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Abstract

In this work, we propose a neural network model for free recall
that draws direct parallels between neural machine translation
(NMT) and cognitive models of memory search, specifically
the Context Maintenance and Retrieval (CMR) model. We hy-
pothesize that NMT advancements such as attention mecha-
nisms (Luong et al., 2015) closely resemble how humans re-
activate prior contexts (“mental time travel”; Tulving, 1985).
To demonstrate these parallels, we train a seq2seq model with
attention as a cognitive model of memory search, and eval-
uate behavior against available human free recall data. We
find that at intermediate levels of training, the model can cap-
ture several phenomena observed in human free recall experi-
ments (Kahana et al., 2022); and after optimization, the model
demonstrates the same optimal behavior as previously derived
by the CMR model (Zhang, Griffiths, & Norman, 2023). Per-
forming an ablation study, we demonstrate that behavioral dif-
ferences between models with and without attention align with
impaired behavior observed in hippocampal amnesia patients
(Palombo, Di Lascio, Howard, & Verfaellie, 2019).

Introduction
Humans and artificial agents frequently encounter similar
computational problems (Griffiths, Steyvers, & Firl, 2007),
which has often led to a synergy between machine learn-
ing and cognitive science research in the past (Griffiths et
al., 2007; Callaway, Griffiths, Norman, & Zhang, 2023;
Lampinen, Chan, Banino, & Hill, 2021; Van de Ven, Siegel-
mann, & Tolias, 2020). Over the past decade, neural machine
translation (NMT) has revolutionized the field of automated
translation by leveraging deep learning techniques to trans-
late text from one language to another (Luong et al., 2015;
Bahdanau, Cho, & Bengio, 2014; Cho, Van Merriënboer, et
al., 2014). In this work, we demonstrate that neural net-
work models for machine translation and a cognitive model
of human memory search share strikingly similar architec-
tural components, despite being developed in separate com-
munities and with distinct applications.

First, we draw a parallel between the sequence-to-sequence
(seq2seq) model and the Context Updating mechanism crit-
ical to context-based models in human memory. It has
been long recognized that context plays an important role in
supporting episodic memory recall in humans (Estes, 1955;
Bower, 1967). The Context Maintenance and Retrieval model
(CMR; Polyn, Norman, & Kahana, 2009; Lohnas, Polyn, &
Kahana, 2015), a successor of the Temporal Context Model
(Howard & Kahana, 2002a), posits that context gradually

evolves over time and binds with to-be-remembered items.
During testing, the initial recall context is equivalent to the
final context state during encoding, which serves as a cue to
drive further recalls (Howard & Kahana, 2002b; Polyn et al.,
2009; Lohnas et al., 2015). These models have been sup-
ported by a range of behavioral findings in human episodic
memory, particularly in free recall tasks, where participants
are asked to recall items in any order from a list just stud-
ied (Murdock, 1962). We propose that the context updat-
ing mechanism in CMR closely resembles the encoding and
decoding process found in the classic sequence-to-sequence
(seq2seq) models (Sutskever, Vinyals, & Le, 2014; Cho,
Van Merriënboer, et al., 2014), such as Long Short-Term
Memory (LSTM; Hochreiter & Schmidhuber, 1997) units and
Gated Recurrent Units (GRUs; Cho, van Merriënboer, Bah-
danau, & Bengio, 2014). By maintaining and updating a la-
tent hidden state, the input encoding process in seq2seq mod-
els is analogous to how context in human memory evolves
and is updated over time, whereas the decoding process is
similar to how shifting context in humans drives further re-
call.

Next, we establish the similarity between the attention
mechanism in NMT and the Context Reinstatement mecha-
nism (or “jump back in time”) in CMR. Long-range tempo-
ral dependencies have been a significant obstacle for classic
seq2seq models. With regard to translation, long-range de-
pendencies from an input sentence must be encoded entirely
into a fixed-length vector (hidden state) before it is passed
to the decoder. The introduction of attention mechanisms
(Bahdanau et al., 2014; Luong et al., 2015), allows the model
to focus on different parts of the input sequence while gener-
ating each word in the output, giving the decoder direct access
to previous encoder states during the decoding process. We
argue that the attention mechanism closely resembles the con-
text reinstatement mechanism in CMR, as recently recalled
items create current contexts that partially reactivate previous
contexts in which the item was originally studied. As one
might have exhausted items associated with the current con-
text, this additional mechanism of context reinstatement helps
one “jump back in time” toward the original study contexts
(similar to Tulving’s notion of mental time travel; Tulving,
1985), and serves as a retrieval cue for the recall of remaining
items. The method by which CMR reactivates previous con-
text states is analogous to how an attention mechanism can
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reactivate previous encoding hidden states.
To demonstrate that the parallels between seq2seq models

and CMR go beyond the conceptual level, we implement a
basic seq2seq model (the cornerstone of NMT) with an at-
tention mechanism (Luong et al., 2015) as a cognitive model
of human memory search. To do this, we train our model
in a reinforcement learning framework to complete a typ-
ical human free recall task involving recalling words from
a presented list. We show that the fully optimized seq2seq
model with attention converges to the same behavioral pat-
terns as optimal free recall, previously derived under a ratio-
nal analysis of the Context Maintenance and Retrieval model
(rational-CMR; Zhang et al., 2023). Furthermore, model
evaluations conducted intermittently throughout the model’s
training exhibit similar recall characteristics as human pa-
tients, in terms of the primacy, recency, and temporal con-
tiguity effects (Murdock, 1962; Kahana, 1996; Howard &
Kahana, 1999).

In addition to demonstrating that our seq2seq model can
serve as a cognitive model of human memory search, we pro-
vide additional novel modeling analysis to understand mem-
ory deficiencies in hippocampal amnesia. Medial tempo-
ral lobe (MTL) lesions have been previously associated with
the inability to reinstate prior experienced contexts (Reed &
Squire, 1998; Palombo et al., 2019; Howard, Fotedar, Datey,
& Hasselmo, 2005; Scoville & Milner, 1957). If the attention
mechanism in our seq2seq model is analogous to the context
reinstatement mechanism in CMR, an ablation of the atten-
tion mechanism should capture similar recall characteristics
as hippocampal amnesic patients compared with healthy con-
trols. To foreshadow our results, our ablation study, consist-
ing of the model without the attention mechanism, reveals a
similar impairment as that of amnesiac patients.

In the following sections of the paper, we give an overview
of the CMR model and draw parallels with the NMT mech-
anisms found in the seq2seq model. We describe the overall
structure of our seq2seq model and our free recall training
procedure. Finally, we detail evaluation results across a range
of model configurations, demonstrating alignment in behav-
ior characteristics between our model and human subjects.

Context Maintenance and Retrieval Model (CMR)
Context plays an important role in the encoding and re-
trieval of information (Estes, 1955; Bower, 1967; Anderson
& Bower, 1972). Computational models such as TCM and
CMR (Howard & Kahana, 2002b; Polyn et al., 2009; Lohnas
et al., 2015) posit that context slowly drifts over time and
binds with to-be-remembered external or internal experi-
ences. Context at time t, denoted as ct , follows the process:

ct = ρct−1 +βenccIN
enc (1)

where cIN is the retrieved context induced by an encoun-
tered experience, βenc ∈ [0,1] is a parameter determining
the rate at which context drifts toward the new experience,

and ρ is a scalar ensuring ||ct || = 1. When an item is pre-
sented in the study list, it activates its pre-experimental con-
text cIN

enc = MFC
pre ft , where MFC

pre represents item-to-context as-
sociations that existed prior to the experiment (initialized as
an identity matrix, under the simplifying assumption that an
item is only associated with its own context; see Polyn et al.,
2009), and ft is a binary vector that is all zeros except at
the presented item’s position. Therefore, MFC

pre ft is the con-
text previously associated with the presented item. In ad-
dition to these fixed pre-experimental item-to-context asso-
ciations held in MFC

pre, there are also experimental item-to-
context and context-to-item associations held in MFC

exp and
MCF

exp that capture new learning in the experiment. These ma-
trices are initialized to zero and are updated during the study
phase. Specifically, when an item is presented, a new asso-
ciation is formed between the presented item and the cur-
rent context state via the Hebbian outer-product learning rule:
∆MFC

exp = ∆MCF
exp = ftcT

t−1.
During recall, the memory search process is driven by the

current state of the context representation ct . The support for
recalling each item depends on how much the current con-
text matches the items’ study context. The starting context
at recall is close in time to (and thus similar to) the end-
of-list context during encoding, giving rise to better recalls
for items studied at the end of the list (i.e., recency effects;
Murdock, 1962). As recall continues, context evolves un-
der the same process as it did during the encoding phase,
ct = ρct−1 + βreccIN

rec as in Equation (1), but with the re-
trieved context cIN

rec introduced differently. The key differ-
ence is that items are encountered for the first time during
the experiment in the encoding stage (which only activates its
pre-experimental context cIN

enc = MFC
pre fi), whereas – in the re-

call phase – items are encountered for the second time when
they are recalled. The retrieved context cIN

rec can come from
both the pre-experimental context associated with the item
MFC

pre f j and the experimental context associated with the item
MFC

exp f j, which has been acquired through Hebbian learning
during the encoding phase. The extent of retrieving the pre-
experimental context versus retrieving the experimental con-
text is regulated by the parameter γFC ∈ [0,1],

cIN
rec = (1− γFC)MFC

pre f j + γFCMFC
exp f j = (1− γFC)cIN

enc + γFCci−1.

(2)

The value of γFC has important implications for the recall
transition patterns. When γFC = 0, the retrieved context en-
tirely consists of pre-experimental context associated with the
item MFC

pre f j, which is identical to the retrieved context cIN
enc

when the item was first encountered during encoding. When
γFC = 1, the retrieved context entirely consists of experimen-
tal context associated with the item MFC

exp f j, which is essen-
tially the context ci−1 during encoding.

Both cIN
enc and ci−1 are part of the original study context,

so reinstating them into the current context has the effect of
mentally “jumping back in time”. As a consequence of this
“jumping back in time”, items that were studied close in time
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to the just-recalled item have a higher chance of being re-
called next, because of the similarity between their study con-
text and the current context. This contributes to the temporal
contiguity effect commonly observed in free recall (Kahana,
1996; Howard & Kahana, 1999). Though both contribute to
temporal contiguity, reinstating cIN

enc and reinstating ci−1 bias
forward recalls and backward recalls differently. During en-
coding, at t = i, the drifting part of the study context ρci−1
is similar to contexts both before and after t = i, and has the
chance to be associated with items that come before and af-
ter t = i. Therefore, reinstating ci−1 gives rise to both for-
ward recalls and backward recalls. However, since an item’s
pre-experimental context is incorporated into temporal con-
text after the item is presented, the retrieved context cIN

enc does
not share any similarity with contexts before t = i, and only
has an opportunity to be associated with items that come after.
Therefore, reinstating cIN

enc gives rise to only forward recalls,
which accounts for the forward asymmetry commonly seen
in free recall experiments. Medial temporal lobe amnesia has
been associated with the impairment in backward contiguity,
with the lack of access to the experimental context ci−1 but in-
tact access to the pre-experimental or semantic context of an
item (Palombo et al., 2019). Finally, to be able to fully simu-
late recall patterns, variants of CMR are equipped with differ-
ent retrieval rules and recall termination rules (see more de-
tails in Howard & Kahana, 2002b; Polyn et al., 2009; Lohnas
et al., 2015; Zhang et al., 2023).

Figure 1: A graphical illustration of NMT model to highlight
its alignment with CMR

Neural Machine Translation Figure 1 represents a
seq2seq neural network model framed using the mathemat-
ical notation commonly associated with the context mainte-
nance and retrieval (CMR) model. The motivation behind
this graphical representation is to conceptually bridge the gap
between NMT and CMR. In this model architecture, both
the encoder and decoder blocks represent GRUs. In this dia-
gram, the encoder (blue boxes) processes the input sequence
of words ( ft−1, ft , ft+1), which is embedded into a lower-
dimensional semantic space (represented by cIN

enc). The se-
quence of encoded vectors (ct−1,ct ,ct+1) is generated in a
unidirectional manner, with each vector being a function of
the previous context vector and the input at that time step. In-
ternally, the GRU computes its output and updates its internal
hidden state according to a learned update rule zt , such that

ht = (1− zt) · ht−1 + zt · ĥt . ĥt represents the cell’s current,
potential memory content, where a certain amount of infor-
mation from the last timestep is parametrically removed by a
reset gate, rt , and new information is incorporated. ht is the
final memory state at the end of the timestep that controls the
relative change from the hidden state at the previous timestep.
The degree by which the current hidden state is modified by
new inputs is analogous to the drifting context in the CMR
model, where newly encoded items update the current recall
context, but do not completely override it. We draw a direct
parallel with CMR’s context updating mechanism with the
equation for ct (shown in the diagram).

In our comparative model, the attention mechanism (yel-
low box) parallels the “jump back in time” mechanism in hu-
man memory search, giving the decoder access to the previ-
ously encoded contexts, ct . The form of attention used in this
comparative model is global Luong (or multiplicative) atten-
tion, in which the current hidden state is updated using a sum
of encoder hidden states weighted by similarity. The equation
ai = so f tmax(dT

t · ci) represents the similarity scores calcu-
lated between the current decoder hidden state dt and each of
the encoder hidden states, ci. The actual update of the context
is performed according to ∑

T
i=1 ai ·ci, which is used to update

recall context, cIN
rec (Figure 1). In this manner, the attention

mechanism can trigger a shift in the decoder’s context that
may ordinarily not be possible when relying on the internal
hidden state alone.

The decoder (red boxes) receives the final hidden state
from the encoder, ct . Once the decoder’s hidden state and pre-
vious encoder states are passed through the attention mecha-
nism, the resulting recall context, cIN

rec, is used to generate an
output for a given time step. The decoder’s hidden state is
then updated by the feedback of the output embedding before
it proceeds to the next stage of the decoding process. The pa-
rameters (γFC,β,ρ) in the encoder’s and the decoder’s update
equations mirror the CMR parameters for context updating
and recall, but are implicitly learned. Specifically, γFC rep-
resents the relative weight given to the previous contexts re-
activated through the attention mechanism, which necessarily
becomes 0 with the removal of the attention mechanism.

Methods
The model training procedure is posed as a reinforcement
learning problem, in which an agent is presented with a se-
quence of words and then expected to recall this sequence
for words when prompted with a start-of-sequence token.
We use the Proximal Policy Optimization (PPO) algorithm
(Schulman, Wolski, Dhariwal, Radford, & Klimov, 2017) and
allow the agent to terminate its own recall by the prediction of
an end-of-sequence token. Following techniques in Bahdanau
et al. (2014), the seq2seq model (serving as the actor in the
PPO agent) is pre-trained for a brief period using supervised
training before transitioning to reinforcement learning.

For this experiment, we opt to use GRUs due to their sim-
plified internal architecture, without sacrificing performance.
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During decoding (see Figure 1), the decoder’s hidden state
(after passing through the attention mechanism) is compared
via cosine similarity to each encoder hidden state (stored in a
memory table as keys). The output embedding is a weighted
combination of word embeddings (stored in the same mem-
ory table as values) based on cosine similarity with the cor-
responding encoding state, which is then transformed into
an original list item for recall through a feed-forward layer.
This implements a similar retrieval rule as in CMR, where
the probability of recalling each item depends on how much
the current context matches the items’ study contexts (Polyn
et al., 2009; Lohnas et al., 2015).

Given that free recall is inherently an unordered task, un-
like translation, conventional cross-entropy loss is unsuitable
due to the importance of item order in loss calculation. In
order to train the seq2seq model independent of the order of
recall, we treat the problem as a set prediction task and opt
to use an iterative Sinkhorn algorithm approximation method
that impacts training time, but ensures that network learn-
ing is not impacted by token order (Brun, Gaüzère, Renton,
Bougleux, & Yger, 2022). For data, we use the PEERS free
recall dataset as a basis of comparison with human subjects,
extracting an experimental vocabulary from all words appear-
ing in human trials (Kahana et al., 2022). All model config-
urations were trained using 50,000 randomly generated se-
quences of 14 words sampled from the PEERS vocabulary.
The embedding layer of the encoder model is instantiated us-
ing pre-trained GloVe embeddings (Pennington et al., 2014),
which is then frozen to prevent the model from modifying
these embeddings during training. This frozen embedding
layer is analogous to a human’s long-term semantic memory
and creates an initial embedding space in which more similar
words should appear more closely together.

To test the ability of our model to predict human data in
medial temporal lobe amnesia patients and healthy controls
(Palombo et al., 2019), we investigate two distinct configura-
tions of the free recall model: the standard model as described
and a model with the attention mechanism removed. In ad-
dition, each configuration is evaluated using several recurrent
network hidden dimension sizes (32, 64, 128).

Results and Discussion
Figures 2-4 illustrate the behavioral patterns for each config-
uration trained on the free recall task. Each configuration was
trained based on the stimuli and trial structures in the PEERS
free recall dataset (Kahana et al., 2022). For direct compar-
ison with the CMR model and human subjects, we analyze
model simulation results describing three sets of recall pat-
terns: 1) how well on average model retrieves items for each
position in the study list (serial position curve), 2) where the
model initiates its recall from (probability of the first recall
curve), and 3) how likely it is to recall items studied consecu-
tively in the study list (conditional response probability). For
the final analysis, the probability is computed by dividing the
number of times a transition of that lag is actually made by

the number of times it could have been made (Kahana, 1996).
Following how the above patterns are analyzed in human data
(Kahana, 1996; Polyn et al., 2009), we removed repetitions in
the model when performing our analyses.

The optimal attention model demonstrates the same re-
call behavior as the optimal policy of the cognitive model
CMR. Past cognitive modeling work with CMR has demon-
strated that not only could it capture averaged human be-
havioral patterns (through fitting model parameters to human
data; Polyn et al., 2009; Lohnas et al., 2015), but it can ex-
plain why some individuals achieve better memory perfor-
mance than others in the free recall task by analyzing how
well their behavior aligns with an optimal policy of CMR
(rational-CMR; Zhang et al., 2023). When the free recall
behavior is optimized under the architectural constraints of
the CMR model, the optimal policy always starts by recalling
from the beginning of the list (Figure 2b) and sequentially re-
calls forwards (Figure 2c) despite no constraint placed on the
order of recall. This optimal behavior is non-trivial, as one al-
ready has access to the end-of-list context at the start of recall,
whereas reactivating the beginning-of-list context requires an
extra jump back to early items of the list. Figure 2 shows that
our trained seq2seq model with attention (blue) demonstrated
the same behavior as the optimal policy of CMR (orange; re-
produced from Figure 3A in Zhang et al., 2023). Both models
achieve near-optimal performance (Figure 2a), with a near
certainty of starting recall at the beginning of the sequence
(Figure 2b) and making a forward recall transition to the next
serial position at lag +1 (Figure 2c). In 2c, the optimal CMR
model shows a small amount of backward recall in contrast
to the NMT model’s complete lack of it. CMR, regardless of
optimality, includes some stochasticity in its recall of items
whereas the NMT model does not.

The intermediate training evaluations of the attention
model exhibit similar qualitative patterns as is typically
observed in human participants. Only a small proportion
of top-performing human participants are able to demonstrate
the exact behavior of the optimal policy (Zhang et al., 2023).
Averaged human recall behavior in free recall experiments
(blue line in Figure 3a-3c; reproduced from Kahana et al.,
2022) also exhibits recency (enhanced end-of-list recall; Fig-
ure 3b) and backward contiguity (tendency toward shorter,
backward lags; Figure 3c), in addition to what is amplified
in the optimal behavior with primacy (enhanced beginning-
of-list recall; Figure 3b) and forward contiguity (tendency to-
ward shorter, forward lags; Figure 3c). We show that while
the trained NMT model with attention demonstrates the same
behavior as the optimal policy of CMR, exhibiting primacy
and forward contiguity, intermediate training evaluations of
the model (lighter yellow lines) exhibit recency (Figure 3b)
and backward contiguity (Figure 3c), though to a smaller de-
gree compared to averaged human recall behavior. Recency
and backward contiguity quickly disappear as the model is
optimized to further rely on forward recalls initiated from
the beginning of the sequence. Note that in some cases (i.e.

2350



(a) (b) (c)

Figure 2: Behavioral recall patterns for the fully optimized, 128 dimension model with attention compared to the expected
behavioral results derived by the optimal policy CMR model. Optimal CMR results are reproduced from Zhang et al. (2023).

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 3: Behavioral recall patterns under different intermediate states of model training with attention (a-c), without attention
(d-f), and human subjects of medial temporal lobe amnesia and healthy controls (g-i), reproduced from Palombo et al. (2019).

Model with attention was overlaid with human results reproduced from Kahana et al. (2022).

Epochs 3 and 4), unlike human participants, the recall curve
in the model shows an inverted U-shape.

An ablation study of the attention mechanism demon-

strates alignment between model results and human data
with MTL amnesia. Medial temporal lobe (MTL) lesions
have been previously associated with the inability to re-

2351



(a) (b) (c)

Figure 4: The effect of different hidden dimension sizes (32, 64, 128) on the behavioral recall patterns for attention and no
attention models.

instate prior experienced contexts (Reed & Squire, 1998;
Palombo et al., 2019; Howard et al., 2005; Scoville & Mil-
ner, 1957), mathematically implemented as the context re-
instatement mechanism in CMR. As we hypothesized that
the attention mechanism in our seq2seq model is analogous
to context reinstatement in CMR, we carried out an ablation
study of the attention mechanism to examine if model dif-
ferences could capture the key behavioral difference in the
amnesic patients and the healthy controls. Results of this
ablation are displayed in figures 3d-3f. Models with atten-
tion converge much more quickly to optimal behavior and
thus require fewer training epochs. Figures 3g-3i depict re-
call patterns for patients with medial temporal lobe (MTL)
amnesia, reproduced from (Palombo et al., 2019). Notably,
amnesiac patients lack the ability to “jump back in time” and
therefore display a greatly reduced backward contiguity rela-
tive to healthy controls (lower -1 lag in 3i), consistent with
CMR predictions when the ability to reinstate the original
study contexts is impaired. Similarly, the lack of the attention
mechanism in Figure 3f also largely eliminates the model’s
capacity for backward contiguity (at any stage of training)
compared to with attention, where backward contiguity is ob-
served in early iterations of training (Figure 3c).

An ablation study of the attention mechanism provides
insight into the performance difference between amnesia
patients and healthy controls. Figure 4 shows evaluation
results for each configuration with respect to hidden dimen-
sion size and the presence of the attention mechanism after
full optimization. The attention model consistently exhibits
higher recall probability than the no-attention model (Figure
4a), capturing the same memory performance patterns ob-
served in amnesia patients and healthy control (Figure 3g).
Since the final model iteration of both the attention model
and the no-attention model demonstrate optimal free recall
behavior (with primacy and forward contiguity), one might
ask why the attention model has better memory performance
when it must learn to ignore backward contiguity, while the
no-attention model has forward contiguity by default (i.e. is
incapable of backward contiguity). It has been demonstrated
in the optimal CMR model that forward contiguity only con-
tributes to performance in combination with primacy (Zhang

et al., 2023). We hypothesize that the lack of the attention
mechanism (i.e. the ability to reinstate previous study con-
texts) removes the ability to reinstate the beginning-of-list
context, which is necessary to establish primacy. We suggest
that this lack of primacy gives rise to reduced performance in
the no-attention case. An alternative, and more difficult way,
to obtain primacy in the no-attention model is to maintain all
study items in the working memory (i.e. hidden states); and
this difficulty is greater when the working memory capacity is
smaller. Consistent with our hypothesis, we observed higher
performance difference between the attention model and the
no-attention model when the models’ hidden dimensions are
small. A hidden dimension size of 32 is inadequate to observe
any recall performance in the no attention case, whereas the
attention configuration shows considerably higher recall per-
formance regardless of hidden dimension size (Figure 4a).

Conclusion

We have demonstrated that seq2seq models, originally intro-
duced for the purpose of machine translation, can also serve
as a neural network representation of the CMR model of hu-
man memory search. Various components of the seq2seq
model have direct comparisons with mechanisms of the CMR
model, and an added attention mechanism grants the model a
form of mental time travel, allowing it to explicitly reactive
past contexts in a similar manner to CMR. Comparisons to
the optimal CMR condition illustrate the model’s ability to
optimally recall, while comparisons between human subject
data and incompletely optimized models reflect the model’s
potential for capturing sub-optimal recall behavior as well.

In addition to establishing this seq2seq model as an alterna-
tive memory search model (capable of capturing optimal and
sub-optimal human behavior as CMR does), we additionally
present the model as a potential framework for understanding
memory deficits. By removing the attention mechanism and
hampering the model’s ability to reactivate previous encod-
ing contexts, we eliminate the model’s capacity for backward
contiguity and hamper the model’s recall performance in a
manner similar to patients with MTL amnesia.
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