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“Fungi on Mars!”: a popular news heading that piques public interest

and  makes  scientists'  blood  boil.  While  such  a  statement  is  laden  with

misinformation  and  light  on  evidence,  the  search  for  past  and  present

extraterrestrial life is an ongoing scientific effort. Moreover, it is one that is

increasingly gaining momentum with the recent collection of Martian rock

cores  from the  Jezero  Crater  by  NASA's  Perseverance  rover.  Despite  the

increasingly sophisticated approaches guiding the search for microbial life on

other  planets  (Green  et  al.,  2021),  fungi  remain  relatively  underexplored

compared to their  bacterial  counterparts,  highlighting a gap between the

astrobiological and fungal research communities (NASEM, 2019). Through a

meeting in April of 2021, the CIFAR Earth 4D and Fungal Kingdom research

programs worked to bridge this divide by uniting experts in each field. CIFAR

is a Canadian-based global research organization that convenes researchers

across  disciplines  to  address  important  questions  facing  science  and

humanity. The CIFAR Earth 4D: Subsurface Science & Exploration and Fungal

Kingdom:  Threats  &  Opportunities  research  programs  were  launched  by

CIFAR  in  July  of  2019,  each  made  up  of  approximately  two  dozen
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international  researchers  who  are  experts  in  their  fields.  The  Earth  4D

program,  led  by  co-directors  John  Mustard  (Brown  University,  USA)  and

Barbara Sherwood Lollar (University of Toronto, Canada), aims to understand

the complex chemical, physical, and biological interactions that occur within

and between the Earth's surface and subsurface to explore questions on the

evolution  of  planets  and  life.  The  Fungal  Kingdom program,  led  by  co-

directors Leah Cowen (University of Toronto, Canada) and Joseph Heitman

(Duke University, USA), seeks to tackle the most pressing threats fungi pose

to  human  health,  agriculture,  and  biodiversity  and  to  harness  their

extraordinary  potential.   The programs met  to  explore  areas  for  synergy

within  four  major  themes:  1)  the  origins  of  life;  2)  the  evolution  and

diversification of life; 3) life in diverse and extreme environments; and 4)

extinction:  lessons  learned  and  threats.  This  report  covers  the  research

discussed during the meeting across these four themes. 

Fungi and the origins of terrestrial plant life 

  Fungi are key members of terrestrial  ecosystems, forming symbiotic

relationships with 90% of all land plants (Feijen  et al., 2018) and enabling

nutrient  cycling  as  the  Earth's  preeminent  degraders  of  organic  matter

(Willis,  2018). Heather  Graham (NASA Goddard Space Flight  Center,  USA)

discussed fungi in the rock record and their role in facilitating terrestrial life

on Earth and highlighted that terrestrial fungi pre-date plants in the fossil

record,  with  the  earliest  fungus  detected  635  million  years  ago  and  the
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earliest  terrestrial  plant  over 200 million  years  later  (Krings  et  al.,  2018;

Morris  et  al.,  2018;  Gan  et  al.,  2021).  Graham  noted  that  fossils

morphologically consistent with fungi of the phylum Glomeromycota, which

is  predominantly  composed  of  arbuscular  mycorrhizal  fungi  that  form

obligate symbiotic relationships with land plants, were detected in the fossil

record 40 to 50 million years before the first terrestrial plants, which raises

fundamental  questions  about  the  physiology  and  ecology  of  these

presumably  non-symbiotic  fungi  prior  to  their  association  with  terrestrial

plants  (Redecker  et  al.,  2000).  Graham  seeks  to  gain  insight  into  the

lifestyles of these ancient glomeralean fungi using isotopic fractionation and

elemental  abundance  analysis  to  distinguish  saprotrophic  from  symbiotic

fungi  based  on  differences  in  the  isotopic  compositions  of  organic

compounds  preserved  in  fungal  fossil  samples.  Graham  highlighted  n-

alkanes, a major component of plant leaf structure that also serve to protect

against fungal infection, as a biomarker with the potential to provide insight

into how fungi have shaped the composition of forests over time.  Graham

determined  that  angiosperm tree  species,  which  became more  prevalent

after the  Cretaceous-Tertiary (K-T) extinction, produce high quantities of  n-

alkanes  relative  to  gymnosperms,  and postulated that  these leafy  waxes

could  have provided  angiosperms  with  a  selective  advantage given  their

antifungal properties (Diefendorf et al., 2011;  Graham and Freeman, 2014).

Fungi and the evolution of mammals
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  In addition to impacting the evolution of forest ecosystems, fungi are

hypothesized to have selected for the emergence of mammals after the K-T

extinction  event  (Casadevall, 2005, 2012; Casadevall and Damman, 2020),

as  theorized  by  Arturo  Casadevall  (Johns  Hopkins  University,  USA).

Casadevall highlighted that reptiles were the dominant megafauna prior to

the  K-T  event,  while  mammals  dominated  thereafter  despite  having  a

relatively  energetically  expensive  lifestyle  (Casadevall,  2005,  2012).

Casadevall  hypothesized that fungi imposed a selective filter that favored

the evolution of mammals, which are highly resistant to fungal infection as a

result of their warm body temperature and adaptive immunity  (Robert and

Casadevall,  2009;  Bergman  and  Casadevall,  2010).  In  support  of  this

hypothesis, there is evidence of massive fungal proliferation after the K-T

event that could have hindered the re-emergence of reptiles, of which fungi

are a major pathogen (Vajda and McLoughlin, 2004). Casadevall termed this

hypothesis  the  fungal  infection  mammalian  selection  (FIMS)  theory

(Casadevall and Damman, 2020), which not only provides explanation for the

rise of mammals after the K-T event, but also possesses predictive power.

FIMS  predicts  that  as  global  temperatures  approach  mammalian  body

temperature  with  climate  warming,  there  will  be  an  increase  in  the

prevalence of  fungal  diseases in  mammals  due to both  expansion of  the

geographic range of currently pathogenic fungal species and selection for

species with pathogenic potential that are presently being restricted by the

mammalian  thermal  barrier  (Garcia-Solache  and  Casadevall,  2010).
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Moreover, human body temperatures have decreased over the past century,

further narrowing this thermal barrier (Protsiv  et al., 2021) and Casadevall

postulated that  Candida auris could be the first human fungal pathogen to

emerge due to thermal adaptation in response to climate change (Casadevall

et al., 2019, 2021). 

Fungi in extreme environments

  Fungi have a remarkable capacity to survive in diverse and extreme

environments.  The polyphyletic  group  of  melanotic  or  black fungi  inhabit

some of  the  most  extreme  environments  known,  including  high-radiation

environments such as the nuclear reactor at Chernobyl  (Casadevall  et al.,

2017) and the International Space Station  (Satoh  et al., 2016).  While black

fungi are among the most polyextreme-tolerant organisms on Earth, there is

a  dearth  of  available  black  fungal  genomes. Jason  Stajich  (University  of

California, Riverside, USA) aims to address this paucity through his work with

the  “Shed light  in  The daRk lineagES of  the  fungal  tree  of  life”  (STRES)

project  by  sequencing  nearly  100  strains  of  black  fungi  as  reference

genomes  (Selbmann et al., 2020). Through sequencing strains from mostly

unsampled  genera  and  from  different  ecologies  and  life-styles,  the  data

acquired will  establish  a  database for  fungal  metagenomics,  biology,  and

evolution, which will  further clarify how black fungi adapted to inhabit the

extremes  (Selbmann  et  al.,  2020).  Moreover,  Stajich  studied  microbial

communities  across  hot  and  cold  deserts  such  as  the  Mojave  Desert  in
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California and the Antarctic Desert, as well as in marine habitats. Through

sampling, metabarcode sequencing, and network analysis of biological crusts

and  subsurface  soils  in  the  Mojave  Desert,  Stajich  identified  that  cross-

domain  fungal-bacterial  interactions  differed  greatly  between  the  surface

and  the  subsurface,  highlighting  important  differences  between  these

proximate yet distinct niches (Pombubpa et al., 2020). 

The continental and oceanic subsurface are estimated to contain up to

19% and 30% of  the Earth’s total biomass,  respectively,  yet they remain

relatively  unexplored (Kallmeyer  et  al.,  2012;  Colwell  and D’Hondt,  2013;

McMahon and Parnell, 2014; Bar-On et al., 2018; Magnabosco et al., 2018).

These  spaces  represent  an  untapped  resource  for  fungal  discovery,  with

studies  reporting  one  to  two  thirds  of  subsurface  fungi  identified  as

potentially novel species (Li et al., 2020). Victoria Orphan (California Institute

of  Technology,  USA)  discussed  fungi  in  deep  ocean  and  terrestrial

biospheres. She noted that molecular-driven discoveries of subsurface fungi

have uncovered remarkable diversity, representing many of the major fungal

phyla. Orphan highlighted that subsurface habitats often lack oxygen and

are  low  in  bioavailable  energy  and  nutrients.  While  the  vast  majority  of

subsurface research to date has focused on archaea and bacteria, fungi are

present and are active members of the microbial communities that persist in

these remote and harsh environments (Edgcomb et al., 2011). For example,

transcriptomic approaches have revealed differences in expression patterns

between  surface  and  deep  subsurface  fungi,  with  subsurface  fungi
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expressing a higher level of transcripts associated with survival and complex

carbon  utilization  (Orsi  et  al.,  2013;  Pachiadaki  et  al.,  2016).  Orphan

highlighted  that  subsurface  fungi  can  also  form  close  interactions  with

bacteria  and archaea,  as  evidenced  by the  detection  of  intimate  contact

between  a  fungus  and  sulfate-reducing  bacteria  in  deep  anoxic  granite

groundwater  (Drake  et  al.,  2017;  2021).  Interestingly,  these  researchers

hypothesized  that  fungi  were  breaking  down  the  necromass  of

microorganisms in this environment, resulting in the production of hydrogen

that in turn fueled the growth of autotrophic sulfate-reducing bacteria, whose

activity  encouraged pyrite  formation within the rock  (Drake  et al.,  2017).

Thus, fungi were modifying both the biotic and abiotic environment in this

subsurface  rock  environment.  Through  investigating  life  in  deep  sea

methane vents, Orphan in collaboration with colleagues at Caltech identified

deep-sea  nematodes  that  were  parasitized  by  microsporidia  fungi,  thus

uncovering the first example of parasitism in a deep-ocean environment and

emphasizing  the  opportunity  for  novel  discovery  through  collaboration

between the two CIFAR programs (Sapir et al., 2014). 

Conclusions and outlook

Despite  the  remarkable  ability  of  fungi  to  thrive  in  extreme

environments and their role in shaping and sustaining life on Earth, there

remains  a  dearth  of  knowledge  on  the  limits  of  fungal  life  in  the  deep

subsurface and in space. Both the subsurface and fungi  are understudied
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and  underutilized  in  their  potential  to  expand  conceptual  models  of

habitability and inform the study of the origins and evolution of life on Earth

and other planets. What is the range of chemistry that can sustain fungal

life? What are the physical controls on subsurface architecture that shape

fungal communities? What role do subsurface fungi play in the utilization and

cycling of nutrients? How might fungi provide valuable insight in the search

for  extinct  and extant  life on Mars and other planets? Through sustained

collaboration, the  CIFAR Earth 4D and  Fungal Kingdom research programs

are poised to answer these and other questions and to unlock the untapped

potential of fungi to shift terrestrial paradigms on the limits of life.   
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