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ABSTRACT In recent years, there has been a remarkable increase in the usage of Deep Neural
Networks (DNNs) for addressing and solving electrical field problems. This research primarily aims
to present an advanced approach to classify different motor faults based on their time-series data by
implementing a new Recurrent Neural Network (RNN) model that consists of mixed Long short-term
memory (LSTM), Gated Recurrent Unit (GRU), and two Fully Connected (FC) layers. The main idea of this
study centers on developing one comprehensive model capable of categorizing primary motor faults. The
proposed model is supposed to classify 10 different classes, extracted from the Machinery Fault Database
(MaFaulDa), which are normal (no-fault), vertical misalignment, horizontal misalignment, imbalance,
overhang-ball, overhang-cage, overhang-outer race, underhang-ball, underhang-outer race, and underhang-
cage. Classifying 10 different situations can be considered as a notable classification problem. Additionally,
the learning period did not include any data augmentation, which reflects the model’s power in training
over the available data. Significantly, the accuracy of the model is enhanced by setting precise values for
hyperparameters, including network structure (number of layers and neurons), learning rate, regularization,
optimizer type, number of epochs, and more. The obtained train-validation-test accuracies from the
proposed model are 99.87%, 99.599%, and 99.48%, respectively. The accuracy of the model represents the
highest accuracy among other publications. This advanced approach offers numerous advantages, including
early-stage fault detection, improved robustness in industrial maintenance, and generating fast and intelligent
alerts, thereby reducing the possible damage to electrical instruments.

INDEX TERMS Condition monitoring, GRU, LSTM, motor faults classification, recurrent neural networks.

I. INTRODUCTION
In the early 1960s, significant developments in the global
industrial landscape have begun, drawing considerable atten-
tion to electricalmotors. Consequently, several different types
of motors were invented, such as the AC synchronous induc-
tor motor, brushless DC motor, and stepper motor [1]. With
the ongoing development of electrical motors, their structures
have become more efficient and complex [2], [3]. Therefore,
their maintenance is considered an essential concern. Cur-

The associate editor coordinating the review of this manuscript and

approving it for publication was Ines Domingues .

rently, electrical motors play a pivotal role in the industry and
can be found in almost all types of devices [4]. They possess
desirable features such as high stability, durability, and ease
of use and maintenance, which have contributed to their
widespread usage. However, under certain conditions, such as
low insulation resistance, vibrations, overheating, etc., which
can negatively impact electrical motors, they may suffer from
faults or even become worthless if left unprotected [5], [6],
[7]. As a result, it is crucial to detect faults in electrical
motors as early as possible to protect workers, prevent
substantial economic losses in manufacturing facilities, and
reduce potential damage that could disrupt operations [8].
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Currently, the protection and maintenance of electrical
motors are considered major functions that must be carefully
implemented [1].

Initially, straightforward fault detection techniques were
employed, such as over-current or over-voltage detection,
which primarily involved measuring different parameters
such as current and voltage and comparing them with
predefined threshold values. If the measured values exceed
these thresholds, the affected motor is shut down. However,
disabling affected motors may not be acceptable in specific
circumstances, rendering these methods inadequate and
ineffective [9]. Currently, motor fault detection techniques
primarily fall into five main categories: model-based, signal-
based, knowledge-based, hybrid-based, and active meth-
ods [10]. These techniques are applied after extracting
the necessary information from the analyzed source. This
information typically includes one of two main feature types:
domain features such as time-frequency characteristics or
computation features such as aggregated statistics [11].
Over the past few years, there has been a significant

increase in interest in analyzing data from diverse sources,
leading to numerous research endeavors related to Machine
Learning (ML), Artificial Neural Networks (ANN), and
Recurrent Neural Networks (RNNs) focused on using
these analyses to address electrical machine problems [12].
Accordingly, this research fully implements a specially
designed RNN model. The heart of our model comprises
of Gated Recurrent Unit (GRU), Long Short-Term Memory
(LSTM), and two Fully Connected (FC) layers with varying
numbers of neurons, resulting in a highly intricate yet robust
architecture. Furthermore, we place a strong emphasis on
hyperparameter tuning, carefully optimizing critical elements
such as network architecture (number of layers and neurons),
learning rate, regularization techniques, choice of optimizer,
number of training epochs, and more. These meticulous
adjustments contribute significantly to the model’s outstand-
ing performance. Our proposed model sets out to categorize
ten distinctive fault classes, meticulously extracted from
the Machinery Fault Database (MaFaulDa) [13]. These
classes encompass a spectrum of scenarios, ranging from
normal motor operation to specific fault conditions, including
vertical misalignment, horizontal misalignment, imbalance,
and various overhang and underhang faults. This broad
classification scope represents a substantial challenge that our
model is uniquely equipped to address. Both the included
scenarios and the obtained accuracy are the highest among
published studies with ten classes and train-validation-test
accuracies of 99.87%, 99.599%, and 99.48%, respectively.
It is important to note that the validation step is done
using 5-fold cross-validation. Moreover, an ablation study
is conducted on the proposed model to understand the
importance of its components individually. The reason for
creating a model containing GRU, FC, and LSTM layers
rather than traditional machine learning algorithms, such as
the one proposed in [14], in conducting this classification task
can be illustrated in three main points, which are better at

capturing the temporal dependencies of sequential data, the
ability to learn and extract complex features from sequential
data automatically, and higher flexibility in dealing with
different input sizes, and the ability to increase the model
complexity so that it can extract non-linear relationships.
Apart from its academic relevance, our study brings forth
numerous benefits. It opens the door to early detection of
faults in electrical machinery, strengthens the resilience of
industrial maintenance, enables the generation of intelligent
alerts, and increases the potential to significantly decrease
harm to electrical equipment,

The organization of the paper is as follows: after the
introduction, the previous works on the same subject are
investigated in detail in the Related Work section. Thereafter,
the models and mathematical equations used are briefly
described in the Background section. Consequently, the main
architecture and the structure of the proposed model are
meticulously explained in the System Architecture section.
Later, the steps taken while applying the proposed model
are sequentially detailed in the Implementation Details
section. Last but not least, the obtained results are presented,
and finally, a comprehensive summary is provided in the
Conclusion section.

II. RELATED WORK
Commonly, the literature emphasizes that using the time
domain data is not efficient for determining the important
features of faults [15]. As a result, the frequency domain
or time-frequency domain is usually employed during data
preprocessing. In the field of motor fault diagnosis, several
studies have been conducted to classify faults using the data
from the MaFaulDa database. These studies vary in their
approaches, including the use of traditionalMLmethods such
as the Support Vector Machine (SVM) algorithm, similarity-
based modeling (SBM), and both artificial neural networks
(ANN) and RNNs.

The authors of [6] conducted a comprehensive exploration
of SBM for fault detection, with a particular focus on novel
approaches to model training and similarity metrics. The
research is illustrated through the identification of rotating
machinery faults, where SBM serves as either a standalone
classifier or a feature generator for a random forest classifier.
They achieved an accuracy of 98.5% on the MaFaulDa
database but did not provide training and validation charts,
leaving the training procedure of the proposed model unclear.
Additionally, they classified only 7 classes.

In the paper by [16], they introduced the Predictive Main-
tenance (PdM) model with Convolutional Neural Network
(CNN), designed to classify faults in rotating equipment and
provide guidance on when maintenance interventions should
be initiated. Their results include two values: one related to
themodel’s performance when trained over classes separately
and another when trained on the classes together, achieving an
accuracy of 97.3%. This research classifies the same number
of faults as our study.
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Another study that utilizes SBM for classifying fault
identification in rotating machinery is presented in [17].
The research explores a novel training approach involving
prototype selection. Experimental findings, including the
MaFaulDa and other databases, demonstrate a weaker
model than [6], with accuracies of 96.4% and 98.7% on
the MaFaulDa database. It also classifies fewer faults,
specifically 5.

A new approach for a multi-fault classification system
for electric rotating machinery leveraging an ANN and
Synthetic Minority Over-sampling (SMOTE) is introduced
in [18]. Notably, the model incorporates the relief feature
selection method to enhance performance by identifying
influential features. It utilizes the MaFaulDa database as
its data source and achieves an accuracy of 97% while
classifying 6 situations.

The study of [19] discusses the Hamiltonian neural net-
works (HNN) approach, which extends beyond conventional
black-box models by incorporating physical constraints
governing mechanical systems. The proposed HNN is trained
on observational data to capture the system’s conserved
energy in normal and abnormal scenarios. They used the
obtained weights vector to distinguish 6 faults taken from
the MaFaulDa database, achieving accuracies of 78% for
binary classification (normal vs. abnormal) and 84% for
the multi-class problem (normal and five distinct abnormal
faults).

The study in [20] introduces a multi-fault classification
system employing ANN for automated differentiation of
faults in rotating machinery. Key features include rotation
frequency and statistical metrics such as mean, entropy,
and kurtosis. The model’s efficacy is increased through the
utilization of SMOTE to address class imbalance and identify
influential features. The proposed method is applied to the
MaFaulDa database and achieves an accuracy of 97.1%. This
method is tested over 6 classes.

This study [21] introduces an Early Classification (EC)
approach for Structural Fault Recognition (SRF) that bal-
ances fault prediction accuracy and earliness. It works based
on two sequential steps: a deep learning classifier prioritizes
accuracy, and an early decision policy is applied. It uses
LSTM and GRU separately in its architecture and depends on
two metrics: accuracy and earliness. The achieved accuracy
is 98.32%, and the obtained earliness is 55.68% on the
MaFaulDa database. However, this research considers only
4 classes: normal, imbalance, horizontal misalignment, and
vertical misalignment.

A dual decision-making strategy is discussed in [22],
utilizing a CNN with fuzzy recurrence plot (FRP) for one
stream and an LSTM network for distinctive frequency
components (DFC). Additionally, it introduces a DFC-based
ranking and image combining scheme to select key sensor
signals and generate 3D-FRP and 2D flattened FRP (F-FRP)
representations. When the model is tested on the MaFaulDa
database, it achieves up to 99.0% accuracy. However, like the
study in [21], only 4 classes are classified.

T4PdM is presented in [23], introducing a modified
Transformer model for automatic fault classification in PdM.
This model achieves exceptional accuracy of 99.98% on
the MaFaulDa database and 98% on the CWRU database.
However, this study excludes the overhang-bearing data
completely, making its accuracy incomparable with other
studies. Furthermore, their model made two mistakes;
predicted normal situation as horizontal misalignment and
cage fault as normal. On the other hand, our proposed model
uses all samples found in the database and it only makes one
mistake as it predicts one horizontal misalignment fault as a
vertical misalignment fault.

III. BACKGROUND
In this section, the primary background of the techniques
utilized in this research is intended to be explained. It includes
three main subsections: Neural Network (NN), Metrics,
and Signal Processing. Within each subsection, a brief
explanation and the mathematical equations associated with
each method are discussed.

A. NEURAL NETWORK
This research primarily leverages LSTM and GRU layers and
the Sparse Categorical Cross-Entropy loss function, which
are elaborated upon in this section.

LSTM is a type of RNN that is first introduced to the
memory cells and gating mechanisms in RNN [24], [25].
There are two main variables in LSTM which are cell state
(ct ) and hidden state (ht ) which are responsible for capturing
information from the sequence units. LSTMmodel calculates
the current value of the ct using Equation 1, and the value ht
using Equation 3. It is obvious from Equation 1 that candidate
cell state (c̃t ) must be previously calculated which can be
briefly explained as the information that is assumed to be
added to the ct , see Equation 2.

ct = ft ⊙ ct−1 + it ⊙ c̃t (1)

c̃t = tanh(Wcxt + Ucht−1 + bc) (2)

ht = ot ⊙ g(ct ) (3)

Its architecture mainly contains three different control
gates which are input (it ), forget (ft ), and output (ot ) [26]. The
equations of these gates are displayed below in Equation 4,
Equation 5, and Equation 6, respectively.

it = σ (Wixt + Uiht−1 + bi) (4)

ft = σ (Wf xt + Uf ht−1 + bf ) (5)

ot = σ (Woxt + Uoht−1 + bo) (6)

GRU can be considered as a type of RNN architecture
that is used to make sequential data processing tasks. It is
first introduced to be able to capture features/dependencies
of the recurrent units based on different occurrences [27].
In short, GRU is known for its efficiency and ability to capture
long-range dependencies in sequences. The internal structure
of GRU has two gates: the reset gate (rt ) and the update gate
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(zt ) [28]. The first one decides whether to forget or to keep
the information from the previous state, see Equation 8. The
other gate is responsible for controlling the mixing process
between the previous and new states, see Equation 9. It is
clear that the sigmoid function is used in both Equation 8
and Equation 9 as it adds the capability to gates to whether
keep or forget the information as it gives a value between
0 and 1, see Equation 7. There are two more important
concepts which are hidden state (ht ) and candidate activation
(h̃t ). The hidden state can be thought of as the memory that
can encode information from previous units, see Equation 10.
GRU uses it to make predictions on the current unit. On the
other hand, candidate activation is the information that is used
by GRU to update the current (ht ), see Equation 11.

σ (x) =
1

1 + e−x
(7)

rt = σ (Wrxt + Urht−1) (8)

zt = σ (Wzxt + Uzht−1) (9)

ht = (1 − zt )ht−1 + zt h̃t (10)

h̃t = tanh(Wxt + U (rt ⊙ ht−1)) (11)

In the previous equations, 2 and from 8 to 11, xt is the input
at time step t,W andU are the trainable parameters (weights),
ht−1 is the previous hidden state, ⊙ is an element-wise
multiplication, and tanh is the hyperbolic tangent function
which is used as the activation function for GRU. In general,
LSTM and GRU models can be used as classifiers, as they
are used in the current research, and as forecasters as they are
used in other research [29].

Sparse Categorical Cross entropy is a commonly used loss
function inML, particularly in deep learning andNN training.
It is primarily used for classification tasks when the target
values are provided as integers representing class labels. Its
working principle is built on computing the cross-entropy for
each data point by comparing the predicted class probabilities
to the true class label. Its mathematical formula is represented
in Equation 12 below.

L(y, ŷ) = −
1
N

N∑
i=1

log

(
eŷi∑C
j=1 e

ŷj

)
(12)

where L(y, ŷ) represents the loss value, N is the number of
samples or data points, C is the number of classes, i iterates
over the samples (from 1 to N), j iterates over the classes
(from 1 to C), y_i represents the true class label (an integer)
for the i-th sample, ŷi represents the predicted probability
distribution over classes for the i-th sample.

B. EVALUATION METRICS
In general, there are four main metrics used to evaluate
ML classification models: accuracy, precision, recall, and F1
score [30]. Accuracy, as shown in Equation 13, is one of the
most important metrics that represent the number of correct
predictions (True Positives (TP) and True Negatives (TN))
divided by the total number of predictions (the sum of TP, TN,

False Positives (FP), and False Negatives (FN)). Furthermore,
precision is a metric that measures the number of TP of
the target class made by the model, as seen in Equation 14.
Another metric is Recall, which assesses the model’s ability
to find all the correct samples of the target class, as described
in Equation 15. Sometimes, recall and precision alone may
not provide accurate results. In such cases, the F1 scoremetric
can be used, which is calculated by taking the harmonic mean
of Precision and Recall [31], [32], as shown in Equation 16.

Accuracy =
TP + TN

TP + TN + FP + FN
(13)

Precision =
TP

TP + FP
(14)

Recall =
TP

TP + FN
(15)

F1 Score =
2 × Precision × Recall
Precision + Recall

(16)

C. SIGNAL PROCESSING
The arbitrary signal is a signal without a specific pattern,
thereby no way to describe it [33]. On the other hand, the
mean and variance, see Equations 17 and 18, respectively,
of stationary signals do not change over time [34].

µ =
1
N

N∑
i=1

xi (17)

σ 2
=

1
N

N∑
i=1

(xi − µ)2 (18)

where µ is the mean, N is the number of values in the data,
Xi is an individual value in the data, i is the iteration number
over data ranges from 1 to N , and finally σ 2 is the variance
Another important concept is sampling frequency which

refers to the rate at which the samples of a signal are captured.
In addition, the Nyquist Theorem states that to be able to
reconstruct a signal, the used sampling frequency must be at
least twice the highest frequency component in the original
signal.

The main purpose of Fourier Transform (FT) is to give
frequency information from the time domain signal. Its
equation is represented in equation 19. However, it does not
provide this information with its existence time. Thus, it is
nearly useful in stationary signals, signals whose values are
constant over time.

F(w) =

∫
∞

−∞

f (t) · e−iwtdt (19)

To pass this insufficiency, the Short-Time Fourier Trans-
form (STFT) is developed with the intention that the
time-frequency representation is provided. Its main process
is done by assuming some parts of the signal as stationary
parts, splitting them implementing the window function, and
then adding them up by calculating their FT, see Equation 20.

F(τ,w) =

∫
∞

−∞

f (t) · w(t − τ ) · e−iwtdt (20)
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The window function of STFT is marked with w(t − τ ),
translation/time localization parameter is used as τ . The only
difference between the equations of FT and STFT is that in
STFT there is onemultiply part which is thewindow function.

Another type of Fourier transform is the Fast Fourier
Transform (FFT). During this research, FFT is utilized for
stationary signals. Unlike FT which is used for continu-
ous signals, FFT is utilized for discrete signals, refer to
Equation 21. Another advantage related to optimization
enhancement is that computation reduction can be obtained
using FFT as well.

X [k] =

N−1∑
n=0

x[n] · e−j(2π/N )kn (21)

Here, X (k) represents the k-th frequency component in the
frequency domain, x(n) is the input signal in the time domain,
N is the number of samples in the input signal, and j is the
imaginary unit.

The only filter used while preparing the data is the Wiener
filter. It can be briefly considered as a filter that is used
to effectively enhance signals and images by reducing their
noises [35], [36]. The main equation of the Wiener filter is
shown below in Equation 22

H (f ) =
Sxy(f )
Sxx(f )

(22)

where H (f ) is the frequency domain representation of the
Wiener filter, Sxy(f ) is the cross-power spectral density
between the desired signal and the observed signal, and Sxx(f )
is the power spectral density of the observed signal.

As a normalization method, z-score technique is used. Its
equation is shown in Equation 23. This method, in general,
plays an important role in increasing the convergence rate
of the NN and decreasing the needed number of epochs to
complete the train process [37].

z =
x − µ

σ
(23)

where z is the z-score (standard score) of the input value, x is
the original input data point, µ is the mean of the data, and σ

is the standard deviation of the data.

IV. SYSTEM ARCHITECTURE
The preprocessing stages and the proposed methodology
of this project are prominently illustrated in Figure 1. The
architecture begins at the top with electrical instruments and
an electrical motor. The motor continuously generates ten
different time-series data while it is running. These data
are then collected and loaded into a database, specifically
the MaFaulDa database. Starting from this point, the
preprocessing stages commence by verifying whether these
data sequences are stationary or not. Based on the stationary
check, the spectrum of the stationary data is obtained using
the FFT, while the spectrum of the non-stationary data is
acquired using the STFT. Subsequently, both results from
these transformations pass through a new preprocessing

stage: sampling. This step is taken because the spectrum
of the data contains a significant dead band that lacks
important information, it is shown in the Implementation
details section. Sampling reduces the data’s range, thereby
enhancing the training process. Next, a Wiener filter is
applied to reduce noise in the data which improves the quality
of the data. Following this, the data are normalized using z-
score normalization, which scales all the data to have a zero
mean and a standard deviation of 1. This indirectly impacts
the model training process, enhancing model convergence
and improving generalization. After normalizing the data,
it is split into two main parts: training and validation, and
test, with ratios of 90% and 10%, respectively. As a result,
the model was trained and validated on 1747 samples, and
finally, it was tested on 194 samples. The training data
are then used to teach the model the specific patterns of
each fault. Moreover, the model is validated using 5-fold
cross-validation with 80% and 20% of data for training
and validation steps, respectively. Additionally, the model
is fed validation data to monitor and assess the training
process. The final data, test data, is employed to evaluate the
model’s performance when presented with new data. If the
model’s result indicates no fault, the process loops back to
the database, and the same procedure is repeated; otherwise,
the detected fault triggers an alarm.

The proposed model’s structure, see Figure 2, is inspired
by the Thyristor structure, which combines a four-layer
semiconductor device, consisting of alternating P-type and
N-type materials (PNPN) [38]. It primarily consists of two
RNN layers: GRU and LSTM, with a Fully Connected (FC)
or dense layer between them and a final output FC layer. The
first layer is the GRU layer, comprising 512 neurons with
a tanh activation function. The choice of GRU as the first
layer, rather than LSTM, is based on its simpler structure,
efficiency in mitigating over-fitting, and ability to capture
short-term dependencies. The second layer of ourmodel is FC
with 128 neurons and ReLU activation function. This layer is
pivotal in our classification problem, responsible for feature
aggregation, non-linearity through ReLU activation, and
improving class-specific patterns by encoding relationships
between extracted features and classes. The result from this
FC layer is then fed to the LSTM layer, which contains
half the number of neurons compared to the GRU layer
but uses the same activation function. LSTM helps handle
long-term dependencies and deal with data noise. Lasso
regression regularization (L1) with a 0.0025 value is applied
within this layer to avoid over-fitting. The final layer is an
FC layer with ten neurons, corresponding to the number
of classes the model is expected to predict. Each neuron
provides a probability related to its input class, and the highest
probability determines the model’s prediction. Thus, this
layer facilitates the classification decision. An overview of
our proposed model’s internal structure is stated in Table 1.
This table can be interpreted as follows: the first column,
Layer (type) contains the name of each layer. In the output
shape column, the first item of the tuple represents the batch
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FIGURE 1. Project main architectural framework.

FIGURE 2. The internal structure of the proposed model.

TABLE 1. Proposed model structure overview.

size, which is not explicitly given in the model summary as
it depends on the training batch size, the second item of the
tuple represents the length of the output sequence data, and
the third one represents the number of neurons of that layer.
Finally, the Parameters column shows the number of trainable
parameters per layer.

The hyperparameters of the proposed model and their
values are drawn in Table 2. They include learning rate,
epochs, batch size, optimizer, GRU and LSTM activation

TABLE 2. Key hyperparameters of the proposed model.

functions, dense activation function, Dense_1 activation
function, L1 regularization, loss function, and used metric.
Subsequently, the proposed model comprises 1,264,266
trainable parameters, making it a relatively lightweight
model.

V. MaFaulDa DATABASE
This research is built on open-source data, taken from the
MaFaulDa database. The system used to collect this data is
prepared by first collecting vibration data using two different
accelerometers in three different directions: axial, radial, and
tangential. Moreover, there is a tachometer and a microphone
equipped with the system to measure rotation frequency and
capture operating sound, respectively. As a result, the data
contains eight different features: a tachometer, underhang
bearing axial, underhang bearing radial, underhang bearing
tangential, overhang bearing axial, overhang bearing radial,
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TABLE 3. Additional information about the MaFaulDa database.

TABLE 4. Number of samples per class.

overhang bearing tangential, and microphone. One sample
from the MaFaulDa database is presented graphically in
the following section. Each captured data is collected using
a 50 kHz sampling rate over a 5-second time interval.
Additional information related to the sampling rate, time
interval, frequency range, motor power, rotor speeds, and
diameter is stated in Table 3.

The MaFaulDa database mainly contains four different
classes; the first one is normal operation and the other
three are faults, unbalance, misalignments, and bearings.
The last two faults have subcategories which are Horizontal
and vertical for misalignments, and underhang and overhang
for bearing faults as well. Leading to 6 overall categories.
However, in this research, the cage, outer race, and ball faults
of both overhang and underhang bearing faults are treated as
separate categories. Therefore, this research is one of the few
kinds of research that is implemented to detect 10 different
situations related to MaFaulDa. The number of samples of
each class is represented in Table 4, with 1951 total samples.

VI. IMPLEMENTATION DETAILS
In general, before starting any signal analysis, a thorough
understanding of the given signals is paramount. Among the
crucial aspects is grasping the signals’ temporal nature, and
how they change over time.

To determine whether the given signals exhibit stationarity
or non-stationarity, the mean and variance approach is
employed. By splitting each signal into 10 equal parts,
25k samples each, the mean and variance of each segment
are independently calculated. If the difference between
maximum and minimum variances is greater than 10,
we consider this signal as the non-stationary signal. The

TABLE 5. Non-stationary signal samples.

FIGURE 3. Sample of non-stationary data related to microphone feature
obtained from (underhang/cage_fault/20g/60.6208.csv) data file.

calculations reveal that, except the stated signals in Table 5
below, all signals demonstrate stationarity. The columns of
the table can be explained as follows; Fault is the Main Fault
name, Data File is the file that contains that non-stationary
feature, Feature represents the non-stationary feature, 1 M.
is the result of max mean of the 10 different chunks minus the
min mean of the 10 different chunks minus, and 1 Var. is the
same as 1 M but for chunks’ variances.
An example of the non-stationary signal is represented

Figure 3. It is obvious from the figure that the signal
has almost zero amplitude between 13K and 68K, 110K
and 170K, and 230K and 250K, Nevertheless, the signal
amplitude fluctuates in the intervals between 0 and 13k, 68K
and 110K, and 170K and 230K. Therefore, when such a signal
is passed through mean and variance stationary check, it will
fail and it will be considered as a non-stationary signal.

The proposed processing steps, which precede the pro-
posed model, mentioned in Figure 1, are subsequently
represented in Figure 4 as separate figures. Only theworkflow
of the stationary signals is presented in this figure. The first
Figure 4, (a) shows an example of the raw stationary data
signals obtained from the MaFaulDa database. As mentioned
before, each data file consists of eight distinct signals
collected from T, OBA, OBR, OBT, UBA, UBR, UBT,
and M, all listed at the bottom of the figure as legends.
In addition, the data collected in MalFaulDa was generated
at a 50 kHz sampling rate during 5 s, leading to a total
250.000 samples for each signal which is clearly exhibited
at the x-axis of Figure 4 (a) with y-axis shows the voltage of
these signals. These signals are obtained from the vertical −
misalignment/1.90mm/51.2.csv data file.

It is evident that Figure 4 (a) contains stationary signals as
they have a specific pattern and do not change significantly
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over time. Since these are stationary signals, FFT is applied to
the data, and the results can be seen in Figure 4 (b). The length
of the transformed signals, the output of FFT or STFT, is the
same as the input, resulting in 250k output points divided into
125k for positive and 125k for negative frequencies which is
obvious from the x-axis of this figure. It is well known that
when the input data consists entirely of real numbers (not
imaginary), the obtained spectrum from FFT or STFT will be
mirrored on both the positive and negative sides. Therefore,
we decided to consider only the negative side, as shown in
Figure 4 (c), which reduced the number of samples to 125k,
thus improving the model’s performance in terms of training
time. Then, the x-axis is transformed into positive values,
as altering the sign of the x-axis values has no impact on the
underlying process. The obtained spectrum mostly exhibits
high signal strength frequencies in two different spectrum
bands: (0 - 25) kHz and (105 - 115) kHz, with a dead band
at (25 - 105) kHz. As mentioned earlier, the raw data was
generated using a 50 kHz sampling rate, resulting in a Nyquist
frequency of 25 kHz. Therefore, the data’s range of points
can be reduced by re-sampling the data using a frequency
lower than the Nyquist frequency. We decided to re-sample
the data at a 100 Hz rate, resulting in 1250 samples for each
sequence of data, as shown in Figure 4 (d). The x-axis of this
figure shows the number of samples and the y-axis displays
the range of their amplitudes. Based on this phase, the model
training time is shortened as the number of samples decreases.

To improve the quality of these signals, we decided to
reduce their noise using a Wiener filter. The Wiener filter
is applied to the data sequences to enhance their quality
by attenuating the amount of noise found inside these
signals. It is known that this filter depends on two important
parameters which are noise type and window size. The noise
of this filter is estimated as the average of the local variance
of the input, and the window size used to estimate the local
statistics of the signal is set to 10. The result of this operation
is shown in Figure 4 (e). It is evident from this figure that
small noises are filtered, and the amplitudes of the signals
are smoothed. Furthermore, the data are standardized using
the z-score normalization model to enhance the convergence
of the models, as shown in Figure 4 (f). This method is used to
handle outliers and equalize the different data scales, making
the data mean zero and their variance one. It is clear that the
amplitude (y-axis) of each signal is normalized, changing the
range of amplitudes from 0.332 and 6476.568 to -0.791 and
34.079. The normalization step is done separately on each
signal found inside each data file. Table 6 illustrates the range
of each column before and after the z-score normalization
step. It is important to note that the before range refers to
the range of the data obtained after applying the Wiener filter
step. Based on that, it is clear from Figure 4 (f) that the
microphone signal created a new peak exactly at 1100 Hz
frequency. Actually, the microphone signal has a peak at
this frequency, however, it is not clear in the previous
figures as it is less than the other peaks. This occurred
due to the z-score normalization of the microphone signal,

FIGURE 4. Subsequent preprocessing phase over the data found inside
(verticalmisalignment/1.90mm/51.2.csv file): (a) Sample of the original
data, (b) Sample of the data after applying FFT, (c) Sample of the data
after applying one side FFT (taking only the negative side by transforming
its sign into positive), (d) Sample of the data after re-sampling with the
mean of 100 samples chunk, (e) Sample of the data after applying Wiener
filter, (f) Sample of the data after applying Z-score normalization.

which can be mathematically proven. For the microphone
signal at a frequency of 1100, the value is 34.0796, with a
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TABLE 6. Data column ranges before and after z-score normalization.

FIGURE 5. Sample of one microphone signal after applying all
preprocessing steps.

mean of 2.8422e-17 and a standard deviation of 1. Using
Equation 23, the obtained z-score for this frequency is 34.066,
as clearly depicted in Figure 5, which specifically displays the
microphone signal after the normalization step.

As a result of these subsequent prepossessing steps, the
signals in Figure 4 (f) are obtained, which are the data
intended to be fed to the proposed model.

VII. NUMERICAL AND MEASUREMENT RESULTS
In this section, we provide a comprehensive presentation of
the experimental results, which encompass cross-validation
architecture and its results, training and validation accuracies
and losses, as well as a detailed analysis of the confusion
matrix. Furthermore, we conduct an ablation study, involving
six distinct operations, to explain the individual significance
of each component within the proposed model. Previously,
the main structure of the model is described in Figure 2,
and its layers and their internal structures are mentioned
in Table 1, and an overview of the proposed models’
hyperparameters is presented in Table 2. The proposed
model is firstly trained and validated using 90% of the data,
reserving 10% for testing. As it can be noticed from Figure 6
the training and validation processes are implemented using
a 5-fold cross-validation process.

As a result, at each iteration, the data are divided into
5 parts: 4 parts for training and one part for validation, each
part containing 20% of the data. This arrangement results in
80% of the 90% of the data being used for training, and the
remaining 20% for validation. Hence, during each iteration,
the data for the training and validation processes keep
changing, which allows for a clear assessment of the model’s
robustness five different times. The obtained validation
accuracies are 100.0%, 99.7143%, 99.4269%, 99.4269%,
and 99.4269%. respectively. Their losses are 0.8173, 0.8248,

FIGURE 6. The architecture of a 5-Fold cross-validation approach.

0.8265, 0.8211, and 0.8277, respectively. As a consequence,
the average validation accuracy is 99.599% with a standard
deviation of +- 0.2293. As a result, the proposed models’
overall train-validation-test accuracies are 99.87%, 99.599%,
and 99.48%, respectively.

In addition, the training and validation accuracy, along
with the loss over epochs for each iteration, are visually
represented in Figure 7, where part (a) corresponds to
accuracy and part (b) to loss. The training processes are
presented in blue, while the validation processes are indicated
in red. It is apparent from Figure 7 that the proposed
model exhibits remarkable consistency in its performance
across different training and validation data, demonstrating
its ability to achieve high accuracy and maintain low loss at
each iteration. At the same time, it is evident that the model
is trained over a smooth period and the model was learning,
not memorizing, general features, as every increase in the
training accuracy led to an increase in the validation accuracy
and every decrease in the training loss is accompanied with
a decrease in the validation loss. Moreover, it is obvious
from the figure that the training loss was always under the
validation one. This leads to the fact that the models’ layers
and their hyperparameters are precisely selected. As a result,
it can be deduced that the proposed model is resilient to both
underfitting and overfitting problems.

The confusion matrix of the obtained results is shown in
Figure 8, which can be considered as a matrix that illustrates
the number of correct and incorrect predictions for each class.
Both the x-axis and y-axis of this matrix are the same and
they show the name of the predicted classes. It is obvious that
the model has a significant number of truly predicted values
based on each class. It can completely predict 8 classes which
are normal (no-fault), imbalance, overhang-ball, overhang-
cage, overhang-outer race, underhang-ball, underhang-outer
race, and underhang-cage. However, it onlymade onemistake
as it predicted one sample of horizontal misalignment fault as
a vertical misalignment fault.

Overall, the proposed model achieved an impressive
accuracy of 0.9948, f1 score of 0.9949, precision of 0.9951,
and recall of 0.9948 on the entire data. Table 7 provides
a more detailed breakdown of the model’s performance on
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FIGURE 7. 5-Fold cross-validation results: (a) 5-fold cross-validation
accuracy, (b) 5-fold cross-validation Loss.

FIGURE 8. Output confusion matrix.

each class, including precision, recall, f1-score, and support
(number of samples). This table shows that the model
performs exceptionally well on all classes, with precision
and recall scores consistently above 0.99. This suggests that
the proposed model is able to accurately classify all of the
different situations in the data.

Furthermore, the performance and importance of each
component of the proposed model are solely investigated by
conducting an ablation study. This involves removing some
components while keeping others [39]. This is achieved by

TABLE 7. Metric results for each class.

TABLE 8. Ablation study considered situations.

applying six different processes, as stated in Table 8, while the
seventh process corresponds to the proposed model with all
its components. It is clear that the FC2 layer is present in each
process as it standardizes the parameters to match the number
of predicted classes, 10 outputs. In the second and fourth
situations, only LSTM and FC2 or LSTM, FC1, and FC2
are considered, and the obtained accuracy is the worst with
equal accuracy, 95.36%. However, the trainable parameters
in the fourth situation are bigger with no improvements in
performance, making it the worst situation considered. When
considering the first situation, only GRU and FC2 layers,
the model achieved 97.42% accuracy. When the FC1 layer is
added to the GRU and FC2 layers, the accuracy is enhanced
to 98.97%, as it increases both the non-linearity and the
feature combination operations. This can be considered as
high accuracy, but it is lower than the achieved accuracy
in different studies. On the other hand, adding an LSTM
layer to the third situation leads to the fifth situation, where
the accuracy is enhanced a little bit to 97.94% with almost
double the number of complexity, which means double the
training time. In the sixth situation, the GRU, FC1, LSTM,
and FC2 layers are included, and the accuracy is only 0.9845,
as the model’s complexity is increased, and the model starts
memorizing specific features. Based on that, L1 is added
to the sixth situation, which is the proposed model. The
model training process is enhanced as the model tries to focus
on important features, moving away from specific features.
The accuracies and losses of each situation are presented
in Figure 9 (a) and (b), respectively. It is evident that the
model, with its complete structure, exhibits the most relevant
accuracy and loss charts, as they both increase and decrease
smoothly. This suggests that the model consistently learns
information with each epoch.

Consequently, the proposed model significantly outper-
forms all state-of-the-art models in terms of accuracy,
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FIGURE 9. Ablation study results: (a) Considered model accuracy,
(b) Considered model loss.

TABLE 9. Comparison with the state-of-the-art.

as shown in Table 9. This table consists of four different
columns which provide detailed information on the publi-
cation reference, the model used, the number of classified
situations, and the obtained accuracies for each model,
respectively. Apparently, the CNN-FRP, LSTMmodel in [22]
achieves the closest accuracy to the proposed model, but
it can only classify 4 different situations. In contrast, the
proposed model can classify 10 different situations, which
is the highest number of classifications reported in any
publication, except [16]. This is a significant achievement,
as it demonstrates that the proposed model is more accurate
and versatile than any other model previously proposed for
this task.

VIII. CONCLUSION
In summary, this research introduces a specially prepared
RNN model for classifying 10 different motor faults using
time-series data from the MaFaulDa database. The proposed
model uses dual RNN layers which are GRU and LSTM
with 512 and 256 neurons, respectively. These two layers
are connected through an FC layer containing 128 neurons.
The L1 regularization is applied over LSTM as well. Specific

prepossessing steps such as using re-sampling technique,
Wiener filter, and z-score normalization are applied on the
original data. The model achieves impressive accuracy with-
out data augmentation, outperforming other publications with
train-validation-test accuracies of 99.87%, 99.599%, and
99.48%, respectively. This signifies the model’s robustness
and effectiveness in motor fault classification, with an overall
accuracy of 99.48%, an F1 score of 0.9949, a precision of
0.9951, and a recall of 0.9948. In future work, the proposed
models’ complexity, and number of parameters, could be
reduced. Moreover, the proposed model could be expanded to
classify the subcategories, weights, and amounts of each fault
as separate classes, thus increasing the number of identifiable
classes from 10 to 42.
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