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Abstract

Ion Correlations and Transport in Li-Ion Battery Electrolytes

by

Kara Danielle Fong

Doctor of Philosophy in Chemical Engineering

University of California, Berkeley

Professor Kristin A. Persson, Co-chair

Professor Bryan D. McCloskey, Co-chair

Li-ion batteries are among the leading technologies for electric vehicles and grid-scale re-
newable electricity storage, making them a crucial element in building a sustainable energy
future. The performance of current Li-ion batteries is limited in large part by the properties
of the electrolyte, which is responsible for transporting ions through the battery. Sluggish
motion of Li-ions through the electrolyte restricts the rate at which the battery can be
charged or discharged and lowers the energy efficiency of the system. Design of improved
electrolyte formulations is hindered by our inability to connect our theoretical understanding
of electrolyte transport across length scales, that is, to relate the macroscopic transport be-
havior probed experimentally to the molecular-level mechanisms governing ion motion. The
most commonly used theories to describe continuum-level electrolyte transport, namely the
Stefan-Maxwell equations, yield transport coefficients which lack clear physical interpreta-
tion at the atomistic level and cannot be easily computed from molecular simulations. This
presents significant challenges in deciphering the mechanisms of ion motion from experimen-
tal measurements and understanding the physical phenomena that may be limiting battery
performance.

Herein, we present the theoretical development and application of the Onsager transport
framework to analyze transport at both the continuum and molecular levels. We discuss the
integration of continuum mechanics, nonequilibrium thermodynamics, and electromagnetism
to derive the governing equations of irreversible thermodynamics in electrolytes, including
balance laws and internal entropy production. These relations yield the Onsager transport
equations: linear laws relating the electrochemical potential gradients and fluxes of each
species in solution. At the atomistic level, the transport coefficients emerging from this
theory directly quantify ion correlations in the electrolyte; we show how these transport
coefficients may be computed directly from molecular simulations using Green-Kubo rela-
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tions derived from Onsager’s regression hypothesis. At the continuum level, the Onsager
transport framework provides the governing equations for solving macroscopic boundary
value problems in an electrochemical cell. We demonstrate how the theory presented here
may be directly related to existing frameworks for continuum-level modeling such as the
Stefan-Maxwell equations and the Nernst-Planck equation for transport at infinite dilution.
We further relate the Onsager transport coefficients to experimentally-measurable quantities
such as the conductivity, transference number, and salt diffusion coefficient.

We demonstrate application of the Onsager transport framework by investigating the trans-
port properties of potential next-generation battery electrolytes. In conventional batteries,
the energy and power densities are limited by electrolytes with low Li-ion transference num-
bers (t+), in which the majority of the electrolyte conductivity comes from motion of the
anion, rather than the electrochemically-active Li-ion. Nonaqueous polyelectrolyte solutions,
in which anion motion is slowed through covalent attachment to a polymer, have been re-
cently suggested as high transference number alternatives to conventional Li-ion battery
electrolytes. Initial experimental evidence on these nonaqueous polyelectrolyte solutions has
been promising, with transference numbers reported to be at least twice that of conventional
battery electrolytes. These experimental transference number measurements, however, are
typically based on ideal solution approximations, i.e., the assumption that there no corre-
lations between ions. Prior to this work, we lacked insight into the extent to which these
assumptions hold for polyelectrolytes as well as the true transference number of these solu-
tions. The non-idealities (ion correlations) contributing to the true transference number are
very challenging to quantify experimentally yet are easily accessible through molecular dy-
namics simulations via the theoretical framework presented herein. Using this framework, we
demonstrate that ion correlations are substantial in polyelectrolytes such that the rigorously
computed transference number is actually lower than that of a conventional electrolyte.
These efforts have thus suggested that — contrary to intuition — nonaqueous polyelec-
trolytes may not be promising for next-generation batteries, and they more broadly call into
question some of the conventional paradigms employed for understanding and characterizing
transport in polyelectrolytes. In this work, we first present detailed characterization of a
specific polyelectrolyte which had been presented in the literature as particularly promis-
ing based on experimental ideal solution approximations. We subsequently construct a more
general simulation model, which is agnostic to any specific polymer chemistry, and show that
these surprising results hold universally across a broad range of polyelectrolytes. Finally, we
present perspectives on how analyzing ion correlations in this manner has the potential to
yield valuable insights across a wide class of electrolytes for energy storage applications.



i

Contents

Contents i

List of Figures iii

1 Introduction 1
1.1 Li-ion battery electrolytes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Theories for electrolyte transport . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Central contributions of this work . . . . . . . . . . . . . . . . . . . . . . . . 5
1.4 Dissertation outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Continuum Mechanics and Linear Irreversible Thermodynamics of Elec-
trolyte Solutions 7
2.1 Balance laws . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Linear constitutive relations and linear irreversible thermodynamics . . . . . 25

3 Nonequilibrium Statistical Mechanics of Ion Transport 30
3.1 Green-Kubo relations: Derivation based on the Onsager regression hypothesis 30
3.2 Linear response theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4 Contextualization of the Onsager Transport Framework 38
4.1 Physical interpretation of the Onsager transport coefficients . . . . . . . . . 38
4.2 Relating various frameworks for electrolyte transport . . . . . . . . . . . . . 41
4.3 Relation to experimentally-relevant quantities . . . . . . . . . . . . . . . . . 49
4.4 Governing equations for mass transport . . . . . . . . . . . . . . . . . . . . . 55
4.5 Applications to a model electrolyte: LiCl in dimethyl sulfoxide . . . . . . . . 56

5 Nonaqueous Polyelectrolyte Solutions for Lithium Ion Batteries 60
5.1 Li-ion batteries and the cation transference number . . . . . . . . . . . . . . 60
5.2 Structural properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
5.3 Dynamic properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

6 Onsager Transport Coefficients and Transference Numbers in Polyelec-
trolyte Solutions 75



ii

6.1 Onsager transport coefficients in a coarse-grained polyelectrolyte model . . . 76
6.2 Transference numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
6.3 Extension to polymerized ionic liquids . . . . . . . . . . . . . . . . . . . . . 82

7 Conclusions 86
7.1 Dissertation summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
7.2 Perspectives on the importance of ion correlations in electrolyte transport . . 87
7.3 Recommendations for future work . . . . . . . . . . . . . . . . . . . . . . . . 97

Bibliography 99

A Supplementary Thermodynamic Derivations 120
A.1 Thermodynamic potentials . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
A.2 Gibbs equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
A.3 Concentration fluctuations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
A.4 Gibbs-Duhem equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

B Methods 126
B.1 Methods associated with Chapter 4 . . . . . . . . . . . . . . . . . . . . . . . 126
B.2 Methods associated with Chapter 5 . . . . . . . . . . . . . . . . . . . . . . . 127
B.3 Methods associated with Chapter 6 . . . . . . . . . . . . . . . . . . . . . . . 135



iii

List of Figures

4.1 Schematic illustration of the types of ion motion and correlations captured by
each transport coefficient Lij. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.2 Transport coefficients for LiCl in DMSO solutions. . . . . . . . . . . . . . . . . . 56
4.3 Conductivity of LiCl in DMSO . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.4 Mobility and transference numbers of LiCl in DMSO. . . . . . . . . . . . . . . . 58

5.1 Properties of the PAGELS polyelectrolyte. . . . . . . . . . . . . . . . . . . . . . 61
5.2 Ion speciation trends. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
5.3 Polymer structure as a function of concentration. . . . . . . . . . . . . . . . . . 66
5.4 Comparison of calculated dynamic properties with experimental values. . . . . . 67
5.5 Characterization of lithium ion diffusion mechanisms. . . . . . . . . . . . . . . . 69
5.6 Transport coefficients for PAGELS in DMSO. . . . . . . . . . . . . . . . . . . . 72
5.7 Mobility and transference numbers of PAGELS in DMSO . . . . . . . . . . . . . 73

6.1 Transport coefficients as a function of chain length for a concentration of 0.01 σ−3. 77
6.2 L−−

distinct/c split into contributions from anion-anion correlations within chains and
between chains. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

6.3 Stefan-Maxwell coefficients Kij for polyelectrolyte solutions . . . . . . . . . . . 79
6.4 Cation transference number as a function of chain length. . . . . . . . . . . . . . 80
6.5 Comparison of anion transport coefficients for each concentration and chain length. 81
6.6 Ion pairing analysis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
6.7 Transport data for the solvent-free solution. . . . . . . . . . . . . . . . . . . . . 84
6.8 Transport coefficients for the solvent-free system as a function of chain length,

split into self and distinct terms . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

7.1 Demonstration that ion correlations in an electrolyte, as quantified by the ionicity,
correlate well with the relaxation time of ion clusters . . . . . . . . . . . . . . . 90

7.2 Design rules for minimizing L+− . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
7.3 Ionic conductivity as a function of host polymer dipole strength. . . . . . . . . . 97

B.1 Transport data for simulations using one versus two polymer chains . . . . . . . 129
B.2 Lithium-sulfur radial distribution functions and coordination numbers . . . . . . 130



iv

B.3 Representative examples of the linear behavior required to calculate (a) diffusion
coefficients and (b) ionic conductivity. . . . . . . . . . . . . . . . . . . . . . . . 132

B.4 Short-time behavior of the polymer center of mass mean-square displacement . . 133
B.5 End-to-end vector analysis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
B.6 Representative examples of data used to compute Lij and Lii

self . . . . . . . . . . 139
B.7 Representative cation-anion radial distribution functions . . . . . . . . . . . . . 140



v

Acknowledgments

I have had the honor of working with an incredible group of research mentors who have made
my time at Berkeley so meaningful and formative. My advisors, Prof. Kristin Persson and
Prof. Bryan McCloskey, gave me the freedom and independence to explore my interests but
were always ready to provide guidance when I needed it. Kristin has always impressed me
with the compassion with which she leads her group. She has taught me that a good advisor
supports not only her students’ intellectual growth, but also their mental and emotional
well-being. Bryan has been a tremendous advocate for me over the years, and I greatly
admire the genuine care and intentionality he puts into mentoring his students. He has been
the calm voice of reason throughout the most stressful periods of graduate school and the
faculty interview process.

Beyond my official advisors, one of the highlights of my PhD was working closely with
Prof. Kranthi Mandadapu. Kranthi pushed me intellectually in ways that nobody had be-
fore and deeply changed my scientific philosophy. All of our long work sessions discussing
(arguing) about electrolyte transport helped me build the confidence to defend my scientific
ideas and were greatly impactful in influencing the work I want to do post-PhD.

I would also like to thank all of the members of the Persson Group and McCloskey
Lab. Much of my doctoral work was done in collaboration with Julian Self, who has taught
me a lot over the years about the battery field and computational chemistry. I have also
thoroughly enjoyed interacting with my experimentalist counterparts on the polyelectrolyte
project, Helen Bergstrom and Kyle Diederichsen, who have helped make sure my simulations
always have some connection to experimental reality. I’d additionally like to acknowledge my
undergraduate mentees, Lexi and Rachael, for helping me develop my skills and experience
as a mentor.

My doctoral work would not have been possible without the support of all my friends.
I am so grateful for the community in my research groups and in the CBE department as
a whole, which have made grad school an enjoyable experience even when research progress
was slow. I would like to specifically thank Nat, Helen, Ahmad, Oxana, Handong, Lori,
Sarah, and Lance.

I am also incredibly grateful for my family, who patiently supported me through both the
highs and lows of my PhD experience. They gave me the foundation I needed in graduate
school by instilling in me an excitement for learning and the work ethic necessary to succeed.
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Chapter 1

Introduction
1

1.1 Li-ion battery electrolytes

Lithium ion batteries (LIBs) are ubiquitous in applications ranging from electric vehicles
to electric grids and consumer electronics. The increasing importance of this technology in
society necessitates the development of batteries which charge faster, store more energy, and
persist over longer lifetimes. Achieving these goals and developing next-generation battery
technologies will likely require substantial advances in all components of the battery, from
the cathode and anode chemistries to the cell design and manufacturing procedures. In this
work, we focus on the electrolyte, which constitutes a major bottleneck in the performance
of current battery technologies.

The electrolyte of a battery determines the rate at which ions can move across the cell and
is thus a key determinant of the attainable charging and discharging rate of the battery. An
ideal LIB electrolyte will have high ionic conductivity (κ), which allows for facile transport of
ions through solution and minimizes ohmic resistance in the cell. Beyond the conductivity,
the performance of a battery is additionally impacted by the cation transference number of
the electrolyte (t+), defined as the fraction of of the total conductivity attributed to motion of
the cation, as opposed to the anion [2]. In a LIB, where the cation is the electroactive species,
it is desirable to have a high value of t+ (close to one). When t+ is below unity, migration of
the mobile anionic species results in the formation of concentration gradients, which generate
additional overpotential in the cell. During battery discharging these concentration gradients
deplete the population of ions in the porous cathode material, such that at sufficiently high
discharging rates the concentration of Li+ at the electrode surface may reach zero and cause
the cell to fail. During the charging process, concentration gradients facilitate lithium plating
at the anode [3], which can lead to degradation of the battery’s performance or short-circuit of
the device. Collectively, these phenomena associated with low t+ severely limit the attainable

1Portions of this chapter are adapted from Ref. [1]: Fong, K. D., Bergstrom, H. K., McCloskey, B. D.
& Mandadapu, K. K. Transport phenomena in electrolyte solutions: Non-equilibrium thermodynamics and
statistical mechanics. AIChE Journal e17091 (2020).
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energy density and rate capability of the battery.
The impact of low cation transference number on battery performance has been quantified

by continuum-level simulations: Doyle, Fuller, and Newman [4] have modeled cells with a
polymer-based electrolyte and lithium metal electrodes and found that increasing the cation
transference number from 0.2 to 1 resulted in substantial improvements in cell performance,
even when the conductivity was decreased by an order of magnitude. These improvements
were particularly pronounced at high discharge rates. Diederichsen et al. [3] have extended
these simulations to study cells with porous graphite and LiCoO2 electrodes, finding that even
modest increases in t+ improve the attainable state of charge of the battery. Unfortunately,
increasing the cation transference number typically decreases the total ionic conductivity.
This challenging tradeoff between κ and t+, as well as other transport parameters which
impact battery performance, will be explored in more detail herein.

State-of-the-art LIB electrolytes have been optimized to balance the aforementioned
transport properties with a diverse set of additional factors such as cost, safety, and sta-
bility [5]. These conventional formulations consist of a lithium salt, a mixture of carbonate-
based solvents, and a collection of stabilizing additives [6]. The lithium salt is chosen such
that it readily dissociates in solution and is stable against (electro)chemical decomposition;
lithium hexafluorophosphate (LiPF6) is the standard choice. The solvent mixture typically
includes ethylene carbonate (EC), which contributes to the formation of a stable solid elec-
trolyte interphase and possesses a high dielectric constant, and a linear carbonate such as
dimethyl carbonate, diethyl carbonate, or ethyl methyl carbonate. While these linear car-
bonates have a very low dielectric constant, they possess a much lower viscosity than EC,
which facilitates more rapid ion transport through the electrolyte. These solvents are not
generally electrochemically stable under the operating voltages of a battery, and their degra-
dation can limit the long-term stability of the cell. To address this challenge, it is common
practice to add a small quantity of sacrificial additives, such as vinylene carbonate and flu-
oroethylene carbonate, which react at the electrode to form a stable interface [7, 8]. These
standard electrolyte formulations have sufficiently high ionic conductivity (typically on the
order of 10 S/cm), but they suffer from low cation transference numbers near 0.4 [9].

Notably, while the field has witnessed rapid development of new chemistries for other
battery components such as the cathode in the past two decades, the central components
of the industry-standard electrolyte have remained largely unchanged [10]. Work in recent
years, however, has given rise to new frontiers in electrolyte research aimed towards producing
systems with favorable properties ranging from facile Li-ion transport to non-flammability,
mechanical robustness, and improved electrochemical stability [5]. These include polymer
or gel-based electrolytes [11, 12], inorganic solid electrolytes such as ceramics and glasses
[13,14], and superconcentrated or solvent-in-salt systems [15,16]. The development of these
research-stage electrolytes, many of which possess unconventional transport mechanisms,
has drawn our attention to the complexities of ion transport in electrochemical systems and
the glaring gaps in our fundamental understanding of these processes. Realizing optimized
electrolyte formulations for improved LIB performance is contingent on developing a deeper
understanding and more rigorous formulation of the transport phenomena governing the
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motion of charged species in solution.

1.2 Theories for electrolyte transport

Given that electrolyte solutions play a crucial role in a wide range of systems — from energy
technologies such as batteries and fuel cells to biological, geological, and medical systems —
extensive effort has been devoted to improving our theoretical understanding of electrolyte
transport. However, despite nearly a century of progress since the pioneering work of Debye,
Hückel, and Onsager [17–19], analytical models for predicting electrolyte transport properties
remain elusive, particularly at non-dilute concentrations. The complexities induced by long-
range electrostatic forces as well as short-range, specific chemical interactions create both
conceptual as well as mathematical difficulties in working towards an all-encompassing theory
for describing transport phenomena in electrolyte solutions.

The most ubiquitous framework for understanding transport of ions in concentrated elec-
trolytes is the Stefan-Maxwell equations for multicomponent diffusion [2, 20, 21], originally
derived from the kinetic theory of gases [22]. These equations relate the gradient in electro-
chemical potential µi of a species i to the velocities vj of each of the species j in solution:

ci∇µi =
∑
j ̸=i

Kij(vj − vi) , (1.1)

where ci is the concentration of species i and Kij are the Stefan-Maxwell transport coef-
ficients. These equations may be interpreted as a force balance: the thermodynamic force
acting on species i (the left side of the equation) is balanced by the frictional forces between
species i and each of the other species in solution. It is assumed that this frictional force is
proportional to the difference in velocities of the two species. The Stefan-Maxwell transport
coefficients may also be expressed in terms of binary interaction diffusion coefficients Dij as

Kij =
RTcicj
cTDij

, (1.2)

where R is the ideal gas constant, T is temperature, and cT is the total concentration of the
system.2

Alternatively, transport in electrolyte solutions can be analyzed based on the classical
theories of thermodynamics of irreversible processes developed by Onsager [23, 24], Pri-
gogine [25] and de Groot and Mazur [26]. This framework uses the rate of internal entropy
production (dissipation) to relate thermodynamic driving forces and corresponding fluxes
with a matrix of transport coefficients:

J i =
∑
j

LijXj , (1.3)

2Throughout this text, the same symbol ci will be used to denote concentration as both number per
volume and mole per volume. It is implied that concentration is in units of mole per volume when appearing
with the quantity RT , and in units of number per volume when appearing with kBT where kB is the
Boltzmann constant.
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where J i is the flux of species i, Xj is the thermodynamic driving force acting on species
j, and Lij are the Onsager transport coefficients. The forms of J i and Xj will be derived
herein.

Although both frameworks are consistent with thermodynamics and have been shown
to effectively model electrolyte transport, the less common Onsager transport framework
possesses several advantages over the Stefan-Maxwell equations. Unlike the Stefan-Maxwell
transport coefficients Kij (or Dij), the Onsager transport coefficients Lij can be computed
directly from molecular simulations using Green-Kubo relations [27, 28] (which will be de-
rived herein for multicomponent electrolyte solutions). This allows facile computation of all
transport properties even in complex solutions which are challenging to characterize experi-
mentally, such as those with multiple salt species. The Green-Kubo relations also allow direct
physical interpretation of Lij as the extent of correlation between the motion of species i and
j. The Stefan-Maxwell coefficients, Dij, however, have a less intuitive meaning and can even
diverge to positive or negative infinity under certain conditions [29], making interpretation
of transport phenomena challenging. Furthermore, the Onsager transport coefficients can
be used directly to solve boundary value problems and obtain concentration profiles in an
electrochemical system, while the Stefan-Maxwell transport matrix K must be inverted in
order to be used in this manner.

Based on these advantages, we argue that the Onsager transport equations could be-
come a simple and useful framework to study electrolyte transport, as is already the case in
other fields such as in the study of membrane permeability [30,31]. Rigorous formulation of
the Onsager transport equations for electrolytes, however, requires integration of the princi-
ples of continuum mechanics, electromagnetism, and non-equilibrium thermodynamics. We
are unaware of any work which has developed the underlying irreversible thermodynamics in
their entirety rather than addressing special limiting cases. The classic texts of de Groot and
Mazur [26]; Prigogine [25]; and Hirschfelder, Curtiss, and Bird [22] each formulate balance
laws and the corresponding forces/fluxes in fluid mixtures but do not consider the impact of
external electromagnetic fields. Katchalsky and Curran [32] and Kjelstrup and Bedeaux [33]
both present a theory for irreversible processes which accounts for electrostatic work but do
not include momentum conservation, yielding an incomplete picture of entropy production
in electrolytes. The classic text of Newman and Thomas-Alyea [2] and related works [34,35]
introduce Stefan-Maxwell and Onsager-like transport equations for electrolytes, albeit with-
out discussion of the momentum, energy, and entropy balances of continuous media upon
which these equations are built. Kovetz [36] formulates rigorous balance laws in the pres-
ence of electromagnetic fields but does not consider multicomponent systems. None of the
aforementioned existing works address problems which require coupling of electromagnetic
effects, momentum transport, and multicomponent diffusion.
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1.3 Central contributions of this work

The primary aims of this dissertation are twofold: (i) we work to develop a more complete
theory of electrolyte transport, denoted the Onsager transport framework, and (ii) we apply
this transport framework to the study of polyelectrolyte solutions, which have been recently
proposed as candidates for next-generation Li-ion battery electrolytes. The key contributions
in each of these areas are summarized below.

Theoretical development of the Onsager transport framework

By integrating the classical frameworks of continuum mechanics and linear irreversible ther-
modynamics with the theory of electromagnetism, we have formulated continuum-level gov-
erning equations for mass, momentum, and energy transport as well as entropy production
in electrolyte solutions. These equations allow us to capture the coupling of simultaneous
gradients in temperature, concentration, pressure, and electric potential, which allows for rig-
orous prediction of macroscopic transport behavior under experimentally-relevant conditions
without many of the simplifying assumptions inherent to previous theories. We furthermore
derive Green-Kubo relations to directly compute the transport parameters emerging from
these equations from molecular simulations. These equations relate the nonequilibrium trans-
port behavior of an electrolyte with flux-flux correlations at equilibrium, thereby providing a
quantitative mapping between macroscopic transport and molecular-scale ion motion. This
mapping provides a powerful lens for intuitively interpreting transport and gives physical in-
sight into the types of atomistic processes governing macroscopic ion transport. The Onsager
transport equations may further be combined to yield experimentally-measurable transport
quantities such as the conductivity and transference number. By establishing these connec-
tions, this work bridges a crucial gap between theory, simulation, and experiment in the field
of electrolyte transport.

Elucidating the nature of ion transport in polyelectrolyte
solutions for Li-ion batteries

Application of the Onsager transport framework has demonstrated critical flaws in the stan-
dard methods for experimentally characterizing transport in polyelectrolyte solutions, and it
has challenged the intuitive understanding of anionic polyelectrolytes as having high cation
transference number. Over the past several years, nonaqueous polyelectrolytes have been pre-
sented as promising high transference number alternatives to conventional LIB electrolytes:
it is thought that appending the anions of the electrolyte to the backbone of a polymer
chain will slow their motion relative to the cation, thereby increasing the cation transference
number. Experimental characterization of the transference number via the Nernst-Einstein
(ideal solution) approximation corroborates this intuition, yielding transference numbers ap-
proaching unity. By using molecular dynamics simulations to access the Onsager transport
coefficients, we have computed the rigorous transference number (accounting for solution
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non-idealities) for a range of polyelectrolyte solutions. We have established that the Nernst-
Einstein assumption as used in existing experimental works does not yield a physically
meaningful approximation for polyelectrolyte transport due the substantial anion-anion and
cation-anion correlations in these systems, and that t+ is generally lower in a polyelectrolyte
than in a conventional LIB electrolyte formulation. These results have therefore dispelled
the notion that polyelectrolytes may yield promising transport behavior for next-generation
batteries.

These computational results have directly inspired new experiments: my colleagues at
Berkeley are currently testing the theoretical predictions of this dissertation by designing
new model polyelectrolyte systems and developing methods to more accurately measure the
transference number in polyelectrolytes. Preliminary data shows strong support for the
conclusions presented herein.

1.4 Dissertation outline

This dissertation is organized as follows. Chapters 2 and 3 are devoted to the theoretical
development of the Onsager transport framework. In Chapter 2, we use Maxwell’s equations
and balance laws of mass, momentum, energy, and entropy to derive continuum-level gov-
erning equations for transport in electrolyte solutions. We then simplify these balance laws
using linear constitutive relations and introduce the diffusive transport coefficients Lij relat-
ing electrochemical potential gradients and diffusive fluxes within the system. In Chapter 3,
we build upon the results of Chapter 2 to derive Green-Kubo relations for Lij, which allow us
to compute these transport coefficients from molecular simulations. Next, in Chapter 4 we
provide contextualization for our derived transport framework by providing physical interpre-
tation for the Onsager transport coefficients and relating our expressions to other commonly
used frameworks for analyzing electrolyte transport, including the Stefan-Maxwell equations
and the Nernst-Planck equation for infinitely dilute solutions. We furthermore demonstrate
the application of the Onsager transport framework to a model electrolyte (lithium chloride
in dimethyl sulfoxide). Chapters 5 and 6 are dedicated to applying the Onsager transport
framework to polyelectrolyte solutions: Chapter 5 uses all-atom molecular dynamics simula-
tions to gain detailed insight into the structure and dynamics of an experimentally-realized
nonaqueous polyelectrolyte solution, while Chapter 6 employs coarse-grained molecular dy-
namics simulations to draw more general conclusions as to transport in oligomeric polyions
and polymerized ionic liquids. Finally, in Chapter 7 we summarize the primary contribu-
tions of this dissertation and present potential avenues for future work, in which we anticipate
applying the Onsager transport framework may be used to answer extant questions in elec-
trolyte transport. Additional thermodynamic derivations are presented in Appendix A, and
methods are presented in Appendix B.
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Chapter 2

Continuum Mechanics and Linear
Irreversible Thermodynamics of
Electrolyte Solutions

1

In this chapter, we derive the governing equations of irreversible thermodynamics in elec-
trolyte solutions. The theories here are built upon on the work of Onsager [23, 24], Pri-
gogine [25], de Groot and Mazur [26], Katchalsky and Curran [32], and Kovetz [36]. These
classical works are extended to simultaneously describe the phenomena of electromagnetism
(Maxwell’s equations) and transport of mass, linear and angular momentum, and energy.
The resulting balance laws are generally applicable for electrolytes with an arbitrary number
of components, without assuming electroneutrality. We then invoke the second law of ther-
modynamics to analyze entropy production, enabling the formulation of linear laws relating
the thermodynamic forces and fluxes within the electrolyte.

2.1 Balance laws

Mass balance

The mass balance for electrolyte solutions is identical to that of mixtures of uncharged
species. Consider a volume P with a local density ρ(x, t) at any position x and time t,
defined as the mass per unit volume. Let ρi(x, t) be the mass of species i per unit volume,
such that ρ :=

∑
i ρi. The linear momentum density of species i is given by ρivi, where vi

is the velocity of species i. Let us define the total momentum density at any point in P
as ρv :=

∑
i ρivi. The quantity v =

∑
i
ρi
ρ
vi is the mass-averaged velocity of all species.

Utilizing these definitions, the rate of change in total mass of species i in P is equivalent to

1This chapter is closely adapted from portions of Ref [1]: Fong, K. D., Bergstrom, H. K., McCloskey, B.
D. & Mandadapu, K. K. Transport phenomena in electrolyte solutions: Non-equilibrium thermodynamics
and statistical mechanics. AIChE Journal e17091 (2020).
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the flux of i in and out of the surface area of P , denoted as ∂P . This yields the global form
of the balance of mass:

d

dt

∫
P
ρidv = −

∫
∂P

ρi(vi − v) · nda , (2.1)

where n is the outward normal of surface ∂P . Based on Eq. (2.1), let the diffusive flux of
species i be defined as ji := ρi(vi − v), such that

d

dt

∫
P
ρidv = −

∫
∂P

ji · nda . (2.2)

Note that
∑

i ji = 0. Applying the Reynolds transport theorem and the divergence theorem,
we obtain ∫

P
(ρ̇i + ρi∇ · v)dv = −

∫
P
∇ · jidv , (2.3)

where the notation ˙( ) refers to the substantial or material derivative, ˙( ) = d
dt
( ) =

∂
∂t
( ) +∇( ) · v. Further simplification using the localization theorem gives the local form

of the species mass balance as

ρ̇i + ρi∇ · v = −∇ · ji . (2.4)

Alternatively, Eq. (2.4) can be expressed in terms of the concentration of species i,
ci := ρi/Mi where Mi is the molecular weight of species i, as

ċi + ci∇ · v = −∇ · (ci(vi − v)) = −∇ · J i , (2.5)

where J i := ci(vi − v). Note that J i and ji are simply related by a factor of Mi, i.e.,
MiJ i = ji.

The species mass balance can be used to obtain the total mass balance of the electrolyte.
Summing Eq. (2.4) over all species and invoking the relation

∑
i ji = 0, we obtain

ρ̇+ ρ∇ · v = 0 . (2.6)

For incompressible systems, i.e., constant density, the mass balance leads to

∇ · v = 0 . (2.7)

Charge balance and Maxwell’s equations

We now review the fundamentals of electromagnetism, generally following the philosophy of
Kovetz [36]. While most electrolyte applications will involve electroneutral systems, linear
dielectrics, and no magnetic effects, in this and the following sections we consider the most
general case of both electric and magnetic fields in a non-electroneutral dielectric with arbi-
trary polarization and magnetization. This general theory enables us to treat more complex
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electrolyte systems and allows a deeper understanding of the underlying assumptions invoked
when we do consider more conventional systems.

Much of electromagnetism is based on the key assumption that electric charge is con-
served, i.e., the charge contained in a volume P changes only via flux of charges through the
surface of the volume, ∂P . The charge conservation law can be expresed mathematically as∫

P

∂q

∂t
dv = −

∫
∂P

j̃ · nda , (2.8)

where q is the total charge density and j̃ ·nda is the total amount of charge passing through
the area element da in the direction of n per unit time. The quantity j̃ is called the
current density. Alternatively, this charge balance can be written in terms of the substantial
derivative of q as

d

dt

∫
P
qdv = −

∫
P
∇ · (j̃ − qv)dv = −

∫
P
∇ ·J dv (2.9)

where J := j̃ − qv is the conduction current density. The corresponding local form of the
charge balance law is

q̇ + q∇ · v = −∇ ·J . (2.10)

The principle of charge conservation and its invariance to coordinate transformations in
four-dimensional space-time motivates the first pair of Maxwell’s equations,

q = ∇ ·D , (2.11)

and

j̃ = ∇×H − ∂D

∂t
, (2.12)

where D and H are the charge and current potentials, respectively [36].
The second pair of Maxwell’s equations are formulated by assuming the existence of two

vector fields, the electric field E and magnetic field B, which obey the relations

∇ ·B = 0 (2.13)

and
∂B

∂t
= −∇×E . (2.14)

As the electromagnetic field is conservative, E and B can be written in terms of electric and
magnetic potentials denoted as ϕ and A, respectively, as

B = ∇×A ,

E = −∂A

∂t
−∇ϕ .

(2.15)
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For a system with no magnetic field, as is often the case in physically relevant electrolyte
applications, we may simply write E = −∇ϕ.

The two pairs of Maxwell’s equations are related by the aether constitutive relations [36],

D = ϵ0E , (2.16)

where ϵ0 is the vacuum permittivity, and

B = µ0H , (2.17)

where µ0 is the permeability.
The quantities j̃, E, and H depend on the choice of reference frame. In merging the

theory of electromagnetism with continuum mechanics, it is convenient to re-cast Maxwell’s
equations in terms of quantities that are invariant under Galilean transformations (note that
the charge, charge potential, magnetic field, and conduction current density are Galilean
invariants). For a material with velocity v, we can define the Galilean invariants E , called
the electromotive intensity, and H, the magnetomotive intensity, as

E = E + v ×B (2.18)

and
H = H − v ×D . (2.19)

In terms of these Galilean invariants, Eq. (2.12) and Eq. (2.14) become

J = ∇×H−
∗
D (2.20)

and
∗
B = −∇× E (2.21)

respectively, where we use the notation
∗
A to denote the flux derivative [36], i.e.

∗
A =

∂A
∂t

+ (∇ ·A)v −∇× (v ×A).
All of the electromagnetism equations introduced thus far provide a microscopic picture

of the system by accounting for the charge of each individual particle comprising the body.
However, when considering charges in a dielectric medium rather than in vacuum, it is
typically more convenient to decompose the total charge density of the system q into the
free charge density (qf) and bound charge density (qb). This decomposition yields

q = qf + qb (2.22)

and correspondingly

j̃ = j̃
f
+ j̃

b
. (2.23)

Equation (2.23) leads naturally to the quantities J b = j̃
b − qbv and J f = j̃

f − qfv. In
an electrolyte, free charges correspond to mobile ions in solution, while bound charges are
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those of the solvent molecules comprising the dielectric medium, which result in polarization
P and magnetization M . The quantities P and M are related to the bound charge and
current density by

qb = −∇ · P (2.24)

and

j̃
b
= ∇×M +

∂P

∂t
. (2.25)

Defining the Lorentz magnetization (a Galilean invariant) as M = M + v×P , we can also
write

J b = ∇×M+
∗
P . (2.26)

From the distinction between free and bound charge we can write the first pair of
Maxwell’s equations (Eq. (2.11) and (2.12)) in matter as

qf = ∇ ·Df , (2.27)

and

j̃
f
= ∇×H f − ∂Df

∂t
, (2.28)

where
Df = D + P (2.29)

and
H f = H −M . (2.30)

In terms of Galilean invariants, Eq. (2.28) is

J f = ∇×Hf −
∗
Df , (2.31)

where
Hf = H−M . (2.32)

In the following sections, we derive the balances of linear momentum, angular momentum
and energy of a body in the presence of an electromagnetic field. The most rigorous approach
for doing so is based on knowing the conserved quantities of the electromagentic field. To
this end, it is known that solutions to Maxwell’s equations Eqs. (2.11)-(2.14) with the aether
constitutive relations Eqs. (2.16) and (2.17) in vacuum can also be expressed as stationary
points of an action functional in space-time corresponding to a Maxwell Lagrangian L [37–39].
The existence of such a Lagrangian and its invariance under translations in space-time and
Lorentz transformations allows us to apply Noether’s theorem to identify the conserved
quantities of the electromagnetic field, namely the linear momentum ϵ0E × B, angular

momentum ϵ0x× (E ×B), and energy 1
2

(
ϵ0E

2 + 1
µ0
B2

)
[39]. Given these expressions, one

may express the total linear and angular momentum, and energy per unit volume of a body
in the presence of an electromagnetic field to be ρg = ρv + ϵ0E × B, x × ρg, and ρē =
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ρe+ 1
2

(
ϵ0E

2+ 1
µ0
B2

)
, respectively, where e is the energy per unit mass of the body (including

kinetic and interatomic potential energies) but without the energy of the electromagnetic
field. Ideally, one would formulate the balance laws based on the time changes of these
compound quantities, which is the approach followed by Kovetz [36]. However, in light of
familiarity of the principles of momentum and energy transport in chemical engineering and
continuum mechanics, in what follows, we proceed to derive the local forms of balance laws
starting from a physically intuitive perspective by capturing the effects of the electromagentic
field through the Lorentz force, and then end with the forms of momentum and energy
balances in terms of the compound fields.

Linear momentum balance

In this section, we derive equations for the balance of linear momentum in an electrolyte. As
mentioned before, we begin with a physically intuitive derivation in which the influence of the
electromagnetic field is captured through the Lorentz force. This is the form conventionally
presented in electromagnetism texts [40, 41] and provides a valid description of momentum
transport within a body. We will argue, however, that this approach is less convenient when
describing the boundary conditions of a system and may lead to incorrect interpretations of
surface forces at a material boundary. We will end with an alternate form of the momentum
balance which is more generally applicable. The formulation of these two forms of the linear
momentum balance as well as the corresponding forms of the angular momentum balance
largely follows the approach of Steigmann [42], who has reinterpreted Kovetz’s work from a
continuum mechanics perspective.

The global balance of momentum says that changes in total momentum in a body P
must be balanced by the sum of all forces acting on the body:

d

dt

∫
P
ρvdv =

∫
P

∑
i

ρibidv +

∫
∂P

tda+ F , (2.33)

where bi denotes non-electromagnetic body forces (such as gravity) acting on species i and t
is a surface force density. By Cauchy’s lemma and tetrahedron argument, t may be rewritten
in terms of the stress tensor T as t = Tn [36, 42], where, recall, n is the outward normal
vector. The quantity F is the Lorentz force exerted on the body from the electromagnetic
field:

F =

∫
P
(qE + j̃ ×B)dv . (2.34)

Recall that in writing the Lorentz force in terms of the total charge and current density, we
are capturing effects of the electromagnetic field on both the free ions in solution as well as
the solvent medium.

The Lorentz force can be rewritten in terms of Galilean invariants, E and J , using Eq.
(2.18) and J = j̃ − qv:

F =

∫
P
(qE + j̃ ×B)dv =

∫
P
(qE +J ×B)dv . (2.35)
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The local form of Eq. (2.33) is then given by

ρv̇ = ∇ · T +
∑
i

ρibi + qE +J ×B . (2.36)

In a dielectric medium, Eq. (2.36) is more useful if written in terms of free (rather than
total) charges. After some manipulation using Eqs. (2.22) through (2.32), it can be shown
that Eq. (2.36) can alternatively be expressed as

ρv̇ = ∇ · [T−E ⊗ P − (M ·B)I +M⊗B] +
∑
i

ρibi

+ qfE +J f ×B + P ·∇E +M ·∇B +M× (∇×B) +
∗
P ×B ,

(2.37)

where I is the identity tensor. In most physically-relevant scenarios, qf and j̃
f
are typically

zero due to the condition of electroneutrality, a consequence of the substantial energy re-
quirements for separating charges by a macroscopic distance. As can be seen from Eq. (2.37),
however, even under this condition the electric field still alters the momentum of the system
via the polarization and magnetization of the dielectric medium. In some situations, elec-
troneutrality may be violated, namely within the electric double layers at charged interfaces.
The violation of electroneutrality may also be important for nanoconfined systems where the
size of the double layer is comparable to the length scale of the fluid region [43,44]. In what
follows, we aim to maintain generality and carry out the majority of derivations without
assuming electroneutrality whenever possible.

It is important to note that the the Lorentz force F need not vanish at a material
boundary. Thus, the surface force t in Eq. (2.33) and corresponding stress tensor T do not
describe the overall traction on the surface of a body. In order to quantify the overall surface
forces and formulate boundary conditions, it is necessary to rewrite the Lorentz force in
terms of the divergence of some quantity TM (called the Maxwell stress tensor) representing
the surface stress induced by the electromagnetic field. In the remainder of this section, we
use Maxwell’s equations to derive the form of TM and rewrite the linear momentum balance
in a form more amenable to boundary condition analysis. Let us begin by revisiting the
quantity qE + j̃ × B. We can rewrite this quantity using Eqs. (2.11), (2.12), (2.16), and
(2.17) as

qE + j̃ ×B = ϵ0(∇ ·E)E +
1

µ0

(∇×B)×B − ϵ0
∂E

∂t
×B . (2.38)

The last term on the right side of Eq. (2.38) can be rewritten as

ϵ0
∂E

∂t
×B = ϵ0

∂

∂t
(E ×B)− ϵ0E × ∂B

∂t

= ϵ0
∂

∂t
(E ×B) + ϵ0E × (∇×E) .

(2.39)
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In the last equality we have used Eq. (2.14). Substituting Eq. (2.39) into Eq. (2.38) yields

qE + j̃ ×B = ϵ0

[
(∇ ·E)E −E × (∇×E)

]
+

1

µ0

[
(∇ ·B)B −B × (∇×B)

]
− ϵ0

∂

∂t
(E ×B) .

(2.40)

Note that the term (∇ · B)B is equal to zero by Eq. (2.13) and is only added such that
the electric and magnetic field terms appear symmetrically in the equation. We can further
simplify Eq. (2.40) by using the vector identity A × (∇ × A) = 1

2
∇A2 − A · ∇A, which

yields

qE + j̃ ×B = ϵ0

[
(∇ ·E)E +E · (∇E)

]
+

1

µ0

[
(∇ ·B)B +B · (∇B)

]
− 1

2
∇
[
ϵ0E

2 +
1

µ0

B2

]
− ϵ0

∂

∂t
(E ×B) .

(2.41)

We may now define the Maxwell stress tensor TM as

TM =

[
ϵ0E ⊗E +

1

µ0

B ⊗B

]
− 1

2

[
ϵ0E

2 +
1

µ0

B2

]
I (2.42)

and express Eq. (2.41) as

∂

∂t
(ϵ0E ×B)−∇ · TM + qE + j̃ ×B = 0 . (2.43)

Eq. (2.43) is the local statement of conservation of momentum for the electromagnetic field
itself, and the quantity ϵ0E ×B is the momentum density of an electromagnetic field [40].
The overall Lorentz force thus becomes

F =

∫
P
(∇ · TM)dv −

∫
P

∂

∂t
(ϵ0E ×B)dv . (2.44)

For the case of time-independent fields, Eq. (2.44) shows how the Lorentz force may be
equivalently interpreted in terms of surface forces or traction. Using the definition of the
substantial derivative and the Reynolds transport theorem, Eq. (2.44) can be rewritten as

F =

∫
P
(∇ · TM)dv −

d

dt

∫
P

(
ϵ0E ×B

)
dv +

∫
P
∇ ·

(
ϵ0(E ×B)⊗ v

)
dv . (2.45)

Defining a new quantity,
T̂ = TM + ϵ0(E ×B)⊗ v , (2.46)

the Lorentz Force can be rewritten as

F =

∫
P
(∇ · T̂ )dv − d

dt

∫
P

(
ϵ0E ×B

)
dv . (2.47)
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In Eq. (2.47) we have decomposed the Lorentz force into two contributions. The first
is from surface stresses induced by the electromagnetic field, and the second represents
the electromagnetic contributions to the total momentum. Given Eq. (2.47), we can now
reformulate the global form of the momentum balance in Eq. (2.33) as

d

dt

∫
P
ρ(v + ϵ0E ×B/ρ)dv =

∫
P

∑
i

ρibidv +

∫
P
∇ · (T + T̂ )dv . (2.48)

Finally, defining the composite stress tensor T̄ = T + T̂ and a modified momentum density
g = v + ϵ0E ×B/ρ, Eq. (2.48) reduces to

d

dt

∫
P
ρgdv =

∫
P

∑
i

ρibidv +

∫
P
(∇ · T̄ )dv, (2.49)

with the local form of the balance

ρġ = ∇ · T̄ +
∑
i

ρibi . (2.50)

The quantity g, as mentioned before, is a more general representation of the momentum per
unit mass in a body subject to electromagnetic fields, as it captures the momentum of the
electrolyte body as well as that of the electromagnetic field itself [36]. Thus, we can interpret
our original momentum balance (Eq. (2.36)) as accounting for changes in momentum of only
the body P (considering the electromagnetic field only as an external force), while in Eq.
(2.50) we account for momentum changes in both the body P and the electromagnetic field
together. Either form is valid within the bulk of the body, but only Eq. (2.50) provides a
transparent description of behavior at a material boundary, where the overall surface force
per unit area or traction is given by t̄ = T̄ n (and not Tn, as may be incorrectly concluded
from Eq. (2.36)).

The forms of the linear momentum balances derived in this section are generally appli-
cable to any body subject to an electromagnetic field. In Sec. 2.2, we will assume linear
constitutive relations and derive the forms of the momentum balance that are applicable to
most liquid electrolyte solutions.

Angular momentum balance

We now present the balance of angular momentum in two forms. The first is based on the
linear momentum balance of the form Eq. (2.36), which considers the momentum of the
body to be ρv. The second treats the momentum of both the body and the electromagnetic
field, captured in the quantity g, as in Eq. (2.50). We will analyze the implications that
these angular momentum balances have on the symmetry of the stress tensor in each of these
forms.
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Based on Eq. (2.36), the angular momentum balance can be written as

d

dt

∫
P
(x× ρv)dv =

∫
∂P

(x× Tn)da+

∫
P
x×

(∑
i

ρibi + qE + j̃ ×B

)
dv . (2.51)

Incorporating the Reynolds transport theorem and overall mass balance (Eq. (2.6)) to
simplify the left side of Eq. (2.51) gives∫

P
ρx× v̇dv =

∫
∂P

(x× Tn)da+

∫
P
x×

(∑
i

ρibi + qE + j̃ ×B

)
dv . (2.52)

Comparing with Eq. (2.36), we may eliminate the second term on the right side and write∫
P
x× (∇ · T )dv =

∫
∂P

(x× Tn)da . (2.53)

Rearranging and applying the localization theorem yields

εijkTkj = 0 , (2.54)

where εijk is the Levi-Civita symbol. This leads to the familiar result that the stress tensor
is symmetric,

T = T T . (2.55)

Now let us write the overall angular momentum balance based on Eq. (2.50):

d

dt

∫
P
(x× ρg)dv =

∫
∂P

(x× T̄ n)da+

∫
P
x×

(∑
i

ρibi

)
dv . (2.56)

Analogous simplifications allow us to conclude that∫
P
(v × ρg + x× (∇ · T̄ ))dv =

∫
∂P

(x× T̄ n)da , (2.57)

or
εijk(T̄kj + ρvkgj) = 0 . (2.58)

Thus, the overall stress tensor T̄ which is relevant in the boundary conditions of the body is
only symmetric in the case where vkgj = vjgk. This will in general only be true if their is no
electric or magnetic field. However, we can show that the result in Eq. (2.58) is equivalent
to Eq. (2.55) by incorporating the anti-symmetric portions of T̄ and ρv⊗g into Eq. (2.58):

εijk(T̄kj + ρvkgj) = εijk(Tkj + ϵ0εklmElBmvj + ϵ0εjlmElBmvk) = 0 . (2.59)

The last two terms on the right side cancel, leading once again to Eqs. (2.54) and (2.55).
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Energy balance

We now develop expressions for conservation of energy in electrolyte systems. As with the
momentum balances, we develop two forms of this balance law: one which considers the
energy of only the electrolyte body and one which includes the energy of both the body and
the electromagnetic field.

The first of these forms of the global energy balance can be formulated by balancing the
total change in energy with all of the sources of heat and work on the system. This yields

d

dt

∫
P
ρedv =

∫
P
ρrdv −

∫
∂P

Jq · nda+
∫
∂P

t · vda+
∫
P

∑
i

ρibi · vidv +

∫
P
PEMdv , (2.60)

where e is total energy per unit mass, r is energy per mass produced through body heating,
and Jq is the heat flux vector. Again we emphasize that e is the energy of the body P ,
which is affected by the electromagnetic field, but it does not include the energy of the
electromagnetic field itself. The quantities t · v and

∑
i ρibi · vi give the rate of work done

by surface and body forces, respectively. In the last term of Eq. (2.60), PEM represents the
rate of work done on the body by the electromagnetic field via the Lorentz force. Evaluating
this power requires introducing a microscopic picture of charge transport in terms of the
positions and velocities of individual particles, rα and vα, respectively.2 The current density
j̃, for example, may be written on a microscopic level as j̃ =

∑
α q̂

αvα∆(x−rα), where q̂α is
the charge (not the charge density) of particle α and ∆(x−rα) is a coarse-graining function
connecting the microscopic particle picture to the continuum level. The Lorentz force acting
on an individual particle F α is

F α = q̂αE + q̂αvα ×B . (2.61)

The power corresponding to this Lorentz force is

PEM =
∑
α

(F α·vα)∆(x−rα) =

[∑
α

q̂αvα·E+
∑
α

q̂α(vα×B)·vα

]
∆(x−rα) = j̃ ·E . (2.62)

The global energy balance can thus be expressed as

d

dt

∫
P
ρedv =

∫
P
ρrdv−

∫
P
∇·Jqdv+

∫
P
∇·(T Tv)dv+

∫
P

∑
i

ρibi ·vidv+

∫
P
j̃ ·Edv , (2.63)

with the corresponding local form

ρė =
∑
i

ρibi · vi +∇ · (T Tv) + ρr −∇ · Jq + j̃ ·E . (2.64)

2Throughout the text, superscript Greek indices (α, β) denote individual particles, while subscript Latin
indices (i, j) denote species of a given type.
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We can simplify this energy balance by incorporating the momentum balance as written in
Eq. (2.36), yielding

ρė = ρv̇ · v + T : ∇v + ρr −∇ · Jq +
∑
i

ji · bi +J · E . (2.65)

Note that for body forces such as gravity which act uniformly on all species,
∑

i ji · bi = 0.
Let us rewrite the local energy balance Eq. (2.65) in terms of free and bound charges,

rather than the total charge. Substituting Eq. (2.26), the quantity J · E in Eq. (2.65) can
be rewritten as

J · E = J f · E +J b · E = J f · E + E ·
∗
P + E ·∇×M . (2.66)

Using Eq. (2.21), the last term in this equation can be rewritten as E ·∇×M = ∇ · (M×
E)−M ·

∗
B. Thus, we have

J · E = J f · E + E ·
∗
P +∇ · (M× E)−M ·

∗
B . (2.67)

We can further simplify by noting that for two vectors A and B, A ·
∗
B = A · Ḃ +

[
(A ·

B)I −A⊗B] : ∇v. Equation (2.65) is thus

ρė = ρv̇ · v + [T+(E · P )I − E ⊗ P − (M ·B)I +M⊗B] : ∇v

+ ρr −∇ · J̄q +
∑
i

ji · bi +J f · E + E · Ṗ −M · Ḃ , (2.68)

where we have defined the quantity J̄q = Jq + E ×M as a modified heat flux vector.
Equation (2.68) is the form of the energy balance which will be useful in deriving internal

entropy production. However, we can also express the energy balance in terms of g, the
momentum of the body including the electromagnetic field, and T̄ , the composite stress
tensor used in the momentum balance as written in Eq. (2.50). To do so, let us rewrite
the quantity (j̃ ·E) in terms of the applied electric and magnetic fields. Using Eqs. (2.12),
(2.16), and (2.17), we can write

j̃ ·E =
1

µ0

E · (∇×B)−E · ϵ0
∂E

∂t

=
1

µ0

(
−∇ · (E ×B) +B · (∇×E)

)
−E · ϵ0

∂E

∂t
.

(2.69)

Applying Eq. (2.14), we obtain

j̃ ·E = −∇ ·
(

1

µ0

E ×B

)
− 1

µ0

B · ∂B
∂t

− ϵ0E · ∂E
∂t

. (2.70)
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Thus, ∫
P
j̃ ·Edv = −

∫
P

[
∇ ·

(
1

µ0

E ×B

)
+

1

µ0

B · ∂B
∂t

+ ϵ0E · ∂E
∂t

]
dv . (2.71)

Recall that the electromagnetic energy per volume ũEM can be expressed as ũEM = 1
2
(ϵ0E

2+
1
µ0
B2), and consequently ∂

∂t
(ũEM) = ϵ0E · ∂E

∂t
+ 1

µ0
B · ∂B

∂t
. Thus, we can rewrite Eq. (2.71) as∫

P
j̃ ·Edv = −

∫
P

[
∇ ·

(
1

µ0

E ×B

)
−∇ · (ũEMv)

]
dv − d

dt

∫
P
ũEMdv . (2.72)

When written in terms of partial (as opposed to substantial) derivatives, the local form of
Eq. (2.72) is

∂ũEM

∂t
= −j̃ ·E −∇ ·

(
1

µ0

E ×B

)
. (2.73)

Equation (2.73) is the energy balance of the electromagnetic field alone [45], where the change
in energy of the electromagnetic field is balanced by the work done by the Lorentz force (the
first term on the right side) and the energy flux of the field (the second term). The latter
quantity, 1

µ0
E ×B =: S, is referred to as the Poynting vector.

We may now proceed by integrating the electromagnetic energy balance in Eq. (2.72)
with the energy balance for the system as a whole. To this end, incorporating the definition
of ũEM and applying the divergence theorem to the first term on the right side of Equation
(2.72), we obtain∫

P
j̃ ·Edv =

∫
∂P

[
1

2

(
ϵ0E

2 +
1

µ0

B2

)
v−

(
1

µ0

E ×B

)]
· nda

− d

dt

∫
P

[
1

2

(
ϵ0E

2 +
1

µ0

B2

)]
dv .

(2.74)

After some manipulation using Eqs. (2.17)-(2.19) and (2.42), it can be shown that the
integrand of the first term on the right-hand side can be rewritten as

1

2

(
ϵ0E

2 +
1

µ0

B2

)
v · n−

(
1

µ0

E ×B

)
· n = −E ×H · n+ TMv · n+ ϵ0[(v ⊗E ×B)v] · n

= −E ×H · n+ T̂ n · v .

(2.75)

In the second equality we have made use of the symmetry of TM. Therefore,∫
P
j̃ ·Edv =

∫
P
∇ · (T̂ T

v − E ×H)dv − d

dt

∫
P

[
1

2

(
ϵ0E

2 +
1

µ0

B2

)]
dv . (2.76)

Substituting this expression into the global energy balance (Eq. (2.63)) yields

d

dt

∫
P
ρēdv =

∫
P
ρrdv−

∫
P
∇ · (Jq+E×H)dv+

∫
P
∇ · (T̄ T

v)dv+

∫
P

∑
i

ρibi ·vidv . (2.77)
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Here we have defined the quantity ē = e + 1
2
(ϵ0E

2 + 1
µ0
B2)/ρ, which is the energy per unit

mass of the system including the vacuum energy of the electromagnetic field. The quantity
E × H may be interpreted as an additional flux of energy from the electromagnetic field;
this term is the Galilean invariant analogue of the Poynting vector introduced in Eq. (2.73).
The corresponding local form of Eq. (2.77) is

ρ ˙̄e = ∇ · (T̄ T
v) + ρr +

∑
i

ρibi · vi −∇ · (Jq + E ×H) . (2.78)

We can now incorporate the momentum balance. Taking the dot product of v with both
sides of Eq. (2.50) and subtracting the resulting equation from Eq. (2.78), we obtain

ρ ˙̄e = ρġ · v + T̄ : ∇v + ρr +
∑
i

ji · bi −∇ · (Jq + E ×H) . (2.79)

We may analogously rewrite the alternate form of the local energy balance, Eq. (2.79), in
terms of free charges. Using Eq. (2.32), the quantity E×H becomes E×Hf+E×M. As in
Eq. (2.68), we may utilize the definition of the modified heat flux vector J̄q = Jq + E ×M
to write

ρ ˙̄e = ρġ · v + T̄ : ∇v + ρr +
∑
i

ji · bi −∇ · (J̄q + E ×Hf) . (2.80)

Entropy balance

In this section, we will introduce the entropy balance and the second law of thermodynamics
for electrolyte solutions. In doing so we provide a rigorous derivation for the rate of internal
entropy production for multicomponent systems in the presence of electromagnetic fields. We
will ultimately simplify this result specifically for an electrolyte with no applied magnetic
field. This section is an extension of the work of de Groot and Mazur [26] to charged systems
in the presence of electromagnetic fields.

To begin, we postulate that the total change in entropy in the system can be written as

ρṡ = −∇ · J s + ρσe + ρσi , (2.81)

where s is the entropy per unit mass, J s is entropy flux, σe is entropy production from body
forces, and σi is internal entropy production (σi ≥ 0 by the second law of thermodynamics).
Following Sahu et al. [46] and Mandadapu [47], the components of this entropy balance can
be obtained by working with the Helmholtz free energy. The Helmholtz free energy per
volume, f̃ , can be written as [36,48]

f̃ = ρe− 1

2
ρv · v − ρTs− E · P . (2.82)

Taking the substantial derivative of both sides and incorporating the mass balance (Eq.
(2.6)), Eq. (2.82) becomes

ρṡ =
1

T

[
ρė− ρv̇ · v − ˙̃f − f̃(I : ∇v)− ρsṪ − E · Ṗ − Ė · P − (E · P )(I : ∇v)

]
. (2.83)
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Incorporating the energy balance in Eq. (2.68) allows us to rewrite Eq. (2.83) as

ρṡ =
1

T

[
− ˙̃f − f̃(I : ∇v) + [T − E ⊗ P − (M ·B)I +M⊗B] : ∇v + ρr

+
∑
i

ji · bi −∇ · J̄q +J f · E − Ė · P −M · Ḃ − ρsṪ

]
.

(2.84)

Equation (2.84) can be simplified further by evaluating ˙̃f in terms of its natural variables.
In Appendix A.1, we argue that f̃ is a function of N + 3 quantities: [T , c1, c2, ..., cN , E , B],
which leads to

˙̃f =
∂f̃

∂T
Ṫ +

∑
i

∂f̃

∂ci
ċi +

∂f̃

∂E · Ė +
∂f̃

∂B
· Ḃ . (2.85)

Substituting Eq. (2.85) into Eq. (2.84) yields

ρṡ =
1

T

[
− Ṫ

(
ρs+

∂f̃

∂T

)
−

∑
i

∂f̃

∂ci
ċi −

(
P +

∂f̃

∂E

)
· Ė −

(
M+

∂f̃

∂B

)
· Ḃ − f̃(I : ∇v)

+ [T − E ⊗ P − (M ·B)I +M⊗B] : ∇v + ρr +
∑
i

ji · bi −∇ · J̄q +J f · E
]
.

(2.86)

We now invoke the local equilibrium assumption,

ρs = −
(
∂f̃

∂T

)
c1,c2,...,cN ,E,B

, (2.87)

and define the chemical potential of species i as

µi :=

(
∂f̃

∂ci

)
T,cj ̸=i,E,B

. (2.88)

These definitions along with the mass balance (Eq. (2.5)) allow us to rewrite Eq. (2.86) as

ρṡ =
τ : ∇v

T
+

ρr

T
+

∑
i ji · bi
T

+
1

T

∑
i

µi∇ · J i −
∇ · J̄q

T
+

1

T
J f · E

− 1

T

(
P +

∂f̃

∂E

)
· Ė − 1

T

(
M+

∂f̃

∂B

)
· Ḃ ,

(2.89)

where τ is defined as

τ = T +

(∑
i

µici − f̃

)
I − E ⊗ P − (M ·B)I +M⊗B , (2.90)



CHAPTER 2. CONTINUUM MECHANICS AND LINEAR IRREVERSIBLE
THERMODYNAMICS OF ELECTROLYTE SOLUTIONS 22

which can also be expressed in terms of T̄ as

τ = T̄ − ϵ0(E ×B)⊗ v − ϵ0E ⊗E − 1

µ0

B ⊗B +
1

2

[
ϵ0E

2 +
1

µ0

B2

]
I

+

(∑
i

µici − f̃

)
I − E ⊗ P − (M ·B)I +M⊗B .

(2.91)

Rearranging, Eq. (2.89) becomes

ρṡ = −∇ ·
(
J̄q −

∑
i µiJ i

T

)
+

ρr

T
+

τ : ∇v

T
− 1

T

(
P +

∂f̃

∂E

)
· Ė − 1

T

(
M+

∂f̃

∂B

)
· Ḃ

−J̄q ·
∇T

T 2
−
∑
i

[
∇
(
µi

T

)
− Mibi

T

]
· J i +

J f · E
T

.

(2.92)

To convert the entropy balance in Eq. (2.92) into the form of Eq. (2.81), we express J f in
terms of the fluxes of ionic species:

J f = j̃
f − qfv =

∑
i

ziciF (vi − v) =
∑
i

ziFJ i , (2.93)

where F is Faraday’s constant. Note that while the sum over i in this expression includes all
types of species in the system, the factor of zi (the charge valency of species i) means that
net neutral species such as solvent do not contribute to the free charge conduction current
density. In contrast, quantities such as

∑
i µiJ i are influenced by both charged and neutral

species. Substitution of Eq. (2.93) into Eq. (2.92) yields

ρṡ = −∇ ·
(
J̄q −

∑
i µiJ i

T

)
+

ρr

T
+

τ : ∇v

T
− 1

T

(
P +

∂f̃

∂E

)
· Ė − 1

T

(
M+

∂f̃

∂B

)
· Ḃ

−J̄q ·
∇T

T 2
−
∑
i

[
∇
(
µi

T

)
− ziFE

T
− Mibi

T

]
· J i .

(2.94)

Eq. (2.94) is the most general form of the entropy balance for a mixture subject to an
electromagnetic field. Comparing to Eq. (2.81), we can deduce that the entropy flux is

J s =
J̄q −

∑
i µiJ i

T
, (2.95)

the external entropy production is

ρσe =
ρr

T
, (2.96)
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and the internal entropy production is

ρσi =
τ : ∇v

T
− 1

T

(
P +

∂f̃

∂E

)
· Ė − 1

T

(
M+

∂f̃

∂B

)
· Ḃ − J̄q ·

∇T

T 2

−
∑
i

[
∇
(
µi

T

)
− ziFE

T
− Mibi

T

]
· J i ≥ 0 .

(2.97)

If we assume there are no dissipation processes associated with polarization or magnetiza-
tion, we may define

P = −
(
∂f̃

∂E

)
T,c1,c2,...,cN ,B

,

M = −
(
∂f̃

∂B

)
T,c1,c2,...,cN ,E

.

(2.98)

This brings the second and third terms of Eq. (2.97) to zero, giving

ρσi =
τ : ∇v

T
− J̄q ·

∇T

T 2
−
∑
i

[
∇
(
µi

T

)
− ziFE

T
− Mibi

T

]
· J i ≥ 0 . (2.99)

Specialization to the case of negligible magnetic field effects. For most electrolyte
systems of interest, it may be reasonable to neglect all contributions of the magnetic field to
the entropy balance expression. This may be argued using dimensional analysis of Maxwell’s
equations [49], although rigorous formulation of such arguments is beyond the scope of this
dissertation. In the case where B = 0, E = E = −∇ϕ and Eq. (2.94) reduces to

ρṡ = −∇ ·
(
J̄q −

∑
i µiJ i

T

)
+

ρr

T
+

τ : ∇v

T
− J̄q ·

∇T

T 2

−
∑
i

[
∇
(
µi

T

)
+

ziF∇ϕ

T
− Mibi

T

]
· J i .

(2.100)

Furthermore, τ is now

τ =T +

(∑
i

µici − f̃

)
I −E ⊗ P

=T̄ − ϵ0E ⊗E +
1

2
ϵ0E

2I +

(∑
i

µici − f̃

)
I −E ⊗ P .

(2.101)

In this case, internal entropy production is

ρσi =
τ : ∇v

T
− J̄q ·

∇T

T 2
−

∑
i

[
∇
(
µi

T

)
+

ziF∇ϕ

T
− Mibi

T

]
· J i ≥ 0 (2.102)
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We can further simplify this expression by assuming that thermodynamic forces and fluxes
of different tensorial characters do not couple with each other in isotropic systems, also called
the Curie principle [26,50]. Thus, we can split our entropy production inequality as follows:

τ : ∇v

T
≥ 0 ,

−J̄q ·
∇T

T 2
−

∑
i

[
∇
(
µi

T

)
+

ziF∇ϕ

T
− Mibi

T

]
· J i ≥ 0 .

(2.103)

Before proceeding, we must modify the second equality of Eq. (2.103) to account for the fact
that a system of n components contains only n− 1 independent fluxes due to the constraint
that

∑
i ji =

∑
i MiJ i = 0, i.e., we can express the solvent flux, J0, as J0 = −∑

i ̸=0
Mi

M0
J i.

Inclusion of this constraint into the second equality of Eq. (2.103) yields an expression of
the form

− J̄q ·
∇T

T 2
−

∑
i ̸=0

[
∇
(
µi − Mi

M0
µ0

T

)
+

(zi − Mi

M0
z0)F∇ϕ

T
− Mi(bi − b0)

T

]
· J i ≥ 0 . (2.104)

Note that in most cases the solvent charge valency z0 will be equal to zero.
For the remainder of our analysis we will consider the case of an isothermal system with

no additional body forces bi, in which case Eq. (2.104) reduces to

− 1

T

∑
i ̸=0

(
∇µi −

Mi

M0

∇µ0

)
· J i ≥ 0 . (2.105)

In this final expression we have combined the chemical potential and the body force from the
external electric field into a single term, the electrochemical potential: µi := µi+ziFϕ. Note
that it is only possible to directly combine these terms after assuming that temperature is
constant.

In general, we expect to be able to write internal entropy production as the sum of
thermodynamic driving forces, X i, and fluxes, J i [25, 26]:

σi =
∑
i

J i ·X i ≥ 0 . (2.106)

It is clear from Eqs. (2.105) and (2.106) that for this system we can choose

X̂ i = −(∇µi −
Mi

M0

∇µ0) (2.107)

and
J i = ci(vi − v) , (2.108)

where i ̸= 0. In Sec. 2.2, we will use these definitions to define transport coefficients.
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In this section, we derived an expression for internal entropy production using the
Helmholtz free energy. The entropy balance is more conventionally derived, however, us-
ing the local equilibrium hypothesis and the Gibbs equation [25, 26]. For mixtures subject
to an electromagnetic field, we do not a priori know the form of the Gibbs equation and
therefore could not begin with this approach. We can, however, use our final expressions
for the energy and entropy balances to derive the Gibbs equation for these systems (see
Appendix A.2). Equation (A.16) could be used as the starting point for deriving internal
entropy production in a manner consistent with that presented in this section.

2.2 Linear constitutive relations and linear

irreversible thermodynamics

In what follows, we consider the simplification of the momentum, energy, and entropy bal-
ances after proposing linear constitutive relations for the polarization and shear stress. In
defining these linear relations, we will restrict our discussion to isotropic materials in the
absence of a magnetic field. The assumption of isotropy allows us to make use of the rep-
resentation theorem saying that any n-dimensional isotropic tensor can be generated using
the Kronecker delta tensor δij and the n-dimensional Levi-Civita tensor εi1,i2,...in [51].

Linear isotropic dielectrics

In a linear isotropic dielectric with no dissipation effects, the polarization P is directly
proportional to the electric field E. The most general such linear relationship is given
by a rank-2 isotropic tensor, which by the aforementioned representation theorem must be
proportional to the Kronecker delta. This leads to

P = (ϵ− ϵ0)E , (2.109)

where ϵ is the dielectric constant of the medium. By Eq. (2.29) we also see that

Df = ϵE . (2.110)

The assumption of a linear dielectric allows us to integrate the first equality of Eq. (2.98)
to obtain

f̃ − f̃0 = −
∫

(ϵ− ϵ0)E · dE = −1

2
(ϵ− ϵ0)E

2 , (2.111)

where f̃0(T, c1, c2, ..., cN) is the Helmholtz free energy per volume in the absence of an electric
field. Equation (2.111) can be used to evaluate the electromagnetic contribution to the
pressure, p. Recall that the pressure is conventionally defined in terms of the total Helmholtz

free energy F = f̃V as p := −∂F
∂V

∣∣∣∣
T,n1,...,nN ,E,B

, where V is volume. The pressure can be
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expressed in terms of the free energy per volume as

p = − ∂

∂V
(f̃V ) = −f̃ − V

∂f̃

∂V
= −f̃ − V

∑
i

∂f̃

∂ci

∂ci
∂V

, (2.112)

or
f̃ = −p+

∑
i

µici . (2.113)

This is identical to the result derived using extensivity arguments in Appendix A.1 (Eq.
(A.5)). Incorporating Eq. (2.111), we can alternatively write

p =− f̃ − V
∂(f̃0 − 1

2
(ϵ− ϵ0)E

2)

∂V

=− f̃0 +
1

2
(ϵ− ϵ0)E

2 − V
∑
i

∂f̃0
∂ci

∂ci
∂V

+ V
1

2
E2 ∂ϵ

∂V
.

(2.114)

Defining µi,0 :=
∂f̃0
∂ci

and p0 :=
∑

i µi,0ci − f̃0 to be the chemical potential of species i and the
pressure in the absence of an electric field, respectively, allows us to rewrite Eq. (2.114) as

p = p0 +
1

2

[
ϵ− ϵ0 − ρ

∂ϵ

∂ρ

]
E2 . (2.115)

Newtonian fluids

In a Newtonian fluid, the shear stress τ is directly proportional to the velocity gradient:
τ = η(4)∇v, where η(4) is the fourth order viscosity tensor. A general fourth order tensor in
three dimensions can be written as ηijkl = η1δijδkl+η2δikδjl+η3δilδjk, with three independent
parameters. Imposing the symmetry of the stress tensor derived from the angular momentum
balance (Sec. 2.1) eliminates one of these parameters and reduces τ = η(4)∇v to

τ = 2ηd+ λ(d : I)I , (2.116)

where η and λ are the two coefficients of viscosity and d is the symmetric part of the velocity

gradient tensor, d = ∇v+(∇v)T

2
.

The expression for f̃ in Eq. (2.113) can be combined with the linear constitutive relation
for shear stress to directly evaluate T and T̄ and thus write the momentum balances in
more useful forms. Substituting Newton’s law of viscosity (Eq. (2.116)) and Eqs. (2.113)
and (2.115) into our expressions for τ (Eqs. (2.90) and (2.91)) in the case of no magnetic
field, we see that

T = 2ηd+ λ(d : I)I − pI +E ⊗ P

= 2ηd+ λ(d : I)I − p0I − 1

2

(
ϵ− ϵ0 − ρ

∂ϵ

∂ρ

)
E2I + (ϵ− ϵ0)E ⊗E

(2.117)
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and

T̄ = 2ηd+ λ(d : I)I + ϵ0E ⊗E − 1

2
ϵ0E

2I − pI +E ⊗ P

= 2ηd+ λ(d : I)I − p0I + ϵE ⊗E − 1

2

[
ϵ− ρ

∂ϵ

∂ρ

]
E2I .

(2.118)

We can substitute these expressions directly into the local momentum balances. Incorpora-
tion of Eq. (2.117) into Eq. (2.37) (when B = 0 and dielectric constant does not vary with
density) gives

ρv̇ = −∇p0 + η∇2v + (η + λ)∇(∇ · v) +
∑
i

ρibi + qfE . (2.119)

This expression is simply the Navier-Stokes equations with an additional body force acting
on the free charges in the system. For an electroneutral system (qf = 0) in a linear dielectric,
it is therefore appropriate to use the standard Navier-Stokes equations to analyze momentum
transport in an electrolyte.

Analogously, substituting Eq. (2.118) into the momentum balance in the form of Eq.
(2.50) yields

ρv̇ = −∇p0 + η∇2v + (η + λ)∇(∇ · v) +∇ ·
[
ϵE ⊗E − 1

2
ϵE2I

]
+
∑
i

ρibi . (2.120)

We have used the fact that for the case of no magnetic field, ġ = v̇. Whichever form of the
momentum balance is used, the boundary conditions for momentum transport are always
obtained from T̄ n (Eq. (2.118)), not from Tn (Eq. (2.117)).

Diffusive transport coefficients

Recall from Sec. 2.1 that internal entropy production can be written as a bilinear form
relating thermodynamic driving forces and fluxes, i.e., σi =

∑
i J i ·X i. We now postulate

linear relations between these forces and fluxes of the following form:

J i =
∑
j

LijXj (2.121)

and
Xj =

∑
i

M ijJ i . (2.122)

Each transport coefficient Lij or M ij is a second order tensor in three dimensions, which for
an isotropic system may be expressed as Lij = LijI and M ij = M ijI. For the subsequent
analysis we consider only the scalar transport coefficients Lij and M ij. Additionally, note
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that Lij = Lji and M ij = M ji by the Onsager reciprocal relations [23,24], as will be apparent
from the Green-Kubo relations derived in Sec. 3.1.

The second law dictates that

σi =
∑
i

J i ·X i =
∑
i

∑
j

LijXj ·X i ≥ 0 . (2.123)

Thus the matrix L composed of each of the Lij coefficients is positive semi-definite. This
provides some information on the possible values for each Lij, for example that the diagonal
elements Lii must be greater than or equal to zero and that

∑
i

∑
j L

ij ≥ 0. Furthermore,
the condition that the eigenvalues of L must be real and greater than or equal to zero tells
us that the principal invariants of L are positive. Thus, the determinant of L is positive,
for example L++L−− − L+−2 ≥ 0 for a binary electrolyte of a single type of cation (+) and
anion (−).

The choices of force and flux defined in Eqs. (2.107) and (2.108) yield the following
relations:3

ci(vi − v) = −
∑
j ̸=0

Lij

(
∇µj −

Mj

M0

∇µ0

)
(2.125)

and

−
(
∇µi −

Mi

M0

∇µ0

)
=

∑
j ̸=0

M ijcj(vj − v) . (2.126)

Note that based on this formulation, the transport coefficients Lij and M ij are not defined
for i or j equal to the solvent, species 0. To reformulate Eqs. (2.125) and (2.126) when the
solvent is also included as one of the species, one can define

Li0 = L0i = −
∑
j ̸=0

Mj

M0

Lij , (2.127)

which yields a simpler, more convenient equation:

ci(vi − v) = −
∑
j

Lij∇µj , (2.128)

where the summation is now over all species. Note that isotropy, the Onsager reciprocal
relations, and the constraint that

∑
i MiL

ij = 0 (Eq. (2.127)) implies that an n-component
electrolyte has n(n− 1)/2 independent transport coefficients.

3The linear laws can easily be generalized to the case of non-isothermal systems, where we could have

J i = ci(vi − v) = −LiT

T 2
∇T −

∑
j ̸=0

Lij

(
∇
(
µj

T

)
+

ziF∇ϕ

T
− Mj

M0

[
∇
(
µ0

T

)
+

z0F∇ϕ

T

])
, (2.124)

which captures cross-coupling effects between temperature gradients and species flux, i.e., the Soret effect.
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Equation (2.128), denoted here as the Onsager transport equations, provides a founda-
tion for rigorous continuum-level modeling of electrolyte transport. In this chapter, we have
demonstrated how these equations emerge from the combination of Maxwell’s equations, bal-
ance laws, internal entropy production, and linear constitutive relations. While Eq. (2.128)
only considers the impact of electrochemical potential gradients, the full set of equations
presented in Chapter 2.1 enable treatment of a broad range of complex phenomena which
feature the coupling of temperature gradients, bulk convection, and electromagnetic fields.
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Chapter 3

Nonequilibrium Statistical Mechanics
of Ion Transport

1

The governing equations presented in the previous chapter allow us to describe macroscopic,
boundary-driven transport phenomena in systems out of equilibrium. In this chapter, we
will derive Green-Kubo relations [27, 28] to relate the diffusive transport coefficients Lij to
the decay of fluctuations at equilibrium. This connection between the deterministic, con-
tinuum level transport theory and the stochastic behavior observed at the molecular level
is enabled by the Onsager regression hypothesis, one of the most important developments
of nonequilibrium statistical mechanics [23, 24]. This hypothesis states that the relaxation,
or regression, of spontaneous fluctuations in an aged system in equilibrium is governed by
the same laws which describe the response to macroscopic perturbations away from equilib-
rium. The regression hypothesis was used by Kubo [28] to derive the Green-Kubo relations,
which enable facile computation of transport coefficients from molecular dynamics simula-
tions. This offers a means of rigorously studying transport in systems where experimental
characterization may be challenging or impractical, for example in screening new electrolyte
chemistries or studying systems with more than two types of ionic species. In Chapter 3.1,
we begin by detailing a derivation for the Green-Kubo relation for Lij which is based on the
Onsager regression hypothesis. We subsequently describe an alternate derivation based on
linear response theory in Chapter 3.2.

3.1 Green-Kubo relations: Derivation based on the

Onsager regression hypothesis

Consider a system at equilibrium in which each species k has a mean concentration ck.
Thermal fluctuations at equilibrium will induce small fluctuations in concentration, δck,

1This chapter is closely adapted from portions of Ref [1]: Fong, K. D., Bergstrom, H. K., McCloskey, B.
D. & Mandadapu, K. K. Transport phenomena in electrolyte solutions: Non-equilibrium thermodynamics
and statistical mechanics. AIChE Journal e17091 (2020).
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about this mean value. The concentration of species k at any instant ck(x, t) may thus be
expressed as ck(x, t) = ck + δck(x, t). The species mass balance (Eq. (2.5)) may be modified
at equilibrium to be

∂(δci)

∂t
= −∇ · J i . (3.1)

In writing Eq. (3.1) we have used the fact that v = 0 for a system at equilibrium. Substi-
tuting the constitutive relation in Eq. (2.128) into Eq. (3.1) yields

∂(δci)

∂t
= ∇ ·

[∑
j

Lij∇µj

]
. (3.2)

Using Eq. (A.4) with constant temperature and the magnetic field B = 0, the quantity ∇µj

can be written in terms of the electric field and concentration as

∇µj = ∇µj + zjF∇ϕ = −
(
∂P

∂cj

)
T,cl ̸=j ,E

·∇E +
∑
k

(
∂µj

∂ck

)
T,cl̸=k,E

∇ck + zjF∇ϕ , (3.3)

where as before E = −∇ϕ. Using Eq. (2.109), we can write(
∂P

∂cj

)
T,cl ̸=j ,E

·∇E = −
(
∂(ϵ− ϵ0)E

∂cj

)
T,cl ̸=j ,E

·∇E .

Assuming changes in dielectric constant with respect to concentration are negligible, this
term can be eliminated. Thus, the gradient in electrochemical potential is

∇µj =
∑
k

(
∂µj

∂ck

)
T,cl ̸=k,E

∇ck + zjF∇ϕ . (3.4)

Now, Eq. (3.2) becomes

∂(δci)

∂t
= ∇ ·

[∑
j

Lij

(∑
k

∂µj

∂ck

∣∣∣∣
T,cl ̸=k,E

∇ck + zjF∇ϕ

)]
. (3.5)

The term
∂µj

∂ck
can be rewritten in terms of δci at equilibrium (see Appendix A.3):

∂µj

∂ck
=

1

βV
(K−1

CC)
kj , (3.6)

where KCC is the covariance matrix with elements
〈
δciδcj

〉
and β = (kBT )

−1, where kB is
the Boltzmann constant. We thus have

∂(δci)

∂t
= ∇ ·

[∑
j

Lij

(∑
k

1

βV
(K−1

CC)
kj∇ck + zjF∇ϕ

)]
. (3.7)
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Expanding the right hand side yields

∂(δci)

∂t
=

∑
j

Lij

[∑
k

1

βV
(K−1

CC)
kj∇2ck − zjF∇ ·E

]
+
∑
j

∇Lij ·
[∑

k

1

βV
(K−1

CC)
kj∇ck − zjFE

]
.

(3.8)

By Eqs. (2.27) and (2.110) for a system with uniform dielectric constant, ∇ · E = qf/ϵ.
Over length scales shorter than the Debye length, electroneutrality may be violated, yielding
a nonzero value of qf . In Green-Kubo relations, however, we are only interested in describing
long wavelength fluctuations at equilibrium; thus, the quantity ∇ ·E may be neglected.

The transport coefficients Lij depend on concentration. Given that the concentration
fluctuations at equilibrium are small, however, we can linearize Lij around the mean solution
concentration to obtain

Lij = Lij

∣∣∣∣
cm

+
∑
l

∂Lij

∂cl

∣∣∣∣
cm

(δcl) . (3.9)

Using Eq. (3.9) and rewriting all terms in terms of concentration fluctuations, Eq. (3.8)
becomes

∂(δci)

∂t
=

∑
j

(
Lij

∣∣∣∣
cm

+
∑
l

∂Lij

∂cl

∣∣∣∣
cm

(δcl)

)(∑
k

(K−1
CC)

kj

βV
∇2δck

)
+
∑
j

∑
l

∂Lij

∂cl

∣∣∣∣
cm

(∇δcl)

(∑
k

(K−1
CC)

kj

βV
∇ck − zjFE

)
.

(3.10)

Eliminating the terms in Eq. (3.10) which are negligibly small leads to an evolution equation
for the concentration:

∂(δci)

∂t
=

∑
j

∑
k

(K−1
CC)

kj

βV
Lij∇2(δck) , (3.11)

where we have removed the subscript on Lij
∣∣
cm

for simplicity.
Let us express the concentration as a Fourier series in terms of the wavevector k:

δcj =
∑
k

δcj(k, t)e
ik·x , (3.12)

which leads to
∇2(δcj) =

∑
k

−k2δcj(k, t)e
ik·x . (3.13)

Equation (3.1) may be thus be written as

δċi(k, t) = −ik · J i(k, t) , (3.14)
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where we have used J i =
∑

k J i(k, t)e
ik·x. Analogously, Eq. (3.11) is transformed into

δċi(k, t) = −k2kBT

V

[∑
j

∑
m

(K−1
CC)

mjLijδcm(k, t)

]
. (3.15)

We now multiply both sides of Eq. (3.15) by δcl(−k, 0) and take an ensemble average, giving

〈
δċi(k, t)δcl(−k, 0)

〉
= −k2kBT

V

[∑
j

∑
m

(K−1
CC)

mjLij
〈
δcm(k, t)δcl(−k, 0)

〉]
. (3.16)

Defining the correlation function Aij =
〈
δci(k, t)δcj(−k, 0)

〉
, Eq. (3.16) can be rewritten as

dAil

dt
= −k2kBT

V

[∑
j

∑
m

(K−1
CC)

mjLijAml(k, t)

]
. (3.17)

We proceed by taking a Laplace transform of Eq. (3.17), defining the Laplace trans-

form Ã(s) of a quantity A(t) to be Ã(s) =
∫∞
0

dte−stA(t), where s is a complex frequency
parameter. Using integration by parts, the left hand side of Eq. (3.17) becomes∫ ∞

0

dte−stdA
il

dt
= e−stAil

∣∣∣∣∞
0

−
∫ ∞

0

dte−st(−s)Ail = sÃil(k, s)− Ail(k, 0) , (3.18)

and the right side of the equation is∫ ∞

0

dte−st

(
− k2kBT

V

[∑
j

∑
m

(K−1
CC)

mjLijAml(k, t)

])
= −k2kBT

V

∑
j

∑
m

(K−1
CC)

mjLijÃml(k, s) .

(3.19)

Combining Eqs. (3.18) and (3.19), Eq. (3.17) reduces to

sÃil(k, s)− Ail(k, 0) = −k2kBT

V

∑
j

∑
m

(K−1
CC)

mjLijÃml(k, s) . (3.20)

Solving for the transport coefficient Lil yields

Lil =
sÃil(k, s)− Ail(k, 0) + k2 kBT

V

∑
j ̸=l

∑
m(K

−1
CC)

mjLijÃml(k, s)

−k2 kBT
V

∑
m(K

−1
CC)

mlÃml(k, s)
. (3.21)

Now consider a new function, ϕij(k, t), defined as

ϕij(k, t) :=
〈
δċi(k, t)δċj(−k, 0)

〉
= −d2Aij

dt2
. (3.22)
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The Laplace transform of ϕij(k, t) is

− ϕ̃ij(k, s) = s2Ãij(k, s)− sAij(k, 0) , (3.23)

where we used the relation Ȧij(0) = 0. Substituting ϕij(k, t) into Eq. (3.21) yields

Lil =
−ϕ̃il(k, s)

/
s+ k2 kBT

V

∑
j ̸=l

∑
m(K

−1
CC)

mjLij
(
− ϕ̃ml(k, s)

/
s2 + Aml(k, 0)

/
s
)

−k2 kBT
V

∑
m(K

−1
CC)

ml
(
− ϕ̃ml(k, s)

/
s2 + Aml(k, 0)

/
s
) . (3.24)

Let us consider large wavelength fluctuations, corresponding to the limit of k tending to
zero. Under this limit, Equation (3.24) simplifies to:

Lil = lim
k→0

ϕ̃il(k, s)

k2 kBT
V

∑
m(K

−1
CC)

ml(−ϕ̃ml(k, s)
/
s+ Aml(k, 0)

)
= lim

k→0

∫∞
0

dte−st
〈
δċi(k, t)δċl(−k, 0)

〉
k2 kBT

V

∑
m(K

−1
CC)

ml(−
∫∞
0

dte−st/s
〈
δċm(k, t)δċl(−k, 0)

〉
+ Aml(k, 0))

.

(3.25)

Further simplification by substituting Eq. (3.14) leads to

Lil = lim
k→0

V
kBT

∫∞
0

dte−st
〈[
(−ik) · J i(k, t)

][
(ik) · J l(−k, 0)

]〉
k2

∑
m(K

−1
CC)

ml(−
∫∞
0

dte−st/s
〈[
(−ik) · Jm(k, t)

][
(ik) · J l(−k, 0)

]〉
+ Aml(k, 0))

.

(3.26)
We now invoke the assumption that the system is isotropic and continue by using k = kex,
which yields

Lil = lim
k→0

k2 V
kBT

∫∞
0

dte−st
〈
Ji,x(k, t)Jl,x(−k, 0)

〉
k2

∑
m(K

−1
CC)

ml
(
k2

∫∞
0

dte−st/s
〈
Jm,x(k, t)Jl,x(−k, 0)

〉
+ Aml(k, 0)

)
= lim

k→0

V
kBT

∫∞
0

dte−st
〈
Ji,x(k, t)Jl,x(−k, 0)

〉∑
m(K

−1
CC)

mlAml(k, 0)
.

(3.27)

Note that Aml(0, 0) = Kml
CC; thus the quantity

∑
m(K

−1
CC)

mlAml(0, 0) = 1. Further, taking
the limit as s tends to zero (corresponding to the long-time limit of equilibrium processes)
yields the Green-Kubo expression

Lil =
V

kBT

∫ ∞

0

dt
〈
Ji,x(0, t) · Jl,x(0, 0)

〉
. (3.28)

Equivalent expressions can be obtained using the y- or z-components of J i as well. We can
thus average over all three spatial dimensions to obtain (after a change of indices) the final
form of the Green-Kubo relations for transport coefficients Lij as

Lij =
V

3kBT

∫ ∞

0

dt
〈
J i(t) · J j(0)

〉
. (3.29)
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Our definition for Li0 in Eq. (2.127) is automatically satisfied by Eq. (3.29):

Li0 =
V

3kBT

∫ ∞

0

dt
〈
J i(t) · J0(0)

〉
. (3.30)

Incorporating the constraint that all fluxes sum to zero yields

Li0 =
V

3kBT

∫ ∞

0

dt

〈
J i(t) ·

(
−
∑
j ̸=0

Mj

M0

J j(0)

)〉
= − V

3kBT

∑
j ̸=0

Mj

M0

∫ ∞

0

dt
〈
J i(t) · J j(0)

〉
= −

∑
j ̸=0

Mj

M0

Lij .

(3.31)

In summary, we note that the derivation presented in this section has made use of the
following assumptions: the system is an isotropic, isothermal, linear dielectric; there is no
applied magnetic field; and changes in the dielectric constant with concentration are negligi-
ble. Furthermore, the final Green-Kubo relations capture only long wavelength fluctuations,
i.e., they are valid on larger length scales for which we may assume electroneutrality.

3.2 Linear response theory

For systems which can be described with a Hamiltonian, the Green-Kubo relations for the
transport coefficients Lij can also be derived through linear response theory, where we cou-
ple the system to a weak external perturbation and observe the resulting response. This
derivation parallels that of Evans and Morriss [52] as well as Wheeler and Newman [53].

Let a system in equilibrium be described by a Hamiltonian H = H0({rα,pα}), where
{rα,pα} is the set of all particle positions and momenta. For a conservative system, H0 gives
the sum of the kinetic and potential energy of the system. Time evolution of the system is
governed by Hamilton’s equations of motion, ṙα = ∂H0

∂pα and ṗα = −∂H0

∂rα .
We now introduce a small, constant external force on the equilibrium ensemble. The

Hamiltonian for this perturbed system H is

H = H0 −
∑
j

Rj ·F j , (3.32)

where F j is a force acting on species j and Rj is a function of the position of species j. For
sufficiently small F j, the expectation value of any observable B in this perturbed system
(derived in Evans and Morriss [52]) is:

〈
B(t)

〉
=

〈
B(0)

〉
0
+ β

∫ t

0

ds
〈
B(s)

∑
j

Ṙj(0) ·F j

〉
0
, (3.33)

where the notation < >0 denotes an average over the equilibrium ensemble corresponding
to H0.
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For electrolyte solutions, we choose F j = XjcjV , where once again Xj = −∇µj, and
Rj = rj −r. The quantity rj is the average position of species j, i.e., rj =

1
Nj

∑
α r

α
j , where

the notation rα
j refers to an atom/molecule α of type j and Nj is the number of particles of

species j. The quantity r is the center-of-mass position of the system, defined using the mass
of each particle α, mα, as r = (

∑
αm

αrα)/
∑

β m
β. This choice of F j and Rj corresponds

to a perturbed Hamiltonian of

H = H0 −
∑
j

(rj − r) ·XjcjV . (3.34)

This perturbation to the Hamiltonian modifies both the energy of the system as well as the
equations of motion, which can now be written as ṙα = ∂H0

∂pα and ṗα = −∂H0

∂rα −∇µi, where
the additional force −∇µi is only applied to atoms α corresponding to type i. It is clear
how the presence of ∇µi results in an additional force driving the acceleration of particle α
down its electrochemical potential gradient. In the absence of chemical potential gradients,
the second equation of motion simply reduces to ṗα = −∂H0

∂rα + q̂αE.

Noting that Ṙj = vj − v, the quantity
∑

j Ṙj(0) ·F j appearing in Eq. (3.33) is∑
j

Ṙj(0) ·F j =
∑
j

cjV (vj(0)− v(0)) ·Xj . (3.35)

Recalling the definition of species flux, J i = ci(vi − v), we can rewrite Eq. (3.35) as∑
j

Ṙj(0) ·F j =
∑
j

J j(0) ·XjV . (3.36)

Substituting Eq. (3.36) into Eq. (3.33) gives

〈
B(t)

〉
=

〈
B(0)

〉
0
+ V β

∫ t

0

ds
〈
B(s)

∑
j

J j(0) ·Xj

〉
0
. (3.37)

We proceed by choosing B = J i, yielding〈
J i(t)

〉
=

〈
J i(0)

〉
0
+ V β

∫ t

0

ds
〈
J i(s)

∑
j

J j(0) ·Xj

〉
0
. (3.38)

The quantity
〈
J i(0)

〉
0
is equal to zero, as there is no net flux of any species at equilibrium.

Furthermore, Xj is time-independent and can be written outside the time integral. Thus,
Eq. (3.38) can be written as

〈
J i(t)

〉
= V β

∫ t

0

ds
〈∑

j

J i(s)⊗ J j(0)
〉
0
Xj =

∑
j

LijXj , (3.39)
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where in the last equality we have incorporated Eq. (2.121). Taking the limit as t approaches
infinity to get the long-time behavior of the system allows us to obtain an expression for Lij:

Lij = V β

∫ ∞

0

dt
〈
J i(t)⊗ J j(0)

〉
0
. (3.40)

Once again assuming isotropy, we reach the same Green-Kubo relations as obtained previ-
ously (Eq. (3.29)):

Lij =
V

3kBT

∫ ∞

0

dt
〈
J i(t) · J j(0)

〉
, (3.41)

where we have now omitted the subscript 0 on the equilibrium ensemble average.
Note that the derivation presented in this section is contingent on choosing the correct

form of the modified Hamiltonian. Here, we chose the positions and force (Rj and F j)
specifically so that the final Green-Kubo relations would be equivalent to that derived in
Sec. 3.1. These Rj and F j are not known a priori, however, and therefore a fully rigorous
derivation of the Green-Kubo relations should be done using the mass balance, as in Sec.
3.1.
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Chapter 4

Contextualization of the Onsager
Transport Framework

1

In this chapter, we provide a summary of the Onsager transport framework derived in the
previous chapters and provide additional contextualization regarding its relation to other
transport frameworks. We begin in Chapter 4.1 by describing the physical interpretation
of the Onsager transport coefficients, Lij, which capture correlations in ion motion. We
subsequently describe how the Onsager framework maps onto other common ways of ana-
lyzing electrolyte transport, including the Stefan-Maxwell equations and the limit of infinite
dilution (Chapter 4.2). In Chapter 4.3 we derive relations between Lij and experimentally-
relevant quantities such as the conductivity and salt diffusion coefficient, then in Chapter
4.4 we present governing equations for mass transport in electrolytes in terms of these ex-
perimental transport parameters. Finally, in Chapter 4.5 we demonstrate application of the
Onsager framework to a model electrolyte, LiCl in dimethyl sulfoxide. Here, we use molecu-
lar simulations and experimental measurements to demonstrate how Lij may look in a simple
system and what insights we can gain from analyzing these transport coefficients.

4.1 Physical interpretation of the Onsager transport

coefficients

The physical interpretation of the Onsager transport coefficients, Lij, is readily apparent
given the Green-Kubo relations (Eq. (3.29)):

Lij =
V

3kBT

∫ ∞

0

dt
〈
J i(t) · J j(0)

〉
.

1This chapter is closely adapted from portions of Ref. [1]: Fong, K. D., Bergstrom, H. K., McCloskey, B.
D. & Mandadapu, K. K. Transport phenomena in electrolyte solutions: Non-equilibrium thermodynamics
and statistical mechanics. AIChE Journal e17091 (2020), and Ref. [54]: Fong, K. D., Self, J., McCloskey, B.
D. & Persson, K. A. Ion correlations and their impact on transport in polymer-based electrolytes. Macro-
molecules 54, 2575–2591 (2021)
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As these expressions consist of correlation functions between fluxes, it is clear that Lij

captures the extent of correlation between the motion of species i and j. Further insight
into these equations can be obtained by noting that the Green-Kubo relations of Eq. (3.29)
may be equivalently written in terms of particle positions, rather than velocities. This form
of the equation is analogous to computing self-diffusion coefficients from the mean-squared
displacement of particle positions:

Lij =
1

6kBTV
lim
t→∞

d

dt

〈∑
α

[rα
i (t)− rα

i (0)] ·
∑
β

[rβ
j (t)− rβ

j (0)]
〉
. (4.1)

Here, and throughout the remainder of this dissertation, rα
i denotes the position of particle

α relative to the center-of-mass position of the entire system. Let us consider the diagonal
terms of the transport matrix, Lii:

Lii =
1

6kBTV
lim
t→∞

d

dt

∑
α

∑
β

〈
[rα

i (t)− rα
i (0)] · [rβ

i (t)− rβ
i (0)]

〉
. (4.2)

These transport coefficients are composed of two contributions: when α = β, we take the
autocorrelation function of the flux of particle α, and when α ̸= β, we compute the cross-
correlations between two distinct particles. These two contributions may be denoted as self
and distinct terms, respectively:

Lii
self =

1

6kBTV
lim
t→∞

d

dt

∑
α

〈
[rα

i (t)− rα
i (0)]

2
〉
, (4.3)

Lii
distinct =

1

6kBTV
lim
t→∞

d

dt

∑
α

∑
β ̸=α

〈
[rα

i (t)− rα
i (0)] · [rβ

i (t)− rβ
i (0)]

〉
. (4.4)

Note that Lii = Lii
self + Lii

distinct. From this decomposition, we can further interpret the
physical significance of Lii: it includes both correlations between particles of the same species
(non-idealities, captured in the distinct terms) as well as ideal, uncorrelated particle motion
captured in the self terms. The latter corresponds to simple Brownian motion of each ion
and may be directly related to the self-diffusion coefficient by

Lii
self =

Dici
kBT

. (4.5)

As noted in Chapter 2.2, the second law of thermodynamics imposes some restrictions on the
possible values of each transport coefficient. While the distinct terms may take on positive
or negative values, the self terms and the overall L++ and L−− must always be positive.

The physical interpretations of Lij, Lii
self , and Lii

distinct are illustrated schematically in
Figure 4.1. Although these schematics are for the specific case of a polyanionic system,
the discussion below is readily generalized to any binary electrolyte. Let us first consider
L++
distinct (upper middle panel). In general, two distinct cations will move in an anti-correlated
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Figure 4.1: Schematic illustration of the types of ion motion and correlations captured by
each transport coefficient Lij. The colorbar in the upper right qualitatively indicates the
type of ion correlation (or lack thereof), and the arrows on each ion indicate direction of
motion.

manner due to electrostatic repulsion, as illustrated by the yellow shading between the two
free cations in the figure. This will yield a negative contribution to L++

distinct. The motion
of two cations which are part of the same aggregate (in this case ionically bound to the
same polyanion chain), however, will be positively correlated (L++

distinct > 0, indicated by blue
shading in the figure). The intuition governing L−−

distinct (Figure 4.1, lower middle panel) is
similar. Distinct polyanionic chains will electrostatically repel and thus be anti-correlated,
whereas anions within a given chain will be very strongly correlated.

The transport coefficients in which i ̸= j quantify correlations between different types
of species. Herein we consider only L+−, describing cation-anion correlation in a binary
salt solution. With the exception of certain systems which will be discussed below, L+−

is generally positive due to the electrostatic attraction between cations and anions (Figure
4.1, lower right panel). This correlation will be strongest for ions that are directly paired,
although long-range electrostatic interactions will also contribute to L+−. Note that L+−

captures the total extent of correlation between all cation-anion pairs, i.e., the sum of all
individual cation-anion correlations, rather than the average correlation between any given
ion pair.
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4.2 Relating various frameworks for electrolyte

transport

The Onsager framework is advantageous in that (i) it emerges directly from the theory of
linear irreversible thermodynamics and (ii) it yields transport coefficients (Lij) which possess
clear physical interpretation, as described in the previous section. However, the transport
relations between X i and J i (Eq. (2.128)) derived in this work differ from the most common
conventions describing transport phenomena in electrolytes and those typically analyzed in
experiments [2, 21]. In this section, we briefly summarize these other major conventions,
then give relations for interconverting between them.

I. Stefan-Maxwell equations. As described in Chapter 1, the most ubiquitous convention
for electrolyte transport is the Stefan-Maxwell equations for multi-component diffusion,

ci∇µi =
∑
j ̸=i

Kij(vj − vi) , (4.6)

which describe the force on species i as linearly proportional to the relative friction between
species i and each of the other species in the system. Rather than describing particle motion
with respect to a reference velocity such as v, the Stefan-Maxwell framework is written
in terms of the relative velocity of two species. Recall that Kij may be written in terms
of the binary interaction diffusion coefficients Dij, also called the Stefan-Maxwell diffusion
coefficients, as Kij =

RTcicj
cTDij . Physically, Kij may be interpreted as quantifying the friction

between species i and j. For gaseous systems, this friction has a clear atomistic interpretation
in terms of collisions between particles. The connection between Kij and molecular-level
motion in a liquid electrolyte, however, is more complex.

II. Solvent velocity reference system. It is also common to choose yet another con-
vention, with Xs

i = −ci∇µi and J s
i = (vi − v0), where we use the superscript s to denote

that the flux of species i (J s
i) is described with respect to the solvent velocity v0 [2, 32, 53].

The use of v0 as the reference velocity is sometimes referred to as the Hittorf reference
system [55]. The choice of Xs

i as −ci∇µi is particularly convenient given the form of the
chemical potential in the dilute/ideal limit (discussed in more detail in the following section):
µi = µo

i +RT ln ci. In this case, −ci∇µi = −RT∇ci, and we recover the familiar result from
Fick’s law, in which the negative gradient of concentration is the driving force for diffusive
flux.

The expressions for Xs
i and J s

i can also be motivated directly from our entropy pro-
duction expression (Eq. (2.103)) if we apply the Gibbs-Duhem equation for electroneu-
tral systems at constant temperature, pressure, and electric field, i.e.,

∑
i ci∇µi = 0 or

∇µ0 = −∑
i ̸=0

ci
c0
∇µi (Eq. (A.27)), instead of applying the constraint that all mass fluxes

must sum to zero. In this case, the entropy production in Eq. (2.103) at constant tempera-
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ture and bi = 0 becomes

σi = −
∑
i

∇µi · J i = −
∑
i ̸=0

∇µi · (J i − J0) = −
∑
i ̸=0

∇µi · [ci(vi − v0)] . (4.7)

From Eq. (4.7) it is clear that both X i and J i as well as Xs
i and J s

i yield the same total
entropy production and are thus both consistent with linear irreversible thermodynamics.
The choices of Xs

i and J s
i, and corresponding linear relations, yield the following transport

coefficient equations:

ci∇µi =
∑
j ̸=0

M ijs(vj − v0) , (4.8)

and
(vi − v0) = −

∑
j ̸=0

Lijscj∇µj . (4.9)

Note that, by convention, the negative sign in the thermodynamic driving force has been
absorbed into M ijs , and therefore Ls = −M s−1

.
Although both reference velocities give equivalent entropy production, only the mass-

averaged velocity reference system can be cleanly integrated into the mass balance, which
forms the basis for the regression hypothesis and derivations of the Green-Kubo relations
in Sec. 3.1. Wheeler and Newman [53] have obtained Green-Kubo expressions for Lijs

using the linear response approach of Sec. 3.2; their choice of modified Hamiltonian yields
expressions for Lijs in terms of J s

i, the species flux with respect to the solvent velocity. This
Hamiltonian may not be consistent with conservation of mass as written in Eq. (2.5), which
is with respect to the barycentric velocity and not the solvent velocity. Indeed, the Lijs

obtained from our Lij by the mapping described in the following sections (Secs. 4.2 and
4.2) may not be consistent with Lijs given by Wheeler and Newman’s Green-Kubo relations.
Their expressions thus may not correspond to true diffusive transport in the system.

III. Infinitely dilute solutions. While the Stefan-Maxwell equations and solvent velocity
reference systems aim to fully capture solution non-idealities (correlations in ion motion),
it is also very common to analyze transport by neglecting all solution non-idealities, i.e.,
Lij = 0 for i ̸= j and Lii

distinct = 0. This analysis is only rigorously correct in the limit
of infinite dilution but is routinely applied to non-dilute electrolyte as well, as it greatly
simplifies both computational and experimental analysis of the system. This approximation
is referred to as the Nernst-Einstein assumption.

Relating the Onsager transport and Stefan-Maxwell equations

In this section we provide a mapping between the Onsager transport coefficients Lij in Eq.
(2.128) and the Stefan-Maxwell transport coefficients Kij (Eq. (4.6)). The methodology
to obtain this mapping parallels that described by Bird for non-electrolyte multicomponent
systems [56].
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We begin by rewriting Eq. (2.128) as

vi − v = −
∑
k

L̂ikck∇µk , (4.10)

where, for convenience, we have defined the quantity L̂ik = Lik

cick
. Subtracting Eq. (4.10) for

species i and j and multiplying by Kij gives

Kij(vj − vi) = Kij
∑
k

[
L̂ik − L̂jk

]
ck∇µk . (4.11)

Summing over j ̸= i yields∑
j ̸=i

Kij(vj − vi) =
∑
k

∑
j ̸=i

Kij
[
L̂ik − L̂jk

]
ck∇µk . (4.12)

This equation takes on the form of the Stefan-Maxwell equations (Eq. (4.6)) if∑
k

∑
j ̸=i

Kij
[
L̂ik − L̂jk

]
ck∇µk = ci∇µi , (4.13)

subject to the additional constraint that
∑

i MiL
ij = 0. Following Bird [56], we observe that

these equations can be satisfied if we choose∑
j ̸=i

Kij
[
L̂ik − L̂jk

]
= δik − ωi , (4.14)

where ωi = ρi/ρ is the mass fraction of species i. We first verify that Eq. (4.14) transforms
Eq. (4.12) into the Stefan-Maxwell equations:∑

j ̸=i

Kij(vj − vi) =
∑
k

δikck∇µk −
∑
k

ωick∇µk = ci∇µi , (4.15)

where the last equality is obtained by invoking the Gibbs-Duhem equation. While Eq.
(4.14) yields the Stefan-Maxwell equations without the inclusion of the ωi term, we require
the latter to satisfy the constraint

∑
i MiL

ij = 0. We verify that this constraint is satisfied
by multiplying Eq. (4.14) by Mkck and summing over k, resulting in∑

k

Mkck
∑
j ̸=i

Kij
[
L̂ik − L̂jk

]
=

∑
k

Mkckδik −
∑
k

Mkckωi . (4.16)

Rearranging and noting that
∑

k Mkck =
∑

k ρk = ρ, we obtain∑
j ̸=i

Kij

[
1

ci

∑
k

MkL
ik − 1

cj

∑
k

MkL
jk

]
= ρi − ρi , (4.17)
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where invoking the constraint
∑

i MiL
ij = 0 gives 0 = 0, as required.

To convert Eq. (4.14) into a more useful form, let us define the matrix W i with compo-
nents (W i)jk = L̂jk − L̂ik (j, k ̸= i). We can rewrite Eq. (4.14) in terms of W i as∑

j ̸=i

Kij(W i)jk = ωi (i ̸= k) . (4.18)

Multiplying by (W−1
i )kl and summing over k gives (after a change of indices)

Kij = ωi

∑
k ̸=i

(W−1
i )kj (i ̸= j) . (4.19)

Analogously, the constraint
∑

j MjL
jk = 0 can be rewritten as∑

j

Mjcjck[L̂
jk − L̂ik] +

∑
j

MjcjckL̂
ik = 0 , (4.20)

or, upon rearranging: ∑
j ̸=i

ωj(W i)jk = −L̂ik (i ̸= k) . (4.21)

Equivalently, ∑
k ̸=i

L̂ik(W−1
i )kj = −ωj (i ̸= j) . (4.22)

Combining Eqs. (4.19) and (4.22) yields our final equation mapping Kij and Lij:

1

Kij
= − 1

ωiωj

∑
k ̸=i L̂

ik(W−1
i )kj∑

k ̸=i(W
−1
i )kj

(i ̸= j) . (4.23)

For a two-component electrolyte such as an ionic liquid, the mapping in Eq. (4.23) can
be written as

K+− =
−ω+ω−

L̂+−
=

ω2
−

L̂++
=

ω2
+

L̂−−
, (4.24)

where in the second and third equalities we have used the constraint
∑

iMiL
ij = 0. For a

three-component system, such as an electrolyte with binary salt and solvent, we obtain

K+− = ω+ω−
L̂00 + L̂+− − L̂+0 − L̂−0

L̂+0L̂−0 − L̂+−L̂00
,

K+0 = ω+ω0
L̂−− + L̂+0 − L̂+− − L̂−0

L̂+−L̂−0 − L̂+0L̂−−
,

K−0 = ω−ω0
L̂++ + L̂−0 − L̂+− − L̂+0

L̂+−L̂+0 − L̂−0L̂++
.

(4.25)
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Equation (4.23) may be used to obtain analogous expressions for systems with an arbitrary
number of ionic components. Unlike Lij, there is no Green-Kubo relation to directly compute
Kij from molecular dynamics simulations. Those works which do report Stefan-Maxwell
coefficients from simulations do so by first computing the Onsager transport coefficients
then mapping from Lij to Kij [53, 57–59]. Alternative methods for computing the Stefan-
Maxwell coefficients directly have been proposed [60,61], although their accuracy is somewhat
contentious [53].

Finally, we note that both the Onsager and Stefan-Maxwell equations can be used for
continuum-level transport modeling [62–65] to predict concentration and potential profiles at
a system level and can be used to obtain experimentally-measurable quantities [2]. However,
doing so is more challenging in the Stefan-Maxwell framework. Formulating the govern-
ing equations for macroscopic transport or writing expressions for experimentally measured
properties relies on solving for the velocities of each species in solution; while this is trivial
in the Onsager transport equations (Eq. (2.128)), it requires extensive algebra in the Stefan-
Maxwell equations (inverting the matrix of all Kij). This yields more complex expressions
in the Stefan-Maxwell framework. The ionic conductivity of a binary salt in terms of Dij,
for example, is [2]

κ =

[ −RT

cTz+z−F 2

(
1

D+− − c0z−
c+(z+D0+ − z−D0−)

)]−1

. (4.26)

This relation is substantially more complex than that emerging from the Onsager framework
(Eq. (4.53)). Generalizations to multicomponent solutions beyond a binary salt, while
trivial in terms of Lij, are much more involved and rarely reported in the Stefan-Maxwell
framework.

Relating the Onsager transport framework and the solvent
reference velocity system

The relationship between the Onsager transport coefficients Lij defined with reference to the
barycentric velocity (Eq. (2.128)) and those of the solvent reference velocity system Lijs (Eq.
(4.9)) are not straightforward. We can, however, easily map between the Stefan-Maxwell
and solvent reference velocity frameworks. This mapping, in conjunction with Eq. (4.23)
relating the Stefan-Maxwell and Onsager transport coefficients, allows us to connect Lij and
Lijs .

The mapping between the Stefan-Maxwell coefficients Kij and M ijs of the solvent refer-
ence velocity conventions is well-established [2]:

M ijs,0 = Kij − δij
∑
k

Kik , (4.27)

where the superscript 0 indicates that the matrix M s,0 includes components from all species,
including the solvent. As discussed previously, when all species are included, the components
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of the transport matrix are not all independent due to the fact that there are only n − 1
independent force/flux equations for an n-component system (as seen by either the Gibbs-
Duhem equation or the fact that all fluxes must sum to zero). The independent components
of the transport matrix are given by the submatrix eliminating the row and column corre-
sponding to one species, typically the solvent. The components of this submatrix are the
M ijs defined in Eq. (4.8). Recall that the submatrix M s is related to Ls via Ls = −M s−1

.
Thus, Lij may be mapped to Lijs via the following process: Lij may be related to Kij using
Eq. (4.23), Kij may be related to M ijs,0 with Eq. (4.27), M s,0 may be converted into the
submatrix with components M ijs , and finally M s may be inverted to give Lijs .

In what follows, we demonstrate this mapping procedure for a binary electrolyte, consist-
ing of a single cation, single anion, and solvent. The relation between the Stefan-Maxwell
and Onsager transport coefficients have already been written for a binary electrolyte in Eq.
(4.25). All that remains is to explicitly write Lijs in terms of the Stefan-Maxwell coefficients.
We choose to give this mapping in terms of the Stefan Maxwell diffusion coefficients, Dij,
rather than Kij, as this will be useful in a later section. Writing out the components of K
in terms of Dij gives

K =
RT

cT


c2+

D++
c+c−
D+−

c+c0
D+0

c+c−
D+−

c2−
D−−

c−c0
D−0

c+c0
D+0

c−c0
D−0

c20
D00

 . (4.28)

Now applying the mapping of Eq. (4.27), we obtain

M s0 =
RT

cT

−( c+c−
D+− + c+c0

D+0 )
c+c−
D+−

c+c0
D+0

c+c−
D+− −( c+c−

D+− + c−c0
D−0 )

c−c0
D−0

c+c0
D+0

c−c0
D−0 −( c+c0

D+0 + c−c0
D−0 )

 . (4.29)

As mentioned before, not all components of M s0 are independent. The independent coeffi-
cients are obtained by eliminating the row and column corresponding to the solvent, given
by the submatrix

M s =
RT

cT

[
−( c+c−

D+− + c+c0
D+0 )

c+c−
D+−

c+c−
D+− −( c+c−

D+− + c−c0
D−0 )

]
. (4.30)

Inverting M s and simplifying, we obtain the following expression for Ls.

Ls =
cT

RTγ

[
c+c−D

−0D+0 + c−c0D
+−D+0 c+c−D

+0D−0

c+c−D
+0D−0 c+c−D

−0D+0 + c+c0D
+−D−0

]
, (4.31)

where γ = c2+c−c0D
−0 + c+c

2
−c0D

+0 + c+c−c
2
0D

+−.
We have now outlined mappings between the Onsager and the Stefan-Maxwell coefficients

(Eq. (4.23)), as well as between the Stefan-Maxwell coefficients and those of the solvent
reference velocity framework (Eq. (4.31)), thus providing a relation between the Onsager
and solvent-reference transport coefficients as well.
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Behavior in the limit of infinite dilution

Here we show how the Onsager transport equations (Eq. (2.128)) behave in the limit of
infinite dilution, thereby recovering the familiar Nernst-Planck equation for transport in an
ideal electrolyte solution. In the case of infinite dilution, we can rewrite our expressions
for both Lij and Lijs by assuming that cT ≈ c0 >> c+, c− and v ≈ v0. Using the latter
expression and multiplying by ci, Eq. (4.9) containing Lijs can be rewritten as

ci(vi − v) = −
∑
j ̸=0

Lijs

dilutecicj∇µj . (4.32)

Comparing to Eq. (2.128) containing Lij, we can conclude that

Lij
dilute = cicjL

ijs

dilute (4.33)

for i, j ̸= 0.

Relation to self-diffusion coefficients. As in the previous sections, for brevity we now
consider only binary electrolytes. Extensions to multicomponent systems are straightfor-
ward. Simplifying Eq. (4.31) under the assumption that cT ≈ c0 >> c+, c− yields

Ls
dilute =

1

RTc+c−c0

[
c−c0D

+0 c+c−D
+0D−0/D+−

c+c−D
+0D−0/D+− c+c0D

−0

]
. (4.34)

We can also infer that there will no be correlations between distinct ions at infinite dilution,
i.e., the cross-correlated transport coefficient L+− = 0. In order for these off-diagonal terms
of Eq. (4.34) to tend to 0, we require that D+− → ∞, yielding

Ls
dilute =

1

RT

[
D+0

c+
0

0 D−0

c−

]
, (4.35)

or, using Eq. (4.33),

Ldilute =
1

RT

[
D+0c+ 0

0 D−0c−

]
. (4.36)

Equations (4.33), (4.35), and (4.36) provide direct relations between transport coefficients
from the different frameworks, Lij, Lijs , and Dij, in the limit of infinite dilution. Finally,
these multicomponent transport coefficients at infinite dilution may also be related to the
self-diffusion coefficients2 of each individual species. To do so, we rewrite the Green-Kubo

2In some texts, the term ‘self-diffusion coefficient’ refers specifically to the motion of a labeled particle
in a pure liquid of identical, unlabeled particles [66], whereas the diffusion of a labeled particle in a multi-
component system is referred to as an intradiffusion coefficient. In this text, however, we refer to both of
these scenarios as self-diffusion coefficients, as both can be computed based on the translational Brownian
motion of the particles [67].
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relations for Lii:

Lii =
V c2i
3kBT

∫ ∞

0

dt

〈(
1

Ni

∑
α

vα
i (t)− v(t)

)
·
(

1

Ni

∑
β

vβ
i (0)− v(0)

)〉
. (4.37)

In addition to substituting J i = ci(vi − v), we have decomposed vi into
1
Ni

∑
α v

α
i , where

the index α enumerates all atoms/molecules of species i. Simplifying Eq. (4.37) yields

Lii =
V c2i

3kBTN2
i

∫ ∞

0

dt

〈∑
α

∑
β

((
vα
i (t)− v(t)

)
·
(
vβ
i (0)− v(0)

))〉
. (4.38)

Splitting the double sum in Eq. (4.38) to distinguish between cases where α = β (the self
terms) and those where α ̸= β (the distinct terms) results in

Lii =
V c2i

3kBTN2
i

[ ∫ ∞

0

dt

〈∑
α

((
vα
i (t)− v(t)

)
·
(
vα
i (0)− v(0)

))〉
+∫ ∞

0

dt

〈∑
β

∑
α ̸=β

((
vα
i (t)− v(t)

)
·
(
vβ
i (0)− v(0)

))〉]
.

(4.39)

This analysis is equivalent to the decomposition of Lii into self and distinct terms as given
in Eqs. (4.3) and (4.4): the first term in this equation describes self-correlations, while the
second term captures correlations between distinct particles of type i, which are negligible
at infinite dilution. Therefore, we observe that

Lii
dilute = Lii

self =
V c2i

3kBTN2
i

∑
α

[ ∫ ∞

0

dt

〈(
vα
i (t)− v(t)

)
·
(
vα
i (0)− v(0)

)〉]
. (4.40)

The term in the square brackets is the integral of the velocity autocorrelation function, which
is simply three times the self-diffusion coefficient of species i, Di [68]. This yields

Lii
dilute =

V c2i
3kBTN2

i

[3NiDi] , (4.41)

where the additional factor of Ni comes from summing over all atoms/molecules α of species
i. Incorporating the fact that ci = Ni/V , Eq. (4.41) becomes

Lii
dilute =

Dici
RT

. (4.42)

We have thus derived Eq. (4.5) given in the previous section. Equation (4.42) shows the
relations between Lii

dilute and the self-diffusion coefficients and, with Eq. (4.36), also im-
plies that the Stefan-Maxwell diffusion coefficients D+0 and D−0 approach the self-diffusion
coefficients D+ and D−, respectively, in the limit of infinite dilution.
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Derivation of the Nernst-Planck equation. The above simplifications allow facile
derivation of the Nernst-Planck equation for the flux of species i, N i := civi, at infinite
dilution. Simplification of Eq. (2.128) for the case where all but the diagonal terms of the
transport matrix are zero gives

ci(vi − v) = −Lii
dilute∇µi . (4.43)

Further simplification and incorporation of Eq. (4.42) yields

civi = −Dici
RT

(∇µi + ziF∇ϕ) + civ . (4.44)

We may now incorporate the definition of N i as well as the definition of chemical potential
for an ideal solution: µi = µθ

i +RT ln ci, implying ∇µi =
RT
ci
∇ci. Thus,

N i = −Di∇ci −
DiciziF

RT
∇ϕ+ civ . (4.45)

As a final step, we apply the Einstein relation to relate the self-diffusion coefficient to the
electrophoretic mobility ui (ui =

DiziF
RT

) [68] to recover the Nernst-Planck equation:3

N i = −Di∇ci − uici∇ϕ+ civ . (4.46)

4.3 Relation to experimentally-relevant quantities

The Onsager transport coefficients Lij are not directly measurable from experiments. They
may, however, be explicitly related to quantities which can be accessed experimentally,
namely the ionic conductivity, electrophoretic mobility, transference number, and salt dif-
fusion coefficient. In this section, we derive expressions for each of these experimentally
measurable quantities in terms of Lij. Utilizing our derived Green-Kubo relations for Lij

(Eq. (3.29)), we also provide Green-Kubo expressions for some of these experimentally
measurable quantities so that they can be calculated directly in molecular simulations. Fi-
nally, we give expressions for Lij in terms of the aforementioned experimentally measurable
quantities for the special case of a binary solution.

Ionic conductivity

We begin by deriving an expression for the ionic conductivity in terms of Lij. Consider
a solution of uniform composition, i.e. with no gradients in chemical potential, such that

3In this work, the mobility is defined as ui =
vi−v
E , describing the velocity of a species in response to

an electric field. In some texts [2], the mobility is instead defined as u′
i =

(vi−v)
ziFE = ui

ziF
. The Nernst-Planck

equation using this convention is N i = −Di∇ci − ziFu′
ici∇ϕ+ civ.
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∇µi = ∇µi + ziF∇ϕ = ziF∇ϕ. For conventional experimental conductivity measurements
of electrolyte solutions, this condition of uniform composition is satisfied by applying a
rapidly alternating voltage or current through the electrolyte about the open circuit voltage,
the high frequency of which does not allow appreciable concentration gradients to form [69].
Rewriting the transport Eq. (2.128) under this condition leads to

ci(vi − v) = −
∑
j

LijzjF∇ϕ . (4.47)

Multiplying by Fzi and summing over all species i results in∑
i

Fzicivi −
∑
i

Fziciv = −
∑
i

∑
j

LijzizjF
2∇ϕ . (4.48)

Note that the second term on the left side of the equation is zero due to electroneutrality,
which dictates

∑
i zici = 0. Thus we will see that while Lij depends on the chosen reference

velocity (in this case v), the ionic conductivity will be independent of the reference velocity,
as expected.

Recall that the free current density j̃
f
may be written as

j̃
f
= F

∑
i

zicivi . (4.49)

Equation (4.49) can also be written in terms of the fluxes of ions as

j̃
f
= F

∑
i

(ziJ i + ziciv) = F
∑
i

ziJ i , (4.50)

where in the second equality we have invoked the condition of electroneutrality. Using Eqs.
(4.48) and (4.49), we obtain

j̃
f
= −

∑
i

∑
j

LijzizjF
2∇ϕ , (4.51)

showing a linear relationship between the current density and the electric field. Using Ohm’s
Law to define the ionic conductivity κ from

j̃
f
= −κ∇ϕ (4.52)

yields our final relation between ionic conductivity and the transport coefficients Lij as

κ = F 2
∑
i

∑
j

Lijzizj . (4.53)

The Green-Kubo relation for ionic conductivity can be obtained from Eq. (3.29) as

κ =
1

3kBTV

∫ ∞

0

dt

〈∑
α

q̂α(vα(t)− v(t)) ·
∑
β

q̂β(vβ(0)− v(0))

〉
, (4.54)
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where the summations are over all individual ions in the system (denoted by the indices α
and β), rather than over all types of ions i as in Eq. (3.29). Recall that q̂α is the electronic
charge of the ion α. With electroneutrality (

∑
α q̂

α = 0), the reference velocity vanishes and
we obtain the Green-Kubo equation commonly presented in other works [67]:

κ =
1

3kBTV

∫ ∞

0

dt

〈∑
α

q̂αvα(t) ·
∑
β

q̂βvβ(0)

〉
. (4.55)

Electrophoretic mobility

We can also obtain expressions for the electrophoretic mobility of species i, ui, defined
as vi − v =: uiE, in terms of Lij. This quantity can be measured experimentally using
techniques such as electrophoretic Nuclear Magnetic Resonance (NMR) spectroscopy [70] or
capillary electrophoresis [71]. To this end, consider once again the case with no gradients in
chemical potential. In this case, the definition of electrophoretic mobility can be compared
with Eq. (2.128), yielding

ui =
∑
j

Lij zjF

ci
. (4.56)

Based on Eq. (4.53), it follows that the ionic conductivity is related to mobility as κ =∑
i Fziciui. In molecular simulations, ui can either be computed by separately calculating

each Lij term or by directly using the Green-Kubo relations emerging from substituting the
Green-Kubo relations for Lij (Eq. (3.29)) into Eq. (4.56):

ui =
1

3kBT

∫ ∞

0

dt

〈∑
α

q̂α(vα(0)− v(0)) · (vi(t)− v(t))

〉
. (4.57)

This result is consistent with the relation derived by Dünweg et al. [72] using linear response
theory.

Transference number

The transference number of species i, ti, can also be determined directly from Lij. The
transference number is defined as the fraction of current carried by species i in a system
with no concentration gradients. Using Eq. (4.50), it is given by

ti :=
ziJ i∑
j zjJ j

. (4.58)

Equation (4.58) can be expressed in terms of electrophoretic mobility and conductivity as

ti =
Fziciui

κ
=

∑
j L

ijzizj∑
k

∑
l L

klzkzl
. (4.59)
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From the first equality, it is clear that the transference number may equivalently be in-
terpreted as the fraction of conductivity attributed to species i. The second equality has
incorporated Eqs. (4.53) and (4.56) to give the transference number in terms of Lij.

Experimentally, the transference number can be measured via a number of methods. The
most common method is a potentiostatic polarization experiment, where a fixed potential is
applied to a symmetric cell and the ratio of the achieved steady state current to the Ohmic
current is equal to the transference number of the reactive species [73]. This method is only
strictly valid in the infinite dilution limit. For concentrated electrolytes, additional infor-
mation about the activity of the solution must be known in order to calculate transference
numbers [74]. Using another common method, the Hittorf method, the transference num-
ber can be directly obtained by measuring the concentration of ions throughout multiple
connected chambers in a symmetric cell after passing current through the electrolyte for a
known amount time [75]. The transference number can also be obtained by measuring the
electrophoretic mobility of each ionic species by the methods mentioned described above.

Salt/Electrolyte diffusion coefficient

The transport coefficients Lij can also be related to the salt or electrolyte diffusion coefficient,
following the derivation by Katchalsky [32]. For this derivation, we restrict ourselves to a
binary electrolyte, with a single salt. Rather than considering a system with no chemical
potential gradients as with κ, ui, and ti, here we consider the condition of no electrical
current. Under this condition, the salt diffusion coefficient Del is defined by

J el := −Del∇c , (4.60)

where the subscript ‘el’ denotes quantities pertaining to the overall electrolyte. The salt flux
J el is related to the fluxes of the cation and anion, J+ and J−, respectively, by J el =

J+

ν+
=

J−
ν−

, where ν+ and ν− are the stoichiometric coefficients of the cation and anion in the salt.

The quantity c is the concentration of salt, c = c+
ν+

= c−
ν−
. Note that z+ν+ = −z−ν− due

to the condition of electroneutrality. In what follows, we aim to express the salt diffusion
coefficient Del in terms of Lij.

Let us begin by considering the total current. By Eq. (4.50),

j̃
f
= z+FJ+ + z−FJ− . (4.61)

Incorporating the transport laws (Eq. (2.125)) into Eq. (4.61) yields

j̃
f
/F = −z+L

++

(
∇µ+−

M+

M0

∇µ0

)
− z+L

+−
(
∇µ− − M−

M0

∇µ0

)
− z−L

−−
(
∇µ− − M−

M0

∇µ0

)
− z−L

+−
(
∇µ+ − M+

M0

∇µ0

)
.

(4.62)
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Let us define the quantity µ′
i := ∇µi − Mi

M0
∇µ0 and rewrite Eq. (4.62) as

j̃
f
/F = −z+L

++∇µ′
+ − z+L

+−∇µ′
− − z−L

−−∇µ′
− − z−L

+−∇µ′
+ . (4.63)

Further, it is convenient to define the chemical potential of the salt or electrolyte as µel :=
ν+µ+ + ν−µ−, and analogously µ′

el := ν+µ
′
+ + ν−µ

′
−. Note that the Gibbs-Duhem relation

(∇µ0 = − c+
c0
∇µ+− c−

c0
∇µ−) allows us to write∇µ′

el =
(
1+ c

c0M0
(ν+M++ν−M−)

)
∇µel. These

definitions, along with Eqs. (4.53), (4.59), and (4.63), allow us to express the electrochemical
potential of the ions as

∇µ′
+ =

−j̃
f
Fz+
κ

+
t−
ν+

∇µ′
el ,

∇µ′
− =

−j̃
f
Fz−
κ

+
t+
ν−

∇µ′
el .

(4.64)

Combining Eqs. (2.125) and (4.64) allows us to write the ion fluxes in terms of ∇µ′
el and

Lij as

J+ =
j̃
f
t+

Fz+
+

z+z−ν+
ν+ν−

(
L−−L++ − L+−2

z2+L
++ + 2z+z−L+− + z2−L

−−

)
∇µ′

el ,

J− =
j̃
f
t−

Fz−
+

z+z−ν−
ν+ν−

(
L−−L++ − L+−2

z2+L
++ + 2z+z−L+− + z2−L

−−

)
∇µ′

el .

(4.65)

Now let us consider the case of no net current which is relevant for determining the salt

diffusion coefficient. When j̃
f
= 0, we may write the salt flux J el as

J el =
z+z−
ν+ν−

(
L−−L++ − L+−2

z2+L
++ + 2z+z−L+− + z2−L

−−

)
∇µ′

el. (4.66)

Note that while all previous transport properties have been defined with respect to gradi-
ents in electrochemical potential (the true thermodynamic driving force), the salt diffusion
coefficient is defined with respect to concentration gradients. Thus, to identify Del from Eq.
(4.66), we need a relation between ∇µ′

el and ∇c. To this end, we invoke the form of the
chemical potential,

µel = µo
el + νRT ln(cfel) +RT ln(ν

ν+
+ ν

ν−
− ) , (4.67)

where fel = (f
ν+
+ f

ν−
− )1/ν is the salt activity coefficient [2] and ν = ν+ + ν−.

4 Thus,

∇µel =
∂µel

∂c
∇c =

νRT

c

[
1 +

d ln fel
d ln c

]
∇c , (4.68)

4The quantities µel and fel are referred to in some texts as µ± and f± [2].The salt chemical potential
may also be written in terms of molal (as opposed to molar) activity coefficients, denoted γel. In this case,

∇µel =
νRT
c

[
1 + d ln γel

d lnm

][
1− d ln c0

d ln c

]
∇c, where m is molality.
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and correspondingly

∇µ′
el =

νRT

c

[
1 +

d ln fel
d ln c

](
1 +

c

c0M0

(ν+M+ + ν−M−)

)
∇c . (4.69)

Combining Eqs. (4.60), (4.66) and (4.69), the salt diffusion coefficient is given by

Del =
−z+z−(L

−−L++ − L+−2
)

(z2+L
++ + 2z+z−L+− + z2−L

−−)

νRT

cν+ν−

[
1 +

d ln fel
d ln c

](
1 +

c

c0M0

(ν+M+ + ν−M−)

)
.

(4.70)
Experimentally Del is typically measured via the restricted diffusion method, where a con-
centration gradient is built across a symmetric cell by applying a potential or fixed current
density [76]. The potential or current is then stopped and the concentration gradient is mon-
itored as it relaxes. The concentration can either be directly monitored using interferometry
or other spectroscopic methods or can be indirectly observed by monitoring the changing
open circuit potential [77,78].

Lij in terms of experimental quantities

The above relations enable us to compute conductivity, mobility, transference number, and
salt diffusion coefficient from Lij values obtained from molecular simulation. In contrast, we
can also manipulate these equations to solve for Lij in the case where the electrolyte has
been characterized experimentally. Rearranging Eqs. (4.53), (4.59), and (4.70) and solving
for Lij in terms of the experimentally measurable quantities gives:

L++ =
ν2
+Del

νRT
c

[
1 + d ln fel

d ln c

] + κ

(
t+
z+F

)2

,

L−− =
ν2
−Del

νRT
c

[
1 + d ln fel

d ln c

] + κ

(
t−
z−F

)2

, (4.71)

L+− =
ν+ν−Del

νRT
c

[
1 + d ln fel

d ln c

] +
κt+t−
z+z−F 2

.

In summary, we have derived equations to enable inter-conversion between Lij and ex-
perimentally relevant, macroscopic electrolyte transport quantities. This provides experi-
mentalists with a means to quantitatively evaluate the extent of correlation between each of
the ionic species in solution.
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4.4 Governing equations for mass transport

In this section, we combine the mass balance of Chapter 2.1 and the linear laws of Chapter
2.2 to derive governing equations for mass transport in electrolytes, restricting to the special
case of a binary electrolyte. These equations allow us to directly utilize experimentally-
measurable transport properties to set up boundary value problems for the concentration
profile of an electrolyte. Let us begin by substituting the expression for cation flux, J+ in
Eq. (4.65) into the mass balance, Eq. (2.5), yielding

∂c+
∂t

+∇ · (c+v) = −∇ ·
[
j̃
f
t+

Fz+
+

z+z−ν+
ν+ν−

(
L−−L++ − L+−2

z2+L
++ + 2z+z−L+− + z2−L

−−

)
∇µ′

el

]
. (4.72)

Incorporating the definition of the salt diffusion coefficient (Eq. (4.70)) and Eq. (4.69) gives

∂c+
∂t

+∇ · (c+v) = −∇ ·
[
j̃
f
t+

Fz+
− ν+Del∇c

]
. (4.73)

Finally, we may write the governing equation for the total salt concentration, c = c+
ν+

= c−
ν−
:

∂c

∂t
+∇ · (cv) = −∇ ·

[
j̃
f
t+

Fz+ν+
−Del∇c

]
. (4.74)

Equation (4.74) is analogous to the governing equation for concentration presented in
Newman’s textbook [2] derived from the Stefan-Maxwell framework:

∂c

∂t
+∇ · (cv0) = ∇ ·

[
DSM

el

(
1− d ln c0

d ln c

)
∇c

]
− j̃

f ·∇t0+
z+ν+F

. (4.75)

Here, the transference number t0+ is defined with reference to the solvent velocity, rather
than the center of mass velocity, and the salt diffusion coefficient DSM

el is defined in terms of
Stefan-Maxwell diffusion coefficients. The additional factor of

(
1− d ln c0

d ln c

)
arises from defining

the salt diffusion coefficient in terms of molal, as opposed to molar, activity coefficients.
Let us simplify Eq. (4.74) in the limit of infinite dilution, where we assume that c << c0,

fel = 1, and L+− = 0. Under these conditions, the diffusion coefficient (Eq. (4.70)) becomes

Del,dilute =
−z+z−L

−−L++

(z2+L
++ + z2−L

−−)

νRT

cν+ν−
. (4.76)

Further, we may invoke Eq. (4.42) to write Del,dilute in terms of self-diffusion coefficients:

Del,dilute =
D+D−ν

ν−D+ + ν+D−
=

D+D−(z+ − z−)

z+D+ − z−D−
. (4.77)
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Figure 4.2: Transport coefficients for LiCl in DMSO solutions. (a) Onsager transport coef-
ficients (LijF 2) and (b) Stefan-Maxwell transport coefficients (Kij/F 2) of each pair of ionic
species versus concentration. The inset in (b) shows the data at low concentrations. Trans-
port coefficients are divided or multiplied by a factor of F 2 (where F is Faraday’s constant)
such that the units are related to those commonly used for ionic conductivity.

Analogously, the cation transference number in ideal solutions is

t+,dilute =
z+D+

z+D+ − z−D−
. (4.78)

Incorporating Eqs. (4.77) and (4.78) into Eq. (4.74) give the following governing equation
for transport in dilute, binary electrolytes:

∂c

∂t
+∇ · (cv) = −∇ ·

[
j̃
f
z+D+

Fz+ν+(z+D+ − z−D−)
− D+D−(z+ − z−)

z+D+ − z−D−
∇c

]
. (4.79)

4.5 Applications to a model electrolyte: LiCl in

dimethyl sulfoxide

In what follows, we use the Green-Kubo relations (Eq. (3.29)) derived herein to compute the
transport coefficients Lij in a model electrolyte system using classical molecular dynamics
(MD) simulations (methods are described in Appendix B.1). Our model system consists
of LiCl salt, chosen for its structural simplicity, in dimethyl sulfoxide (DMSO) solvent.
DMSO was chosen over an aqueous solution to avoid the complications associated with the
self-ionization of water, which introduces additional charge carrying species into solution.
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Figure 4.3: Conductivity of LiCl in DMSO. (a) Ionic conductivity versus concentration, with
comparison to experimental data obtained from AC impedance measurements (see Appendix
B.1). (b) Molar conductivity versus the square root of concentration, with comparison to
experimental data.

As the dielectric constant and donor number of DMSO are relatively high, this solvent is
commonly used for its effectiveness in dissolving and dissociating salts [55].

Figure 4.2a shows the transport coefficients Lij from the Green-Kubo relations as a func-
tion of salt concentration. The Stefan-Maxwell coefficients Kij, obtained from Lij using
the mapping in Eq. (4.25), are also given for comparison in Figure 4.2b. The error bars
reported here are the standard deviation of ten independent replicate simulations, although
we note that the true error based on Zwanzig and Ailawadi theory [79] and its extension [80]
is likely smaller. We observe that the anionic term L−− is consistently the largest of the
three transport coefficients. This more facile motion of the anion relative to the cation is
consistent with the lithium ion’s bulky solvation shell [81]. Based on the fact that Lij is
directly proportional to cicj (Eq. (3.29)), one might expect a monotonic increase in each of
the transport coefficients with concentration. The non-monotonic trends in L++ and L−− re-
flect an increase in inter-ionic friction as concentration increases as a result of electrophoretic
and relaxation effects [82]. These effects, along with ion pairing or aggregation, also con-
tribute to correlated cation-anion motion, captured by L+−. We note that the magnitude of
L+− increases monotonically with concentration, which is consistent with an increase in the
number of ion pairs in solution.

In Figures 4.3 and 4.4, we demonstrate how the computed transport coefficients Lij

can be combined to yield experimentally relevant properties. The total ionic conductivity
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Figure 4.4: Mobility and transference numbers of LiCl in DMSO. (a) Electrophoretic mobility
u of each ion. As the mobility of the anion is negative, for this species we show −u. (b)
Cation transference number as a function of concentration.

computed from Eq. (4.53) is shown in Figure 4.3a. We also measure the conductivity ex-
perimentally using AC impedance spectroscopy (see Appendix B.1 for a detailed description
of methods). The computed values and the experimental data show reasonable agreement
both qualitatively and quantitatively, showing the molecular model to be reasonable for
studying transport phenomena of LiCl in DMSO. Figure 4.3b shows the same experimen-
tal and computed conductivity data as in Figure 4.3a but is plotted as molar conductivity
Λ (concentration-normalized conductivity) versus the square root of concentration. The
Debye-Hückel-Onsager theory [82] predicts that for low concentrations Λ = Λ0− ξ

√
c, where

Λ0 is the limiting molar conductivity and ξ is a constant accounting for electrophoretic and
relaxation effects. As can be seen in Figure 4.3b, the linear dependence of molar conduc-
tivity on

√
c is only approximately followed at the most dilute concentrations; deviations

from the predicted trend can likely be attributed to incomplete dissociation of the salt [83].
As the predicted

√
c dependence is built upon Debye-Hückel theory, which is only valid for

very dilute electrolytes, it is no surprise that we observe the molar conductivity to deviate
substantially from the Debye-Hückel-Onsager equation at higher concentrations.

We also present the electrophoretic mobility and cation transference number in Figure
4.4a and b, respectively. In Figure 4.4a, we observe that the mobility of both the cation
and anion decrease monotonically, once again due to more inter-ionic friction at higher
concentrations. The magnitude of the anion mobility is larger than that of the cation, as
required by the fact that L−− > L++ at all concentrations (Figure 4.2). The transference
number in Figure 4.4b is observed to remain relatively constant with respect to concentration
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until approximately 1.5 M, after which it decreases sharply. The onset of the decrease in the
lithium transference number roughly coincides with that of the ionic conductivity in Figure
4.3a. This shift likely reflects a change in the solvation environment of the lithium ions, i.e.,
a change in the most common ion aggregates present in solution. Note that although the
transference number is defined as the fraction of conductivity attributed to a given species,
it is not necessarily bounded between zero and one. Indeed, in this LiCl in DMSO system,
the lithium transference number may become negative above 2.5 M. This phenomena, which
has been observed in systems such as solid polymer electrolytes [84] and ionic liquids [85],
corresponds to lithium moving towards more positive potential under an applied electric
field and may be due to the presence of negatively charged aggregates in solution. It is
important to note that the transference number is challenging to measure experimentally
and is rarely reported without the use of ideal solution approximations [3]. In contrast,
the Onsager framework and associated Green-Kubo relations allow for facile computation
of the transference number at a computational cost equivalent to that of conventional MD
calculations such as the diffusion coefficient or total ionic conductivity.

In summary, this chapter has provided an intuitive picture of the Onsager transport
framework for electrolyte solutions and has related the Onsager transport coefficients Lij

to other common transport frameworks as well as experimentally-measurable properties. In
the following chapters, we will demonstrate how this understanding of Lij will enable us to
gain useful insights as to the molecular-level mechanisms of ion motion in Li-ion battery
electrolytes.
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Chapter 5

Nonaqueous Polyelectrolyte Solutions
for Lithium Ion Batteries

1

In this chapter, we demonstrate application of the Onsager transport framework developed
in the previous sections to an emerging class of electrolytes for Li-ion batteries: nonaque-
ous polyelectrolyte solutions. We describe the motivation for using these polyelectrolytes
as potential high transference number alternatives to conventional battery electrolytes, then
explore the structural and dynamic properties of a model nonaqueous polyelectrolyte using
all-atom molecular dynamics (MD) simulations. We find that static structural analysis of
Li+ ion pairing is insufficient to fully explain the overall conductivity trend in this system,
necessitating a dynamic analysis of the diffusion mechanism, in which we observe a shift
from largely vehicular transport to more structural diffusion as Li+ concentration increases.
Furthermore, we demonstrate that despite the significantly higher diffusion coefficient of the
lithium ion, the negatively-charged polyion is responsible for the majority of the solution
conductivity at all concentrations, corresponding to Li+ transference numbers much lower
than previously estimated experimentally. We quantify the ion-ion correlations unique to
polyelectrolyte systems which are responsible for this surprising behavior. These results
highlight the need to reconsider the approximations typically made for transport in poly-
electrolyte solutions.

5.1 Li-ion batteries and the cation transference

number

As introduced in Chapter 1, the performance of conventional lithium-ion batteries (LIBs)
is limited by their low cation transference number (t+), defined as the fraction of ionic
conductivity imparted by the lithium ion rather than its counterion [2]. These low t+ values

1This chapter is closely adapted from Ref [86]: Fong, K. D.et al. Ion transport and the true transference
number in nonaqueous polyelectrolyte solutions for lithium ion batteries. ACS Central Science 5, 1250–1260
(2019).
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Figure 5.1: Properties of the PAGELS polyelectrolyte. (a) Chemical structure. (b) Experi-
mental values of the Nernst-Einstein transference number of PAGELS in DMSO, compared
to a conventional salt, LiTFSI [96].

(typically about 0.4) [9] correspond to electrolytes in which the anion is highly mobile,
whereas the electrochemically active Li+ moves more sluggishly due to its bulky solvation
shell [81]. As a result, concentration gradients form in the electrolyte, which limit material
utilization, promote lithium plating, and generate concentration overpotentials, all of which
contribute to lower power density, energy density, and lifetime of the cell [3, 4, 87].

Strategies towards increasing t+ typically focus on immobilizing the anion, for example
via lithium-conducting ceramics [88–91] or single-ion conducting solid polymer electrolytes
[92–95]. However, the mechanical properties of ceramics make thin film processing difficult,
and polymer electrolytes suffer from poor conductivity, particularly at room temperature
and below. Alternatively, it has been recently proposed that t+ could be increased by
covalently appending the anion to the backbone of a polymer, which is then dissolved in
nonaqueous solvent to form a lithium-neutralized polyelectrolyte solution [96–99]. As these
polyelectrolytes are entirely in the liquid phase, they could serve as a means to increase
transference number without drastic conductivity losses and be directly used in existing
cell designs. Indeed, initial studies have reported transference numbers as high as 0.8 to
0.98 depending on the polymer chemistry, solvent, and ion concentration [96, 97, 99, 100].
Experimental data [96] for one such polyelectrolyte solution, poly(allyl glycidyl ether-lithium
sulfonate) (PAGELS) in dimethyl sulfoxide (DMSO), is given in Figure 5.1, with comparison
to a conventional Li-ion battery salt, LiTFSI, in the same solvent.
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While these results suggest that such polyelectrolyte solutions could be very promis-
ing options for high-transference number battery electrolytes, it is important to note that
the transference number is very difficult to determine unequivocally from experiments [3].
Most reported electrochemical t+ measurements (namely those using the Bruce and Vincent
method [101]) assume ideal solutions of non-interacting ions, while those that incorporate
the effects of non-idealities are typically challenging to execute experimentally. Balsara and
Newman′s [74] generalization of the Bruce and Vincent method to concentrated solutions, for
example, requires a restricted diffusion experiment as well as determination of the salt activ-
ity coefficient. Other techniques, such as the Hittorf or Tubandt method [75], are associated
with large statistical uncertainties due to noisy data [9, 102]. As a result, true transference
numbers are rarely measured directly [3].

The existing experimental studies [96, 97, 99, 100] which report high t+ in a nonaqueous
polyelectrolyte have not measured the rigorous transference number, but have rather esti-
mated t+ by assuming that the solution behaves ideally. As discussed in Chapter 4.2, this
Nernst-Einstein (NE) approximation assumes there are no correlations between ions in the
electrolyte, thereby eliminating the off-diagonal components of the transport matrix (L+−)
as well as the distinct terms. Incorporating this approximation into Eq. (4.59) yields an
expression for the Nernst-Einstein transference number of species i, tNE

i , in terms of only the
self transport coefficients:

tNE
i =

z2iL
ii
self∑

j z
2
jL

jj
self

. (5.1)

For the cation transference number of a binary electrolyte, incorporating Eq. (4.5) and the
condition of electroneutrality,

∑
i zici = 0, yields an expression for transference number in

terms of the self-diffusion coefficients of the cation and anion, D+ and D−, respectively:

tNE
+ =

z+D+

z+D+ − z−D−
. (5.2)

The self-diffusion coefficients in this expression can be easily obtained experimentally from
pulsed-field gradient nuclear magnetic resonance (PFG-NMR). In a polyelectrolyte, there
exists some ambiguity as to the value of z−. Noting that all anions on the chain must
move collectively over long timescales, one may interpret z− as the net charge of the poly-
mer (zpolymer). Conversely, the experimental works which have characterized these systems
to-date [96–99] have assumed z− = −1, i.e., that each monomer is considered to be an
independent anionic species. These works thus use the following equation to estimate the
transference number of a polyelectrolyte solution:

tNE
+ =

D+

D+ +D−
. (5.3)

We will discuss the implications of each of these choices for z− in the following sections.
We also note that that tNE

+ is sometimes referred to as a transport number, rather than a
transference number [103].
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The Nernst-Einstein approximation typically yields reasonable results for conventional
electrolyte solutions, but we lack insight as to how well this assumption holds for polyelec-
trolytes. More broadly, development of these systems is hindered by a lack of fundamental
understanding of ion transport phenomena in these solutions. Many of the properties be-
yond the transference number which most strongly govern battery electrolyte performance,
such as ion speciation and diffusion mechanisms, are challenging to precisely access exper-
imentally [104]. We further note that the majority of theoretical work on polyelectrolyte
solutions has focused on the properties of the polyion chain alone, rather than the behavior
of the counterion, which is the electroactive species of interest for batteries [105,106].

Simulation techniques such as molecular dynamics are well-suited to address many of
the unanswered questions surrounding these nonaqueous polyelectrolytes. As the time and
length scales associated with ion transport are compatible with those accessible by MD, this
technique has been used extensively to gain insight into the properties of conventional binary
lithium salts such as lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) or lithium hexaflu-
orophosphate (LiPF6) [107,108] as well as solid polymer electrolytes [109–113]. MD has also
been successfully applied to polyelectrolytes, although these studies have been performed
almost exclusively in aqueous systems [114–116], for example on biological polyelectrolytes
such as DNA [117, 118], or in solvent-free ionomer melts [119–122]. Others have performed
polyelectrolyte simulations in non-explicit continuum solvents [123–125], but this approach
often fails to adequately capture trends in chain conformation and ion dissociation [97,126].
Of the MD simulations in explicit nonaqueous solvents [98,127], we are unaware of any which
characterize the battery-relevant transport properties (such as t+) of the solution.

Herein, we employ all-atom classical MD simulations of PAGELS in DMSO, a model
polyelectrolyte system for battery applications. Several of the most important transport
properties of this system have been investigated experimentally [96], enabling validation of
the computational model. We characterize the structural properties of a single chain in
solution, demonstrating the intuitive connection between ion pairing behavior and polyion
conformation. Next, we explore the dynamic mechanisms for lithium ion diffusion and
migration, focusing specifically on ion-ion correlations and their impact on conductivity and
transference number. This work illuminates some of the fundamental atomistic processes
governing transport in these nonaqueous polyelectrolyte solutions, which has implications
not only for the design of enhanced LIB electrolytes but also for improved understanding of
polyelectrolyte dynamics in general.

5.2 Structural properties

Ion Speciation

One of the most deciding aspects of the performance of a battery electrolyte is ion spe-
ciation: the extent of ion pairing in an electrolyte governs the number of charge-carrying
species, thereby directly influencing the conductivity, transference number, and other crucial
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electrolyte properties [6,128,129]. Using a distance criterion obtained from the cation-anion
radial distribution function (RDF), we classify each Li+ ion as either free, in a solvent-
separated ion pair (SSIP), or in a contact ion pair (CIP) or larger aggregate (AGG) with
the sulfonate ions, the anionic moiety of the polyion (Figure 5.2a). The nomenclature used
here is common in the field of battery electrolytes, but in the polyelectrolyte literature this
phenomenon is typically referred to as counterion condensation [130]. The CIPs referred to
here are analogous to Manning’s “site” bound ions, whereas SSIPs are similar to “territori-
ally” bound condensed counterions [131]. Consistent with the various theories of counterion
condensation in polyelectrolytes [132,133], here we observe that the fraction of free Li+ ions
(Figure 5.2b) decreases as concentration increases, ranging from 72% at 0.05 M down to
5% at 1.0 M, while the extent of ion pairing and aggregation increases. The coordination
number of anions within the first Li+ shell (plotted in Figure B.2) yield a similar trend.

While this initial analysis provides a general picture of ion speciation trends in the poly-
electrolyte, the data in Figure 5.2b does not distinguish between CIPs and AGGs. We
quantify the relative significance of these AGGs in Figure 5.2c, which gives the probability
of observing aggregates of different sizes for each concentration. We observe that the proba-
bility of ion aggregates to form decreases approximately exponentially with aggregate size, a
trend which has been observed for conventional LIB electrolytes [108]. As fewer than 2.5%
of the observed aggregates consist of three or more ions, we expect the bulk behavior of the
system to be dictated primarily by the free ions, SSIPs, and CIPs.

To further visualize the most prevalent solvation structures and aggregate types in the
polyelectrolyte solution, we employ a graph theory approach analogous to that of Tenney et
al. [134], in which we translate the positions of the system’s atoms at any given time into a
graph composed of nodes and vertices. The nodes in this case represent Li+, S (SO –

3 ), or
O (DMSO) atoms, and the edges give connectivity between Li+-S (SO –

3 ) or Li+-O (DMSO)
pairs which are coordinated in their first solvation shell. Analysis of the connectivities at each
time step allows for determining the most common topologies observed over the course of the
simulation, as shown in Figure 5.2d. The area of the nodes in this figure are proportional to
the logarithm of the frequency at which the topology appears in the system, averaged over
all concentrations. As expected, the most frequently-observed topologies are the free ion and
CIP (SSIPs are not captured in this analysis), while clusters with more ions are significantly
less common.

Polymer Conformation

In this section we focus on the polymer conformation, which is closely tied to ion speciation.
At low concentrations, when contact ion pairing is negligible, the polymer chain is highly
charged. In this state, electrostatic repulsion between charged monomers extends the chain
into a predominantly linear conformation. As concentration increases and more counterions
(Li+) bind to the chain, the repulsion between the monomers decreases and the polymer
adopts a more entropically favorable, globular conformation. [104]. This trend is apparent in
the snapshots shown in Figure 5.3a. The linear to coiled transformation with concentration
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Figure 5.2: Ion speciation trends. (a) Schematics of the three most common states of ion
speciation: free ions, solvent-separated ion pairs (SSIPs), and contact ion pairs (CIPs). (b)
Fraction of lithium ions in each speciation state as a function of concentration. (c) Prob-
ability of observing ion clusters of different sizes. (d) Most commonly observed topologies
representing the connectivity of Li+ to neighboring sulfur (SO –

3 ) and oxygen (DMSO) atoms,
averaged over all concentrations. Node area is proportional to the logarithm of the proba-
bility of observing each topology.

can be observed quantitatively in both the end-to-end distance (Figure 5.3b) as well as the
radius of gyration (Figure 5.3c), which both decrease as concentration increases.

Changes in the polyion’s persistence length (Figure 5.3d) are also consistent with our
trends in ion pairing described in the previous section. The persistence length reflects the
extent of orientational correlation along the backbone of the chain. For polyelectrolytes,
the overall persistence length is a combination of orientational correlations from the inher-
ent flexibility of the uncharged backbone as well as electrostatic correlations induced by
repulsion of the charged monomers [135]. Hence changes in electrostatic correlations dictate
the trend in persistence length with concentration, such that the highly charged chains at
lower concentrations yield the greatest persistence lengths. Our results are in qualitative
agreement with the classical Odijk-Skolnick-Fixman (OSF) theory [136,137], which predicts
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Figure 5.3: Polymer structure as a function of concentration. (a) Example configurations of
polymer conformation at 0.05 M, 0.5 M, and 1.0 M. (b) End-to-end distance, (c) radius of
gyration, and (d) persistence length at each concentration. Sulfur atoms on the sulfonate
anion are depicted in purple, the chain backbone is blue, and the sidechains are gray. Solvent
molecules and lithium ions are omitted for clarity.

that persistence length should be proportional to the square of the Debye screening length,
or inversely proportional to the solution ionic strength. Quantitative agreement with this
model should not be expected, however, given the oligomeric nature of the chain (here 43
monomers, chosen to match available experimental data — see Appendix B.2 for details on
system setup) as well as the presence of the long sidechains, which render the distribution of
anionic charges on the chain somewhat irregular. Similar limitations prevent us from com-
paring other structural or dynamic properties of the polyion to known polyelectrolyte scaling
laws, which typically assume infinitely long chains with uniform charge distributions [138].

5.3 Dynamic properties

Before extracting atomistic transport motifs for the PAGELS polyelectrolyte, we validate
the dynamics produced by our MD force field against experimental data [96]. The calcu-
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Figure 5.4: Comparison of calculated dynamic properties with experimental values. (a)
Diffusion coefficients of Li+ and the polyelectrolyte (PAGELS) center of mass. (b) Ionic
conductivity. Experimental values are taken from Buss et al. [96]

lated self-diffusion coefficients and those measured experimentally in previous work using
pulsed-field gradient nuclear magnetic resonance (PFG-NMR) are given in Figure 5.4a. In
addition to reproducing the experimental trend in which both the lithium ions and polyion
diffuse more slowly as concentration increases, the diffusion coefficients match to within less
than half of an order of magnitude — well within the errors commonly observed for MD
simulations using non-polarizable force fields [139, 140]. Some of the observed discrepancy,
particularly for the polyion, may be attributed to finite size effects from our simulations of
a single polymer chain. These effects are well-known to result in slower diffusion relative
to an infinitely large simulation box [141]. While we have performed simulations with two
chains at the highest concentrations which suggest that these finite size effects are relatively
small (Figure B.1), it is possible that significantly larger simulation sizes could yield better
agreement with experimental diffusion data. The experimental ionic conductivity κ is also
reproduced within reasonable error (Figure 5.4b). Our overestimation of the total conduc-
tivity suggests that the force field may underestimate the effects of ion pairing in the actual
system. Regardless, the relative changes in conductivity with concentration show excellent
agreement with experimental trends.

Lithium Diffusion Mechanisms

To characterize lithium ion transport within this polyelectrolyte system, we consider not
only the static picture of the lithium ion coordination environments but also the dynamic
trends governing the motion of Li+ relative to its surroundings. Diffusion of Li+ relative to
another species can be characterized as either vehicular, in which Li+ diffuses together with
its solvation shell as a single complex, or structural, where neighboring species do not move
together for appreciable distances. In the latter case, the Li+ solvation shell molecules are
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frequently exchanged [142]. Identification of these mechanisms has been shown in previous
works to be crucial for fully understanding trends in ionic conductivity [143,144].

The diffusion mechanism of one species relative to another can be distinguished quan-
titatively by calculating the residence time (τ) for two neighboring species to move to-
gether [145, 146]. Herein we have evaluated residence times for Li+ with respect to DMSO
and SO –

3 (both CIPs in the first solvation shell and SSIPs in the second solvation shell) as
well as for SO –

3 with respect to DMSO in its first solvation shell.
The residences times alone, however, cannot be used to compare diffusion mechanisms,

as overall diffusion slows down at higher concentrations due to increased solution viscos-
ity. Indeed, we observe that the residence times calculated for each pair of species (Figure
5.5a) generally increase as concentration increases. As the overall changes in system vis-
cosity will be reflected in the solvent (DMSO) diffusion coefficient, we use this quantity to
convert from residence time to diffusion length, L, where L =

√
6DDMSOτ . The calculated

diffusion lengths (Figure 5.5b) enable a systematic comparison of changing diffusion mech-
anisms across concentration. This analysis demonstrates that the diffusion length generally
decreases as concentration increases, corresponding to a shift in the diffusion mechanism
towards more structural diffusion for all lithium species. The SO –

3 -DMSO diffusion length,
which stays relatively constant across concentration, is the only exception to this trend. The
Li+-SO –

3 (CIP) trend here is of particular interest. Although more ion pairs exist at higher
concentrations (as shown by our static coordination environment analysis), the change in
diffusion mechanism indicates that each of these ion pairs will travel a shorter distance as
neighbors. We note that this observation has important implications for our analysis of
cation-anion correlations and ionic conductivity in the following section.

While the aforementioned diffusion mechanism analysis has dealt exclusively with the av-
erage behavior of all lithium ions, we gain additional insight from analyzing the trajectories
of individual Li+. When mapping a given Li+ trajectory over the scale of a few nanosec-
onds (shown for a representative Li+ atom in Figure 5.5c), we observe discrete jumps of
approximately 4-5 Å overlaid on the typical noise associated with molecular diffusion. Vi-
sualization of the lithium ion and its surroundings over this period reveals that these jumps
correspond to ion hopping events between solvent-separated lithium and sulfonate ions, as
pictured in Figure 5.5c. The average time between these hops is consistent with the residence
time analysis of solvent-separated Li+-SO –

3 pairs, as shown in Figure 5.5a. The residence
time provides a quantitative measure of the average rate of hopping events, which can be
interpreted as inversely proportional to τ [147].

This mechanism is reminiscent of the ion hopping behavior postulated for transport in
solid polymer electrolytes [111,148] as well as organic liquid electrolytes at high concentration
[149,150]. In this polyelectrolyte, however, solvent-separated ion hopping is observed for all
concentrations simulated, suggesting that hopping events may be facilitated by the presence
of the polymer. Indeed, recent work [151] has generated evidence for substantial migration of
territorially bound counterions (SSIPs) along polyelectrolyte backbones. It is possible that
constraining the anion positions through their attachment to the chain backbone generates
favorable anion-anion separation distances for the hopping to occur. Importantly, however,
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Figure 5.5: Characterization of lithium ion diffusion mechanisms. (a) Residence time (char-
acteristic time travelled together by a pair of neighboring species before separating) as a
function of concentration for various species. (b) Diffusion length as a function of concen-
tration for various species. (c) Sample Li+ trajectory with snapshots depicting the solvent-
separated ion hopping process. Sulfur atoms on the sulfonate anion are depicted in purple,
the lithium ion is pink, the chain backbone is blue, and the sidechains are gray. Solvent
molecules are omitted for clarity.
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we emphasize that the ion hopping diffusion mechanism is not the only process governing
overall Li+ motion. In addition to these hopping events, full trajectory inspection reveals
that the overall movement of the ions is heavily influenced by free diffusion in DMSO as well
as co-diffusion of CIPs with the polymer.

Ionic Conductivity and Transference Number

Given that the main motivation for polyelectrolyte solutions as battery electrolytes is their
predicted high lithium transference number, in this section we aim to evaluate the trans-
ference number as well as elucidate the physical mechanisms which govern it. Unlike ex-
perimental measurements, MD trajectories and the Onsager transport framework described
in Chapters 2-4 afford us the ability to calculate t+ without having to make any assump-
tions about the ideality of the solution. This framework allows us to gain more insight into
the physical processes governing the ionic conductivity trends as a whole by decomposing
the total conductivity into separate contributions from the various types of correlated and
uncorrelated ion motion in the system [152–155]:

κ = κ++
self + κ−−

self + κ++
distinct + κ−−

distinct + 2κ+− (5.4)

Here, and throughout this chapter, we consider the quantities κij, related to Lij via Lij =
κij

zizjF 2 , such that the transport coefficients exhibit the dimensions of ionic conductivity. While

we will return to the Lij notation in the following chapter, working with κij provides a more
physically-intuitive means of analyzing the contributions to the conductivity. The two self-
conductivity terms (κ++

self and κ−−
self ) yield the conductivity from completely uncorrelated ion

motion. The distinct terms (κ++
distinct, κ

−−
distinct, and κ+−) capture ion-ion correlations between

pairs of cations, pairs of anions, and cation-anion pairs, respectively. If the sum of all the
distinct terms is zero, the resulting conductivity follows Nernst-Einstein or ideal solution
behavior. In this case, tNE

+ will correspond to the true transference number. However, the
distinct terms typically decrease both conductivity and cation transference number relative
to the ideal case [155,156].

While analysis of the conductivity in this manner is more common for conventional, low
molecular weight salt electrolytes, the framework here is consistent with that often used in
the polyelectrolyte community, in which the total conductivity is expressed as the product
of the ideal solution conductivity and an interaction parameter capturing interionic friction
and ion pairing effects [157]. It has been shown by Vink [158] that these expressions for poly-
electrolyte conductivity can be derived from linear irreversible thermodynamics, the same
starting point for deriving the Green-Kubo relations on which the conductivity analysis in
this work is based. The analysis here, however, allows us to calculate the relative contribu-
tion of each type of ion-ion interaction to the total conductivity rather than only a single
interaction parameter — an analysis which to our best knowledge has not been previously
applied to any polyelectrolyte system. Note that in this analysis, we are considering the be-
havior of each individual sulfonate anion, rather than the center-of-mass motion of the entire
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polyelectrolyte chain. Either choice of anion yields equivalent results for the computed total
ionic conductivity, electrophoretic mobilities, and transference number (see Section B.3).

Figure 5.6a shows the contribution of each of the terms in Eq. (5.4) to the overall mo-
lar conductivity in this system. The two self-conductivity terms are closely related to the
cation and anion self-diffusion coefficients, and thus their contribution to the total molar
conductivity decreases as concentration increases. The Li+-distinct conductivity is approx-
imately zero at all concentrations, corresponding to uncorrelated ion motion, although at
higher concentrations the relative contribution of κ++

distinct slightly decreases to become nega-
tive. Negative conductivity contributions signify anti-correlated motion, as Li+ ions within
close proximity repel each other. This trend is more apparent when plotting the fractional
contribution of each conductivity term to the total conductivity (Figure 5.6b), rather than
the molar conductivity.

The Li+-SO –
3 distinct conductivity impacts the overall conductivity much more signif-

icantly. We find the calculated κ+− for the PAGELS in DMSO system to be negative for
all concentrations. As the anion and cation are oppositely charged, a negative κ+− corre-
sponds to correlated ion motion, for example through the joint movement of an ion pair.
This negative contribution coincides with our intuitive understanding of ion pairing lowering
the overall conductivity relative to the ideal case. Surprisingly, the negative contribution of
κ+− decreases in magnitude, signifying less correlated cation-anion motion, as concentration
increases, despite the fact that the fraction of paired Li+ ions increases with concentration.
We rationalize this behavior at least in part through the aforementioned trends in diffusion
mechanism. While the percentage of CIPs is higher at high concentrations, these ion pairs
exhibit shorter diffusion lengths such that they diffuse through a more structural mechanism
than ion pairs at low concentration. Indeed, shorter distances travelled as a single correlated
entity are consistent with smaller contributions to κ+−. We speculate that changes in Li+-
SO –

3 correlation with concentration may also be related to the decreased charge screening
length at high concentrations, which limits electrostatic attraction between ions to shorter
distances.

These results suggest that a purely static analysis of ion pairing, simply the spatial
arrangement of atoms at any given time, is inadequate to fully understand trends in ionic
conductivity. Importantly, this finding conflicts with the underlying assumptions of many
polyelectrolyte conductivity theories, in which the fraction of uncondensed (free) counterions
is often included as an adjustable parameter by which the entire conductivity is scaled
[157,159].

We further note that the trend of increasingly negative κ+− at lower concentrations
has been observed in MD simulations of non-polyelectrolyte systems, such as supercon-
centrated LiTFSI in tetraglyme as well as 1-butyl-3-methylimidazolium tetrafluoroborate
([BMIM+][BF –

4 ]) electrolytes in a variety of solvents [152,153]. Similarly, Haskins et al. [160]
noted that the fraction of uncorrelated ionic motion (κNE/κ, where κNE is the Nernst-Einstein
conductivity) increases with concentration for Li+-doped ionic liquid electrolytes, i.e. the
distinct conductivity terms decrease as concentration increases. In agreement with our ob-
servations, they attribute this trend to a change in diffusion mechanism from vehicular to
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Figure 5.6: Transport coefficients for PAGELS in DMSO. (a) Contributions of each type of
uncorrelated (self) or correlated (distinct) ion motion to the total molar conductivity (κij/c).
(b) Fractional contributions of each type of uncorrelated (self) or correlated (distinct) ion
motion to the total conductivity (κij/κ).

more structural as concentration increases.
While the aforementioned trends in self, cation-cation, and cation-anion conductivities

are not unique to polyelectrolytes, the anion-anion correlation term introduces complexities
not seen in conventional salt solutions. Typically, κ−−

distinct does not contribute substantially
to the overall conductivity [152,153], analogous to κ++

distinct. In anionic polyelectrolytes, how-
ever, each of the anions on a given chain is highly correlated to the others through their
connection to the same polymer backbone. This correlated motion results in substantial
positive contributions to the total ionic conductivity, which have important implications for
analysis of the transference number (see below).

In addition to providing information on the mechanisms dictating ionic conductivity,
dividing the conductivity into its constitutive elements also enables facile computation of
the electrophoretic mobility of the ionic species based on Eq. (4.56):

µ+ =
1

Fc+z+
(κ++

self + κ++
distinct + κ+−) (5.5)

µ− =
1

Fc−z−
(κ−−

self + κ−−
distinct + κ+−) (5.6)

We note that the choice of z− will not impact the final mobility, as the product c−z− is
constant regardless of whether the individual anionic moieties or the polymer chain as a
whole are considered. The mobility of both the polyion and Li+ are shown in Figure 5.7a.
As concentration increases, the mobility of both the polyelectrolyte chain and Li+ decrease.
As before, due to the short length of the polyion chain, the results do not coincide with
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the classical polyelectrolyte scaling laws, which predict that polyelectrolyte mobility should
be independent of concentration [161]. The mobilities can be converted to transference
numbers using Eq. (4.59). In Figure 5.7b the calculated true transference numbers (denoted
as t+ in the figure) are overlaid with the diffusion coefficient-based transport numbers (tNE

+ )
calculated from Eq. (5.2) using both z− = −1 and z− = zpolymer = −43. As mentioned
previously, the tNE

+ calculated using z− = −1 is in agreement with the commonly-employed
experimental analyses [96, 97] and yields very high transference number estimates which
are relatively constant across concentrations. The true transference number, however, is
significantly lower, ranging from 0.09 to 0.49; only the highest concentrations studied are
predicted to exhibit transference numbers appreciably greater than those of conventional
LIB electrolytes.

Figure 5.7: Mobility and transference numbers of PAGELS in DMSO. (a) Electrophoretic
mobility of the PAGELS polymer and lithium ion as a function of concentration. The abso-
lute value of the data is shown, as the anionic polymer mobility is negative. (b) Transference
number as a function of concentration. The true transference number (t+) calculated from
ionic conductivity data is plotted along with the transport number (tNE

+ , an approximation
of t+ for ideal systems). Values for the charge of the anionic species (z−) of both −1 and
zpolymer = −43 are used in calculating transport number.

These results demonstrate that the use of z− = −1 in Eq. (5.2) severely overestimates the
true transference number, and that the only correct interpretation of Eq. (5.2) is that using
z− = zpolymer. Choosing z− = −1 in the Nernst-Einstein equation assumes all ions in the
system are completely uncorrelated, which simply cannot be true when all ions on a given
chain are constrained to move together. In fact, anion-anion correlations (κ−−

distinct) constitute
the largest portion of the non-ideal distinct conductivity terms and are responsible for the
majority of the discrepancy between tNE

+ (z− = −1) and t+. In contrast, tNE
+ (z− = zpolymer)

treats the polymer collectively as a single unit and thus eliminates the need to account for
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anion-anion correlations within a given chain, effectively combining the SO –
3 self and dis-

tinct contributions into a single term, the PAGELS self-conductivity. This data is in much
closer agreement with the true t+. In this case, the only component of the overall conduc-
tivity which is not accounted for is the cation-anion distinct conductivity (κ+−). We note,
however, that the calculated t+ could be influenced by finite size effects. Our single-chain
simulations may fail to capture important inter-chain interactions which may contribute to
the overall distinct conductivity, although our preliminary tests using two chains (Figure
B.1) suggest that these effects are unlikely to impact our main conclusions. Although we
have modeled one specific polyelectrolyte system, the ion correlation and transference num-
ber analysis presented here has not made any assumptions regarding chain length or charge
distribution of the polyelectrolyte and should thus be generally applicable. Hence, we rec-
ommend that experimentalists employing the Nernst-Einstein approximation and Eq. (5.2)
to estimate transference number use z− = zpolymer in future work, rather than z− = −1. This
applies not only to polyelectrolyte systems but also to those which tether the anions together
through other means, for example in polyoligomeric silsesquioxanes (POSS) functionalized
with anionic moieties [162].

Although the cation transference number of the PAGELS in DMSO polyelectrolyte is not
as promising as originally thought, optimization of chain length, concentration, and polymer
chemistry may still yield systems with significantly higher t+. Furthermore, the wide range
in the true transference number as a function of concentration suggests that polyelectrolyte
systems present an interesting means of tuning transference number in ways which cannot be
accomplished in more conventional systems. Preliminary simulations suggest that decreasing
polymer charge density, i.e. reducing the fraction of monomers with anionic moieties, may be
a promising means of decreasing anion-anion correlations and thus increasing the transference
number. The complex balance between charge density, total lithium concentration, viscosity,
conductivity, and transference number in these solutions is the subject of future work.

In conclusion, we have investigated the structural and transport properties of a model
nonaqueous polyelectrolyte solution, PAGELS in DMSO, through all-atom MD simulations.
To validate the model, the calculated diffusion coefficients and ionic conductivity values
were benchmarked against experimental results. We characterized the solvation structure
and ion speciation behavior of the Li+ in the electrolyte and demonstrated the clear relation-
ship between ion pairing and polymer structure. Furthermore, analysis of the ion transport
mechanisms in the solution revealed a shift towards more structural diffusion as concentra-
tion increases as well as the presence of a solvent-separated ion hopping motif. Finally, we
deconvoluted the total ionic conductivity into contributions from each type of correlated
and uncorrelated ion motion to demonstrate the substantial impact of cation-anion and
anion-anion correlations. These non-ideal ion correlations substantially decrease the cation
transference number relative to estimates based on experimentally measured diffusion co-
efficient data. We envision that the ion transport mechanisms elucidated in this work will
inform design of improved polyelectrolyte systems for LIBs and enhance our understanding
of charge transport in polyelectrolyte solutions in general.
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Chapter 6

Onsager Transport Coefficients and
Transference Numbers in
Polyelectrolyte Solutions

1

In the previous chapter, we demonstrated using all-atom molecular dynamics (MD) sim-
ulations that for one polyelectrolyte system, poly(allyl glycidyl ether-lithium sulfonate)
(PAGELS) in dimethyl sulfoxide (DMSO), the Li-ion transference number is substantially
lower than would be expected from the ideal solution (Nernst-Einstein) approximations
(tNE

+ ≫ t+). We demonstrated that although the PAGELS electrolyte had been presented
in the literature [96] as having a very high transference number based on measurements of
the Nernst-Einstein transference number, this electrolyte formulation may not in fact be
promising for next-generation batteries. It remains to be seen, however, whether the fail-
ure of Eq. (5.3) generalizes beyond the PAGELS system, and whether we can make any
more general claims about the extent of non-idealities (ion correlations) in polyelectrolytes
which hold independent of the electrolyte chemistry. Furthermore, we wish to understand (i)
the emergence of polyelectrolytes’ unique transport properties as we transition from a con-
ventional monomeric electrolyte to oligo- and polyanions and (ii) how transport properties
change as a function of concentration, including the extreme limit of solvent-free systems
or polymerized ionic liquids, which are also under investigation as LIB electrolyte alterna-
tives [164–168]. While existing polyelectrolyte studies have extensively explored the polyion
transport properties in these solutions [105,106], the behavior of the counterion and thus the
battery-relevant transport properties of polyelectrolytes such as t+ are largely unexplored.

Herein, we use coarse-grained molecular dynamics simulations with explicit solvent to
systematically study transport as a function chain length and concentration for a generic
polyelectrolyte solution. Making use of the Onsager transport framework described in Chap-
ters 2-4, we present the Onsager transport coefficients Lij computed for the coarse-grained

1This chapter is closely adapted from Ref [163]: Fong, K. D., Self, J., McCloskey, B. D. & Persson, K. A.
Onsager transport coefficients and transference numbers in polyelectrolyte solutions and polymerized ionic
liquids. Macromolecules 53, 9503–9512 (2020).
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polyelectrolyte model, gaining insight into the ion correlations between species in solution.
We use these transport coefficients to calculate the transference number for the solutions,
rationalizing the resulting trends based on ion correlations and ion pairing behavior. We find
that the strong ion correlations in polyelectrolyte solutions generally yield conductivity and
transference number values lower than in conventional monomeric electrolytes, suggesting
that — from a transport perspective — polyelectrolytes may not be a promising alternative
to conventional battery electrolytes.

6.1 Onsager transport coefficients in a coarse-grained

polyelectrolyte model

Here we present the computed the Onsager transport coefficients for polyelectrolyte solutions
using a coarse-grained molecular dynamics model based on the classical Kremer-Grest bead-
spring chain [169, 170] with explicit solvent. We simulate chain lengths ranging from 1 to
25, noting that based on previous studies using similar polymer models we do not expect
significant entanglement effects for these chain lengths [121,169,171]. These polyelectrolytes
are studied at four concentrations ranging from 0.001 σ−3 to 0.05 σ−3, where σ is the Lennard-
Jones unit of distance and the diameter of each particle in the system. Mapping the size of
one monomer bead to that of a polystyrene sulfonate monomer (2.5 Å), this concentration
range approximately corresponds to 0.1 to 5 M (see Appendix B.3) section for a more detailed
discussion).

In this section, we discuss the transport coefficients in these solutions and show how they
may be interpreted to gain physical insight into transport phenomena in polyelectrolytes.
Each of the transport coefficients Lij quantifies a different aspect of ion motion or ion-ion
correlation, illustrated qualitatively in Figure 4.1. Let us analyze Lij as a function of chain
length: these transport coefficients are given directly for a concentration of 0.01 σ−3 in Figure
6.1a and with diagonal terms Lii split into self and distinct components in Figure 6.1b. The
latter will provide more intuitive insight into the transport behavior of these systems.

The two self terms (L++
self and L−−

self ) given in Figure 6.1b are proportional to the self-
diffusion coefficients (Eq. (4.5)). For the monomeric systems (N = 1) corresponding to
conventional binary electrolytes, L++

self is necessarily equal to L−−
self , as the cation and anion in

the model are equivalent in their mass, size, and excluded volume (Lennard-Jones) interac-
tions. As N increases, both L++

self and L−−
self decrease, a trend which aligns with the intuitive

expectation of diffusion coefficients to decrease as the chain becomes larger and the overall
solution more viscous. The decrease in L−−

self is more pronounced due to the bulky nature of
the polymer chain.

The L+− transport coefficient captures correlations between cations and anions. The
value of L+− is much lower than that of either L++ or L−− for the N = 1 system but
becomes increasingly significant as chain length increases. This trend suggests an increased
prevalence of ion pairing at higher N , as expected from theories for counterion condensation



CHAPTER 6. ONSAGER TRANSPORT COEFFICIENTS AND TRANSFERENCE
NUMBERS IN POLYELECTROLYTE SOLUTIONS 77

Figure 6.1: Transport coefficients as a function of chain length for a concentration of 0.001
σ−3, including (a) total Lij and (b) Lij with diagonal terms decomposed into self and distinct
contributions.

in polyelectrolytes [132] and confirmed directly in these simulations vide infra. Note that
when computing ionic conductivity via Eq. (4.53), the L+− term will be subtracted from the
total value. Thus, as expected, cation-anion correlations decrease the overall conductivity.

Let us now turn to the distinct terms, L++
distinct and L−−

distinct, which describe cation-cation
and anion-anion correlations, respectively. In general, one would expect distinct ions of the
same species to interact very little, in which case the distinct terms would be approximately
zero, or to repel, leading to negative values of the distinct terms reflecting anti-correlated
motion. Indeed, the monomeric (N = 1) systems studied here show very small contributions
of L++

distinct and L−−
distinct, with the values at high concentration being slightly negative. As

chain length increases, however, we deviate from this expected behavior and observe that
L++
distinct and L−−

distinct increase with chain length. These very positive values suggest highly
correlated motion, i.e. groups of like-charge ions moving together for appreciable periods of
time. Like the trend in L+−, this behavior can be rationalized by increased ion aggregation.
The increase of L++

distinct with chain length reflects the presence of multiple cations bound to
the same chain, which will move together for the lifetime of the ion aggregate. As chain
length increases (and with it the extent ion pairing), we expect more cations on average
to be bound to a given chain, resulting in an increase in the correlations between distinct
cations.

The increase in L−−
distinct with chain length is even more pronounced: for most chain

lengths, this term dominates over all other transport coefficients and will thus strongly impact
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Figure 6.2: L−−
distinct/c split into contributions from anion-anion correlations within chains

(solid lines, filled markers) and between chains (dashed lines, open markers). The two
curves sum to yield the total L−−

distinct/c.

conductivity and transference number. The total value of L−−
distinct contains contributions

from correlations between anions tethered to the same chain as well as anions on different
chains. The former will generate a positive contribution to L−−

distinct, as anions on a given
chain are constrained to move together and are thus highly correlated, while the latter will
give a negative contribution, as two negatively-charged macroions will repel each other and
move in an anti-correlated manner. In all systems studied, we observe that intra-chain
correlations dominate over inter-chain correlations (Figure 6.2), yielding the strong positive
trend in L−−

distinct with chain length. Details on the decomposition of L−−
distinct into these two

contributions are provided in Appendix B.3.
While the analysis of the Onsager transport coefficients presented in this section has

provided detailed physical intuition as the the nature of ion motion in these polyelectrolyte
systems, the reader may be more familiar with the Stefan-Maxwell equations for multicom-
ponent diffusion, and by extension Newman’s concentrated electrolyte theory [2], rather than
the Onsager equations presented in this work. As discussed in Chapter 4, both frameworks
are thermodynamically consistent, and it is possible to map between the transport coeffi-
cients from the two approaches (Eq. (4.25)). We thus provide the Stefan-Maxwell coefficients
Kij for the polyelectrolyte solutions studied at a concentration of 0.01 σ−3 for comparison
(Figure 6.3). Note that for the more dilute concentrations studied K−0 transitions from
positive to negative, corresponding to divergence of the Stefan-Maxwell diffusion coefficients
Dij, whereKij =

RTcicj
cTDij . The molecular-level interpretation of such behavior, which has been
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Figure 6.3: Stefan-Maxwell coefficients Kij for a concentration of 0.01 σ−3.

observed experimentally in solid polymer electrolytes as well [29], is the subject of ongoing
work.

6.2 Transference numbers

Having computed the transport coefficients for a range of polyelectrolyte solutions, we may
now combine these Lij to obtain experimentally relevant quantities, specifically the cation
transference number, shown in Figure 6.4a. We observe that for all concentrations studied,
the transference number decreases as chain length increases, with the monomeric electrolyte
having the highest transference number. Given that ionic conductivity generally decreases as
chain length increases, these results suggest that the polyelectrolyte solutions studied herein
would not yield any advantages in battery performance relative to a conventional monomeric
electrolyte.

The values of the rigorously computed t+ stand in stark contrast with the ideal solution
transference number, tNE

+ . Recall from Eq. (5.2) that there are two options for computing
tNE
+ : we may choose to treat each monomer as a separate ion, in which case the z− appearing
in Eq. (5.2) is −1, or we may treat the entire polymer chain as the anionic species, in
which case z− = −N . The resulting tNE

+ values based on each of these choices are given in
Figures 6.4b and c. We observe that tNE

+ (z− = −N) qualitatively reproduces the trend that
transference number decreases as chain length increases, but in most cases it overestimates
the rigorously computed t+. This equation ignores correlations between different chains and
between cations and anions, but it captures intra-chain correlations by treating the entire
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Figure 6.4: Cation transference number as a function of chain length. (a) Rigorously com-
puted t+ obtained from the Onsager transport coefficients and accounting for all ion corre-
lations present in solution. (b) and (c) tNE

+ , the ideal solution transference number ignoring
correlations between ions. These are written in terms of the self-diffusion coefficients, rather
than Onsager transport coefficients, using Eq. (4.5). (b) Treating entire polymer chains as
the anionic species (z− = −N) accounts for intra-chain correlations but ignores correlations
between chains and between cations and anions. (c) Treating individual monomers as the
anionic species (z− = −1) ignores all ionic correlations. Ion correlations are depicted accord-
ing to the colormap in Figure 4.1.

chain as a single unit. In contrast, tNE
+ (z− = −1) does not account for any correlations

between ions, capturing only self-diffusion. This assumes that monomers on the same chain
move completely independently, which is obviously incorrect given the fact that they are
covalently bonded. The resulting values for tNE

+ (z− = −1) in Figure 6.4c increase with
chain length, reaching values as high as 0.86. This approximation drastically overestimates
the true t+ and clearly does not provide a physically meaningful estimate of transference
number in polyelectrolytes. In experimental systems where the transference number cannot
be rigorously measured and only self-diffusion coefficients are available, tNE

+ (z− = −N)
provides a much more reasonable estimate of t+.
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Figure 6.5: Comparison of anion transport coefficients for each concentration and chain
length. (a) L−−

self (dashed lines) and L−−
distinct (solid lines), all divided by concentration to give

the contributions to each transport coefficient per ion. (b) L+− divided by concentration.

We now seek to rationalize the transference number trends in Figure 6.4 based on the
ion correlations in the electrolyte. While each of the Lij affect the observed trends in the
transference number, the general decrease in t+ with increasing chain length can be most
directly understood through the trends in L−−

self and L−−
distinct, which are shown in Figure 6.5a.

The data in this figure are divided by the total concentration to yield the contribution to
each transport coefficient per ion. For each concentration, the L−−

self term (and thus the self-
diffusion coefficient) decreases with N. Indeed, the fact that a long polymer chain moves more
slowly than a monomer is the basis for the intuitive notion that the anion in a polyelectrolyte
solution should carry less current than the cation to yield a high t+. As Eq. (5.2) for
tNE
+ includes only the self terms (assuming all distinct terms to be zero), it is clear why
tNE
+ (z− = −1) in Figure 6.4c exhibits such high values. In polyelectrolyte systems, however,
it is unreasonable to ignore the distinct terms when estimating t+, as we observe that the
magnitude of L−−

distinct surpasses that of L−−
self for all but the shortest chain lengths (Figure

6.5a). As mentioned above, this increase in L−−
distinct is due to the fact that increasing N leads

to more anions being covalently bound and thus constrained to move together, a phenomena
which will be general to any polyelectrolyte regardless of the chemical properties of the
polymer or solvent. The sum of the self and distinct terms, i.e., the overall L−−, increases
with respect to chain length, corresponding to a decreasing cation transference number.

In addition to the trend with respect to chain length, we also note that t+ increases with
concentration, similarly to previous results obtained with all-atom simulations on PAGELS
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in DMSO [86]. This can be most clearly understood in terms of cation-anion correlations,
quantified in Figure 6.5b. The contribution to L+− per ion decreases as the concentration
increases, yielding higher t+ for more concentrated solutions. In order to rationalize the
trend of decreasing cation-anion correlations as concentration increases, let us consider the
ion pairing behavior of the solutions. Ion pairing is conventionally defined based on a struc-
tural analysis of the solution: a cation is considered to be paired at a given time if it is within
some specific distance of an anion. The fraction of cations in ion pairs or larger aggregates
based on this type of analysis is given in Figure 6.6a. The resulting trend that ion pairing
increases with concentration, however, is not consistent with the trend of decreasing L+−/c
with concentration, suggesting that this static structural analysis does not provide a mean-
ingful assessment of ion correlations in the system. Instead, the trends in L+−/c must be
understood with a dynamic analysis of ion pairing, shown in Figure 6.6b. Here we quantify
the ion pair residence time, or the characteristic time for an ion pair to exist before breaking
apart [145,146,172]. Despite the fact that more ions are paired at high concentrations, each
of these pairs has a shorter lifetime, resulting in overall less correlated cation-anion motion
and higher cation transference number. This phenomenon is illustrated schematically in
Figures 6.6c and d. The negative correlation between static ion pairing fraction and dy-
namic ion pair lifetime was similarly observed in MD simulations of PAGELS in DMSO [86],
suggesting that this may be a common phenomenon in polyelectrolyte solutions.

The lowest concentrations studied yield negative t+ at high chain lengths. This phe-
nomenon corresponds to the presence of negatively charged aggregates which contribute
substantially to the conductivity. For example, if a single cation is bound to a polyanion
chain to yield an aggregate with large negative charge, upon application of an electric field
that bound cation will move along with the polymer towards higher electric potential (in the
“wrong direction”). As these negatively-charged aggregates are a natural occurrence in poly-
electrolytes, it is unsurprising that we observe t+ < 0 (or equivalently t− > 1) for cases at low
concentration when ion pairs are long-lived. In fact, solutions with t− > 1 have been widely
reported experimentally for dilute, aqueous polyelectrolytes [173–177]. The phenomena of
negative transference number is discussed in more detail in Chapter 7.2.

6.3 Extension to polymerized ionic liquids

Given the trend of increasing cation transference number with concentration, the question
naturally arises as to whether further increasing concentration may yield polyelectrolytes
with t+ greater than that of the monomeric solution. We can answer this question by
considering the limit of a solvent-free system, i.e., a polymerized ionic liquid.

We must first revisit our theoretical framework for the case of a solvent-free system. As
mentioned above, a system with n components will have n(n− 1)/2 independent transport
coefficients. A two-component electrolyte will thus only have one independent transport
coefficient. We remind the reader that

∑
iMiL

ij = 0 as a consequence of our center-of-
mass reference frame, where Mi is the molar mass of species i. Noting that the masses
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Figure 6.6: Ion pairing analysis. (a) Fraction of cations in ion pairs or aggregates based on
static structural analysis. (b) Ion pair residence times. (c) and (d) Schematic illustration of
cation-anion correlations (L+−) at low (c) and high (d) concentrations. Ion correlations are
depicted according to the colormap in Figure 6.1.

of all species in our system are equivalent, we can conclude that L++ = L−− = −L+−

in these solvent-free systems. Indeed, the computed transport coefficients follow exactly
this relation (Figure 6.7a; self and distinct transport coefficients for these systems, as well
as the total ionic conductivity, are provided in Figure 6.8). The implications of this data
are twofold. First, L+− is necessarily negative in a two-component electrolyte, suggesting
anti-correlated cation-anion motion. This phenomena has been previously noted in the
ionic liquids literature [153, 154, 165]. Second, from Eq. (4.59) it can be shown that the
transference number of these solvent-free solutions is determined solely by the ion charges
and masses: t+ = z+M−/(z+M−−z−M+). This phenomenon, too, has been noted previously
for polymerized ionic liquids [165] and molten salts [178,179]. In the polyelectrolyte solutions
modeled here where the cation and monomer masses are the same, t+ = 0.5 for all chain
lengths (Figure 6.7b).
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Figure 6.7: Transport data for the solvent-free solution. (a) Transport coefficients as a
function of chain length. The markers for L++ and L−− directly overlap. (b) Transference
number as a function of chain length, computed rigorously (t+) and using the Nernst-Einstein
approximation (tNE

+ ).

Note that in most physically relevant polymerized ionic liquids or single-ion conductors,
the cation and anion ratios are drastically different, and thus the computed transference
number will deviate from the value of 0.5 reported for the systems studied here. In the
polystyrene-TFSI-based systems commonly investigated experimentally [93, 180], for exam-
ple, the anionic monomer has a molar mass of 314.28 g/mol, compared to the Li-ion mass
of 6.94 g/mol. This mass discrepancy would translate to a transference number of 0.98 in a
two-component solution of dry lithiated polystyrene-TFSI — in line with experimental char-
acterization of these types of systems having very high t+ [93, 180]. It is important to note
that the main utility of the transference number is in dictating the extent of concentration
gradients in an electrolyte, which limit a battery’s rate capability [3]. As electroneutrality
dictates that no concentration gradients may be formed in a solvent-free electrolyte, how-
ever, the transference number of these systems is of little physical relevance in predicting
battery performance. Regardless, even in this superconcentrated limit, we do not observe
any polyelectrolyte solutions with cation transference number greater than the conventional
monomeric systems.

In summary, here we have computed the Onsager transport coefficients in polyelectrolyte
solutions as a function of chain length and concentration using coarse-grained molecular
dynamics simulations with explicit solvent. These transport coefficients provide insight into
the correlations dictating ion motion and allow us to rigorously compute the transference
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Figure 6.8: (a) Transport coefficients for the solvent-free system as a function of chain
length, split into self and distinct terms. (b) Conductivity as a function of chain length for
the solvent-free system.

number of the solutions. We demonstrate that the intrinsic anion-anion correlations within
chains result in decreasing t+ as chain length increases and cause substantial deviation be-
tween the true t+ and the ideal solution quantity tNE

+ . Furthermore, the decrease in t+ with
decreasing concentration can be attributed to stronger cation-anion correlations for more di-
lute solutions. These stronger correlations are primarily attributed to the longer lifetime of
existing ion pairs rather than an increased quantity of ion pairs (defined based on a structural
picture of the solution). Even in the case of a solvent-free system (polymerized ionic liquid),
we do not observe any polyelectrolyte solutions with transference number greater than that
of a conventional monomeric electrolyte. These results suggest that unentangled, short-chain
polyelectrolyte solutions may not be useful as high t+ alternatives to conventional LIB elec-
trolytes. It is possible that polyelectrolyte solutions or gel-like single-ion conductors may
be able to attain high cation transference number if the chains are entangled or cross-linked
such that the polymer is effectively immobile. Based on Eq. (3.29), we see that if the flux
of the anion is zero, then L−− and L+− will also tend to zero, in which case the transference
number would approach unity. While these systems could have high transference number,
these approaches typically yield very low conductivity [93,181]. Thus there exists a trade-off
between cation transference number and conductivity which must be resolved in order to
achieve promising single-ion conductors.
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Chapter 7

Conclusions
1

7.1 Dissertation summary

Herein, we have presented the development and application of the Onsager transport frame-
work as a rigorous and intuitive theory for analyzing transport in electrolyte solutions.
In Chapter 2, we derive the continuum-level governing equations for electrolyte transport
and formulate linear laws relating the thermodynamic driving forces and fluxes in an elec-
trolyte, giving rise to the Onsager transport coefficients Lij. We establish the connec-
tion between these coefficients and equilibrium fluctuations in ion motion in Chapter 3,
where we derive Green-Kubo relations for Lij. Our code to use these relations to ex-
tract Lij from molecular simulation data is available at https://github.com/kdfong/

transport-coefficients-MSD.
We provide physical interpretation for the Onsager transport coefficients and relate them

to experimentally-relevant quantities and other commonly used transport theories in Chapter
4. We emphasize that while the Onsager framework and the more ubiquitous Stefan-Maxwell
equations are thermodynamically consistent, the Onsager framework possesses several key
advantages, in that its transport coefficients (i) yield simpler relations for experimentally-
relevant transport quantities than Kij, which easily generalize to complex multicomponent
solutions, (ii) are easier to compute from molecular simulations, and (iii) have a clearer
physical interpretation, as they directly relate to ion correlations. We present simulations
of a simple electrolyte solution, lithium chloride in dimethyl sulfoxide, to demonstrate the
types of insights gained from analyzing transport through the lens of the Onsager transport
coefficients.

In Chapter 5, we utilize the Onsager transport framework to demonstrate the dramatic
failure of the Nernst-Einstein approximation in polyelectrolyte solutions. Using atomistic
molecular dynamics simulations, we quantify the substantial contribution of ion-ion correla-

1Portions of this chapter are adapted from Ref. [54]: Fong, K. D., Self, J., McCloskey, B. D. & Persson,
K. A. Ion correlations and their impact on transport in polymer-based electrolytes. Macromolecules 54,
2575–2591 (2021)

https://github.com/kdfong/transport-coefficients-MSD
https://github.com/kdfong/transport-coefficients-MSD
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tions in nonaqueous polyelectrolytes, which drastically decrease the true cation transference
number relative to the Nernst-Einstein value. This work suggests that although multiple
experimental studies have presented polyelectrolytes as promising high transference number
systems based on the Nernst-Einstein approximation, these electrolytes may not actually
possess favorable transport properties for battery applications. We demonstrate that these
conclusions generalize to generic polyelectrolyte solutions using coarse-grained molecular
dynamics simulations in Chapter 6. In this chapter we further demonstrate the presence
of negative transference numbers in some polyelectrolyte solutions, and we elucidate the
counterintuitive nature of transport in polymerized ionic liquids and other two-component
electrolytes, where we observe anti-correlated cation-anion motion and transference numbers
which are independent of chain length.

These investigations into polyelectrolyte transport have inspired new experimental efforts
to verify the transference number behavior predicted by this theoretical and computational
work. Experiments are currently ongoing to (i) systematically synthesize new model poly-
electrolyte solutions with precisely controlled chain lengths, ranging from the monomer to the
oligomeric regime, and (ii) develop electrophoretic NMR capabilities to rigorously measure
the transference numbers of these solutions without resorting to ideal solution approxima-
tions. Preliminary measurements have confirmed the strong decrease in cation transference
number as polymer chain length increases and the occurrence of negative transference num-
bers for longer chains.

7.2 Perspectives on the importance of ion

correlations in electrolyte transport

The analyses presented herein on polyelectrolyte solutions give rise to more general conclu-
sions regarding the significance of ion correlations in electrolyte solutions. In this section, we
discuss the broader relevance of each of the various types of ion correlations that exist in an
electrolyte. Although analysis of ion correlations and Onsager-type transport coefficients is
rare in the literature, there exist a myriad of systems in which analyzing transport through
this lens may yield important mechanistic insights and suggest design rules for electrolytes
with enhanced transport properties. This section presents representative case studies of such
systems from the literature and summarizes the central themes emerging from the transport
coefficient analysis presented in this dissertation.

Cation-anion correlations

Understanding cation-anion correlations, captured in the transport coefficient L+−, is crucial
for the design of electrolytes for energy storage applications. As these correlations are in-
duced by the inherent electrostatic attraction between cations and anions, L+− will generally
be non-negligible for most electrolytes used in energy storage applications, which typically
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employ moderately high concentrations and/or a relatively low dielectric constant. In gen-
eral, an optimal electrolyte will minimize cation-anion correlations, as a more positive value
of L+− will decrease the ionic conductivity of an electrolyte (Eq. 4.53), and, for the common
case where the cation transference number is less than one half, a greater value of L+− will
also decrease t+ (Eq. 4.59).

Static vs dynamic analyses of ion pairing

Cation-anion correlations are conventionally discussed in terms of ion pairing or aggregation,
i.e., the fraction of ions which are bound to another ion at any given time [104]. In molecular
simulations, it is common to use a distance criterion [86,182,183], such as the first minimum
of the radial distribution function, to define an ion as either free, paired, or part of a higher
order aggregate such as a triple ion. This offers a computationally inexpensive means of
characterizing ionic interactions in an electrolyte, as the simulation timescales of this ion
pairing analysis are generally much shorter than those required for dynamic analyses.

In some systems, the static picture of ion pairing adequately captures cation-anion corre-
lations, and we will use this framework throughout this text to intuitively rationalize trends
in ion correlations. France-Lanord and Grossman [129] developed an effective method for
computing ionic conductivity from molecular simulations which accounts for ion correla-
tions exclusively through analysis of ion aggregates. Each aggregate is considered a distinct
charge carrier, and its diffusion coefficient is used in the Nernst-Einstein equation to com-
pute conductivity. This method gives reasonable agreement with the rigorously-computed
conductivity for LiTFSI in PEO. Burlatsky et al. used a simpler version of this approach for
lithiated Nafion electrolytes containing nonaqueous solvents, in which the conductivity was
estimated from the diffusion coefficient of only the free lithium ions and contributions from
lithium ions paired to the Nafion polymer were ignored [127]. Furthermore, the static picture
of ion pairing often forms the basis for theories of transport in polymer-based electrolytes, for
example by assuming that bound ions do not contribute to conductivity [157,159,184]. In the
polyelectrolyte literature, the fraction of free ions is a key parameter in theories describing
diffusion, including the presence of diffusion coefficients several orders of magnitude greater
than expected from the Stokes-Einstein equation (called the “fast” mode) [105,185,186].

Despite the aforementioned utility of analyzing ion speciation to understand cation-anion
correlations, a growing body of work suggests that this static picture alone is inadequate in
many electrolyte systems [187, 188]. While the static picture analyzes the positions of the
ions at a snapshot in time, the Green-Kubo relation for L+− requires integrating the flux-
flux correlation function over time, suggesting that a dynamic (time-dependent) analysis
is necessary to understand how cation-anion interactions affect experimentally observable
transport properties. The static ion pairing definition will generally overestimate cation-
anion correlations: an ion pair that breaks apart immediately after forming, for example,
will be accounted for in the static picture of ion pairing but will not contribute significantly
to L+−. Likewise, ions that hop directly between charged sites of a polyion (without first
travelling through the surrounding dielectric medium) will contribute to the conductivity



CHAPTER 7. CONCLUSIONS 89

despite the fact that the ions remain continuously paired. This type of ion transport has been
observed as a crucial mechanism in a variety of systems, including polyelectrolytes [86,151],
polymerized ionic liquids [189], and ionomer melts [190–193]. The potential limitations of
the static picture to describe cation-anion correlations have important implications for the
interpretation of the ionicity (defined as κ/κNE to give the degree of uncorrelated ion motion)
as well. It is often assumed that the ionicity corresponds to the fraction of free ions in the
system, i.e., that the extent of ion correlation in an electrolyte is given directly by the degree
of ion pairing [96, 194]. While there are some works in which the ionicity does indeed agree
well with the fraction of free ions computed from molecular dynamics, for example in Borodin
and Smith’s simulations of LiTFSI in PEO [148], in what follows we discuss several instances
in which this is not the case. As an extreme example, the ionicity of (polymerized) ionic
liquids is often comparable to that of conventional liquid electrolytes [97,195–199]; it is well-
established that the static picture of ions as either bound or free fails for superconcentrated
systems such as these [200–202].

Beyond the static fraction of ion pairing, further insight into cation-anion correlations
can be obtained by analyzing the residence time of ion pairs, τ , or the average time that
an ion pair persists before breaking apart. As in Chapters 5 and 6 of this work, τ may
be computed from molecular dynamics simulations based on the autocorrelation function
Pαβ(t) =

〈
Hαβ(t)Hαβ(0)

〉
, where Hαβ(t) equals one if particles α and β are neighbors at time

t and zero otherwise. The decay time of Pαβ(t), defined either by a stretched exponential fit
or simply the time for the function to reach a certain value, yields τ [86,145,146,172,191,203].

Analysis of ion pair or cluster residence times has been shown to yield excellent correla-
tion with the extent of ion correlations in an electrolyte. Shen and Hall [203], for example,
compared the ionicity in salt-doped homopolymers and block copolymers with both the
static fraction of ion pairs and the normalized cluster relaxation rate (defined as the inverse
residence time of an ion cluster divided by the polymer relaxation rate) using coarse-grained
MD simulations. Assuming that cation-cation and anion-anion interactions do not dominate
transport in these systems of neutral polymer electrolytes, the ionicity provides indirect in-
sight into L+−. For a range of Coulomb strengths, the authors found that the normalized
cluster relaxation rate correlated directly with the ionicity (Fig. 7.1a), while the fraction of
free ions obtained from structural analysis was found to be anti-correlated with ionicity, as
shown in Fig. 7.1b. This stands in direct contrast with the common interpretation of the
ionicity as the fraction of free ions described above. The phenomenon of L+− correlating
with ion dynamics rather than statics has been demonstrated for polyelectrolyte solutions
in this work as well. Our study of transport in short-chain polyelectrolyte solutions, us-
ing both atomistic (Chapter 5) and coarse-grained (Chapter 6) molecular dynamics, showed
that changes in the contribution to L+− per ion could not be rationalized by trends in
the static fraction of ion pairs but rather paralleled the trends in ion pair residence times.
In both Shen and Hall’s solid polymers as well as the aforementioned polyelectrolyte solu-
tions, cation-anion correlations (and correspondingly ion pair residence times) decrease as
concentration increases, despite the fact that ion pairing from the static picture increases
with concentration. Experimental measurements have similarly reported increasing ionicity
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as concentration increases, i.e., less correlated ion motion at high concentrations [204–206].
This decrease in cation-anion correlations at high concentrations warrants further explo-
ration, but it may be due to a shift in transport mechanisms or solvation environments
and/or the fact all mass fluxes must sum to zero in the system, which place constraints on
the relative values of the transport coefficients.

Figure 7.1: Demonstration that ion correlations in an electrolyte, as quantified by the ionicity,
(a) correlate well with the relaxation time of ion clusters but (b) do not correlate well with
the fraction of free ions determined from static structural analysis. Data is obtained from
coarse-grained MD simulations of salt-doped homopolymers at varying concentration and
Bjerrum length, lB. Adapted with permission from Ref. [203].

Design principles for minimizing cation-anion correlations

Design of electrolytes with high ionic conductivity should aim to minimize cation-anion
correlations. The simplest means of tuning the value of L+− is to alter the charge density
of the electrolyte ions. To this end, several recent computation works have investigated
the effect of altering ionic size and/or ion dipole strength on ion transport [191, 207–211].
Cheng et al. [207], for example, suggested that optimal conductivity in polymerized ionic
liquids could be obtained using large ions in the polymer chain and small counterions. Using
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both coarse-grained and atomistic MD simulations, they found that this design choice led to
optimal decoupling of ion motion and segmental dynamics. Molinari et al. [209] altered the
charge density of TFSI− anions in MD simulations of LiTFSI in PEO by scaling the anion
partial charges, finding that a more polar anion decreased Li+ mobility and increased ion
clustering, while an anion with a more uniform charge distribution had the opposite effect.
This trend that increasing anion charge delocalization improves transport, specifically via a
decrease in L+−, is a general design rule that holds across many systems (Figure 7.2a).

Figure 7.2: Design rules for minimizing L+−. (a) Illustration of the weaker ion correlations
expected in systems employing larger ions with greater charge delocalization. Correlations
are colored according to the color bar in Figure 4.1. (b) Examples of common chemistries
employed to increase anion charge delocalization in polyanions (top) and small-molecule
anions (bottom).

Common chemistries used to enhance anion charge delocalization are presented in Figure
7.2b. In solid polymer electrolytes, anions such as PF−

6 and TFSI− are some of the most
commonly studied [207]. It has been experimentally demonstrated in carbonate solvents [212]
that TFSI− has a smaller thermodynamic ion association constant than PF−

6 , and that TFSI−

exhibits higher t+ in polymer-based electrolytes [213]. It is worth noting that recent studies
on multivalent (non-polymeric) electrolytes for energy storage applications have also worked
towards lowering cation-anion interaction via increased anion charge delocalization. One
notable example is the fluorinated alkoxyborate BHFIP− anion, which allows for reduced ion
pairing and thus improved transport and due to its large size [214–217]. Polyanionic single-
ion conductors often employ sulfonylimide groups (analogous to the chemistry of a TFSI−
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anion), which provide more charge delocalization than sulfonate or carboxylate moieties.
The greater charge delocalization in these anions has been shown to correlate with higher
conductivity in a variety of systems [218–221]. For advances in synthesis strategies and
further examples of successful single-ion conductor chemistries, we refer the reader to the
recent review by Zhang et al. [93]

While the trend of decreased cation-anion correlation with greater anion charge delo-
calization holds for many systems, in some cases changes in the charge distribution of an
ion can alter the transport mechanisms in an electrolyte, complicating the resulting changes
in bulk transport. This has been observed in the MD simulations performed by Lin and
Maranas [210] of PEO-based single ion conducting solid polymer electrolytes. Here, the
cation-anion electrostatic interactions were tuned by changing the partial charges of the sul-
fonate anion appended to the polymer backbone. As expected, a more charge-delocalized
anion (weaker electrostatic interactions) decreased ion aggregation. While one would intu-
itively expect this decreased aggregation to yield increased conductivity, it was observed that
the mobility of the sodium cation in the system remained unchanged. The authors attribute
this counterintuitive result to a changing diffusion mechanism: with weak electrostatic in-
teractions, motion was dominated by free ions solvated by the EO backbone, whereas with
stronger electrostatic interactions, hopping of the cation between sulfonate anions became
the dominant process. In the work of Ma et al. reporting coarse-grained MD simulations
of random ionomer melts [191], modifying the cation/anion size ratio resulted in substantial
changes to both nanostructure and ion pair residence times. Depending on the dielectric con-
stant and applied electric field, these changes in ion size sometimes increased and sometimes
decreased cation mobility. Furthermore, we note that the impact of altering charge delocal-
ization of the cation is often more complex than changing that of the anion, namely in solid
polymer electrolytes where the cation and polymer host strongly interact. A larger cation
has been shown to enhance transport in some cases [208, 222] by minimizing cation-anion
correlation, whereas in other cases the presence of free cations can mediate cross-linking of
polymer chains and lead to reduced mobility [223].

Cation-cation and anion-anion correlations

In dilute liquid electrolytes, cation-cation and anion-anion correlations (L++
distinct and L−−

distinct)
are not expected to contribute substantially to electrolyte transport. It is anticipated that
like-ions will either interact very little or move in an anti-correlated manner due to elec-
trostatic repulsion, yielding negative values of Lii

distinct with small magnitude [153, 163]. In
concentrated or polymer-based electrolytes, however, Lii

distinct may contribute substantially.
This contribution is most notable in (i) polyionic systems, where the covalent links between
charged monomers create strong correlations between charges on a given chain, and (ii) sys-
tems with substantial ion aggregation such as low-permittivity polymer electrolytes. We
address both cases in this section.
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Polyions generate strong like-ion correlations

Covalent attachment of multiple ions to yield a polyion inevitably introduces strong like-ion
correlations. As discussed in detail in Chapters 5 and 6, in oligomeric polyions all ions on a
given chain are constrained to move together, i.e., over sufficiently long timescales the flux
of any given monomer on a chain will be equal to that of the chain center of mass. For
longer chains or systems with very slow dynamics, distinct monomers may not be perfectly
correlated over the timescale of a simulation (or experiment), but substantial correlation
will nevertheless exist between ions on nearby monomers. Our MD simulations of anionic
polyelectrolytes have demonstrated that in many systems, L−−

distinct is the largest of all the
transport coefficients. As these correlations are induced by the covalent bonding of the ions,
this substantial contribution of L−−

distinct is expected for anionic polyelectrolytes regardless of
the specific chain chemistry or solvent properties. As a result of the large magnitude of
L−−
distinct in polyionic solutions, the Nernst-Einstein approximation (which assumes all Lii

distinct

and L+− are zero) fails drastically for these systems. Several recent experimental works,
however, have used the Nernst-Einstein assumption to characterize the transference number
in nonaqueous polyionic systems for application in lithium-ion batteries [96, 97, 100, 224],
using tNE

+ = D+

D++D−
. As the self-diffusion coefficient of the anion is much smaller than that

of the counterion in these systems, the tNE
+ approximation typically yields very high cation

transference numbers (tNE
+ > 0.8, compared to t+ ≈ 0.4 for conventional liquid electrolytes).

We have found [86,163], however, that the true transference number incorporating ion corre-
lations (which is the relevant quantity in predicting macroscopic concentration profiles and
electrolyte performance) is drastically lower, and that tNE

+ does not even qualitatively repro-
duce the trend in the rigorously-computed t+ due to the large values of L−−

distinct and L+−

in these systems. Importantly, for these polyionic solutions, incomplete characterization of
ion correlations can lead to an incorrect understanding of ion transport — based on ideal
solution (Nernst-Einstein) assumptions treating each charged monomer as an independent
ion, these polyelectrolyte solutions seem like promising alternatives to conventional battery
electrolytes, whereas in actuality their transport properties are substantially less favorable
than standard electrolyte formulations.

The behavior of Lii
distinct in two-component (solvent-free) systems such as polymerized

ionic liquids is more complex, as the transport coefficients in these systems must satisfy the
constraint

∑
i MiL

ij = 0. Zhang et al. [165] performed atomistic MD simulations of polyca-
tionic polymerized ionic liquids and observed anti-correlated cation-cation motion, despite
the fact that cations on a given chain were covalently constrained to move together. Our
coarse-grained simulations of polymerized ionic liquids (Chapter 6), however, reported the
opposite trend (positively correlated anion-anion motion for a negatively-charged polymer).
We recommend further studies to reconcile the origin of these differences.
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Strongly aggregating systems: the questions of near-unity ionicity and negative
transference numbers

Distinct anion-anion or cation-cation correlations (Lii
distinct) are also expected to be substan-

tial in systems with low dielectric constant that have a high degree of ion aggregation, where
ions of the same type in a given aggregate will move together in a correlated manner for
the lifetime of the aggregate. Ion aggregation will simultaneously increase both cation-anion
correlations (L+−) and like-ion correlations (Lii

distinct). While the former decreases the ionic
conductivity, the latter will increase it. Thus the effect of ion aggregation on bulk conductiv-
ity may not be apparent a priori. Generally, aggregation is associated with slower dynamics
and the formation of neutral clusters which do not contribute to conductivity [104]: in a
long-lived, charge-neutral aggregate, the contributions of L+− and Lii

distinct to the overall
conductivity should cancel out. In the case of charged aggregates or systems with frequent
exchange/rearrangement of aggregate populations, however, strong aggregation may actually
enhance conductivity. In some cases, extensive aggregation leads to the formation of percolat-
ing networks which yield facile ion transport, as observed in ionomers [120,192,193,225,226]
and polymerized ionic liquids [207].

Due to the complex interplay of cation-anion, cation-cation, and anion-anion correlations,
we could envision a system with very strong ion correlations that possesses ionicity close to
unity due to the cancellation of contributions from L+− and Lii

distinct [154]. Care should thus
be taken when interpreting the ionicity as the degree of ideal or uncorrelated transport in
an electrolyte. Large Lii

distinct may rationalize experimental [148,227–229] and computational
[230,231] observations of relatively high ionicity in solid polymer electrolytes. As we are not
aware of any works which have explicitly computed Lii

distinct in these systems, quantification
of the extent to which these correlations dictate ionicity and other bulk transport properties
remains an interesting avenue for further study.

We also note that like-ion correlations (Lii
distinct) and ion aggregation may be used to ratio-

nalize the phenomena of negative cation transference numbers, which have been measured
experimentally [84] and from MD simulations [129] in PEO-based electrolytes. Qualita-
tively, negative transference numbers may be rationalized through the presence of negatively
charged aggregates. Recall that the transference number is the fraction of conductivity at-
tributed to a given species, which we may write using a ratio of electrophoretic mobilities:
ti = Fziciui/(

∑
j Fzjcjuj), where the electrophoretic mobility is defined as ui = (vi−v)/E.

In general, we expect an anion to move toward more positive potential, corresponding to
a negative mobility, and a cation to move toward more negative potential (positive mobil-
ity), such that the quantity ziui and thus the transference number are generally positive.
Consider, however, a cation which is part of a net-negative aggregate such as a triple ion
with two anions and one cation. The aggregate as a whole will move towards more positive
potential, so the cation in the aggregate will migrate in the “wrong” direction and have neg-
ative mobility [85]. As the total cation mobility is an average over all cations in the system,
the overall average cation mobility can be negative (yielding a negative cation transference
number) if enough cations are part of negatively charged aggregates and if the mobility of
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those aggregates is sufficiently large. Mathematically, t+ < 0 corresponds to a system where
L+− > L++ (Eq. 4.59). This is also consistent with the presence of negatively charged ag-
gregates, where L++

distinct is small relative to L+− and L−−
distinct. Although there remains some

uncertainty based on measurement technique as to whether PEO-based electrolytes actually
have negative t+ [204], molecular simulations in PEO-based electrolytes have in certain cir-
cumstances observed negatively charged aggregates [209, 232]. Negative cation transference
numbers have been observed through simulation [163] and experiment [173–177] in anionic
polyelectrolyte solutions as well, where negatively charged aggregates are common (for ex-
ample, a single cation bound to a polyanion chain).

Ion-solvent correlations

Bulk transport properties such as the conductivity and transference number are computed
using only L++, L−−, and L+−. Transport coefficients for the solvent or polymer host (L+0,
L−0, and L00) are not only unnecessary to compute these quantities, but for a binary, single-
solvent electrolyte they also can be computed directly from knowledge of L++, L−−, and L+−,
i.e., they are not independent quantities. Using the aforementioned constraint

∑
i MiL

ij = 0,
the solvent transport coefficients of a binary electrolyte can be written as

L+0 = − 1

M0

(M+L
++ +M−L

+−) ,

L−0 = − 1

M0

(M+L
+− +M−L

−−) ,

L00 = − 1

M0

(M+L
+0 +M−L

−0) .

(7.1)

Note that because L++, L−−, and L+− are generally positive, Eq. (7.1) implies that L+0

and L−0 will be negative (anti-correlated motion), while L00 will be positive. Although
the solvent transport coefficients are not directly useful in obtaining experimentally-relevant
transport properties, tuning ion-solvent interactions can have a substantial impact on L++,
L−−, and L+−. Increasing cation-solvent correlation (making L+0 less negative), for example,
would correspond to decreasing L++ (slower cation self-diffusion) and/or L+− (weaker cation-
anion correlations). In this section, we explore how changing various aspects of ion-solvent
interactions affect the ion correlations discussed in the previous sections as well as how these
modifications affect bulk transport properties.

One of the key solvent properties dictating correlations in an electrolyte is the dielectric
constant ε. As would be expected from Coulomb’s law, increasing the dielectric constant
generally decreases cation-anion correlations L+−. In solid polymer electrolytes, it has been
observed using both atomistic [233] and coarse-grained [203, 211, 230, 231] MD that greater
dielectric constant or polymer polarity increases ionicity and decreases ion aggregation. Sim-
ilarly, in simulations of random ionomer melts, Ma et al. [191] observed shorter cation-anion
residence times and higher ion mobility with higher dielectric constant. While the decreases
in L+− induced by higher dielectric constant will favor higher overall ionic conductivity,
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several works have demonstrated non-monotonic trends in ion transport with respect to di-
electric constant. This trend is clearly illustrated in the coarse-grained MD simulations of
solid polymer electrolytes performed by Wheatle et al. [230], as shown in Figure 7.3. At low
polymer polarity, ionicity data suggests that conductivity may be limited by high L+− as a
result of ion aggregation. At high polarity, however, the ionicity remains high but transport
is limited by polymer segmental dynamics. The latter is expected to decrease self-diffusion
of ions, especially that of the cation (L++

self ) due to the strong coupling of cation diffusion
and polymer dynamics in most solid polymer electrolytes [148, 209]. Note that the overall
dielectric constant of the solution in these simulations may also be affected by the polarity
of ionic clusters (in addition to the polarity of the polymer itself), which has been found to
significantly affect the dielectric constant of PEO-based electrolytes in experimental stud-
ies [229, 234, 235]. The trade-off between polymer segmental motion and dielectric constant
has also been observed experimentally, for example by Choi et al. in polysiloxane-based
single-ion conductors, where maximal conductivity was observed using plasticizers with in-
termediate glass transition temperature and dielectric constant [236]. Others have similarly
observed that ion transport is optimized at intermediate dielectric constant but attribute
the trend to changes in the ion transport mechanism with respect to ε. Gudla et al. [237]
have found that polymer dielectric constant (tuned by scaling partial charges in atomistic
MD) has a substantial impact on transport in LiTFSI-PEO. They suggest that as dielectric
constant increases, Li+ motion transitions from vehicular diffusion to primarily interchain
hopping then ultimately to intrachain hopping, with the interchain hopping at intermediate
ε yielding the fastest lithium diffusion. In ionomer melts, Bollinger et al. [193] have suggested
that optimal conductivity can be reached when Coulombic interactions are strong enough
to allow for a percolated aggregate structure but weak enough to favor ion dissociation and
short residence times.

In addition to tuning bulk solution properties such as the dielectric constant, trans-
port in polymer-based electrolytes may also be tuned via solvent/polymer chemistry, which
alters short-range interactions between species. Computational methods are particularly
well-suited to evaluating these effects, as they allow for precise control of chemical struc-
ture in materials that may be difficult to synthesize experimentally. In solid polymer elec-
trolytes where strong cation-polymer interactions typically dictate transport [148, 209, 238],
several works have explored the strategy of increasing polymer-anion interactions (L−0)
to improve transport properties. Savoie et al. [109], for example, simulated Lewis-acidic
polymers (polyboranes) which preferentially coordinated with the anionic species, observing
substantial decreases in anion diffusion (L−−

self ) and increases in cation diffusion (L++
self ). Simi-

larly, France-Lanord et al. [232] used classical MD to investigate a PEO variant with sulfonyl
secondary sites, finding that the strong interaction between the sulfonyl group and the anion
(TFSI−) preferentially decreased anion transport and led to increased lithium ion trans-
ference number. These authors also studied the effect of carbonate secondary sites on the
polymer chain, which increased polymer-cation interactions. In this carbonate-containing
system, the increase in L+0 presumably decreased L+−, as a substantial reduction in ion
pairing was observed. Note that it may be impractical to attempt to tune polymer-ion inter-
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Figure 7.3: Ionic conductivity as a function of host polymer dipole strength obtained
from coarse-grained molecular dynamics simulations of salt-doped solid polymer electrolytes.
Adapted with permission from Ref. [230].

actions without inadvertently affecting ion transport mechanisms. In PEO, it is understood
that lithium ions move through a well-connected network of solvation sites which promote
facile intrachain hopping [111]. Alternate polymer structures may not be conducive to this
mechanism. Classical MD simulations of polyester-based polymer electrolytes, for example,
found mainly isolated clusters of polymer solvation sites, in which the main transport mech-
anisms were infrequent interchain hopping and co-diffusion with the polymer chain. These
slower processes yielded ionic conductivities an order of magnitude lower than in PEO [111].

In this section, we have discussed how cation-anion, like-ion, and ion-solvent correlations
impact transport in electrolyte solutions. We demonstrate the limitations of some of the
conventional paradigms for analyzing ion correlations, for example using the static fraction
of ion pairing as a proxy for cation-anion correlations and applying the Nernst-Einstein
approximation to polyionic systems. Several design rules are suggested from our analysis,
namely the use of ions with highly delocalized charge to decrease cation-anion correlations,
as well as use of a solvent or polymer host with an intermediate value of dielectric constant
to balance tradeoffs between ion aggregation and self-diffusion.

7.3 Recommendations for future work

We recommend that calculation of Lij should become standard practice in characteriza-
tion of electrolyte transport. There are several systems for which we anticipate insight
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into transport coefficients and ion correlations from molecular dynamics simulations will be
particularly valuable at addressing long-standing questions in the field. Of note are PEO-
based electrolytes for lithium-ion batteries, where experimental studies have demonstrated
a variety of complex transport phenomena such as negative cation transference number and
diverging Stefan-Maxwell diffusion coefficients [29,84]. Knowledge of Lij could elucidate the
molecular origins of these phenomena, which are still under debate. Additional attention
should also be devoted to the study of Lij in two-component systems such as polymerized
ionic liquids, where the transport coefficients are all inter-dependent as a consequence of
the barycentric reference frame. The counterintuitive relationships between L+−, Lii

self , and
Lii
distinct in these systems are still poorly understood, particularly with regards to the effect

of changing chain length, dielectric constant, and ion chemistry. Furthermore, the Onsager
transport framework is well-suited to treat multicomponent systems with more than one type
of cation and/or anion, such as the complex solutions handled in the fields of biology, geo-
chemistry, and water purification [239, 240]. We also note the widespread use of supporting
electrolytes [241] in energy storage applications.

Finally, we emphasize that the adoption of the Onsager transport framework is not exclu-
sive to molecular simulations. Just as we can compute experimentally-measurable transport
quantities from knowledge of Lij using the equations in Chapter 4.3, we may also compute
Lij from experimentally-measured quantities such as conductivity, transference number, and
salt diffusion coefficient. The Onsager transport coefficients can serve as a powerful means
of connecting observations from experiment and simulation. We believe this approach has
the potential to enable both enhanced fundamental understanding and more rational design
of new electrolyte formulations energy storage applications and beyond.
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Appendix A

Supplementary Thermodynamic
Derivations

1

In this appendix, we provide additional derivations related to the thermodynamics of elec-
trolyte solutions which are relevant to Chapters 2 and 3.

A.1 Thermodynamic potentials

Deriving the internal entropy production in Chapter 2.1 relied on using the Helmholtz free
energy per volume, f̃ . In this section we begin with system-level thermodynamics to derive
an expression for f̃ in a mixture subject to an electromagnetic field and infer the quantities
on which f̃ depends. We then perform Legendre transforms to develop analogous expressions
for the internal energy and Gibbs free energy densities.

At the system level, changes in the Helmholtz free energy F = f̃V can be written as [48]

dF = −pdV − SdT +
∑
i

µidNi −
∫

P dV · dE −
∫

MdV · dB , (A.1)

where S is entropy and each of the other quantities has been defined in the main text.
Consider the case where the polarization and Lorentz magnetization are uniform in the
system, such that

∫
P dV = PV and

∫
MdV = MV . Note that Eq. (A.1) is only valid

in equilibrium. We therefore invoke the local equilibrium hypothesis: although irreversible
processes may be taking place in the system as a whole, we can isolate a small region of the
system which can be treated as though it were in equilibrium with respect to time. This
region must be of an intermediate asymptotic length scale: small enough that its intensive
properties such as T and p are uniform throughout the region but not so small that it
captures fluctuations at the atomic level.

1This appendix is closely adapted from portions of Ref [1]: Fong, K. D., Bergstrom, H. K., McCloskey,
B. D. & Mandadapu, K. K. Transport phenomena in electrolyte solutions: Non-equilibrium thermodynamics
and statistical mechanics. AIChE Journal e17091 (2020).
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In working with electromagnetic quantities, it is most convenient to consider quantities
per unit volume. We recast Eq. (A.1) in terms of the free energy density f̃ and entropy per
unit volume s̃ as

V df̃ + f̃dV = −pdV − s̃V dT +
∑
i

µi

[
d

(
Ni

V

)
V +

(
Ni

V

)
dV

]
−PV ·dE−MV ·dB . (A.2)

Grouping terms, we obtain

V (df̃ + s̃dT −
∑
i

µidci + P · dE +M · dB) + dV (f̃ + p−
∑
i

µici) = 0 , (A.3)

leading to

df̃ = −s̃dT +
∑
i

µidci − P · dE −M · dB (A.4)

and
f̃ = −p+

∑
i

µici . (A.5)

Equation (A.4) shows that f̃ is a function [T , c1, c2, ..., cN , E , B]. Equation (A.5) provides
the integrated form of the thermodynamic relation for f̃ and is used in Chapter 2.2 to derive
the forms of the pressure and stress tensor.

Now let us develop expressions for the internal energy and Gibbs free energy per volume
specifically in the case of no applied magnetic field, when E = E. Performing a Legendre
transform (ũ = f̃ + T s̃+P ·E), we can get an expression for the internal energy analogous
to Eq. (A.4):

dũ = Tds̃+
∑
i

µidci +E · dP . (A.6)

In this case, ũ does not include the energy of the electric field in vacuum (1
2
ϵ0E

2) which
would be present in the absence of the body. In some cases, it is advantageous to include
this background energy and consider the quantity ¯̃u given by

¯̃u := ũ+
1

2
ϵ0E

2 . (A.7)

Using P = Df − ϵ0E (Eqs. (2.16) and (2.29)) yields an expression for d¯̃u in terms of the
dielectric displacement rather than the polarization, i.e.,

d¯̃u = Tds̃+
∑
i

µidci +E · dDf . (A.8)

The quantity E · dDf , the work done by the electric field, can be equivalently written as
E · dDf = ϕdqf =

∑
i ziFϕdci (see Section 10 of Landau and Lifshitz [48]), leading to

d¯̃u = Tds̃+
∑
i

(µi + ziFϕ)dci . (A.9)
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Another Legendre transform gives us Gibbs free energy (¯̃g = ¯̃u− T s̃+ p) as

d¯̃g = −s̃dT + dp+
∑
i

(µi + ziFϕ)dci . (A.10)

This gives the Gibbs free energy in terms of the electrochemical potential (µi = µi + ziFϕ),
as is commonly found and used in the electrochemistry literature.

A.2 Gibbs equation

Here, we derive the form of the Gibbs equation in a state of local equilibrium for mixtures
subject to an electric field (assuming a linear dielectric with no magnetic field). It is typical
in the framework of non-equilibrium thermodynamics to start with the Gibbs equation as
a local equilibrium hypothesis to derive the rate of internal entropy production. While this
approach should yield the same expression for entropy production as that used in Chapter
2.1, it is nontrivial to derive or propose the Gibbs equation at the outset, where we do not
know a priori the role of the electric field at local equilibrium. The energy and entropy
balances derived in the main text, however, can be used to derive the Gibbs equation in
these systems as shown below.

Let us define the internal energy per unit mass u as

ρu = ρe− 1

2
ρv · v ,

ρu̇ = ρė− ρv̇ · v .
(A.11)

Using this definition, the energy balance (Eq. (2.68) in the case where B = 0) can be written
as

ρu̇ = [T + (E · P )I −E ⊗ P ] : ∇v + ρr −∇ · J̄q +
∑
i

ji · bi +J f ·E +E · Ṗ . (A.12)

The entropy balance for a linear dielectric (Eq. (2.89) with the linear dielectric assumptions
of Chapter 2.2) reduces to

ρṡ =
1

T
[T + pI −E ⊗ P ] : ∇v +

ρr

T
+

∑
i ji · bi
T

+
1

T

∑
i

µi∇ · J i −
∇ · J̄q

T
+

1

T
J f ·E .

(A.13)

Subtracting Eq. (A.12) from Eq. (A.13) leads to

Tρṡ = ρu̇+ (p−E · P )I : ∇v −E · Ṗ +
∑
i

µi∇ · J i . (A.14)
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Using the overall mass balance (Eq. (2.6)), we can rewrite I : ∇v = ρv̇, where v = 1
ρ
is

the specific volume. This relation and the species mass balance (Eq. (2.5)) give ∇ · J i =
−ciρv̇ − ċi. These simplifications reduce Eq. (A.14) to

Tρṡ = ρu̇+ ρv̇(p−E · P −
∑
i

µici)−E · Ṗ −
∑
i

µiċi . (A.15)

Incorporating the linear relation between P and E (Eq. (2.109)) and the expression for
pressure in Eq. (2.115), Eq. (A.15) becomes

Tρṡ = ρu̇+ ρv̇

(
p0 −

1

2

[
ϵ− ϵ0 + ρ

∂ϵ

∂ρ

]
E2 −

∑
i

µici

)
− (ϵ− ϵ0)E · Ė −

∑
i

µiċi . (A.16)

Multiplying both side of the equation by dt then yields

Tρds = ρdu+ρdv

(
p0−

1

2

[
ϵ− ϵ0+ρ

∂ϵ

∂ρ

]
E2−

∑
i

µici

)
− (ϵ− ϵ0)E ·dE−

∑
i

µidci , (A.17)

which is the Gibbs equation for a mixture subject to an electromagnetic field.

A.3 Concentration fluctuations

Here we derive the expression relating the quantity
(∂µj

∂ci

)
to concentration fluctuations δci.

This derivation parallels that found in Chandler [242].
In the grand canonical ensemble, fluctuations in the number of particles of species i, Ni,

can be expressed as〈
δN2

i

〉
=

〈
N2

i

〉
−

〈
Ni

〉2
=

∑
o

N2
i,oPo −

∑
o

∑
o′

Ni,oNi,o′PoPo′ , (A.18)

where we have summed over all omicrostates in the ensemble. Alternatively, we may consider
the covariance of the number of particles of species i and j as〈

δNiδNj

〉
=

〈
NiNj

〉
−

〈
Ni

〉〈
Nj

〉
=

∑
o

Ni,oNj,oPo −
∑
o

∑
o′

Ni,oNj,o′PoPo′ . (A.19)

The probability of observing microstate o, Po, in the grand canonical ensemble is given
by

Po =
exp(−βEo + β

∑
i µiNi,o)

Ξ
, (A.20)

where β = 1
kBT

and Ξ =
∑

o exp(−βEo + β
∑

i µiNi,o) is the grand canonical partition
function. Substituting this expression for Po into Eq. (A.19), we obtain:

〈
δNiδNj

〉
=

∂

∂(βµj)

(
∂ ln Ξ

∂(βµi)

∣∣∣∣
β,V,µk ̸=i

)
β,V,µk ̸=j

=
∂
〈
Ni

〉
∂βµj

∣∣∣∣
β,V,µk ̸=j

, (A.21)
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which can be inverted to obtain an expression for
(∂µj

∂ci

)
as

∂µj

∂ci

∣∣∣∣
β,V,ck ̸=i

=
1

βV
(K−1

CC)
ij , (A.22)

where KCC is the covariance matrix with elements
〈
δciδcj

〉
.

A.4 Gibbs-Duhem equation

To derive the Gibbs-Duhem equation for an electrolyte under no applied magnetic field, we
begin with Eq. (A.5),

f̃ = −p+
∑
i

µici . (A.23)

Taking the total differential yields

df̃ = −dp+
∑
i

µidci +
∑
i

cidµi . (A.24)

When compared with the expression for df̃ in Eq. (A.4), we can conclude

− dp+ s̃dT +
∑
i

cidµi + P · dE = 0 . (A.25)

For the case of constant temperature, pressure, and electric field, Eq. (A.25) simplifies
to ∑

i

ci∇µi = 0 . (A.26)

In an electroneutral system where
∑

i zici = 0, the chemical potential in Eq. (A.26) can be
replaced with the electrochemical potential to arrive at the final form of the Gibbs-Duhem
equation presented in this work, ∑

i

ci∇µi = 0 . (A.27)

We can gain further insight into Eq. (A.27) by rewriting it in terms of p0 and µi,0, the
pressure and chemical potential respectively in the absence of an electric field. We have

already established that p = p0 +
1
2

[
ϵ− ϵ0 − ρ ∂ϵ

∂ρ

]
E2 in Eq. (2.115). Analogously, µi can be

related to µi,0 using the definition µi :=
∂f̃
∂ci

∣∣∣∣
T,cj ̸=i,E

and Eq. (2.111), which give

µi =
∂f̃

∂ci
=

∂(f̃0 − 1
2
(ϵ− ϵ0)E

2)

∂ci
=

∂f̃0
∂ci

− 1

2
E2 ∂ϵ

∂ci
= µi,0 −

1

2
E2 ∂ϵ

∂ci
. (A.28)
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Since ρ =
∑

i ciMi, we can write
∑

i cidµi =
∑

i cidµi,0 − 1
2
ρd(E2 ∂ϵ

∂ρ
). Substituting Eqs.

(2.115) and (A.28) into Eq. (A.25) yields

−dp0+s̃dT+
∑
i

cidµi,0−d

(
1

2

[
ϵ−ϵ0−ρ

∂ϵ

∂ρ

]
E2

)
−1

2
ρd

(
E2 ∂ϵ

∂ρ

)
+(ϵ−ϵ0)E ·dE = 0 . (A.29)

It is clear that the last three terms on the left-hand side sum to zero for constant ϵ. Thus
we obtain a Gibbs-Duhem equation equivalent to that without any electric field:

− dp0 + s̃dT +
∑
i

cidµi,0 = 0 . (A.30)
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Appendix B

Methods

B.1 Methods associated with Chapter 4
1

Simulation methods

All-atom classical molecular dynamics (MD) simulations of LiCl in DMSO were performed
using the LAMMPS [243,244] software. Most simulations consisted of 1000 DMSO molecules,
with the number of ions adjusted to vary the salt concentration. The systems with the
two lowest concentrations, 0.01 and 0.02 M, contained 3000 and 1500 DMSO molecules,
respectively. Molecules in each simulation were initially randomly packed into a cubic box
using PACKMOL [245]. Equilibration of the system consisted of (i) conjugate-gradient
energy minimization, (ii) 3 ns of simulation in the isothermal-isobaric (NPT) ensemble at a
pressure of 1 atm and temperature of 298 K, (iii) 2 ns simulated annealing at 400 K, and
(iv) 3 ns cooling back to 298 K. Production runs consisted of 5 ns at 298 K in the canonical
(NVT) ensemble using the Nosé-Hoover style thermostat and a time step of 2 fs. Force
field parameters were all taken from the OPLS 2005 force field [246], with partial charges
of the ionic species scaled by a factor of 0.7 to account for the fact that ion-ion interactions
are typically overestimated in non-polarizable force fields [247]. Each simulation used the
velocity-Verlet algorithm, periodic boundary conditions, and the PPPM method [248] to
solve for long-range Coulombic interactions. Software for computing transport coefficients
was written with the help of the Python package MDAnalysis [249, 250] and is available
online at https://github.com/kdfong/transport-coefficients.

Experimental methods

LiCl (Sigma Aldrich, >99.0%) salt was dried over P2O5 while under vacuum for 24 hours
and directly transferred under vacuum to an Argon glovebox (Vac Atmospheres) maintained

1This section is closely adapted from portions of Ref [1]: Fong, K. D., Bergstrom, H. K., McCloskey, B.
D. & Mandadapu, K. K. Transport phenomena in electrolyte solutions: Non-equilibrium thermodynamics
and statistical mechanics. AIChE Journal e17091 (2020).

https://github.com/kdfong/transport-coefficients


APPENDIX B. METHODS 127

below 5ppm O2 and 1ppm H2O. Anhydrous DMSO (Sigma Aldrich ≥99.9%) packaged under
inert atmosphere was directly opened inside the glovebox. Electrolyte solutions were pre-
pared in a volumetric flask and salts were allowed to completely dissolve before adjusting
the final volume and decanting. Dilute samples (<5mM) were prepared via serial dilution
of a 100 mM solution. All electrolyte solutions were stored and characterized inside of the
Argon glovebox.

Solution conductivity measurements were performed with a Mettler Toledo InLab 751-
4mm conductivity probe with platinum blocking electrodes. Samples were measured at 25
in a dry block (Torrey Pines) inside of the Argon glovebox. Temperature of the solution
was verified by a thermocouple inside of the conductivity probe and was always within
0.6 of the set point. The conductivity probe was calibrated with 84 µS/cm, 1410 µS/cm,
and 12.88 mS/cm aqueous conductivity standards (Mettler Toledo) prior to being brought
inside the Argon glovebox. A 5% error in conductivity was assumed based off of multiple
measurements.

B.2 Methods associated with Chapter 5
2

Simulations

All-atom classical molecular dynamics (MD) simulations were performed using the LAMMPS
[243,244] code. Simulations were carried out on the anionic polymer poly(allyl glycidyl ether-
lithium sulfonate) (PAGELS, see Figure 5.4a for structural schematic) in dimethyl sulfoxide
(DMSO). Each simulation consisted of one polyion chain with a degree of polymerization
of 43, 43 lithium counterions, and a variable number of DMSO molecules, chosen to adjust
the concentration of Li+ in the system from 0.05 M to 1 M. See Table B.1 for details on the
exact concentrations, numbers of solvent molecules, and simulation box sizes used.

2This section is closely adapted from Ref [86]: Fong, K. D.et al. Ion transport and the true transference
number in nonaqueous polyelectrolyte solutions for lithium ion batteries. ACS Central Science 5, 1250–1260
(2019).
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Li+ Concentration
(mol/L)

Number of
Solvent Molecules

Simulation Box

Length (Å)

0.05 12108 112.87
0.10 6054 89.81
0.19 3027 71.70
0.47 1211 53.87
0.85 605 43.88
0.98 505 41.82

Table B.1: Details on simulation setup at each concentration.

While these simulations would ideally consist of many polymer chains to fully capture
the effects of inter-chain interactions, we are limited by the large computational cost of
these multi-chain simulations. To evaluate the impact of using just one chain, we have
performed preliminary simulations with two chains at the two highest concentrations studied
(these are the concentrations at which we would expect inter-chain interactions to be most
significant). As shown in Figure B.1, the transport properties of the solution (diffusion
coefficients, conductivity, and transference number) are not significantly altered between the
one- and two-chain simulations, suggesting that our single-chain study here has adequately
captured the most important physics underlying transport in these systems.

The molecules of each simulation were randomly packed into a cubic box using PACK-
MOL [245], with the polymer chain prepared in a linear conformation. This initial config-
uration was first relaxed using a conjugated-gradient energy minimization scheme with a
convergence criterion, defined as the energy change between successive minimization itera-
tions divided by the magnitude of the energy, of 1.0e-4. The system was then equilibrated
in the isothermal-isobaric (NPT) ensemble at a pressure of 1 atm and temperature of 298
K for 3 ns, followed by simulated annealing at 400 K for 2 ns, then cooling back to 298 K
over 3 ns. [140] A Nosé-Hoover style thermostat and barostat with damping parameters of
0.1 ps and 1 ps, respectively, were used. Production runs were subsequently carried out in
the canonical (NVT) ensemble at 298 K using the Nosé-Hoover style thermostat and a time
step of 2 fs. Simulations were carried out for 50 ns, with the last 40 ns used for analysis.

In each simulation, the equations of motion were numerically integrated using the velocity-
Verlet algorithm. Each system was periodic in the x, y, and z directions and incorporated the
PPPM method [248] with accuracy 1.0e-5 to compute long-range Coulombic interactions. A
cutoff of 15 Å was used in computing short-ranged potentials. The length of the C-H bonds
of the PAGELS chain were fixed by implementing the SHAKE algorithm [251,252].

All force field parameters were taken from the OPLS 2005 force field [246], where atom
type and partial charge assignment was automated using MacroModel and the Maestro
graphical interface (Schrödinger) [253]. Partial charges of the ionic species were scaled by a
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Figure B.1: Transport data for simulations using one versus two polymer chains at the
two highest concentrations studied. (a) Diffusion coefficients. (b) Ionic conductivity and
transference number. (c) Fractional contributions of each type of uncorrelated (self) or
correlated (distinct) ion motion to the total conductivity.

factor of 0.7 to account for the fact that ion-ion interactions are typically overestimated in
non-polarizable force fields [247].

Data analysis

Trajectories were analyzed using in-house code built with the help of the software MDAnal-
ysis [249,250].

Ion speciation

Free lithium ions, solvent-separated ion pairs (SSIPs), and contact ion pairs (CIPs) or larger
aggregates (AGG) were identified from the cation-anion (Li+-S (SO –

3 )) radial distribution
functions (RDFs), plotted for each concentration in Figure B.2. A lithium ion is considered
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part of a CIP or AGG if there is at least one sulfonate anion, specifically the sulfur atom,
within the cutoff distance defined by the minimum after the first peak in the Li+-S (SO –

3 )
RDF (4.5 Å for all concentrations). SSIPs were defined analogously using the minimum after
the second RDF peak (9.5-9.7 Å), and free lithium ions were those without any anions within
the SSIP or CIP cutoff distances. Analysis of larger aggregate structures was undertaken
with the aid of the Python package NetworkX [254], and visualizations of the most common
Li+ solvation environments were generated using the software Cytoscape [255].
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Figure B.2: Lithium-sulfur (SO−
3 ) radial distribution functions (left axis) and coordination

numbers (right axis) at each concentration studied.

Polymer conformation

Polyelectrolyte chain size was characterized using both the end-to-end distance as well as
the radius of gyration, the latter of which is determined using [256]:

R2
g =

1

M

〈 n∑
i=1

mi

∣∣ri − rpoly,cm

∣∣2〉 (B.1)

where n is the total number of atoms in the chain, M is the total mass of the polymer, mi

is the mass of atom i, ri is the position vector of atom i, and rpoly,cm is the position vector
of the polymer center of mass.
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While a number of models exist to calculate the persistence length Lp of a polyelectrolyte
chain [135, 257], the data presented in this work are calculated based on the orientational
correlation function G(l), which characterizes the orientational memory along the chain
backbone [258]:

G(l) =
1

Nb − l

Nb−l−1∑
s=0

〈
ns · ns+l

〉
(B.2)

Here ns is the unit vector originating at backbone atom s and pointing along the polymer
backbone, Nb is the total number of bonds in the polymer backbone, and l is the number
of bonds separating unit vectors ns and ns+l. The angular brackets denote an average of
all chain conformations over time. To convert this orientational correlation function into a
persistence length, it has been recently suggested that G(l) should be fit to a biexponential
function [258–260],

G(l) = (a) exp

(
− |l|

Lp

)
+ (1− a) exp

(
− |l|

Lshort

)
(B.3)

which is in good qualitative agreement with our calculated G(l) functions. The first expo-
nential decay constant, Lp, is the total persistence length of the chain, which is the sum of
the intrinsic persistence length of the uncharged chain as well as the electrostatic persistence
length. It is this Lp value which is the subject of our analysis in this work. The decay con-
stant of the second exponential, Lshort, describes additional orientational correlations present
at short length scales, and a is an additional fitting parameter [261].

Diffusion coefficients

Diffusion coefficients of lithium ions and the polyelectrolyte center of mass were calculated
based on the mean-square displacement (MSD, ⟨∆r(t)2⟩),

⟨∆r(t)2⟩ = 1

N

〈 N∑
i=1

∣∣∣∣ri(t)− ri(0)

∣∣∣∣2〉 (B.4)

where N is the total number of atoms/molecules and ri(t) is the position vector of species i
at time t relative to the center of mass of the entire system (included to correct for any drift
in the center of mass of the simulation box). The angular brackets indicate the average over
all time origins within the trajectory. From the MSD, the Einstein relation can be used to
compute the self-diffusion coefficient D:

D =
1

6
lim
t→∞

d

dt
⟨∆r(t)2⟩ (B.5)

For an equilibrated system at sufficiently long simulation times, the system should be in the
diffusive regime such that the MSD curve is linear with respect to time. That is, ⟨∆r(t)2⟩ ∝
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tβ, with β = 1. We ensure that all simulations in this work are run sufficiently long to
achieve this linear behavior: we calculate average β values of 0.97 for Li+ (ranging from
0.95 to 1.01) and 0.98 for the polyion center of mass (ranging from 0.87 to 1.06). Note
that the statistics for the polymer are slightly inferior to that of the lithium ion: for Li+ we
average over all 43 ions in the system, which cannot be done for our single polymer chain.
Nevertheless, our ranges of β are commonly accepted to be sufficiently linear for diffusion
coefficient analysis [262]. Figure B.3a demonstrates this linear behavior for both the lithium
ions and polymer for a representative simulation.

Figure B.3: Representative examples of the linear behavior required to calculate (a) diffusion
coefficients and (b) ionic conductivity. A slope of one (corresponding to linear data on a
log-log plot) is indicated on each plot. The effective “mean square displacement” on the
y-axis of panel (b) is the quantity in angular brackets in Eq. (B.6). Data for these plots was
for the system at a concentration of 0.85 M.

Note that data for our trajectory analysis has been collected every 20 ps. As a result,
any non-Fickian diffusive processes present at very short times are not clearly shown in the
MSD curve of Figure B.3a. As noted in previous MD simulations of polyelectrolytes, at short
times we expect to see a ballistic regime with a log-log slope of 2, followed by a sub-diffusive
regime with a slope less than one before finally reaching the Fickian regime with a log-log
slope of one [192]. To demonstrate that we do indeed observe these phenomena, we have
performed a simulation collecting data every 10 fs and plotted the polymer center of mass
MSD data in Figure B.4.

Ionic conductivity

Ionic conductivity κ can be calculated from the following relation:

κ =
1

6kBTV
lim
t→∞

d

dt

〈∑
i

∑
j

qiqj[ri(t)− ri(0)] · [rj(t)− rj(0)]

〉
(B.6)
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Figure B.4: Short-time behavior of the polymer center of mass mean-square displacement
for the system at a concentration of 0.85 M.

where qi is the charge of species i, kBT is the thermal energy, and V is volume. This
Einstein relation is derived from the Green-Kubo equation relating ionic conductivity with
the microscopic charge current (Eq. (4.55)), derived in Section 4.3.

As is the case with diffusion coefficient calculations, a mathematically rigorous analysis
of the conductivity requires the term enclosed in the angular brackets of Eq. (B.6) to be
linear in time. The simulations performed here all reached the linear regime, with β values
(defined as the extent of linearity analogously to the diffusion coefficient analysis above)
between 0.84 and 1.04 for all concentrations. Results from a representative simulation are
shown in Figure B.3b.

The ionic conductivity can be decomposed into separate terms, each corresponding to a
different type of uncorrelated or correlated ion motion, namely the cation-self (κ++

self ), anion-
self (κ−−

self ), cation-distinct (κ
++
distinct), anion-distinct(κ

−−
distinct), and cation-anion-distinct (κ+−)

conductivities (see Eq. (5.4)). As described in Chapter 5, these partial conductivities may

be directly related to the Onsager transport coefficients by Lij = κij

zizjF 2 ; thus they may

be computed using the Green-Kubo relations for Lij. In this section, we use the form of
these relations as presented in Eq. (4.1), which make use of the particle positions rather
than velocities. Due to challenges in reaching the linear regime for some of these self-
and distinct-conductivity terms, the derivatives in Eq. (4.1) were approximated by finite
difference at t = 2 ns and t = 0 ns. Note that averaging is performed over all time origins in
the trajectory (as denoted by the angular brackets in these equations). Hence the analysis
averages the system behavior for all time differences of 2 ns within the entire 40 ns simulation.
It was ensured that the choice of upper time bound in the finite difference calculation did
not appreciably affect any trends as a function of concentration.
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Diffusion mechanism

The diffusion mechanism of species i relative to species j (i.e. structure-diffusion versus
vehicular motion) was evaluated by calculating the lifetime correlation function, Pij(t) [145,
146]:

Pij(t) =
〈
Hij(t)Hij(0)

〉
(B.7)

Here Hij(t) is one if i and j are neighbors at time t and zero otherwise. Two species are
considered neighbors if they are within a given cutoff distance. In this work, we calculate
Pij(t) for three species pairs: Li

+-O (DMSO), Li+- S (SO –
3 ), and S (SO –

3 )-O (DMSO). The
cutoff distance for these pairs was defined as the minimum after the first peak of the RDF to
capture the first coordination shell. Additionally, the lifetime correlation function of lithium
relative to sulfonate anions in the second coordination shell (i.e. solvent-separated ion pairs)
was calculated by deeming two ions neighbors if the distance between them is between the
first and second minima of the Li+-S (SO –

3 ) RDF.
The lifetime correlation function Pij is subsequently converted into a residence time τij

of i and j neighbor pairs via a biexponential fit [263]:

Pij(t) = α exp

(−t

τij

)δ

+ (1− α) exp

( −t

τij,short

)
(B.8)

where τij, τij,short, α, and δ are fitting parameters. The first term in this expression gives
the relevant residence time for inferring diffusion mechanisms, while the second term can be
attributed to sub-diffusive processes at shorter timescales. The parameter δ varies between
0 and 1, with deviations from unity corresponding to the presence of multiple modes of
diffusion with different timescales [264]. Here we observe δ > 0.99 for all pairs of species,
with the exception of Li+- S (SO –

3 ) (CIP), where δ varied between 0.8 and 1.
Finally, this residence time is expressed as a characteristic diffusion length Lij by incor-

porating the diffusion coefficient of the solvent:

Lij =
√
6Dsolventτij (B.9)

This conversion corrects for the effect of changing overall solution viscosity across concen-
trations, enabling accurate comparison of diffusion mechanisms.

Error analysis

Statistical error values were obtained through a combination of independent simulation repli-
cates and time averaging of individual simulations. Note that these are statistical errors due
to the inherently limited sampling of an MD simulation, not errors arising from the model
itself such as the choice of force field parameters.

The majority of the error data reported herein are obtained through block averaging
[68, 265, 266]. For a given dynamical quantity, such as the fraction of free Li+ ions or
the polymer radius of gyration, we can calculate the statistical uncertainty of the average
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value by computing the variance of multiple statistically independent observations of the
quantity. Simply evaluating the variance of the data at every snapshot of the trajectory will
underestimate the true error due to the inherent correlations within the system. Thus, to
calculate the true statistical error, we must split the simulations into uncorrelated blocks,
then compute the mean value of our quantity of interest for each block. Our final estimate
of the uncertainty is then the standard deviation of these blocked averages (including both
those from the same simulation as well as those from the independent duplicate run). The
block length which yields uncorrelated data is not known a priori, so the error is analyzed
over a range of block lengths. When the error becomes independent of block length, a
suitable block length has been reached such that each block is uncorrelated from the rest.

Block averaging could not be performed for some quantities of interest (the self- and
distinct-conductivities as well as the ion aggregate size distributions) due to poor statistics;
proper fits to the data could only be obtained using the full 40 ns trajectory. For these
quantities, the reported error bars are the standard deviation of the two independent 40 ns
duplicates.

B.3 Methods associated with Chapter 6
3

Coarse-grained polyelectrolyte model

Polyanions were represented by the Kremer-Grest bead-spring chain model [169, 170]. Ad-
jacent beads, each representing one monomer, interacted via finitely extensible nonlinear
elastic (FENE) bonds, where interaction energies take the form

UFENE(r) = −0.5KR2
0 ln

[
1−

(
r

R0

)2]
. (B.10)

Here r is the distance between two monomers, the spring constant K = 30 ε/σ2, and the
maximum extension of the bond R0 = 1.5 σ. These bonding parameters yield an average
bond length of 0.97 σ and avoid unphysical crossing of bonds [191,267].

Counterions and solvent molecules were modeled explicitly as charged and neutral beads,
respectively. Although it increases the computational cost of the simulations, including ex-
plicit solvent has been shown in several works to be crucial for accurately capturing dynamics
in the solution [268–270]. All particles (monomers, cations, and solvent) were subject to a
truncated-shifted Lennard-Jones (LJ) potential to account for excluded volume,

ULJ(r) =

4εLJ

[(
σLJ

r

)12 − (
σLJ

r

)6 − (
σLJ

rcut

)12
+
(
σLJ

rcut

)6]
r ≤ rcut

0 r > rcut

. (B.11)

3This section is closely adapted from Ref [163]: Fong, K. D., Self, J., McCloskey, B. D. & Persson, K. A.
Onsager transport coefficients and transference numbers in polyelectrolyte solutions and polymerized ionic
liquids. Macromolecules 53, 9503–9512 (2020).
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For all interactions, εLJ = ε (the LJ unit of energy) and σLJ = σ, where σ is the LJ unit of
distance and the diameter of each of the beads in the system. We choose rcut = 21/6σ, which
yields good solvent conditions [123]. All species are given unit mass.

Cations and (poly)anions were additionally subject to the Coulomb potential,

UCoulomb(r) =
zizje

2

4πϵ0ϵrr
= kBT

lBzizj
r

, (B.12)

where e is the elementary charge, ϵ0 is the vacuum permittivity, ϵr is the dielectric constant
of the medium, and zi is the charge of species i. Each cation was assigned z+ = +1 and
each monomer was given z− = −1. The quantity lB = e2/(4πϵ0ϵrkBT ) is the Bjerrum
length, which defines the length scale at which the energy of electrostatic interactions is
equal to the thermal energy, kBT . As the simulations in this work capture a wide range of
polymer concentrations (from the semi-dilute regime to the limit of a solvent-free system),
the dielectric constant was varied linearly as a function of fraction of solvent [271]. The
lower limit of the dielectric constant, corresponding to a system with only solvent, was
chosen to mimic the dielectric properties of water with a Bjerrum length of 7.1 Å. We follow
the common procedure [123,269] of mapping the average distance between polymers beads,
0.97 σ, to the size of a polystyrene sulfonate monomer, 2.5 Å, which yields a Bjerrum length
of lB = 7.1 Å × (0.97 σ/2.5 Å) = 2.75 σ. The upper limit of the Bjerrum length for the
system with no solvent was chosen to be 30 σ, in the range commonly chosen to study melts
of charged polymers [121,191].

Note that with the length scale mapping of 2.5 Å ≈ 0.97 σ, the ion concentrations simu-
lated in this work (0.001, 0.005, 0.01, and 0.05 σ−3) can be roughly mapped to concentrations
of 0.1, 0.48, 0.97, and 4.8 M.

Simulation details

Polymer chains were initially prepared using a self-avoiding random walk. The polymers,
cations, and solvent particles were randomly packed into a cubic simulation box using PACK-
MOL [245] at a density of 0.8 σ−3, a value in the range commonly used to study both dilute
polyelectrolyte solutions as well as polymer melts [121,191,192,272–274]. With the exception
of the systems at the lowest concentration studied, 0.001 σ−3, each simulation consisted of
approximately 40,000 particles, with the exact number varied slightly to precisely reach the
target concentration. It was verified that doubling the number of particles in the simulation
box did not have any appreciable effect on the computed transport properties. At 0.001
σ−3, however, finite size effects were more pronounced due to the smaller number of polymer
chains in the system and the larger charge screening length. Simulations at this concentra-
tion were run with 80,000 particles, with one run using 120,000 particles verifying that there
were no appreciable finite size effects with this larger box size. The systems with the longest
chain length (N = 25) had 4, 10, 20, and 100 polymer chains for concentrations of 0.001,
0.005, 0.01, and 0.05 σ−3, respectively.



APPENDIX B. METHODS 137

Figure B.5: End-to-end vector analysis. (a) End-to-end vector autocorrelation functions for
N = 25 at each concentration. (b) Decay times of the end-to-end vector autocorrelation
functions (defined as the time to reach a value of 0.1).

Molecular dynamics (MD) simulations were performed using the LAMMPS code [243,
244]. The as-prepared system was equilibrated using a conjugate gradient energy minimiza-
tion. Simulations were run for a total of 107 steps, with a time step of 0.005 τ . The first
4 × 105 steps (2000 τ) were considered to be an equilibration period and not used for data
analysis. This equilibration period was long enough for the polymer end-to-end vector au-
tocorrelation function to decay to less than 0.1 for all systems (Figure B.5), suggesting that
there were minimal effects of the initial system configuration by the time data collection be-
gan. We further confirmed that the polymers’ radii of gyration and the total system energy
had stabilized by the end of the equilibration period.

The equations of motion were numerically integrated using the velocity-Verlet algorithm,
with periodic boundary conditions in all three spatial directions. A Nosé-Hoover style ther-
mostat was used to maintain the temperature of the system at kBT/ε = 1. Long-range
Coulombic interactions were evaluated using the PPPM method [248].

Data analysis

Transport coefficients were computed using Eq. (4.1):

Lij =
1

6kBTV
lim
t→∞

d

dt

〈∑
α

[rα
i (t)− rα

i (0)] ·
∑
β

[rβ
j (t)− rβ

j (0)]
〉
.
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The angular brackets denote averaging over all time origins within the trajectory. The self
terms Lii

self (and thus the diffusion coefficients, by Eq. (4.5)) are computed in an analogous
manner using Eq. (4.3), and the distinct terms were computed by Lii

distinct = Lii − Lii
self . All

experimentally-relevant quantities such as the transference number were computed from Lij

using Eqs. (4.53)-(4.59).
In order to capture true diffusive transport, the term in angular brackets of Eqs. (4.1) or

(4.3) must be linear with respect to time, i.e.
〈∑

α[r
α
i (t)− rα

i (0)] ·
∑

β[r
β
j (t)− rβ

j (0)]
〉
∝ tβ

and
∑

α

〈
[rα

i (t) − rα
i (0)]

2
〉
∝ tβ, with β = 1. For most simulations in this work, β was

computed to be between 0.94 and 1.05, with analysis performed over at least a decade of
time. This suggests that the simulations have been run long enough to reach and adequately
sample the diffusive regime. Representative data demonstrating this linear behavior is given
in Fig. B.6. There are a two classes of exceptions in which β deviates more substantially
from unity. The first is for L+− in the monomer simulations (N = 1) at the three lowest
concentrations studied, in which case β became as low as 0.84. This deviation from linearity
is due to the small overall magnitude of L+−, which results in more noise in the fitting
procedure. As L+− ≈ 0 for these systems, the fact that we do not observe linear behavior
does not impact any of our conclusions. The second case where β departs from unity is for
L−−
self in the solvent-free systems for chain lengths of 15, 20, and 25, where β reached as low as

0.73. This sub-diffusive behavior can be attributed to anion motion corresponding to intra-
chain degrees of freedom, such as chain rotations. While the values of L−−

self for these three
chain lengths presented in Fig. 6.8 can not be rigorously interpreted as transport coefficients
due to this deviation from linearity, this does not affect any of the conclusions drawn in this
work.

The extent of ion pairing as shown in Figure 6.6a was evaluated using a distance criterion:
all cations within a given cutoff distance of any anion were considered paired. This cutoff
distance was chosen as the first minimum of the cation-anion radial distribution function
(1.6 σ, see Figure B.7), which was consistent across all chain lengths and concentrations.
The residence times of ion pairs given in Figure 6.6b were evaluated by computing the lifetime
correlation function Pαβ(t) =

〈
Hαβ(t)Hαβ(0)

〉
, where Hαβ(t) is one if particles α and β are

neighbors at time t and zero otherwise [86,145,146,172]. Two particles are deemed neighbors
if they fall within a distance cutoff, chosen based on the radial distribution function to be
2.5 σ to coincide with the minimum after the second solvation shell of the ions. This distance
cutoff was larger than that used for the static evaluation of ion pairing, as we observed that
ions moved very frequently back and forth between the first and second solvation shells. The
residence time was defined as the time for Pαβ(t) to decay to 10% of its original value.

Error bars throughout this text are given as the standard deviation of five independent
replicates. Trajectories were analyzed using an in-house code which utilized the Python
package MDAnalysis [249,250]. Code is available at
https://github.com/kdfong/transport-coefficients-MSD.

https://github.com/kdfong/transport-coefficients-MSD
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Figure B.6: Representative examples of data used to compute Lij and Lii
self using Eqs. (4.1)

and (4.3), respectively. The quantity plotted is
〈∑

α[r
α
i (t)− rα

i (0)] ·
∑

β[r
β
j (t)− rβ

j (0)]
〉
for

computing Lij or
∑

α

〈
[rα

i (t) − rα
i (0)]

2
〉
for Lii

self . Data for these plots is for a chain length
of N = 10.

Analyzing monomer vs polymer motion

When computing the anion transport coefficients (L−− and L+−) in a polyelectrolyte, we
may treat either the polymer chain as a whole or individual monomers as the anionic species.
The analysis presented in Chapters 5 and 6 uses the latter convention. In this section, we
describe the relationship between the transport coefficients obtained from using each choice
and show how the experimentally-relevant quantities (with the exception of the Nernst-
Einstein transference number) are equivalent regardless of the analysis method. We show
how combining both choices of anionic species can be used to decouple correlations between
ions within a given chain and those between ions on different chains (intra- versus inter-chain
interactions).

Let us denote the transport coefficients obtained by treating individual monomers as
the anion with a subscript “m”, and those obtained using the whole polymer chain with a
subscript “p”. The transport coefficients presented in the main text are Lij

m. In order to
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Figure B.7: Representative cation-anion radial distribution functions (g(r)) at a concentra-
tion of 0.01 σ−3 for four different chain lengths.

derive relations between Lij
m and Lij

p , we begin by writing the Green-Kubo relation for L−−
p

as

L−−
p =

1

6kBTV
lim
t→∞

d

dt

〈∑
a

[ra(t)− ra(0)] ·
∑
b

[rb(t)− rb(0)]
〉
. (B.13)

Here we use the indices a and b to denote a sum over each polymer chain, whereas we use
the indices α and β to denote individual monomers. The quantity ra is the center-of-mass
position of the chain relative to the center of mass of the entire system, which can be written
as ra = 1

N

∑
α r

α
a , noting that the masses of all monomers are equal. The quantity rα

a is
the position (relative to the center of mass of the entire system) of monomer α on chain a.
Equation (B.13) may be written in terms of individual monomer positions as

L−−
p =

1

6kBTV N2
lim
t→∞

d

dt

〈∑
a

∑
α

[rα
a (t)− rα

a (0)] ·
∑
b

∑
β

[rβ
b (t)− rβ

b (0)]
〉
. (B.14)

Comparing to Eq. (4.1) in the main text, we can conclude that

L−−
p =

1

N2
L−−
m . (B.15)

Similar arguments allow us to relate L+−
p and L+−

m via

L+−
p =

1

N
L+−
m . (B.16)
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We can also relate the self anion transport coefficients, L−−
m,self and L−−

p,self , by assuming
that the self-diffusion coefficients of the polymer and monomer will be identical over long
enough time scales, i.e., D−,p = D−,m. Further, note that the concentrations of polymer
and monomer are related by by cm = Ncp. Using Eq. (4.5) of the main text, we can thus
conclude that

L−−
p,self =

1

N
L−−
m,self . (B.17)

As mentioned in the main text, the distinct anion transport coefficients obtained from
analyzing monomer motion, L−−

m,distinct, captures two forms of anion-anion correlations: those
between anions on the same chain (intra-chain) and those between anions on different chains
(inter-chain), i.e., L−−

m,distinct = L−−
m,inter−chain + L−−

m,intra−chain. In contrast, the distinct anion
transport coefficient from analyzing polymer center-of-mass motion gives only inter-chain
correlations: L−−

p,distinct = L−−
p,inter−chain. Thus, if we seek to compare the relative magni-

tude of inter- and intra-chain correlations, we may compute L−−
m,inter−chain = N2L−−

p,distinct and

L−−
m,intra−chain = L−−

m,distinct − L−−
m,inter−chain. These data are shown in Figure 6.2.

Using Eqs. (B.15) and (B.16), it is easy to demonstrate that the ionic conductivity,
cation and anion mobilities, and transference number are equivalent regardless of whether
the motion of the monomer (Lij

m) or polymer center of mass (Lij
p ) is analyzed. Doing so

requires us to note that the charge valencies of the polymer and monomer are related by the
degree of polymerization N , i.e., zp = Nzm. For example, by Eq. (4.53) the conductivity is

κ = F 2
∑
i

∑
j

Lijzizj = F 2(L++z2+ + L−−
p z2p − 2L+−

p z+zp)

= F 2(L++z2+ + (L−−
m /N2)(Nzm)

2 − 2(L+−
m /N)z+(Nzm))

= F 2(L++z2+ + L−−
m z2m − 2L+−

m z+zm) .

(B.18)

The only experimentally-relevant quantity which will change depending on whether we treat
the monomer or polymer as the anionic species is tNE

+ = z+D+

z+D+−z−D−
. The diffusion coefficients

of the cation and anion will be equivalent regardless of whether the monomer or polymer
center of mass is considered, but the anionic charge valence z− will change. Using Lij

p

corresponds to including z− = −N in the equation, which will yield the tNE
+ values shown

in Figure 6.4b, whereas with Lij
m, z− = −1 should be used, as in Figure 6.4c. As analyzing

polymer center-of-mass motion implicitly captures intra-chain correlations, tNE
+ (z− = −N)

will provide a much more reasonable estimate for the true cation transference number than
tNE
+ (z− = −1), as is clear from Figure 6.4.
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