) control ripple noise stimulus (A). The ripple noise spectro

temporal envelope has random intensity modulations along time and along the spectral

dimension of the stimulus. A spectral cross-section is show on a linear amplitude

dimension (B) and on a decibel amplitude dimension (D). The linear amplitude

waveform, s(t) , is uniformly distributed (C) and thoroughly covers the linear

amplitude dimension. The corresponding decibel amplitude waveform (D) for this

sound, sº,(t)=201ogº (s(t)) , has a skewed amplitude values (E).
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Figure 5: Naturalistic (logarithmic) ripple noise spectro-temporal envelope (45 dB)

mimics the spectro-temporal envelope fluctuations observed in natural sounds (A). The

naturalistic ripple noise envelope has identical spectro-temporal content as the artificial

ripple noise envelope of Fig. 4. These two sounds differ only in their amplitude

statistics. A spectral cross-section is show on a linear amplitude dimension (B) and on

a decibel amplitude dimension (D). The linear amplitude waveform, s(t) , is skewed

following an exponential distribution (C) which resembles that of natural sounds. The

corresponding decibel amplitude waveform (D), s,(t)=201ogº.(s(t)) , follows an

uniform amplitude distribution (E) which thoroughly covers the decibel amplitude

dimension.
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Intensity–contrast response curves are shown for nine single neurons in Fig. 6. As

is well known from intensity coding experiments all neurons showed monotonic or non

monotonic response characteristics as a function of stimulus intensity (i.e. along the SPL

axis in Fig. 6). Similar dependencies were observed for the contrast axis. Response

characteristics can be increasing—monotonic (Fig. 6 A-C), tuned (Fig. 6 D–F),

decreasing—monotonic (Fig. 6 I) or independent (Fig. 6 G-H) of the stimulus contrast

statistics. Many units showed increasing—monotonic (significance: at least p30.05)

response characteristics (n=37) as a function of the contrast dynamic range. In such cases

the mean spike rate was minimal for the linearly distributed amplitude gradations and

maximal for logarithmic contrast statistic (average=168% and median=78% firing rate

increase). The mean spike rate for the artificial (linear amplitude) and naturalistic

(logarithmic amplitude) contrast of 15 dB dynamic range was similar for all neurons

tested (at least p-0.05). Upon increasing the envelope dynamic range above 15 dB the

mean spike rate increased monotonically for such neurons. Examples are provided in Fig.

6 A-C. A significant increase in firing rate was observed for the three neurons (A:

rº-0.21 spikes/sec and rº-0.95 spikes/sec, p<0.0001; B: rº,+0.0 spikes/sec

and ro-3.4 spikes/sec, p<1 x 10"; C. r1, 0.15 spikes/sec and reo-2.15

spikes/sec, p<2 x 10”).
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Figure 6: Contrast versus intensity response curves shown for nine single units. The

ripple noise stimulus was presented in pseudo-random order at five contrast (Lin, 15,

30, 45, and 60 dB) and five intensity conditions (intensity spacing of 10 or 15 dB) for a

total of twenty-five combinations. The measured spike rate is shown as a function of

the contrast and intensity parameters. The mean spike rate of most neurons displays

monotonically increasing dependency along the contrast axis (A-C). For such neurons

the mean spike rate was typically low for the Lin contrast and increased with increasing

dynamic range for the decibel ripple noise sound. A subset of neurons alternately

showed non-monotonic / tuned contrast dependency (D-F) where the mean spike rate
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was highest for an intermediate value of the contrast parameter (either 30 dB or 45 dB).

The remaining neurons either had a decreasing monotonic response curve (I) or

displayed no statistically significant dependency with contrast (G-H).

A large number of neurons (n=47) showed statistically significant (at least

p30.05) non-monotonic responses to logarithmic amplitude statistics of different

dynamic range. Such neurons are shown in Fig. 6 D–F. Responses were minimal for

linearly distributed contrast and maximal for logarithmic intensity fluctuations with a

dynamic range of 30 or 45 dB. Upon increasing the dynamic range to 60 dB, the

neuron's response is suppressed. On the average, a 34% (multi unit =27%) decrease in

firing rate was observed (single unit median=25%; multi unit median=26%). The

neuron depicted in Fig. 6 D has a significant reduction (91% ; p31 x 10") in firing rate

( ran=9.7 spikes/sec and ro–0.85 spikes/sec). Although the observed non

monotonic relationships were statistically significant, the overall reduction in firing rate

for the 60 dB contrast was in general small. Most neurons had a subtle reductions in

firing rate. The neurons shown in Fig. 6 E and F had a reduction of 49% ( ran=14.7

spikes/sec and ro–7.48 spikes/sec; p-2 x 10") and 16% ( ran=39.0 spikes/sec

and rº-33.8 spikes/sec; p30.001). Only 4 single neurons and 3 multi-units showed a

significant decrease in firing rate to less than half of their maximum response amplitude

(which occurred for either 30 dB or 45 dB). Population histograms for the percent

decrease in firing rate for the 60 dB condition relative to the 30 dB or 45 dB condition is

shown in Fig. 7. An additional seven single neurons showed a decreasing trend in firing

rate as a function of contrast. The firing rate for this subset of neurons was maximal for
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the linearly distributed contrast and minimal for the 60 dB logarithmic contrast

gradations (e.g. Fig. 6 I). The remaining neurons (n=12) did not show a statistically

significant response pattern along the contrast axis (Fig. 6 G-H).

#

0 10 20 30 40 50 60 70 80 90 100

Percent Firing Rate Decrease

Figure 7: Reduction in firing rate for contrast non-monotonic units shown as a percent

decrease relative to the maximum observed firing rate (either 30 dB or 45 dB

condition). Most neurons showed only a subtle but significant reduction in firing rate

for the 60 dB condition (tested for at least p-0.05).

4.4 Independence of Response to Intensity and Contrast Cues

The depicted contrast–intensity response curves of Fig. 6 demonstrate that

stimulus intensity and contrast can, in principle, be encoded by the mean firing rate

characteristics of individual neurons. The well accepted hypothesis that intensity is partly

encoded by the mean firing rate of single neurons (Palmer and Evans 1979; Evans and

Palmer 1980; Eggermont 1989) is consistent with this observation. What is presently not

clear is how spectral and temporal fluctuations (which are themselves a form of intensity

at very fine spectral and temporal scales) associated with the contrast characteristics of
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the ripple sound are jointly encoded with intensity by individual or populations of

neurons. It is possible that neuronal responses to these parameters covary with each

other thus supporting the possibility that contrast and intensity are encoded together. An

alternate and more attractive possibility is that contrast and intensity are processed

independently of each other. To determine which of these two possibilities is most

consistent with the observed intensity–contrast rate functions we considered a procedure

that determines whether the intensity–contrast response curves form separable functions

for these two parameters.

Intensity–contrast response curves were decomposed using a singular value

decomposition procedure (Strang 1988). This procedure decomposes the contrast—

intensity response curve into a weighted sum of functions that are each independent

products of the contrast (C) and intensity (SPL) parameters. Mathematically the response

function can be expressed as

N

R(C, SPL)=XA, u, (C) v,(SPL)
k=1

where R(C, SPL) is the contrast–intensity response curve, A, is the k" singular value,

and u, (C) and v, (SPL) are functions of contrast and intensity respectively. If the

contrast–intensity response curve is strictly a separable function of SPL and C, it is

expected that above sum degenerates into a single term. For this unique scenario, the

response of the neuron is expressed by the first term in the sum

R(C, SPL)=u, (C) v1(SPL) , where A-1 . Note that the overall response for this
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special case is simply a product of independent functions of C and SPL.

Fig. 8 demonstrates the general result observed for all of the studied neurons. A

separable approximation ( R(C, SPL)= u, (C) v, (SPL) ) of the contrast—response curve

was obtained by considering only the first singular value. The separable approximation

and the true contrast–intensity response curves are depicted in Fig. 8 for two single

neurons. In both cases the separable approximation, R (C, SPL) , captures most of the

detail of the true response function R (CSPL) , thus indicating that contrast and

intensity responses are independent functions.

A direct measure of separability, is provided by considering the relative strength

of the first singular value to the other singular values of the singular value

decomposition. Thus we devise a separability index (S)

which consists of the ratio of the first singular value, Ä, , to the weighted sum of all the

singular values (a total of N=5 since the measured contrast–intensity response

function consists of a 5x5 matrix; 5 intensities versus 5 contrast conditions). This

measure quantifies the overall fraction of the contrast–intensity response curve which the

separable approximation, R (C, SPL) , accounts for. Values near zero indicate that the

&
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Figure 8: Separability of the contrast-intensity response function. Contrast-intensity

response curves of a contrast-monotonic(A) and non-monotonic (C) single neurons. cº

Separable approximations, R(CSPL) (B and D), closely approximate the true
-

response curves of A and C. In both cases high separability index values are obtained

(0.88 for B and 0.95 for D). The separable response components for contrast, u,(C) ,

and SPL, v(SPL) , are shown above and to the left respectively of the separable

response curves of panels B and D.

contrast-intensity response curve is a strongly non-separable function of these two

parameters. Alternately, values near unity indicate that the measured response curve is

separable. The examples of Fig. 8 exemplify this point. Both response curves are in -
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closely agreement to their separable approximations and consequently the measured

separability index values are near unity (0.88 for the neuron of A-B and 0.95 for C–D).

In the case of A, the approximation is visually not as good as for B. Accordingly, the

separability index is slightly lower.

Looking at the separability index values of all single and multi units (Fig. 9) it is

clear that the separable approximation accounts for most of the detail of the true

response curve, R(CSPL) of all neurons. The measured separability index of n=63

single units and n=40 multi units was statistically greater than 0.75 (mean value =

0.898-0.006 , t—test p-107"). This finding thus indicates that the shape (i.e.

monotonic, non-monotonic etc.) of the contrast firing rate response of individual single

neurons is independent from their intensity response characteristics.

i —T- T I I i t I T

40H

_ 30H
■ º

3
Ö 20H

10H

0 l I l I I
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Separability Index

Figure 9: Separability statistics of the contrast-intensity response function. Histogram

showing the separability index of n=63 single units and n=40 multi units. All neurons

had very high separability index indicating that the response rate can be expressed as a

separable function of contrast and intensity.
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4.5 Effects of Envelope Statistics on Spectro–Temporal Coding

It is conceivable that the auditory system utilizes contrast information as a

secondary acoustic cue since individual neurons can show tuned rate response curves to

logarithmic contrast fluctuations. Yet for a large number of neurons the mean response

rates were considerably larger for the naturalistic ripple noise (greater than 30 dB

dynamic range) than for the artificial ripple noise (linearly distributed envelope

statistics). This increased response rate for the naturalistic ripple noise sound suggest that

ICC neurons utilize the increased dynamic range and the shape of the contrast

distribution of natural sounds to encode some stimulus aspect. Do individual neurons,

however, utilize the broad dynamic range in natural sounds to faithfully encode fine

spectral and temporal sound components? Can individual neurons more accurately detect

specific acoustic features under such "naturalistic" contrast conditions?

To test this hypothesis we computed the spectro-temporal receptive field (STRF)

at different operating points of the contrast–intensity response curve (see methods).

Ripple noise stimuli were presented at identical RMS intensity and two or more contrast

conditions (Lin versus 30, Lin versus 60, 30 versus 60, or Lin versus 30 versus 60). Fig.

10 shows STRFs and the corresponding contrast–intensity response curves for three

typical neurons. STRF.s were computed at the operating points depicted by the circles on

the contrast—intensity response curve (green=Lin, blue=30 dB, and red=60 dB). For all

conditions, the shape of the STRF is qualitatively similar indicating that the neuron is

responding to identical sound features during all contrast conditions. The neuron's mean

firing rate and STRF amplitude, however, is significantly stronger (tested for p30.01) for

the naturalistic than for the artificial ripple stimulus. Comparing the contrast–intensity

{}_*
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Figure 10: Relationship between the contrast-intensity response curve and the STRF.

The contrast-intensity response curve is shown for three contrast monotonic neurons

(A,D, and H). STRF.s were computed at the contrast-intensity operating points

designated by the colored circles (green=Lin, blue=30dB, and red=60 dB). B and C

show the STRFs for the neuron depicted in A. The mean spike rate increased from 1.56

to 4.0 spikes/sec as the contrast was changed from Lin to 30dB. The amplitude of the

STRF also increased in a similar manner. The STRFs for the neuron of D are shown in

Figs. E-G. As expected from the contrast-intensity response curve, the mean firing rate

increased monotonically as the contrast was increased from Lin to 600B dynamic range.

Likewise the STRF magnitude increases monotonically as the contrast is increased. The

º
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neuron of panel H did not respond during the Lin condition but responded with

increased efficacy to the 30 and 60 dB conditions.

response curves with the STRF, it is noted that the differential strength of the STRF

(units of spikes/sec) is increased at contrast operating points where the mean spike rate is

likewise increased. This observation indicates that the neuron utilizes the increased spike

rate to encode phase-locked activity with respect to the stimulus spectro-temporal

envelope. This response enhancement is typical for the vast majority of neurons.

It appears that changing the contrast operating point of the input stimulus alters

the relative amplitude of the STRF and leaves the shape of the STRF unaffected,

suggesting that the neuron responds to identical sounds components but with increased or

decreased efficacy. To quantify this effect, we ascertained the amplitude and shape

differences of the STRF as a function of the contrast and intensity operating point. We

considered two metrics which independently quantify shape and amplitude differences of

the STRFs. Given the experimental conditions A and B to be tested, we consider the

vectorized RFs which consists of all sample values of STRF, and STRF, which

exceed a significance test ( p <0.002 ) (see methods) for condition A or for condition

B. The vectorized RFs, RF, and RF, , thus consists only of the sample values of

STRF, and STRF, for which either of the STRFs exceeded the significance test. To

quantify the similarity of the STRF.s we consider the correlation coefficient or similarity

index (SI) (DeAngelis et al. 1999; Reich et al. 2000)

(
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si.- (*, *,
.BT* |RF, H|RF,

where RF, and RFs are the significant STRFs for condition A and condition B

respectively, (, , ) corresponds to the vector inner product, and || designates the

vector norm operator. The similarity index quantifies the STRF shape differences or

similarity independently of STRF amplitude. The SI assumes a numerical value

normalized to the range –1 to 1. Values near 1 indicate maximal shape similarity

between STRF, and STRF, , whereas values near 0 indicate that the STRFs have

nothing in common and are thus orthogonal. SI values near –1 indicate that both RFs

have similar spectro-temporal patterns but differ by a sign inversion.

Amplitude differences are characterized by the amplitude similarity index

_|/|RF,\
ASIAA-s: — 1 | x 100%|RF,

where s-sign (|RF,!–|RF,■ ) . The ASI metric assumes values between negative and

positive infinity. A value of zero indicates that ||RFA||=|RF all whereas values > 0

indicate that |RFA|>|RF, . Values <0 alternately indicate that ||RFA||<|RF, .

The magnitude of ASIA, is numerically equivalent to the percent difference between

|RF, and ||RF, where the sign of ASI, indicates an increase in the STRF

T.
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amplitude referenced on condition A (for negative values) or B (for positive values). A

similar metric was also used to characterize the mean response rate differences for two

experimental conditions. We consider the rate similarity index (RSI)

FA
RSI, has-II — | –1 |x 100%

I B

where s–sign (ra-ra) . This metric is numerically identical to the ASI where the

mean rates for conditions A and B are substituted for the STRF norms for those

conditions. The RSI and ASI differ since the RSI measures mean rate changes over the

stimulus duration whereas the ASI measures stimulus driven activity (note that the STRF

is a direct measure of the stimulus phase-locked differential spike rate produced by a

given stimulus pattern relative to the mean spike rate).

The neuron of Fig. 10 E–G has relatively large value of SI for all contrast

conditions ( SIoan=0.97 , SI.0.1,–0.92 , SI,0,1,–0.91 ) indicating that the

neuron responded to identical spectro-temporal sound patterns at any given operating

point. Despite the similarity in spectro-temporal shape, the RSI and ASI coefficients

indicate that the neuron respond with a higher spike rate ( RSI, ,-390% ,

RSI, i,~440% ) and stronger differential response strengths ( ASI al-395% ,

ASIco,-468% ) for the 30 dB and 60GB condition relative to the Lin contrast.

Similar trends are observed for the neurons of Fig. 10 B-C ( SI, E0.86 ,

(2
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ASI or, − 1.16% , RSI or, − 161% ). The neuron of Fig. 10 I-K did not respond to

the linear contrast condition but responded strongly to the 30 dB and 60 dB conditions.

Consequently, this neuron has small SI values ( SI solº-0.21 and SI.01,–0.28 ) and

large ASI ( ASI al-4,558% and ASI.or, 18,120% ) and RSI values (

RSI or,<5,589% and RSI,-22,130% ) .

Similarity index population data is shown in Fig. 11 for n=57 single neurons and

n=75 multi units. Multi unit and single unit data was polled together for the various

contrast conditions (30 versus Lin, 60 versus Lin, and 60 versus 30) since they all

followed similar trends. The vast majority of neurons had high SI values (mean value of

0.77, median value of 0.87) across multiple contrast conditions supporting the initial

observations shown for the neurons of Fig. 10. Thus in all instances neurons responded to

similar spectro-temporal sound features. A small number of neurons (12 single units and

7 multi units) had low SI values (S130.5). These neurons were observed only for the 30

versus Lin or 60 versus Lin conditions. In all instances these neurons had low spike rates

and did not produce a statistically significant STRFs (p<0.002) during the Lin condition

(see the example neuron of Fig. 10 I-K) but produced statistically significant STRFs

(p<0.002) for the 30 or 60 dB conditions.

The RSI and ASI metrics were computed for all single and multi units to compare

the response rate and STRF energy differences for the three contrast conditions. The

initial observation for the single units of Fig. 10 supports the hypothesis that ICC neurons

respond more efficiently to decibel amplitude fluctuations. This hypothesis is further

supported by the population data of Figs. 12–14. Histograms for the ASI and RSI metric

( *
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Figure 11: Population similarity index histogram. Similarity index measurements were

obtained by measuring the STRF correlation coefficient for the 30dB versus Lin, 60dB

versus Lin, and 60dB versus 30dB contrast conditions (n=57 single units and n=75 multi

units). The population histogram is highly skewed towards positive one (mean=0.77,

median=0.87) indicating that the obtained STRFs for the different contrast conditions

have similar spectro-temporal patterns.

were positively skewed and had only a few negative values. On the average, a large

increase in spike rate (geometric mean: RSI,0,1,–98% and RSI, i, 168% ,

RSI, 30–69% ; median: RSI,0,1,–60% and RSI, 1,3-172% , RSI, 30–21%

) and STRF energy (geometric mean: ASI,0,1,–118% and ASI.o.º.-197% ,

ASI.,x=52% ; median: ASI, i, 103% and ASI.,-141% ,

ASI, so-22% ) was observed for the 30 or 60 dB contrast relative to the Linear

contrast condition. Furthermore, both the ASI and RSI are significantly correlated (

p, ºn-0.95+0.05 and pot, -0.95+0.04 , poº-0.99+0.03 ), indicating that

the observed increase in mean firing rate is accompanied directly by an STRF strength
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Figure 12: Population RSI and ASI statistics (n=26 single unit, opened circles; n=27

multi unit, open triangles) comparing 30dB versus Lin conditions. RSI (A) and ASI (D)

population histogram (shown on a semilog plot for positive values only) show a large

percent increase in the mean firing rate (A) and the STRF strength (D) for the 30dB

contrast condition. Firing rate and STRF energy increases of more than 100% were

observed for 29/53 neurons. Scatter plot of RSI and ASI (B) shows a significant

correlation between the observed percent rate increase and percent STRF energy

increase. Shown on a linear plot (B) and a log-log plot for positive values (C). Few

negative values are observed for both RSI and ASI (n=4 single unit and n=6 multi unit)

indicating that the responses for the 30dB were stronger on the average than for the Lin

condition. RSI versus ASI (C) shown for positive values only on a log-log plot.
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Figure 13: Population RSI and ASI statistics (n=19 single units, open circles; n=31

multi units, open triangles) comparing 600B versus Lin conditions. RSI (A) and ASI (D)

population histogram (shown on a semilog plot for positive values only) show a large

percent increase in the mean firing rate (A) and the STRF strength (D) for the 60dB

contrast condition. Firing rate and STRF energy increases of more than 100% (1000%)

were observed for 34/50 (7/50) neurons tested. As for the 30dB condition (Fig. 12), a

scatter plot of RSI versus ASI (B) shows a significant correlation. Shown on a linear

plot (B) and a log-log plot (C). The distribution of RSI and ASI were positively biased

(only 3 negative values observed) for both RSI and ASI indicating that the responses to

the 30dB contrast were stronger on the average than for the Lin condition. RSI versus

ASI (C) shown for positive values only on a log-log plot.
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Figure 14: Population RSI and ASI statistics (n=12 single units, open circles; n=17

multi units, open triangles) comparing 60dB versus 30dB conditions. RSI (A) and ASI

(D) population histogram (shown on a semilog plot for positive values only) show a

moderate percent increase in the mean firing rate (A) and the STRF strength (D) for the

60dB contrast condition. Firing rate or STRF energy increases of more than 100% were

observed for 8/29 neurons tested. As for the 30dB case (Fig. 12), scatter plot of RSI and

ASI (B) shows a significant correlation between the observed rate increase and STRF

energy increase. The distribution of RSI and ASI were positively biased for both RSI

and ASI indicating that the responses to the 60dB contrast were stronger on the average

than for the 30 dB condition. A total of 11 neurons had negative ASI or RSI (n=4 single

and n=7 multi units) all of which had values greater than -100%. RSI versus ASI (C)

shown for positive values on a log-log plot.
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increase. Since the additional spikes for the 60 and 30 dB conditions (compared to the

Lin) must be time—locked to the stimulus in order to produce a difference rate increase in

the STRF, this observation suggests that the additional spikes produced during the

logarithmic ripple noise encode additional spectro-temporal information. Thus,

functionally, the increased firing rate provides additional spikes for which to encode

spectro-temporal stimulus components.

4.6 Spike Timing Precision and Response Reproducibility

The increase in mean firing rate and STRF strength for the decibel contrast

conditions indicate that ICC neurons have additional spikes available to encode spectro

temporal acoustic information. Given that neurons have similar STRFs for the Lin and dB

conditions and the fact that the Lin and dB sounds have identical spectro-temporal

content (since they differ only in their amplitude statistics) further suggests that ICC

neurons encode information about similar acoustic features for all the conditions tested.

Given that the overall spike rate and STRF strength is higher for the decibel contrast it is

expected that the overall information rate of the neuron is higher for this condition (since

the information rate is proportional to the mean firing rate). What is not presently clear,

is whether the increase in firing rate for the decibel stimulus is accompanied by an

increase in spike timing precision and response reproducibility (on a trial to trial basis). If

so, it is expected that individual spikes convey more information about the sensory

Stimulus for the decibel than for the linear contrast. To determine this, we need to asses

the response contribution of individual spikes.

A short sound segment of the ripple noise stimulus (5 seconds) was presented for

()

*
º
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150 trials. Response traces were recorded for each trial and the response reproducibility

was determined by measuring the mutual information (de Ruyter et al. 1997). Each spike

trace was digitized at a sampling resolution of A t-1 msec and the spike train entropy

was determined by measuring the probability distribution, P(W) , of possible 10-bit

words, W. A search through the whole experiment was conducted to determine the word

distribution, P(W) . Using the distribution of 10-bit words the spike train entropy is

determined as

S P(W) log,(P(W) .total T 2.

This measure provides a theoretical upper limit on the amount of information which a

spike train can convey. To determine the noise inherent within the response, the noise

entropy was computed by determining the trial-by-trial reproducibility of the response

(e.g., the entropy in the spike train that does not convey any viable information about the

stimulus). At any given time instant, t, the conditional probability distribution of

obtaining a given 10-bit word was computed, P(W)t) . The noise entropy was then

determined as

5-(-> rtwºrºwo).W

where (), is the conditional ensemble expectation computed over all time. The
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information which the spike train contains about the stimulus (i.e. the mutual

information) is determined by subtracting these two quantities

I = S Stotal T * noise -

The spiking patterns of ICC neurons to the ripple noise stimulus are characterized

by phasic response components as depicted in Fig. 15. The response rasters and peri

stimulus time histograms (PSTH) show a precisely time—locked signature down to

millisecond resolution. Inspection of the response rasters and PSTH for the linear and

decibel contrast immediately reveals systematic changes in firing rate and spiking

precision. For the two examples shown, the increase in firing rate observed for the

decibel contrast relative to the linear contrast (mean firing rates A–C: Ratep, +9.4 ,

Rate,0–10.7 , Rate,0-13.5 spikes/sec; E–F: Rate, - 14.4 , Rateam=17.9

spikes/sec) was accompanied by an increase in peak to trough amplitude of the phasic

response components (Fig. 15 D and G). Furthermore, the responses appear as more

reproducible for the decibel contrast (as reflected in the response rasters: Fig. 15 A–C

and E–F).

To quantify this observation, the mutual information was computed for all

contrast conditions. The systematic increases in the observed reproducibility are reflected

directly in the measured mutual information (A: 3.5+0.1 bits/spike B: 4.63+0.07

bits/spike C. 4.58+0.07 bits/spike; E: 0.594+0.03 bits/spike; F: 0.852+0.02 bits/spike).
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Figure 15: Spiking precision and reproducibility as a function of contrast for two single

neurons. A short (5 second) segment of the Lin, 30 dB, and/or 60 dB ripple noise was

presented. Rastergrams showing 150 response traces to the ripple noise: Lin (A), 30dB ‘…

(B) and 60 dB (C) for neuron 1 and Lin (E) and 30 dB (F) for neuron 2. Each spike is º
shown as a single dot (bin width: 1 msec). Spike timing precision and response Tº y

reproducibility is poor for the Lin (A and E) condition. Responses to the 30 dB and 60 *> º

dB ripple noise are significantly more reproducible than for the Lin contrast. In general > c

two effects are observed: individual rasters become more precise as the contrast is º
changed from Lin to 30 and 60 dB and new responses are observed for the 30 and 60 dB

-

i
ripple noise. The peri-stimulus time histogram (PSTH) depicts the instantaneous rate of o r

the neuron as a function of time (D and G). For the Lin condition (blue) the response

reproducibility is poor. By comparison, both neurons have stronger and more precise *- w

rate fluctuations for the 30 dB (green) and 60 dB (red) conditions. sº
º

Dº.
Thus, on a per-spike basis these neurons contribute more information when driven with

-

the decibel as opposed to the linear contrast ripple noise. Taken together, the added
-
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reproducibility, increase in mean firing rate and the fact that the STRF magnitude is

greater for the decibel contrast suggests that the added information carried by the spike

train is used directly for more efficient spectro-temporal coding.

#

O
–20 –10 0 10 20 30 40 50 -10 10 30 50 70 90 110

Percent Increase (Lin vs. 30) Percent Increase (Lin vs. 60)

Figure 16: Percent increase in mutual information for the 30 (A) and 60dB (B)contrast

conditions relative to the Linear contrast. Histograms showing the percent increase in

mutual information for both conditions. Both histograms are positively skewed. Mutual

information is therefore greater (on the average) for the decibel sounds.

The mutual information per spike was computed for n=7 single neurons and n=14

multi units. To assure that sufficient averaging was performed, estimates of the mutual

information were computed only for neurons with mean spike rates greater than 5

spikes/sec. Histograms for the percent increase in mutual information (Fig. 16 A: Linear

versus 30dB; Fig. 16 B: Liner versus 60 dB) are shown in Fig. 16. Neurons for which

Isola-I, and Izaa-Ila, are designated by a positive percent increase. Both

histogram are positively skewed indicating that the mutual information was on the º
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average greater for the decibel contrast condition. For the 30 dB condition a statistically

significance increase in mutual information 15.2% (t–test, p<0.01) was observed. For the

60 dB contrast the percent increase in mutual information was almost doubled (29.7%; t—

test, p<0.01). On a per-spike basis, neurons therefore carry more stimulus related

information for the decibel contrast conditions.

4.7 Discussion and Conclusion

The presented study demonstrates that auditory midbrain neurons utilize their

large intensity operating range for efficiently encoding spectro-temporal stimuli with

similar dynamic range. Using spectro-temporal reverse correlation procedures along

with an information theoretic analysis it is shown that responses of auditory neurons in

the central nucleus of the inferior colliculus are strongly modulated by higher-order

amplitude statistics of the spectro-temporal waveform. Neurons show increased spike

rates to the decibel modulated ripple noise, stronger STRFs, and higher response

reproducibility. Given that all sensory systems have operating ranges which span several

orders of magnitude and both acoustic and visual stimuli have instantaneous spectral

(spatial) and temporal gradations which are logarithmically distributed and span similar

ranges (see Chapt. 1; Ruderman and Bialek 1994), we propose that the large operating

range of sensory systems is utilized for spectro- (spatio—) temporal coding in addition to

loudness (luminance) coding.

It is possible that the observed response differences between the linear and the

logarithmic contrast conditions arise from trivial low-order stimulus parameter (such as

the modulation depth or the maximum intensity) that covaries as a function of the

Tº
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performed contrast alterations (i.e. changing from linear to logarithmic amplitude

modulations). To guarantee that this is not so, a number pertinent stimulus statistics were

closely examined. Statistics for all conditions are depicted in Table 1.

Lin 15 dB 30 dB 45 dB 60 dB

B 0.965 0.822 0.965 0.995 0.999

O' La 0.280 0.232 0.257 0.244 0.226

o, (dB) 6.7 4.3 8.7 13 17.3

AI (dB) 0 1.6 0.75 1.2 1.9

skewness 0 0.59 1.12 1.57 1.96

Table 1: Low- and high-order statistics of the ripple noise sound shown for the

different contrast conditions (Lin and 15–60 dB): modulation depth ( 8 ), linear

amplitude standard deviation ( or, ), dB-amplitude standard deviation ( 0 , ),

intensity offset ( AI ), and skewness. Low-order statistics (e.g. 8 and or u, )

are similar for all conditions. Higher-order statistics such as the decibel standard

deviation and linear amplitude skewness are largely varied and covary with the

observed neuronal response changes.

Unlike other studies in the visual and auditory system which use linear amplitude

gradations and vary the modulation index (i.e. the linear contrast) over a large range of

values (as low as 0.05 to 1), the presented data was obtained using a relatively high

modulation index for all conditions (0.822 – 0.999). Thus, the peak to trough ratio was

effectively maximal for all contrast conditions. It is, therefore, unlikely that the observed

effects are related to the maximum and minimum amplitude values of the stimulus
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waveform. This possibility is further supported by the fact that the Linear control

stimulus was designed specifically so that its modulation index, 8 , is identically

matched to the 30 dB logarithmic sound ( 8–10 ""-0.968 for both). Despite this

fact, many neurons showed significantly stronger responses for the 30 dB condition. The

observed increase in firing efficacy for the 30 dB over the Lin condition can, therefore,

not be accounted for by the modulation depth parameter of the ripple noise.

Another pertinent parameter that must be considered is the maximum sound

intensities. Upon matching the RMS intensity for the different stimulus conditions the

maximum intensities for each sound were no longer matched. This small but undesirable

effect is a direct consequence of the fact that the spectro-temporal envelope waveforms

had varying degrees of skewness for the different conditions. Given this small intensity

disparity for the different conditions, it is theoretically possible that the observed results

arise from the neurons’ rate-level dependencies. For example, upon matching the RMS

sound pressure level (SPL) for the Lin and 30 dB (60 dB) contrast the maximum

spectro-temporal amplitude of the 30 dB (60 dB) ripple noise is 0.76 dB (1.8 dB) above

the Lin contrast ripple noise. It is possible that this small intensity increment could

modify the neuron’s overall firing rate. Judging from the small values AI and previous

data on intensity dependency of auditory neurons (Palmer and Evans 1979; Evans and

Palmer 1980; Ehret and Merzenich 1988; Viemeister 1988; Eggermont 1989), however,

it is unlikely that the large response disparity between the Lin, 30 dB, and 60 dB contrast

be accounted for by this small intensity increment.

Likewise low-order statistics of the stimulus amplitude (e.g. the standard

deviation) which are most often used to quantify linear contrast, both in the visual and
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auditory literature, are unlikely to account for the observed disparity in the response to

the naturalistic (30dB) and artificial (Lin) contrast. The linear amplitude envelope

standard deviations ( 0 tº E0.280 , 0.0=0.257 ) and the decibel amplitude standard

deviations ( or, F6.70 dB and 0.0=8.65 ), for example, are similar for these two

sounds. These low-order descriptors differ only by -8.2% when computed in the linear

amplitude dimension and 29.9% (30 dB relative to the Lin) for the decibel amplitude

dimension respectively and therefore do not account for the large disparity in response

strengths observed between the artificial (Lin) and the 30 dB naturalistic stimuli

(average rate increase of 98%, geometric mean).

Two candidate stimulus parameters can account for many of the observed

response differences, both of which are related to shape of the amplitude distribution for

these sounds. As observed from Figs. 4 and 5, the contrast distribution for the artificial

and naturalistic ripple noise differ depending on weather the distribution is computed in

the linear or the decibel amplitude dimensions. As for natural sounds (Figs. 1 A and 2),

the linear amplitude distribution of the naturalistic ripple noise has skewed values about

zero. As the dynamic range of the naturalistic ripple noise sounds is increased from 15

dB to 60 dB, the measured skewness increases accordingly from 0.59 to 1.96. By

comparison, the artificial ripple noise stimulus is perfectly symmetric with a skewness

value of zero. Given the response efficacy increased on the average with increasing

decibel dynamic range it is likely that the observed differences can be accounted by the

skewness of the ripple noise stimulus. A first order descriptor which also accounts for

observed response differences is the decibel standard deviation ( 0 as ) of the sound.

tº
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Note that the skewness and O is covary and consequently either can account for many

of the observed response differences.

Studies of pure tone transients and onsets in the primary auditory cortex have

demonstrated that first spike latency and response amplitude are strongly affected by the

peak acceleration and peak velocity of the transient window function used (Heil 1997a

1997b). In particular, the time to first spike latency is inversely proportional to the peak

acceleration (or velocity, depending on the type of transient window) of the sound

pressure envelope. Furthermore, the standard deviation of the first-spike latency

decreased with increasing peak acceleration (down to a few milliseconds) of the sounds

envelope suggesting that the responses to more transient windows produced more precise

and reproducible responses (Heil 1997a). Since comparable results are observed as early

as the auditory—nerve it has been suggested that this general mechanism holds throughout

the auditory pathway (Heil and Irvine 1997).

The fact that these results are not invariant to the type of window (Heil 1997a

1997b) indicates that additional higher-order statistics of the sound pressure envelope

need to be considered in order to fully describe the response characteristics for different

window functions. One possibility is that the decibel amplitude dimension accounts for

all or most of the necessary higher-order stimulus characteristics which give rise to the

observed results. Note that as for the reported results on spike timing and response

strength as a function of peak pressure velocity and peak pressure acceleration (Heil

1997a 1997b) our findings with the ripple noise sound have similar implications for

sound processing. By increasing the overall dynamic range (units of dB) of the ripple

noise stimulus one effectively alters the skewness of the ripple noise envelope (and vise
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versa). Since the skewness of the envelope is directly related to the acceleration and

velocity of the sounds spectro-temporal envelope (see Fig. 5) the observed findings are

consistent with those of Heil (1997a and 997b). Note that as the dynamic range of the

ripple noise envelope is increased, individual transients of the linear amplitude waveform

become sharper and more pronounced. Thus the rate of change and acceleration of the

envelope increase accordingly with increasing dynamic range. The fact that mean spike

rates in general tend to increases with the overall dynamic range and spike timing

reproducibility increases with the above parameters is consistent previously reported

findings.

Our findings largely differ from those of Heil (1997a and 1997b) since we now

introduce the spectral dimension and since we ultimately consider a significantly more

dynamic scenario. Thus, in addition to temporal onsets, we additionally consider

temporal offsets, and spectral resonances that are produced by the ripple noise. The

ripple noise represents an unique sound processing scenario where the mean intensity is

held constant but yet spectral and temporal fluctuations coexist along the sensory

epithelium. Consequently it can be thought of as a borage of spectral and temporal

features that are superimposed on a mean level of noise. This is of interest since natural

sounds are ubiquitously composed of both spectral and temporal sound components

(which may or may not be independent) that ultimately produce a complex excitation

patterns on the primary sensory epithelium in the cochlea. The spectrographic sound

pattern, thus, highlights many of the prominent acoustic features that are relevant to the

auditory neuronal network. Furthermore, natural signals generally do not occur in

isolation and are often superimposed on a background of noise. Given the earlier findings
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on natural sounds statistics, our findings have direct implication for spectro-temporal

processing of natural sounds by the brain since these have spectro-temporal envelopes

with decibel distributed amplitude fluctuations. These findings and the subsequent

mechanisms provide evidence that the dynamic range and skewness of natural sound

envelopes are a critical cue for spectro-temporal sound processing.

The hypothesis that the human ear is adapted to encode signals with large

dynamic range is supported by human speech studies. Analysis of the spectral envelope

have shown the peak to valley ratios in human speech (vowel formants) can extend over

more than 20 dB (Plomp 1983). Resonances associated with vowel formants provide a

critical cue for the perception of vowel sounds. Given the large amount of across subject

variability inherent in natural speech, human perception must be robust to envelope

alterations under many operating conditions. Production of same vowels by different

speakers, for examples, shows a large amount of inter—subject variability with an average

intensity standard deviation near 16 dB (Klein, Plomp, and Pols, 1970). Additional

sources of envelope noise (roughly 5 dB) are introduced by the reverberant

characteristics associated with environmental and room acoustics (Schroeder 1954). Yet

psychoacoustic studies indicate that perception of vowel sounds is robust to such

alterations (Van Veen and Houtgast 1983 1985; Ghitza and Goldstein 1983). The just

noticeable peak to valley ratio of a vowel's envelope is exceptionally large (roughly 10

dB, Flanagan, 1970, 1972; Ghitza and Goldstein 1983) in comparison the JND sound

intensity for broadband sounds (about 0.5 dB). Such contrast related cues likely play a

critical role in speech perception since increasing the decibel contrast alters the perceived

Sound in such a manner that it improve inter-category discrimination of vowels sounds

dº
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(Van Veen and Houtgast 1983 1985).

A critical question instantly raised by the presented findings is weather the

nervous system processes linear amplitude or decibel amplitude gradations. In essence

this gets at the question of: "what is the fundamental variable for defining sensory

signals?" Should one use linear spectro-temporal amplitude variable, s(t,f) , or the

corresponding decibel amplitude variable, sup(t,f)=201oglo■ s (t,f)) . Historically

temporal modulation signals (both in auditory and visual modalities) have been defined

on a linear amplitude dimension largely because of convenience and because these go

along with the mathematical conventions devised for communications engineering

(which came about during the advent of telephony). In general there is no a priori reason

for using either linear or decibel amplitude fluctuations as the pertinent stimulus

parameter. Thus, the choice of assigning the linear amplitude variable as the relevant

stimulus variable has been for the most part arbitrary. Only through proper examination

can one determine which of these dimensions is most suitable for defining and

quantifying the response characteristics of a sensory system.

Studies on loudness coding and intensity discrimination support the notion that

decibel amplitude is the relevant stimulus variable. Human perception of loudness

follows linear relationship with sound pressure level (measured in dB) over most of the

hearing range (Stevens 1957 1972) (except at low intensities near the threshold of

hearing). Furthermore, intensity discrimination thresholds, AI , are constant (about 0.5

dB) throughout most of the hearing range following the well know Weber's law (Miller

1947; Harris 1963; Jesteadt et al. 1977; Florentine et al. 1987). Similar findings also hold

for visual and somatosensory modalities. The fact that response level curves of neuronal

º,
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data also follow a simple monotonically increasing function of decibel intensity further

supports the idea that decibel quantities are most suitable for describing physiologic data

(Palmer and Evans 1979; Evans and Palmer 1980; Ehret and Merzenich 1988; Viemeister

1988; Eggermont 1989). Furthermore, since the spectro-temporal envelope is simply an

extension of the intensity variable which extends over time and along the sensory

epithelium at fine scales, it is not unprecedented the auditory system process fine

spectro-temporal information in a similar manner as it would for intensity. The finding

that the spectro-temporal fluctuations of natural sounds extend over a comparable range

of differential intensities as the operating range of single auditory neurons (in the order

of 30–60 dB; Evans and Palmer 1980; Viemeister 1988) suggest that the operating range

of auditory neurons is physically matched to the dynamic range of natural sounds. Aside

from the well accepted doctrine that sensory systems utilize their large operating range

directly for level coding, our findings further suggest that the large operating range of the

auditory system is utilized for efficiently processing spectro-temporal information in

acoustic stimuli with a comparable dynamic range.

4.8 Methods

Animal Preparation

Cats were initially anesthetized with a mixture of Ketamine HCL (10 mg/kg) and

acepromazine (0.28 mg/kg) which was injected intramuscularly. For the surgical

procedure an intravenous infusion line was inserted. A surgical state of anesthesia was

induced with ~30 mg/kg Nembutol and maintained throughout with supplements. Body

temperature was measured with a rectal probe and maintained with a heating pad at ~

A ºf
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37.5°C. An incision was made in the intercartilaginous area of the trachea and a

tracheotomy tube was inserted. After performing a craniotomy, the inferior colliculus

was exposed by removing the overlying cerebrum and part of the bony tentorium using a

dorsal approach. Upon completion of the surgery, the animal was maintained in an

areflexive state of anesthesia via continuous infusion of Ketamine (1–2 mg·kg'.h' )

and Diazepam (1–2 mg·kg':h' ) in lactated ringer solution (1–2 ml-kg':h' ).

The state of the animal was monitored (heart rate, breathing rate, temperature, and

periodically checked reflexes) throughout the experiment and the infusion rate was

adjusted according to these physiologic criteria. Every 12 hours the cat received an

injection of dexamethasone (0.14 mg/kg s.c.) to prevent brain edema and atropine to

reduce salivation (1 mg i.m.). All surgical methods and experimental procedures were

approved by the committee on animal research, UCSF.

Neuronal Recording

Data was obtained from single and multi units in the central nucleus of the

inferior colliculus (ICC) of four cats. One or two closely spaced parylen coated tungsten

microelectrodes (1–3 MW at 1kHz) were advanced with a hydraulic microdrive (Kopf).

Electrode penetration trajectories were at ~ 45° relative to the sagittal plane and

approximately orthogonal to the isofrequency band lamina. Action potential traces were

recorded onto a digital audio tape (Cygnus CDAT16) at a sampling rate of 24.0 kHz

(41.7 msec resolution) for off line analysis. Off line analysis consisted of digital

bandpass filtering (0.3–10 kHz) all spike trains and individually spike sorting the action

potential traces using a Bayesian spike sorting algorithm (Lewicki 1994).

() ). A
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Natural Sound Analysis

A large collection of environmental sounds, human speech, animal vocalizations º º-
&

were obtained from various sources of digitally recorder or remastered media. All sounds s —

were sampled at a sampling rate of 44.1kHz and analyzed over the frequency range of

100 Hz—15 kHz. To characterize spectro-temporal stimulus features we use a detrended

spectrographic representation of the stimulus (see chapter 1). We additionally considered

a physiologically motivated spectro-temporal stimulus representation which produced

qualitatively similar results but is not discussed here (see chapter 1). For all sounds
->

sequences, x|[n] , we evaluated the discrete time short-time Fourier transform (Cohen A. M.
cº

1995; Oppenheim and Schafer 1989)
a

* º,
w

º
N

- º
– I to m

X[n, w,)= X x(n+m]w[m]e " )m = – N ( .

º
Cº

using a B-spline window function (Roark and Escab■ ), w[m] . The variables n **
*

- ), ■ º
designates the discrete time axis and we designates the discrete time frequency *-

L! :

variable. The spectrogram was obtained as the magnitude º,
*2,.
º,

~
} -

S[n, w,)= WX[n, w, XIn, w,) s’
S

A. Y.

+ º,
of the short-time Fourier transform. Here X|n, wa■ designates the complex conjugate

-

of the short-time Fourier transform. º
Tº

º
319 (, :



A frequency dependent detrending procedure was applied to the data in order to

remove 1/f energy dependencies observed in natural sounds (see Chapt. 1). The

detrended spectrogram, S[n, w,) , is obtained by applying a pre-emphasis filter

(Picone 1997) which magnifies the high frequency components of the signal. This is

accomplished by considering a detrending function S[w,] which is used to divide out

the spectrogram

where the quantity AS|[n, wil=S(n, wel–Sw,] is the difference spectrogram about

the detrending function. The detrending function is obtained by applying a linear fit (in

mean square sense) of general form Aw, H B to the stimulus mean decibel power

spectrum, 201ogº,(EIS■ n, will) (expectation taken with respect to n). On a linear

amplitude dimension the detrending function is expressed as

(Aw, B)/20S[w,]= 10

Combining terms decibel spectro-temporal envelope is conveniently expressed as

Sº■ n, w,)=201oglo■ s [n, w,)-Aw,- B .
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Although linear trends are subtracted from the stimulus decibel spectrogram using this

procedure, the detrended stimulus is not white since only a 1" order linear fit was applied

to estimate the detrending function. In general strong spectral oscillations are still

present. An example is shown in Fig. 1. This descriptor is useful since the perception of

intensity differences is ordered on a logarithmic space (Miller 1947; Harris 1963;

Jesteadt et al. 1977) and since temporal fluctuations of natural sounds are likewise

logarithmically distributed (Attias and Schreiner 1998a).

The outlined detrending procedure is applied for several reasons. First note that

natural sounds generally have very little energy at high frequencies. On a logarithmic

(decibel) plot the power spectrum is usually strongly biased at low frequencies despite

the fact that relevant stimulus components are also present at high frequencies. This

procedure therefore removes spectral trends which are characteristic of natural sounds.

Note that the auditory system effectively performs a similar detrending operation, since

frequency tuning and integration bandwidths in the sensory epithelium of the cochlea are

logarithmically spaced (Kiang et al. 1965; Evans 1972;). Because of this, similar

detrending procedures are often employed for speech modeling and in speech recognition

systems (Picone 1997). Unlike the spectrogram which depicts absolute energy variations

of the stimulus, the defined spectro-temporal envelope depicts relative energy variations

along time and frequency. This is not an unreasonable descriptor since it is arguable that

relative quantities are far more important for the auditory processing than absolute

quantities (for example Weber's law). Note that similar reasoning is also applied to

visual processing since visual contrast is likewise defined as a relative quantity (
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C=(1,1,–1,0)/(IM. Hull) ).

Acoustic Stimulus

Ripple noise stimuli were designed which are compatible with reverse correlation

procedure (see chapter 2). This stimulus has "white noise" like spectro-temporal

properties where the range of spectro-temporal envelope fluctuations has been

significantly reduced. This reduction in the spectro-temporal content of the stimulus is

performed since central auditory neurons in the ICC only respond to a restricted range of

spectro-temporal modulations. The ripple noise stimuli is therefore spectro-temporally

bandlimited and has a flat spectro-temporal power distribution. The spectro-temporal

autocorrelation function has impulse like properties up to the limits set by the envelopes

modulation rate, F, , and ripple frequency, Q , stimulus parameters. The ripple

frequency parameter, (2 , designates the number of resonances per octave along the

spectral axis of the stimulus. Likewise, the temporal modulation rate, F, , designates

the number of modulation onsets and/or offsets per unit time along the temporal axis of

the stimulus. These parameters where set to a maximum modulation rate, FM, H350

Hz and a maximal ripple frequency (2M, H4 cycles/octave since these values

encompass roughly 95% of the neurons in the ICC (Rees and Møller 1983; Møller and

Rees 1986; Schreiner and Langner 1988).

A generic spectro-temporal envelope, S,(1,X) , was used to construct the

sampled acoustic waveforms. Using this generic envelope we constructed five sounds

that differ only in their envelope's contrast statistics. Here t designates the discrete time
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variable (sampling rate of 44.1 kHz) and X, −log, (f/500) designates a sampled

octave frequency axis relative to 500 Hz lower limit for our sounds. The spacing, AX ,

between adjacent carrier components corresponded to 0.0231 octaves. Sounds are

constructed using the spectro-temporal representation of chapter 2 (Eq. 2.15).

We consider five acoustic pressure waveforms each with distinct contrast

distributions: s,(t) , sis(t) , s, (t) , six(t) , and so(t) . The subscripts denote

the type of contrast statistic. Lin designates an acoustic waveform constructed using a

spectro-temporal envelope with linearly distributed amplitude statistics whereas

numerical values designate the dynamic range for sounds constructed from a spectro

temporal envelope with decibel distributed contrast statistics. The later sound therefore

have contrast statistics that resemble those of natural sounds. Since sounds where

constructed using an identical generic envelope ( S ,(1,X 1) ) by applying a nonlinear

transformation, all sounds sequences therefore have identical spectro-temporal content

and differ only in their contrast (amplitude) statistics.

The generic ripple noise envelope has uniformly distributed amplitude statistics in

the interval 0 to 1. Decibel distributed sounds where constructed by applying the

transformation

M.S.,(t,x,)–M
—4–4–

S,(1,X)=10 ”

where M designates the modulation depth or, equivalently, the dynamic range of the
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envelope in units of dB (M assumes values of 15, 30, 45, or 60 dB). Here S,(t,x,)

corresponds to the linear amplitude spectro-temporal envelope. Note that the decibel

envelope for this sound, 2010g,00S,(t,x,))=MS,(t,x,)—M , has uniformly

distributed contrast statistics in the interval [-M, 0] (see Fig. 5).

A control linearly distributed Sound (Lin) was also designed since most sounds

used in neurophysiologic experiments have linearly distributed contrast statistics. The

linearly distributed spectro-temporal envelope for this sounds is designated as (see Fig.

4)

SL(t ,X)=8:S,(t. X.)+(1–3)

10T 30/20where the modulation index of 8–1– =0.968 was chosen so that the linearly

distributed sound, S L.( , X J , has an identical modulation index as for the 30 dB

decibel distributed sound, San■ t, X) (i.e. the maximum and minimum amplitude values

are identical). These sounds are thus matched at their extremities and only differ in the

shape of the contrast distribution. The linear distributed control stimulus has an uniform

amplitude distribution on a linear amplitude dimension (skewed distribution on a decibel

dimension) whereas the decibel distributed sounds follow an uniform amplitude

distribution on a decibel amplitude dimension and thus have skewed amplitude

distribution similar to that of natural sounds (Fig. 2) when displayed on a linear

amplitude axis.

Although the amplitude distributions for the linearly distributed and the 30 dB
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decibel distributed sounds are vastly different (Fig. 3 and 4), their low-order statistics

(which are most often used for quantifying contrast) are very similar. The linear

distributed sound has a standard deviation of 0, 6.71 when computed on a decibel

axis and 0,-B/W(12)=0.28 when measured using a linear amplitude axis. The 30dB

distributed sounds alternately has standard deviations of on-8.66 dB and

O tº 0.23 when computed in the corresponding amplitude dimension.

As can be seen from Figs. 3 and 4, the amplitude distributions for these two

envelopes differ largely in the skewness of the distribution. When plotted on a decibel

axis the decibel distributed sound has a symmetric contrast distribution (Fig. 4 E).

Likewise the contrast distribution for the linearly distributed sound is also symmetric

when it is plotted on a linear amplitude axis (Fig. 3 C). However, when the contrast

distributions for these envelopes are constructed in the sound's converse amplitude

dimension (e.g. decibel amplitude axis for the Lin sound and vice versa) the contrast

distributions are highly skewed (Fig. 3 E and 4 C).

Stimulus Presentation

Stimuli were presented binaurally with an independent ripple noise sound

sequence for each ear. This allowed us to compute independent STRFs for the

contralateral and ipsilateral ears. Single neurons and/or clusters of neurons where isolated

audio-visually by presenting pure tones and/or white noise. After single/multi units were

isolated, a pseudo-random sequence of 15 second ripple noise segments was presented at

five intensities and five contrast (Lin, 15, 30, 45, or 60 dB). Upon inspection of the
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derived contrast versus intensity response curve, an 18 minute segment of the ripple

noise stimulus was then presented at key "hot spots" in the contrast intensity response

curve: Lin and 30dB conditions, Lin and 60 dB conditions, or for the Lin, 30, and 60 dB

conditions. In all instances sounds were presented at 30–70 dB above the neurons

response threshold to pure tone. For ~66% of the recording sites, a five–second segment

(repeated 140 times) of the dynamic ripple and ripple noise were also played at the end

of the recording sessions. All experiments were conducted in an acoustically sealed

sound chamber (IAC).

Contrast Intensity Response Function

The contrast–intensity response function was estimated by presenting fifteen

second ripple stimulus segments binaurally. The spectro-temporal content for all

segments was identical. Sounds only differ in their contrast statistics. Each sound was

presented in pseudo-random order at at 5 contrast (Lin, 15, 30, 45, and 60 dB) and 5

intensity conditions (25 combinations). Each fifteen second segment was presented four

times for a total time of 1 min at each intensity–contrast operating point. The mean firing

rate was measured for each condition and the contrast–intensity response function,

R(C,SPL), was approximated by a 5 by 5 matrix of mean firing rates. For visualization

purposes, the contrast–intensity response matrices were interpolated using the interp2

function (cubic interpolation) in MATLAB (@ Mathworks Inc.). To determine

significant differences in firing rate for the different contrast conditions, the mean firing

rate of the tested neurons was modeled by Poisson spiking process with counting

distributions
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where \ is the measured firing rate taken over a total period of T-60 sec. The

significance probability was determined numerically by finding the tail probabilities of

the overlapping distributions (Zar 1999). A similar procedure was also performed using a

bootstrap estimate of the firing rate distributions.

;
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