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ABSTRACT OF THE DISSERTATION

Performance Enhancement Approaches for a Dual gEnéergy Imaging System

by

Kenneth Fu

Doctor of Philosophy in Electrical Engineering
(Signal and Image Processing)

University of California, San Diego, 2010

Professor Pankaj Das, Chair
Professor Clark Guest, Co-Chair

Dual energy imaging is a technique whereby anabhgescanned with X-rays of
two levels of energies to extract information abth& object's atomic composition (Z).
This technique is based on the fact that the Xatagorption coefficient decreases with
X-ray energy for low-Z materials, but begins torgmse for high-Z materials due to the
onset of pair production. Methods using the rafiche attenuations for high-energy to
low-energy images as an indicator of Z value hagenbproposed by several people.
However, the statistical errors associated with flystems make those indicators
unreliable. This thesis will discuss the problenssogiated with using a dual-energy
system for high-atomic-number material (also knagnhigh Z material) detection. We
will identify the sources of noise that hinder gystperformance and propose solutions
for noise reduction. Later chapters will deal wittethods to automate the high Z
detection process. We use a method called adapiagking to identify possible high Z
objects and reduce the false alarms. For objeatddsld by materials common in a cargo
container, we propose a layer separation appraa@sttmate the ratio of the high-and
low-energy attenuations of the shielded objecte &pproaches provided in this thesis

are able to enhance the detection rate and readalse alarms significantly.
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1
Introduction

With the advance of technology, the world we limehas become a global
village—transportation and communication are muchoremn convenient.
Unfortunately, it also makes the world more easiboded with various kinds of
extremism and terrorism on a scale we have neven $efore. It is therefore
extremely important to develop security systems thapect luggage and cargo
containers at customs and other checkpoints witratgefficiency. Radiographic
technologies have been applied to security systemast decades, scanning luggage
with X-ray beams so that inspectors can visualkgcecontraband objects by looking
at the X-ray images. However, some contraband méteran be made into any size
and shape, making the detection of those targetsmabenging task. Several material
discrimination techniques have been used in theo#ito detect certain materials, for

example, metal detection.

During the past decade, the security industrydea®loped dual-energy X-ray
imaging systems to discriminate certain materisgh as a metal handgun or plastic
explosives in baggage. Dual energy (DE) imaging isechnique that uses two
different energies of X-ray beams to scan the sabject and extract information
about the atomic composition of the scanned objed. widely used in the medical
field to distinguish tissues and bones from a &ngiray image. Airport security
systems first used the technology to detect metak({ly to detect handguns) and later

extended that technology to detect organic matetiallook for plastic explosives.



Not until recently has there been interest ireeding such technology to high-
energy (mega volt) X-ray scanning for cargo corgesn One reason for this is that
there seemed to be no need for it. The other resstmat the technology was not
ready to meet the challenges. Some theoreticaysemlwere published to discuss
possible methods for cargo container content natdiscrimination. However, all of

them were doomed to fail because of the huge stati®rrors of the systems.

The objective of this thesis is to provide solofiao the problems of cargo
inspection imaging systems using digital signal amadge processing approaches,
especially for the realization of a practical deakrgy imaging system for material

discrimination.

1.1 Motivation

After September 2001, many countries staidquhy more attention to national
security and possible terrorist attacks. An adednsecurity system to detect
contraband material in airports and sea ports becarcrucial factor for ensuring the
safety of our nation. The security industry start@aexploit the possibilities of using
mega-voltage dual-energy X-ray imaging systemsifaterial discrimination in cargo
container inspection in customs. There are two magues regarding this technology:
first, the processing speed must be fast to betipehcThe second is the accuracy of
the system. Those two objectives usually contragigcth other. A fast scanning time
usually means fewer samples are taken during the @equisition process, which
usually leads to a higher error rate and smaltgradito noise ratio. Also, resolution is
another key factor in the performance. Low resoluivill not only make fine objects
indiscernible but also introduce a greater numbegrmors in images. On the other
hand, a sophisticated image processing algorithmussally time-consuming.
Therefore, a high processing speed usually saesifibe image quality and accuracy
in material discrimination. However, a long progegstime, including scanning the
object at a very slow speed, using highly sophastid signal and image processing
algorithms to denoise the image, to improve thegenquality, and to automatically
segment suspicious objects, will make the task camably inefficient and



impractical. Thousands of containers are waitingustoms each day. Thirty seconds
to a couple of minutes is probability the time #afale to scan the cargo and process
the data to keep traffic flowing at an acceptable.r Therefore, we are interested in
looking for approaches that can achieve high spmed high accuracy without
suffering from their tradeoffs. At least, a goaloshl be set to find an optimal

combination of processing time and accuracy.

Using a dual energy system to extract the exachiatmake-up of the content
in a cargo container is nearly impossible in prctDepending on the nature of the
containers, it is possible that X-rays cannot passugh all of the objects. In this case,
no information about the object is attainable. cAldue to statistical errors that hinder
the precision of measurement, it is difficult totab the exact effective atomic
numbers for the objects, since atomic number isutatied from the measurements of
X-ray attenuation which is very sensitive to smaittors. However, dual energy
imaging still has value in cargo imaging systemsaose the exact atomic information
is actually not necessary. Radioactive matertzs$ tould be made into weapons all
have very high atomic number. Also, they are ugustiielded by lead to avoid the
leakage of radioactive rays. A commercial cargot@ioer usually won't have its
items made up of material having atomic numbertgreaan steel (mostly iron, with
a small percentage of other alloying elements sashmagnesium, chromium,
vanadium and tungsten). Other possible common métalde a commercial cargo
container are nickel and copper. All the commonaisehave atomic number (Z) less
than the atomic number of lead (Z=82) or tungstéa7@). Therefore, the task
becomes much easier if the goal is just to discrat@ objects that contain a high
percentage of metals with atomic numbers highen that of lead. Those materials
are defined as high Z materials in this thesis. fHs& of a DE imaging system can be

simply to divide the image into two classes: higard non-high Z materials.

Even though the task can be simplified, it remaias/ challenging. System
noise, mostly Poisson noise, will introduce undetyain the counts of photons.

Consequently, false classification can be made.eSoom-high Z metal, because their



atomic numbers are so close to that of high Z rnaserwill be classified as high Z
material as result of noise. Also, digital imagergjfacts and the geometry of objects
will also contribute to false classification. Retlgna great amount of resources have
been designated in research for using dual-enem@ge in nuclear-active material
detection. Different teams have proposed differ@pproaches for determining the
atomic numbers of scanned objects. All of them, éwav, are facing problems

described above.

1.2 Objective

Our objective in this thesis is developing imgg®cessing algorithms to
enhance the quality of the image and increaseigieAdetection rate. The ideal goal
is to reach a 99% detection rate (for each one fiegnscans of the same high Z object,
less than one time do we have a miss). Convergayfalse alarm rate is computed by
counting the number of events out of one hundrexhsca non-high Z object is
classified as a high Z object. Although we woulthea have a false alarm than miss,
we still want to keep the false alarm rate to aimim (less than 3 %). That is a very
ambitious goal at the current time. To achieve saugoal, the dosage of X-rays must
be high enough to provide significant informatiéso, a very delicate detector that is
sensitive and can provide a fine resolution isreésiThose factors will compromise
the objective of radioactive safety and efficienbgessing time. Regardless of
whether the obstacles created by the hardware eaesblved by an improved design,
we have tried to provide possible software solgifor most of the problems that may

or may not have hardware solutions.



1.3 Contributions

Dual-energy imaging for cargo inspection is a ndgeemerging technology
not many publications about high-energy dual-enemgyaging systems for the
application of cargo imaging systems can be founillost of the publications only
discuss the physical principles of the system withmentioning too much of the
engineering aspects. Most papers that do discessrtgineering aspects of this topic
either address the problems without providing aitsmh, or provide solutions that
only work under a very ideally controlled conditiohhe solutions provided in this
thesis are therefore preliminary but original. eDthe past two years, the technology
of dual-energy imaging for cargo inspection hasfamany criticisms. The critics
have doubted about the applicability of using stexthnology in screening for the
nuclear threat, and asked for a cheaper and simphestitute [93]. In responding to
those criticisms, we believe that the developmdnartyy technique takes time. Our
work has shown that there is still a great potémiasuch technology, though many
challenges remain as well. We will discuss thevaht issues in the later chapters.

The major contributions of this thesis can be sunwad as follows:

1. A probabilistic model using a global ratio threshdbr high Z material
discrimination has been developed. Several methsasy dual-energy X-ray
imaging system for high atomic number (Z) matedatection are proposed.
Until now, only a few methods for discriminatingfdrent Z number materials
for cargo container inspection have been propogedong those, our methods
give a very high detection rate that is better tlodimer approaches. Most
proposed methods look at the high to low energgnatition ratio to determine
the effective atomic number (effective Z) of scathimbjects. We calculate the
probability of a material having very high atomigmber from the measured
ratio, and make the determination based on thdiHiked that the calculated
ratio is actually above a threshold ratio valuehe Belection of the threshold

ratio can be global or adaptive, depending on tlopgrties of the imaging



system being used. A global threshold is used whemeasured ratio is not a
function of object thickness. In this case, theoraif a material remains

approximately the same as long as X-ray is ablpetwetrate the object. The
selected ratio threshold is a value higher tharrdhe of steel.

One problem with this global threshold probabitistmethod is the

determination of a threshold of probability, abovkich the target is called

high Z. When a high Z object is buried in a nogkhiZz background, the

effective ratio will decrease as the thickness @ickground increases.
Consequently, the calculated probability will dese, which can cause a
detection miss. We are first to propose an apprdlaa@hcan resolve this issue.
The proposed “adaptive masking approach” procefses(-ray image on a

region by region basis. It does not use a fixeddhold of probability for the

whole image, but determines the threshold adaptibelsed on the relative
probability an object has to its regional backgrehuA modified thresholding

approach for image segmentation has been develpeémployed. Not only

does our approach resolve the problem of globaktiold of ratio, it segments
objects in all regions and uses them as “masksbs&hmasks are used to
eliminate false alarm pixels caused by noise. fiogposed masking approach
is a very powerful tool in false alarm eliminatioBur experimental results
have shown a very high accuracy of automated higletéction in simple test
setups. The details of this approach will be predith Chapter 4.

. A simple and efficient method for data clustering proposed. Image
segmentation is another pillar of our project. Bynpboying image

segmentation, we can then focus on regions reqguaitention, which saves a
lot of processing time. A good data clustering rodthelps make any kind of
segmentation more efficient. This thesis discuseesmost commonly used
segmentation approaches. It also discusses a ngmeséation method we
propose for detection of suspicious objects in amyXimage. A modified

clustering method, a mixture of leader clusteringd &k-mean, has been



developed and employed in our high Z detectionesystwhich will also be

discussed in Chapter 5 of this thesis.

. An algorithm for region filling is proposed in Chap 5. This is an algorithm
to fill in the holes in an image. The standard wsyo select a starting point,
called the seed, and then to grow from that seadt pmtil the hole is
completely filled. Automated region filling is ahys a hard problem. The
major challenge is to define the seed point fromciwho start the region
growing process. We have developed an algorithnrdgion filling without
the need to find the seed point but that still ezés the goal of automation.

An algorithm to detect high Z material hidden Imehilow Z material is
proposed. Organic materials such as paper, or amcgmaterials such as
water, are classified as low Z materials. Base@dwnexperiments, we found
that the probability will not only be affected byetshielding metals, which are
classified as mid-Z materials, but will also beaghg affect by low Z materials.
The calculated probability of a high Z target via# significantly lower than it
should be if it is put behind a box of drinking ematWe propose an algorithm
to determine the locations of low-Z- surroundedecty and modify the
calculated probability. This algorithm greatly iroges the accuracy of high Z
detection. This low Z background problem has neérbreported in any
publication, we are the first to define and resdiis problem. A model of
using an adaptive threshold for the high Z ratic\abso developed to replace

the global threshold to improve the system perforcea

In the end, a complete method for hidden high Zatgletection is developed,
including noise reduction, edge enhancement, dasteting and background
layer separation. This complete scheme enablesldbign of DE system to

achieve 99% of detection rate with very limitecs&ablarms.



1.4 Structure of this thesis

This thesis presents several approaches to entlamgerformance of a cargo
dual energy system. Depending on the requiremertohbjectives of a system, some
of the approaches are substitutable alternativeshiers. Some of them are an integral
part of others. For example, an idea we call “magkis a key part to the complete
scheme. Figure 1.1 shows the flow chart of tiyh i detection scheme. The two X-
ray images obtained from the system go throughriassef stages to obtain the final

result:
1. Noise reduction: enhance the quality of imagesenhance the accuracy.

2. Classification: the process of generating ratformation to classify the materials

of objects.
3. Discrimination: discriminate high Z material finanon-high Z material.

4. Post processing: clean up the false positiveergéed from the previous stage.

Machine error and noise caused by random scattaresgealt with this stage.

5. Decision making: A binary image we call “HighnZap” or “Z-map” is produced to
provide the detection result.

Chapters that discuss the relevant approachealzgket in the block diagram.

Chapter 1 is the introduction of our objective,daa summary of our
achievements. Chapter 2 of this thesis discussegliysical background of X-ray
imaging. The background of dual energy imagingesystis also discussed at length.
Chapter 3 provides the general background of ingagmmocessing, including
terminologies and commonly used approaches for éngknoising and segmentation.
Chapter 4 covers the first solution we developeaddiecriminating high Z materials
for cargo imaging system. An algorithm including age enhancement, object
segmentation and false alarm elimination is diseds€hapter 5 goes one step further

in image segmentation. A new data clustering aggroand a new segmentation



method are proposed and discussed. Chapter 6 psoaidolution for detecting threats

behind different shielding. This is an importargpsthat completes the whole picture.

Chapter 7 introduces a new approach to image psoges-wavelet domain

processing. Chapter 8 draws conclusion from theeativork and describes the future

direction.
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Background of Dual Energy Imaging

In this chapter, the theoretical background of|demergy X-ray imaging
system is reviewed and the issues of such systeenadalressed. The discussion is
introduced with the physical background of X-rayagimg systems in Section 2.1. The
theory and application of dual energy imaging aseussed in Section 2.2. And, in
Section 2.3, the issues and challenges of desigaimyal energy X-ray imaging

system for material identification is discussed.
2.1 X-ray imaging

X-ray imaging works by placing an object betweea ¥iray source and the
receptor (a film or a detector.) The physics ofay-imaging can be explained by the

exponential law for a narrow spectrum beam:
N = Noe_ut (2.1.)

where N is the number of photons passing through the olgec unit of area and
N, is the number of photons in the incident X-ray bearhich can be obtained by
measuring the number of photons passing througd &ie u is the attenuation
coefficient, which is dependent on the material #mel X-ray energy, andt is the
thickness of the object being scanned in the beath. @he intensity of the X-ray
beam in the equation is defined as the number ofgpis in the beam, which can be

10
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obtained by counting the number of photons recebsethe detectors. As a beam of
X-rays passes through an object, some of its plsotath be absorbed by the probed
material due to collisions between the photons @iedmolecules. As a result, the
number of photons passing through the material bl less than the number of

photons in the incident X-ray beam.

The attenuation of different materials
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Figure 2.1 Attenuation of several materials. (Data obtainedinfiNIST website)

Figure 2.1 shows the relation between the thickrdsan object and the
remaining number of photons after passing throweeal materials. The energy of
X-rays here is 9MeV. The initial number of photossN=1000. The attenuation
coefficients of the selected materials apgicer2.34*10%cm, win=2.49*10%cm,
Miead=5.16*10cm, pcoppe=2.75*10%cm, and pwae=2.31*10%/cm. It is usually the
case that materials with greater densities havat@reattenuation coefficients. The
attenuation coefficients determine the degree oyXabsorption. In Figure 2.1, 30%
of the 1000 photons pass through 50 cm of watewedyer, for 50-cm-thick lead, only

one tenth of the photons can pass.
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More specifically, Equation (2.1) is expressed as
N = Nye H#EDL, (2.2)

The attenuation coefficient is a function of density of the scanned matépipl the
chemical composition of the material (atomic numi@®r and the photon energk,

We can express this relationship with the followetgation:
w=p=*1(EZ) (2.3)
wherer is the mass attenuation (%) of the material.

Transparency or transmittance is defined as the batween the intensities of
the X-ray beam before and after the penetratioanobbject. It is a measurement of

the transmission of X-rays. It can be expresseifasction ofE, t, andZ.:
Tr(E,t,Z) = — = e HEDL, (2.4)
0

Some people prefer to define transparency as tharitom of Equation (2.4). To

avoid confusion, we call that definition the logam transparency which is defined as
InTr(E,t,Z) = In— = — u(E, Z)t. (2.5)
0

The converse concept of transmission is attenudticiefines the ability to
absorb photons of a material. The inverse valueg#rithm transparency is called

attenuation or absorption. The attenuatiofE, Z, t) is expressed as:

1
Tr(E,Z)

m(E, Z,t) = 1n( ) = uw(E, 7)t . (2.6)

Equation (2.6) indicates that the greater the atitBan coefficieniu or the thicker the

object, the more photons will be absorbed in thé.pa

So far, our discussion is only focused on narrowdbX-rays. In practical
radiography systems, the X-rays are not monochronmait have a continuous

spectrum.(polychromatic) The spectrum of an X-ragrh is a distribution between
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zero and the maximum photon energy(end point enefdyerefore, Equation (2.1)

should be modified as
I(E,t,Z) = [,° N(E) e “EDt p,(E)EdE 2.7)

whereN (E)is the number of photons in the spectrum with &peeergyE, at energy
E, and P;(E) is the photon probability density function (i.&etprobability that a
photon has enerdy.)

Traditional X-ray imaging works by placing objea@tiveen X-ray source and a
photosensitive film. The intensity of the X-raysnmdified by the absorption of the
object. X-ray images are negative images, simdataveloped photographic films. An
X-ray image gives information about the relativeekhess and density of the object
being scanned. Thicker or denser portions of arabhyill have greater opacity (less
transparency), the X-ray intensity on the corresiram part of the film or detector will

be less, which makes that region of the image apwéeghter.

Currently, most X-ray imaging systems are digitdr digital X-ray images,
two methods are used: (1) by digitizing the X-rdynf or (2) by having the X-rays
passing through the object fall directly onto aidewthat converts X-ray to light (such
as a phosphor screen), and then the light signalafgured by a light-sensitive

digitizing system.
2.2 Cargo X-ray imaging

2.2.1 General Description

In Section 2.1, we have discussed the generaliplascof X-ray imaging. In
this section, we will discuss one application ofra imaging—the cargo imaging
system. A good reference for cargo imaging systean be found in Chen’s
“Understanding Cargo Imaging [1]". Figure 2.2 slsotlve arrangement of a cargo X-
ray imaging system. A typical cargo imaging systems a source, usually mobile, that

generates X-ray photons; a detector array, usualiitaped, that records the X-ray
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photons; and a signal processor unit doing signdlimage processing computations
such as analog to digital conversion, contrast ecdraent, noise reduction or other

higher level image processing. The operator disptagents the output to the users.

deleclnﬁ

~

source

Operator gﬁ / Signal

display - | processor

Figure 2.2 Setup of a cargo imaging system.

More detailed discussions of the components odrgacimaging system are
given in the following:

Source: Thesource is a device that generates X-ray photons.eflergy of the
source refers to the maximum energy a photon cae léhen emitted from the
source. A pulsed source generates X-ray beamscattain frequency; each beam
generated is a pulse. For a cargo X-ray imagingesysthe X-rays need to have
enough energy to penetrate cargo containers maithickfsteel. For X-ray energy up
to 500 keV, the source is usually an X-ray tube PB@ potential type electron
accelerator plus a tungsten target. For higherggmex Linac (linear accelerator) is
used to accelerate electrons that generate X-taggumgsten target. A higher energy
system has more intense X-rays. For the purposgatdrial discrimination, the source
emits X-ray pulses at two energy levels. The highd bow energy sources will be
placed in an interleaved arrangement. This is ddlie dual energy system which will
be discussed in later sections. For safety conctdras<-ray energy must not exceed 9
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MeV. Higher energy sources will have significant umen production and
photonuclear reactions can be a concern.

Detectors: most cargo imaging systems use scintillator —pdliode detectors.
They can beCaesium lodiddCsl) or Bismuth Germanai8GO) for low energy and
low dose rate systems, but Cadmium Tungsi@wO) is the usual choice in high
energy systemsecause it has a relative high photon yielthen the photodiode is
properly protected from the direct beam, such detsdave proven to work for many
years without noticeable performance degradation.

A cargo imaging system usually uses a linear aofagetectors. As shown in
Figure 2.2, the detectors are aligned in an L-shdgtector tower. Each detector
represents a pixel in the digital X-ray image. @&ie size is a compromise of the
desire to display smaller features and the needafdasrger area to capture more
photons. The detector usually needs to be thickigimao absorb and detect most of
the X-rays reaching it. For the systems with theppse of material discrimination,
each pixel often has two detectors, one selectiketprds lower energy photons and
the other selectively records higher energy photdrigs information is used to
identify the material’s effective atomic number.

Data acquisition electronics include detector afigp, sampling and holding
and analog to digital conversion. They usually ha&bit or higher resolution and the
electronic noise needs to be small enough to greel @verall system dynamic range.

Signal Processor: A computer equipped with an image processing algori
to process data from detectors is the heart ofsistem. Processing may include
detector normalization, using calibration data eéovert intensity of detected photons
to thickness relative to the calibration materi8teel and copper are the most
commonly used calibration materials; source vamais corrected by calculating the
standard deviation of the calibration data, regectof bad data, image manipulation
and analysis. A practical system must be effictenkeep the commerce flow at a
reasonable speed. So far, no standard is giveth&mprocessing speed. However,
according to the statistics given by the Americassdciation of Port Authorities
(AAPA) website[94], about 300.000 to 370,000 cameas will be loaded a month in
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Long Beach port. With about 10.000 containers mgito be loaded per day, a
processing time of less than 10 seconds per cantamesirable. .

Operator display: The result of processing is displayed to the operat the
chosen format. Operators can inspect items insige ttuck by looking at the
processed X-ray image. They can also process thgeanfor their specific purpose
with preset functions. For example, they shouldible to enhance the contrast of the
image for their convenience, or to zoom in on aastipular area in the image that is
suspicious to them. For the purpose of materiaroiignation, an overlay of alarmed
regions and the X-ray image is provided so theangps can use that information to
take further actions.

Other important components include the collimatwal ahielding. Collimation
can be done in both source’s side and detectatts Jihe shielding is necessary for
safety concerns.

Collimator: The collimator is used to control photon scatterimbe source
generates X-ray photons that travel in all direddidt is desirable to have at least one
source collimator to form a slice of beam. A d&gecollimator may also be used to
reduce detection of scattered X-rays and therdfmimprove system dynamic range.
In many cases, especially when there is no clobedding, a beam filter is desirable
to remove these unwanted photons —the lower erggion of the X-ray spectrum.

Shielding: For safety reasons, shielding is needed to preplnton from
leaking. Shielding varies from a few millimeters lefd in a 160 keV system to a
massive steel and concrete installation in a 9 Mgstem. External radiation levels
must meet local regulations. For 9 MeV systemslstad/or concrete is necessary
because there is also a need to shield from th&amebyproducts. The higher the X-
ray dose, the heavier the shielding will be. Heshielding will slow down the speed
and/or consume more energy, and requires more gqalyspace. It is therefore
preferable to find the balance between the sizhmflding and X-ray dose to give the
maximum efficiency. The dose delivered to cargbnmsted by beam collimation and

filtering. An interlock system is included to preneccidental radiation exposure.
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2.2.2 Terminology

In this subsection, we introduce several often utsthinologies in cargo

imaging systems. The performance of a system iaettby those terminologies.

Half-value layer (HAL) : It refers to the thickness of a specified matdhat
reduces the intensity of the incoming radiationhiayf. HAL refers to the thickness of
the first half-value layer. The subsequent HALs thie amount of specified material
that will reduce the radiation rate by one-halkafnaterial has been inserted into the
beam that is equal to the sum of all previous talbie layers. A good imaging system
can have X-ray penetration up to fourteen half-gdayers.

Pixel noise: Error caused the distortion of information of agdixThe sources
of the noise can either be X-ray system noise, saghquantum noise, or the
guantization noise when forming a pixel.

Maximum penetration: This is one of the most important performance
parameters. In cargo imaging, this is usually dafias the maximum steel thickness
behind which a lead block can still be seen. Fgeaib thicker than that, the steel
would be completely dark in the image, which is alsureferred to as a non-
penetrable region. After penetrating that maximunckiness steel, the remaining
signal must not be washed out by pixel noise. Usdeh conditions, the pixel noise
sources are primarily electronic noise, uneventaGaand artifacts, such as those
generated by inadequate normalization in eitheection. X-ray quantum noise, or
statistical noise, is insignificant in such a sitola because of the low photon counts.
The maximum penetration of cargo imaging systemgea from about 25 mm for
160 keV systems to more than 400 mm for 9 MeV systd-ig. 2.3 shows the typical
maximum penetration of different systems.

Signal Contrast: This is the visibility of items against a backgrdumand is
highly operator dependent. To visually detecttamiwith a background, the signal of
that item must have enough signal contrast. lerotfords, a sufficient signal to noise
ratio makes the item not buried by pixel noise. &ally speaking, for an area object,
the signal contrast usually needs to be at leasttlond of the standard deviation of
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pixel noise. For line objects and point object® tlontrast needs to be one and four
times the pixel noise, respectively.

Contrast sengtivity: This is defined as the ability to see a thin staate
behind a thick steel plate, usually in the rangkailf of the maximum penetration. For
example, a typical 450 keV system has 100 mm manxirsteel penetration and its
contrast sensitivity is 1-2 mm behind 50 mm st€elntrast sensitivity measures the
ability to unveil details in the real worldSignal contrast is the attenuation by the thin
plate. Pixel noise is predominantly X-ray quantuoisa; artifacts and electronic noise
are usually negligible in such condition. Wire gast defines the ability to detect a
thin steel wire behind a thick steel plate. A tghid50 kV system can detect a 3 mm
diameter steel wire behind 50 mm of steel.

Display resolution: Display resolution (pixel size) is determined dgtector
size and image magnification. It defines the abild see small features under high
signal contrast, low noise conditions. In cargoging, display resolution is usually a
few millimeters and is tested with line pair gricgde of 2 mm thick steel, with no
background object (in air).

3 Penetration vs. Energy

=
o

Steel penetration: mm

Based on current products
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Figure 2.3 Typical maximum steel penetration of cargo imagsygtems (image
obtained from [1])
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Wire resolution: This is the ability to detect a small wire in alihe signal
contrast is the attenuation of the wire, usuallytdd because its shadow may not
cover a whole detector element. The pixel nois&am X-ray quantum noise and
artifacts. Low energy systems with small detectofeen have 0.125 mm wire

resolution and high energy systems usually haveratd mm wire resolution.

2.2.3 Image Formation

The image is formed in three steps: object scannitaga recording, and
information visualization.

Object Scanning is the first step of cargo imaging which allowsa§s to pass
through the object. According to Equation (2.1 ttumber of photons is attenuated
through the object. To obtain information about stining inside the cargo container,
there must be enough remaining photons after tamleavels through the object, and
any item seen in the image must cause a noticestbddgence in X-ray intensity, or
else the contrast of the image will be too low t@vide any information. As
discussed before, the random scatter of photons Ineusontrolled so that it does not
add a strong background to cover weak signals, lwhieans a low signal to noise
ratio (SNR). Besides collimators, a beam filter ¢@nused for scatter rejection. The
best filter material for 9 MeV is polyethylene. FBMeV X-rays, the best filter
material is very high atomic number material, saslead or uranium.

For lightly loaded cargo or small baggage, a 160lsg/dtem will provide
adequate penetration and excellent contrast. Avther extreme, a fully loaded Arab
boat (called a Dhow) requires a 9MeV system. Howedhee to the strong penetrating
nature of 9 MeV X-rays, a small piece of explosarea 0.125 mm diameter wire,
which could be detected in a 160 kV system, wooloklalmost transparent in the
high energy system, and is very likely to be ovekkx.

The source intensity, or beam current, determirtes ihitial amount of
photons. The number of photons emitted by the soisraesigned to be received by

each of the detectors in the detector tower. Thiawgiibration, the number of photons
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each detector will be getting without attenuatisrdetermined. After photons probe
the objects, the remaining number of photons fahedetector will be counted and
later converted to pixel intensity through signadqessor.

Data Acquisition: Thisis the second step, which detects the X-rays thas p
through the X-ray-probed objects. Detectors arequain an array; each of them
records information about the corresponding ardeerdfore, the detector resolution
sets the upper limit of spatial resolution that iimaging system can show, which is
determined by the detector size. For systems ssdhirport security, the resolution
can be as small as 1mm. Figure 2.4 illustrates th@pixels of the image are formed
in vertical direction. The source emits a fan-gthppeam of photons through the
object of heighth. Without any attenuation, the photons will modiky received by
the N detectors. The number of photons received by datéctor will be recorded as
counts and converted to a normalized value by &nhodhverter. As the source moves
along the object, it generates pulses of beamspuihgber of unabsorbed photons of
each pulse is recorded. The raw data is the remoatl pulses of all detectors. In the
horizontal direction, the raw data from all pulseihin the bin width of resolution
(usually the same dgN) will be averaged or integrated by a chosen famcto form a
pixel.

Since the number of photons received by differestectors will not be the
same, and each detector channel has different capbn, each detector must be
normalized individually. For a pulsed X-ray sourtieg intensity of each pulse of X-
rays should be normalized with reference detectdte remaining error of the
normalization causes vertical artifacts in the imaghile the horizontal artifacts are
caused by pulse variation compensation (i.e. auggagver pulses) in the image.
Artifacts can also be introduced by discontinuifiesletector layout (such as between
detector modules) or other structures; this kindrtifact is the cause of what is called
“‘edge effect” which will be addressed in later smts and chapters. Artifacts
contribute to the overall pixel noise and shoulddmticed whenever possible.
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Figure 2.4 Digitization of the X-ray image. The X-rays froret source go to thd
detectors. In the X-ray image, each pixel repressaboutVN wide of an area.

Visualization: Visualization refers to the process of presentirgibhformation
graphically to the system operator, which is tret &ep and final goal of the system.
The task here is done by the signal processor afnihe system. The image data
usually have 16 bits, or 64K levels. Gray scalgldig uses only 8 bits, or 256 levels
and it cannot present all image information at btme. Pseudo-color uses 8 bits for
each of the three basic colors, or 16 M levelsthis situation, the effectiveness is
limited by the ability of human eyes to tell sultl@or differences.

The intensities in an X-ray image can be preseintad/o ways: linearly and
logarithmically. A linear display normalizes pixéata and linearly maps the data to
the gray levels. As shown in Equation (2.1), thea)}-signal decreases exponentially
with thickness. Most parts of the image would appsk and it would be hard to
discern any details. A better way to presents #ta cthight be to map the logarithmic
intensity, which is proportional to the thicknesktbe object, to the gray levels.
However, the logarithm display does not show tiémis very well compared with

linear mapping.
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Another way is to take the square root of pixeadend map them to 256 gray
levels. By doing so, the contrast between pixelsh@ enhanced. Square root display
is an equal-noise display method. That is, whethersignal is at 250 or 25 on the
gray scale, the X-ray quantum noise correspontiseteame number of gray levels.

Noise reduction is usually built into these nondingansfer processes. That is,
the logarithm or square root lookup table can balifrenl to suppress noise. The
single most helpful process is AHE, or adaptivetdgeam equalization. After
performing some non-linear transformation, the imegydivided into smaller sections.
In each section, pixels are assigned a new valubadhe number of pixels that fall
into each gray level is equal. Bilinear AHE usuafiyovides the best overall
appearance of the object, but true object thickimgesmation is lost. Different areas
may have very different gray level mapping. Fig @emonstrates the effect of linear,
logarithm and AHE displays. For the best resuli specific region, imaging software
usually allows the operator to adjust display casttr Due to the cluttered nature of
cargo, complexity of the object, and the usuallghhpixel noise, edge enhancement
techniques have very limited effectiveness in cargaging. For the same reason,
automatic image analysis does not work very wethezi There remain many

challenging tasks for image processing and compugemn.

Linear

Logrithrmm

AHE
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Figure 2.5 Three different displays of a cargo image (Imagwimed from [1]) Top:
data are linearly mapped to 256 grayscale levelsidM: the logarithm of data is
mapped to 256 grayscales. Bottom: after applyingeAld the data, the signal is
mapped to grayscale.
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2.2.4 Source of Noise

As mentioned earlier, sources of pixel noise caphyesical such as statistical
errors, scattering, and electronic noise, or can dmgtal—artifacts of signal
processing.

Noise from an X-ray imaging system is mostly X-guantum noise, which is
mainly shot noise. Shot noise is created by thetdktion of detected photons. Shot
noise is governed by the Poisson distribution. Aomgeature of the Poisson noise is
that the standard deviation is proportional to ggaare root of number of events. In
the low X-ray penetration situation, the pixel mi®r standard deviation of pixel
signal, is slightly larger than the square roottted average number of photons per
pixel. In this case, quantum noise is not a dontinamse. Whether the standard
deviation of photon counts equals the square rdgbhmtons can be used as an
indicator of the penetration quality.

Both maximum penetration and contrast sensitivitly suffer with reduced
photons per pixel. Wire resolution, or the abilitydetect a single wire smaller than
the detector size, is not affected by detector. 3i¢een detector size increases, signal
contrast caused by the wire is diluted, but pixa@ke is reduced, and the two effects
compensate each other. Low energy systems usually dhetectors of high efficiency.
For high energy systems, the detector thicknesstlag@fore detection efficiency is
usually limited by cost considerations. Typical CWd@etector thickness in cargo
imaging is 20 or 30 mm. Gas detectors are thealgtionore radiation resistant but
their low detection efficiency is a major disadwayd and are rejected by most of the
industry.

Electronic noise, including that from photodiodesnplifiers, and other
circuits, plays a major role in determining the maxm penetration. It is the primary
contributor to pixel noise in very low signal cotidins, as in the case for testing
maximum penetration. Everything else being equalibling electronic noise means
twice as much remaining signal is needed to detedem.

Crosstalk (XT) refers to a leaking or blending weharphoton aiming for one

detector is received by another detector. Whenhhppens, the calculated attenuation
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for a pixel will be smaller than it supposed to Beosstalk among detectors tends to
blur images and needs to be controlled to withfava percent. Scintillation detectors
naturally achieve this level as long as detectoitsuare optically isolated. In
tomography, where further reconstruction is needéday separators are essential.

Crosstalk can also be corrected through software.

Pixel noise also comes from image processing atsif&ODne commonly seen
artifact is the edge effect--a “ghost” edge causgsarious factors. The X-ray sources
usually produce a fan-shape beam, meaning pix@sive X-rays from different
angles. Figure 2.6 illustrates the difference tbeturs with X-rays coming from
different directions. When the incident beam isppeadicular to the surface of a
uniformly thick object with thickness the detectors will measure the same thickness
from all three X-rays. When the beams are coming different angle, different
thickness for different rays will be read as a lesthe first X-ray from the top
passing through the shortest path will have thdlsstattenuation among the three X-
rays. If an object receives X-rays from differemigles, there will be a penumbral
effect around the edges of an object. The sizéhnefdetectors (resolution) will also
affect the degree of edge effect. Because pixa@sf@med by averaging the pulse
sample within the width of a detector, object edfgng within a detector will be
smeared. This effect is more prominent when detecce bigger (lower resolution.)
As illustrated by Figure 2.7, an object with thielst and length equivalent to three-
detector width will not have much misreading whée signal from the object is
evenly distributed to all three detectors as show(a). It will be read as 4 pixels wide
when the object is not properly aligned with théedtors as shown in (b). Detector 3
and detector 4 will still have the readihgwhile detector 2 and 4 will have readings
from the object and the air. The pixel value ofedétr 2 and detector 5 will neither be
t nor zero, but some value in between. The outpage will be a 4-pixel-wide object
with 2 pixels in the center darker than the edgébke problem can be improved by
increasing the resolution. When the detector semimes half of its original size as
shown in (c), 6 pixels will have the same readin@ecause cargo X-ray beams are

fan-shaped, X-rays come in at different angles, lzexhuse of the artifacts associated
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with digital X-ray imaging, the edge effect usualbpntributes to a source of

misclassification in material discrimination sysgem

Detector
Detector _. —

_ -,\\

|

(a)

Figure 2.6 Edge effect illustrates (a) three identical X-ragysjected on an object with
thicknesst perpendicularly. Without noise, the detectors \Wwidlve the same reading
for all three. (b)When the beam comes at a diffeeegle, different detectors will
have different readings since different rays gouligh different thicknesses.
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Figure 2.7 Edge artifact and resolution illustrate (a) an objith thickness and
length equivalent to three detector’s size is plagkgned with detector 2, 3, and 4.
They will have the same readings. (b) The edgehefdbject falls within detector 2
and 5; detector 3 and 4 will have different readitigan detector 2 and 5. (c) When
detector size becomes half of the original one, tnpasts of the object fall within
detector 5, 6, 7, 8, and 9. Ideally, detectors,13 and 4 will not have a reading of
thickness from the object.
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2.3 Dual Energy X-ray Imaging

Recently, some cargo imaging systems offer mateisdrimination [87-91],
usually by exploring the difference between the tpllectric effect and Compton
scattering, and are common for 160, 320 and 450k&st¥ems. Mega-voltage imaging
systems work by exploring the difference betweerm@on scattering and pair
production. Higher energy X-rays will trigger mof@ompton scattering events,
causeing a greater attenuation. As higher atomimben materials have higher
photoelectric cross sections, the ratio of low gpgrhoton attenuation to high energy
photon attenuation tends to be larger. The teclnihat uses two levels of X-ray
energy sources to exploit the difference in attéoonafor material discrimination is
called dual energy (DE) imaging. The details of finysics of such systems will be
given in the next section.

Material discrimination systems usually classifyjeaits into three groups:
organic, inorganic and metal. More recently, scasistarted to use a dual high energy
X-ray sources at mega-volt levels to identify vemgh atomic number. The
effectiveness of material discrimination is usualigry limited in cargo imaging
mainly due to dilution (caused by random scattewngbsorption) along the beam
path — the items of interest are often on a verglex background of other material.

Dual energy imaging uses two energy levels of Xsry scanning an object
to extract atomic information about the scannedeabjThis technique has been
applied to the medical field since the 1960’s tpasate the tissue and bones in the X-
ray images. Until recently, methods were proposadse this technique in the security
industry for threat target identification. Althoughe mechanism of the imaging
system for airport security systems and cargo sangesystems are not exactly the
same, because the energies involved, they aresuailar in general: both of them use
the ratio of the measured attenuation from the Xaay images to explore different

mechanisms.
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2.3.1 Physical Background

When the energy of the X-ray is below 200KeV, theiactions between the
photons and the atoms of the object being scanneddaminated by two major
effects: Compton scattering and the photoelectrfece Each interaction is
independent of the other, and is a function of phanergy and atomic number (2).
Incident photon energies can be absorbed by thenedaobject. As a result, electrons
are emitted from the atoms. This phenomenon ieddhle photoelectric effect. With
photons interacting with objects, the collisionshithe electrons of the material atoms
will cause a photon to lose its energy. The phetdhscatter at an angle to conserver
the total momentum. It is quite possible that whilestill has enough energy, the
scattered photon will collide with another electanrd lose energy again. This process
is the known as the Compton scattering or the Comjiffect. The input ray gets
attenuated by such a process. The mass attenuatieguation (2.3) can be rewritten

as.
w(E,2) = ¥22 = acfu(E) + apfp (B) (2.8)

where the coefficients,anda, are constants each related to the atomic numbef, Z
the object, and correspond to the Compton effed #re photoelectric effect
respectively. On the other hand, assume for &maaf that its mass attenuation is a

linear combination of two other materialandf. Then we have

1:(E) = agT4(E) + bgtg(E) (2.9)
That is
He(E) Ha (E) Hp(E)
e M pg + b Pg 19)

Then, we have

p P
He(B) = Gq " a(B) + by oo (E) (2.11)
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On the other hand, if an object is composed of reévmaterials, its logarithmic
attenuation is the effects of the summation oftliltknesses of the materials being

penetrated by X-ray. Equation (2.6) is then
m(E; Z) = Zmatertaliﬂi (E; Z) L. (2-12)

For material§ composed of two materials and g with thicknesses t, and tz

respectively, the logarithmic attenuation of matkjiis
mg(E) = mg(E) + mg(E) = o (E)tq + up(EDty. (2.13)

Assuming we have the X-ray image at two differamgrgy levels, one is high energy
denotedHE and other one is at lower energy dendt&d Substituting into Equation
(2.12), we have

me(HE) = po(HE)t, + ug(HE)ty
mg(LE) = po(LE)t, + ug(LE)ts , (2.13)
We can express Equation (2.13) in matrix form

lmg(ml _ [ua(HE) g (HE)

to:
me(LE) | [pa(LE)  pp(LE) [ ] - (2.14)

tp

The thickness of the two materials can be easitginbd as long as the determinant
A= ua(HE)ug(LE) — po(LE)ug(HE) is not zero.

For simplicity, we rewrite Equation (2.14)
mH _ a b t1 _ tl
mL] o [c d] tz] =4 [tz] ' (2.15)

wheremy andmgare the attenuation of a material obtained fronh lsigd low energy

X-rays respectively. The thickness of the two otgean be obtained by

g] e le‘;’] (2.16)
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a. Low Energy Exposure b. High Energy Exposure
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C. Bone thickness map d. Tissue thickness map

Figure 2.8(a) a low energy X-ray chest image (b) the highrgne-ray chest image
(b) bone thickness map calculated by Eq.(2.16jigdle thickness map calculated by
Eq.(2.16). (Image obtained form http://saturn.radscedy

Let human bone be the materw@land tissue be the materiélin Equation
(2.14), the thickness of bones and tissues canbtened from Equation (2.15) and
Equation (2.16). The mass attenuations of therhaterials can be obtained through
samples obtained from cadavers. Figure 2.8 shbeswo energy images and the

thickness map of bones and tissues of a chest ¥rage from a medical DE system.

Besides separating known materials from X-ray irsaggeshown in Figure 2.8,
dual energy imaging can also be used to deternfisecomposition of unknown
materials. Assume an object has layers of two knomaterials: material 1 and
material 2, with thicknestg andt, respectively.

If the object is solely composed of material 1,ttisa t, is zero, then, from
Equation (2.16),
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a
my =ZmL, (217)

Now, recall from Equation (2.6) that attenuationaisfunction of energy, atomic

number and thickness
m(E,Z) = u(E,Z)t. (.6

Substitute the two energies into Equation (2.6)aanaterial with atomic numbeéet

with a given thickness, gives

m(HE,Z) _u(HE,Z)t _ u(HE,Z)

m(LE,Z)  p(LE,Z)t  u(LE,Z)’ (218)
If the material in Equation (2.18) is material Iwi = Z;, we have
m(HE,Z HE,Z a
( 1) M )——=r1- (2.19)

m(LE,Z,)  u(LE,Z) ¢
Equation (2.18) and (2.19) can be interpreted fibvatr given type of material, when
probed with two levels of X-ray energies, the ratfdhe two measured attenuations is
a constant regardless of the thickness. Howeverstatement is true only when the
sources are monochromatic. That constant givesnrd@on on the atomic number.
The reason for this is that the attenuation coefficis highly Z-dependent in a certain
energy and Z range; when energy is about 500Ked/photoelectric effect dominates.

Attenuation coefficients are approximately a fuotof Z3.

Similarly, in Equation (2.16), if the materialsslely composed of material 2

alone, we have

b
mH = _mL (220)
d
and
m(HE,Z;) b

— =1 (2.21)
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The constan§ gives information about the atomic number of mate2. Using the

two material as base materials, we know that maewith atomic number between
Z,andZ,will have a ratio betweeny and r;. Now, consider the ratio @f tot,,

t myb —m;d

r,=—= 4 1 (2.22)
t, myc—mya
The ratior,can be seen as a relative Z number or effectivardhber based on

material 1 and material 2.The thicknessgsand t, obtained here from solving
Equation (2.15) are effective thicknesses sincg dre based on the assumption that
the measured attenuation is caused by purely rabfiear purely material 2. Equation
(2.22) can be stated as following:

When a tested object has a measured effectiveribssk,; of material 1 and a
measured effective thickness of material 2, the ratio of the two effective
thicknesses can be used as an indicator of itsteféeatomic number. The ratio value
indicates how close the tested material is to lbaasterial 1 and base material 2. The
higher the value, the greater portion of the testejgct is composed from material

similar to base material 1.

In practice, the two base materials are plasticanchinum respectively. The
four constants, b, ¢, andd can be obtained through calibration and experimérttis
method is used to discriminate materials into thgesups: organic, inorganic, and
mixed. Airport security systems use such methodsldtect plastic explosives in
baggage.

Recently, there is an ongoing interest in applyogl energy imaging to cargo
container inspection for customs to detect verymkagpmic number materials (high Z
materials). As discussed in Section 2.2, when Xumegges are formed by a single X-
ray energy source, the image is formed by disptayime relative attenuation, or
conversely, transmission, of all objects being sean The thicker, denser objects will

have relatively high X-ray attenuation (low transgion) compared to the thinner or
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low density objects. Therefore, the best that gustonspectors can do from the
traditional single source X-ray image is to idensiuspect objects from their shapes.
This created an opportunity for people to sneakantraband materials by shaping
them into non-suspicious looking objects. In tbase, a box of uranium can avoid
detection by masquerading as a box of china. Adsajngle X-ray energy image

cannot really provide the information of the thieks of an object. When an area
appears to be dark, we cannot really tell whethex ¢aused by a very thick material
or a thin good absorber. Dual energy imaging, lmyigling the atomic information of

the scanned object, is a solution to that problem.

To discriminate high Z materials such as uraniuma rargo container, the X-
ray energy has to be much higher than what is taedirport security systems. One
reason is that high Z materials are harder to pateetlt is also because the dual
energy imaging mechanism operates differently. Wlenobject is scanned by
photons with energy up to several mega electrotsvftMeV), there are two
dominant reactions: Compton scattering, and paadyction. With photons having
higher energy (~MeV), pair production can occurghleir energy photons are able to
bombard the nucleus and cause an electron and i&roposo be formed. Pair
production will be more salient in materials withegter atomic number. This is
because greater atomic number materials have greatked nuclei that increase the
chance of collision. Also, the higher the photorergies, the greater chance pair

production will occur.

The most commonly used dual energy pair is a Me¥ pair or a 9-6MeV
pair. The higher energy source is able to triggeremair productions than its low
energy counterpart. When scanning a high Z mateith high energy- and low-
energy X-rays respectively, it is anticipated tfeater photons will be detected from
the higher energy detector than from a lower enéeggctor because pair production
causes photons to lose energy on their path tod#tectors, and causes greater
attenuation as a result. Therefore, object wildesgy to be thicker in a high energy

scan than in its low energy counterpart. Takingrdi® of the attenuations from high
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energy and low energy images, a value greater uinégy is expected in the regions
where more pair production takes place in the leigérgy scan. Those regions are the
high atomic number material regions. Theoreticalg higher the atomic number is,
the greater the ratio will be.

For low atomic number materials, the less dens#dengive less chance of
collisions between atoms and photons; the pairymtah is not obvious. In this case,
the lower energy photons will be more easily absdrthan high energy photons.
Therefore, low Z material will appear to be thickerlow energy images. As a result,
the ratio of attenuation for high- and low-energgrss is less than unity.

Table 1 lists the attenuation coefficients of sal@naterials scanned by two
different energy X-rays. A 9-MeV X-ray beam is sci#fint to trigger enough pair
production in contrast to a 6-Mev X-ray. The thiv of Table 1 shows the ratio
between the two high and low energy attenuatiorificeents. As we can see that the
ratio increases with the Z value. This is becaoseZ value materials do not have a
very salient pair production effect. When the nuslés dense enough, for example,
Z=82, the pair production starts to be promineerivér photons will pass through the
material as a result; and the attenuation coeffidi@comes greater than that of lower
energy X-rays.

Table 2.1 Attenuation coefficients and ratios of several enats(Data obtained from
NIST website)

H-O Steel Cu W Pb 19)
(Z=10) (Z=26) (Z=29) (Z=T74) (Z=82) (Z=92)
Density{g/em?) | 1 7.86 3.94 19.3 11.35 18.68

Wontev/ P 2.31E-02 2.97E-02 3.08E-02 4.61E-02 4.82E-02 4.583E-02

enev/ P 2.77E-02 3.05E-02 3.11E-02 4.21E-02 4.39E-02 5.195E-02

_ Homev 0.8339 0.9738 0.9904 1.0950 1.0979 1.1335

!LIGMe'v'
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2.3.2 Dual Energy Imaging for Material Discrimination in Cargo

Screening

So far, several methods have been proposed to ukelaenergy imaging
system for material discrimination. In the pionagriwork by Ogorodnikov and
Petrunin (Ogorodnikov et al., 2002), the main igetd use the ratio of the attenuation

at two energy level# EandLEfor determination of the atomic numbers, Z.

InTr(HE,Z) u(HE,Z)t B u(HE,Z)
InTr(LE,Z) u(HE,Z)t u(HE,Z)

= §(HE, LE,Z) (2.23)

The ratiod is a function of the two energies and atomic numbfethe system is
monochromatic, for the same material scanned instmae system, the ratio is a
constant regardless of the thickness of the materf@r a polychromatic imaging
system, the ratié will vary with material thickness. The reasonhattthe spectrum
of photons will be affected by the depth of therbgaath. Thicker materials will filter
out more lower-energy photons in the spectrum. €ffect is called hardening. When
the spectrum is hardened, the attenuation coeftittecomes larger. Therefore, for a
practical DE imaging system, the ratio is a funttad measured attenuation, which is
a function of object thickness.

A similar idea was proposed by Zhang et al (Zhahgle 2005). They
proposed an H-L (high and low energy transparehaesve method for material
recognition in dual energy X-ray inspection systefbe two transparencies are
defined

H = e #ut (2.24a)
L= e, (2.24b)
given
InH
20 _ M (2.25)

InL .’
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therefore,

H=Lk . (2.26)

Different materials will form different curves dhe H-L plane in the form of

y = xR, The key factor that determines the shape ofHHe curves is the power

term,i—”, which is the ratio of two attenuation coefficientOne implication of this
L

method is that the ratio for a specified matesal constant. In reality, this assumption
is applicable for certain materials within a certaiange of thicknesses. Our
experimental results show that the ratio of steetains a constant until it becomes
thicker than 11 inches.

The measured attenuation can be expressed in tesfieative thickness or
equivalent thickness, which is the thickness of 4bkected calibration material that
causes that amount of attenuation. In this way; cae have a better understanding of

how dense or thick the material is when compardl svknown reference.

Let us assume that copper is used as the calibratéderial for a system. After
scanning this calibration material with attenuatomefficienf u.,, and thickness,,,,

according to Equation (2.1), we have
Nl = Noe_ucutcu (2.27)

whereN, and N; are the number of incoming photons and remainihgtgns,
respectively. Assuming that the remaining number pbbton after probing an

unknown material i9/,, then, the attenuation of that material can baiobtl by
NZ = Noe_ﬂztz (228)

Although we do not know what, andt, are, we can express them in termsugf,
andtg,. If N; = N,, it means that
]\[1 Noe_HCutCu

— —_2" — o—(dcutcu—r2t2)
ek v (2.29)
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And therefore,

Ny ~(Ucutcu—tatz)
lnN— =1Inl =0 =Ine WeutcuTt2'2) = — (. tey — Usty) (2.30)
2

and

Hcuteoy = Haly. 2.31)

Equations (2.27) to (2.31) tell us that the thidsiand attenuation coefficient
of an unknown material is causing the same atteaif photons as copper with
attenuation coefficienu., and thickness.,. In other words, we can say that the
object with thicknesg, has an equivalent thickness, in terms of copper, the

calibration material.

Therefore, the equivalent thickness of an objeth witenuation coefficient p

and thicknesscan be computed using the equation below:

In % Mt
S = , (2.32)
HUcal Ucal

wheret,, is the equivalent thickness in terms of the chasgibration material and
Ucq 1S the attenuation coefficient of the calibratioaterial.

Now, consider’%, the ratio of attenuation coefficients from the tenergy
L

scans. From Equation (2.31) and Equation (2.32kmesv the equivalent thickness of
high energy scan can be expressed as

t
t,00 = HEH (2.33)

cal ’

Hp
where pfand t;;! are the attenuation coefficient and equivalentkiiéss of the
calibration material respectively, angl is the thickness of the material. Similarly, for
the low energy scan, we have

by

cal ’

253

£, (2.34)



37

Therefore, the ratio of two attenuation coefficeehecomes

Bu _ uitt g/ ty _ﬂlc-lal [th ty®? tg®? (2.35)
oo opftec /g pitt /6, 65 £, '

The equivalent thickness is the result of two saainhe same object. The thickness

cal

ty = t,. Therefore, the constant= ZH—

cal
L

What we can see from Equation (2.34) is that th® raf two equivalent
thicknesses gives the same information as the ddtiovo attenuation coefficients.
Therefore, the ratio of equivalent thicknessesesethie same function as the ratio of
attenuation coefficients for the purpose of matatiacrimination. In this thesis, we

will use the ratio of equivalent thicknesses asratio for Z determination.

Theoretically, the ratio serves as an indicator dscriminating between
materials. The effective atomic number can be ifledtby taking the ratio of two
images obtained from the DE system. By properlecelg the base materials to
create a lookup table, the image can be classifieddifferent groups of materials.
However, in practice, it is somewhat more compédatFirst of all, the pixel noise
caused by statistical noise, scattering or arsfadgtl cause errors in the measurement
of equivalent thickness and thus the ratio. Thesueament of ratio is very sensitive
to any perturbation. Secondly, due to machine gertloe measurements are not

consistent every time. These factors provide ttesibdity of misclassification.
2.3.3. Statistical Errors

Let the ratio of measured equivalent thickness flogh and low energy scans

ty®? andt;®? be

eq
eq*

R=14

153

(2.36)

Since Poisson noise is the dominant sources of &rahin objects in X-ray imaging
system, the measured attenuations and consequiretisgtio, will be affected by it. If

the signal to noise ratio is low, contrast sensytiis also low, and the ratio will be an
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unreliable indication of atomic number. The modélnoise can be obtained from
experiments. By scanning calibration material af #ame thickness many times, a
distribution of measured thickness is obtained. Jlaedard deviation of the measured
thickness is then defined as the error. When tpati@n is good, the major noise
contributed to the system will be from the Poisbehavior of X-ray photons. We also
know that the Poisson distribution is close to lhemal distribution if the number of
events, in this case, the number of photons, gelant is therefore reasonable to use
Gaussian distribution to model the noise.

Recall that the probability distribution functioRDF) of the Poisson distribution is
such that for a temporal or spatial interval,hi £xpected number of occurrences in
this interval isk, then the probability that there are exactly kusoences (k being a

non-negative integer, k =0, 1, 2, ...) is equal to

LTl

For sufficiently large values @f (sayA>1000), the normal distribution, with mean

(2.37)

and variance,, is an excellent approximation to the Poissorrithstion. That is

froisson(x; 1) = fnormal(x;uz)t,azzﬂ) (2.38)

If A is greater than about 10, then the normal didiobus a good approximation if an
appropriate continuity correction is performed. &ijpn (2.38) can be interpreted in

this way: if the random variable is the number of photons, then, we know that if N
photons are detected, the standard deviation isutdlo The error is then

approximately\/—lﬁ * 100%. The greater N is, the smaller the error will Geeater N is

achieved by greater penetration, meaning the oigdtin. Also, since the equivalent

thickness is proportional tin N, it means when the object being measured has a
thicknessl', the measured thickness will have an error inréimge of%T That means

the thicker the object is, the greater the errdr lva. When X-ray penetration is poor,
fewer photons will be detected and the SNR willllne. As a result, the calculated

equivalent thickness will be less reliable. Therefat is hard to obtain the atomic
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information using the ratio in Equation (2.36) whebjects are insufficiently

penetrated.

The probability density function of equivalentdkmess, which is a function of
photon count, can be seen as a Gaussian distrbutitn meant,¢? and standard
deviationoy (t,°? ando; for low energy thickness). The standard deviatiohhigh
and low energy thicknes®,0;) are derived from the calibration data, taking into
account the number of pulses used to form eacH.pixe reasonable to assume that
the distribution function for the ratio is also aussian. In practice, the standard
deviations of the equivalent thicknesses; ando;, is obtained by repeatedly

measuring the same object to obtain the statistics.

From the standard deviation of the high and loergy thickness, we then can
calculate the standard deviation of the ratio:

2 2
OH oL

What Equation (2.39) means is that when a ratabtained from calculating Equation

(2.36), because of the errors in measured thicksesise ratio will also have an error
of aboutog. The value in Equation (2.39) is the minimum ragioor in the system,

since it only considers the Poisson noise and gisds other sources of noise. When
an object is thick, the Poisson noise is no lordgminant. However, the electronic
noise and pixel artifacts will cause a smaller algo noise ratio than what Poisson

noise can produce.

For high Z material discrimination, to screen du¢ tmaterial above certain
atomic number from other materials, one can chaseninimum high Z ratio”
obtained from experimental data such that the ratéothreshold value one can expect
to detect a minimum size (usually 100cc) of higllject of interest. The system’s

maximum penetration determines the value of theamuim high Z ratio. The lowest
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minimum ratio can be the ratio of the effective Zsteel as thick as the maximum

penetration plus a 5¢cm thick lead plate.

Taking statistics errors into consideration, thebgability of an object with a

calculated ratidR being a high Z material is

Rpin — R
Prignz = 1—10.5 [1 + erf<T/l§n—a>l . (2.40)
R

The probability is obtained by integrating the nafmistribution from eo to R,,;;,, —
R. As shown in Figure 2.9, the shaded area represkatprobability an object with a
measured rati®®=1.09 being greater than the minimum high Z ratfch is set to
be 1.02).

Ratio of 1.09 for Pb with 4%sigma

Threshold
Rm in

Frequency of occurance
im

09 0.95 1 1.05 11 1.15 12
Equivalent Thickness Ratio

Figure 2.9Probability of being high Z is the integral abotre test ratio (the shaded
area).
The meaning of Equation (2.40) is, if a rati® is obtained from the

measurement, that value & is then seen as the expected value of a normal
distribution, with standard deviation that can bstamned from Equation (2.39).
Therefore, the actual value has the highest prtibabd be R and has 96% chance

being within the rang& + og. If the minimum ratio is less thaR — oy, i.e. the
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measured ratio is much higher than the threshdid, grobability obtained from
Equation (2.40) will be high. Conversely, if thenmmnum ratio is betweeR — oz and

R, the probability will be smaller. WheR is equal to the threshold, the probability of
having high Z is fifty percent.

As discussed before, the standard deviation okmtl@ss and, consequentf,
increases as the object thickness increases. ésuét,rfor a chosen minimum ratio, if
Ris obtained from scanning on a thick object, thikdleaped distribution function in
Figure 2.6 will expand in the horizontal directioi®at will make the total area above
the threshold ratio line decrease. The uncertahtie tested object being high Z will
then increase. This again explains why it is harddtect a heavily shielded high Z
object. In reality, high Z contraband materiale aadioactive and are heavily

shielded to prevent the radiation from leaking.

2.4 Challenges of a Dual Energy Cargo Imaging
System

The idea of using dual energy imaging for matediskcrimination in cargo
security is a new technology and contains a latha#fllenges. An ideal system will
carry out the task of threat material detectiomat®matic as possible. Identifying the
effective atomic number of all objects inside tlwntainer requires a very accurate
measurement of attenuations and ratios. From cavigus discussions, we already

know that it is not possible due to various soufasoise.

At the same time, once a threat target is ideuntifiee operator should be able
to locate the location of that threat target bypetwting the X-ray image. In that case,
good image quality is required. What is needed sophisticated image processing
algorithm for visualization involving contrast emtament and noise reduction, while
at the same time, the computation for that imagegssing algorithm has to be done

in real time to accommodate the commerce trafwfl
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Among the factors that cause low sensitivity & gystem is the influence of
scattered radiation, which is usually controlled dareful collimation. Due to the
geometry of the objects and the complexity of thgect arrangements, photons will
be randomly scattering all over the place. Usirgeam controller does not guarantee
the elimination of such a problem. The accuracthefratio calculation is impeded by
unpredictable scattering. Detecting small objeetpuires a high resolution detector.
The tradeoff is that low counts for a single dedectvhich might not provide enough
statistics.

The cluttering nature of the container makes ndeato develop a pattern
recognition algorithm. Besides, the contrabandenigs can be formed into any
shape to deceive the inspector. A pattern recagnitilgorithm will not be fully
helpful in high Z material detection. As discusdegfore, high Z objects are often
heavily and shrewdly shielded to avoid detectiome Tshielding will make the
effective Z equivalent to a mid-Z material. Howdistinguish the shielded high Z

object from other objects having the same ratmnis of the biggest challenges.

2.5 Summary

In this chapter, we've given a comprehensive disicumsof the background of
X-ray imaging system and dual-energy X-ray imagidgal energy techniques can be
very useful for industrial national security teclogy applications. The complexity of
the problem depends on the number of constitueménabs, prior knowledge about
them, and the information required (thickness dnept Constraints should be
considered, especially acquisition geometry ande tifimits. Although several
challenges still remain to be overcome, this neddyeloped technology for cargo
material discrimination has a promising future. ldter chapters, we will address

proposed solutions to solve the problems from sagwbiferent perspectives.
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Review of Digital Image Processing

3.1 Introduction

In this chapter, we will review several ideas ofit#l image processing
including basic definitions, the most commonly usa@proaches, and some
applications. From the discussions in this chapterwill obtain an understanding of
several image processing techniques and how thepeapplied to an X-ray imaging

system.

An image can be defined as a two dimensional fonctf (x, y), wherex and
y are spatial coordinates, and the amplitudé af any pair of coordinates, y) is
called the intensity at that point. When all valuesndy are finite and discrete
guantities, i.e. finite integers, and all values 6f are quantized, we call the image a
digital image The images referred in this thesis are all digihages. Digital image
processing refers to processing digital images bgnputers. The scope of our
discussion in this chapter will focus on the selvbesic definitions and the means of

image enhancement and image segmentation.

3.2 Fundamental Concepts

A digital image is a two dimensional array, eadbnment of that array
corresponds to the location in the image, and #teevof that element is the intensity,

or gray level, of that location in the image. Eadbment is the smallest unit of an

43
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image. Pixel, obtained from combining “picture” and “element”, ke most used

name for the smallest unit of a digital image. Qmeful way to define image
processing is to categorize three types of compeaigmprocesses in this continuum:
low-, mid-, and high-level processes.

3.2.1 Hierarchy of Image Processing

A low-level process has both the input and outguhe processing system as
images. Contrast enhancement and noise reducteoexamples of low-level image
processing. A mid-level process involves tasks sashsegmentation (partitioning
images into regions or objects), description okthobjects to reduce them to a form
suitable for computer processing, and classificatay recognition of individual
objects. The output of mid-level processing areibattes extracted from the input
images (e.g. contours, edges, and identity of iddal objects). High-level processing
involves machine intelligence. Its tasks are to ena&nse of the recognized objects,
ranging from image analysis to cognitive functi@ssociated with vision. Currently,
some auto teller machines (ATM) are able to reaudivaitten numbers on checks,
converting the image to text information, whictaigood example of high-level image
processing. A cargo imaging system, which will becdssed throughout this thesis
involves all three levels of digital image procesgsiThe digital X-ray images will be
filtered to eliminate noise and processed to enddne contrast during the first stage
of processing. Image analysis in the second stageocessing includes object edge
and boundary detection, and segmentation of objecfEhe last stage will be threat
identification, reading the image to extract infation to determine whether there is a

threat that should trigger an alarm.
3.2.2 Digital Image Concepts

Image Formation

An image can be seen as a two dimensional fundtigny). The value or
amplitude off at spatial coordinates,(y) is a positive scalar quantity whose physical
meaning is determined by the source of the imade Jource of an image is a
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physical object that radiates light (electromagnetave). The values of the pixels in

an image are proportional to the intensities ofligjigs radiated from the source.

The functionf (x, y) can be characterized by two components: (1) theuato
of source illumination incident on the scene, a2dtlile amount reflected (for X-ray
images, transmitted) by the objects in the scee. first is called the illumination
component, and the second is called the reflectaoggonent, and they are denoted

by i(x, y) andr(x, y) respectively. The two functions combine as a pobd

f Gy) =i, y)r(x,y) (3.1)
where
0<i(x,y) <o (3.2)
and
0<r(xy) <1 (3.3)

Equation (3.3) sets the boundaries of reflectaMdben r(x,y) = 0, it means a total
absorption of light. That kind of material is calla blackbody. In that case, none of
the signal can be received by the image receptdreiVr(x,y) =1 , it is a total
reflectance. This means the object reflects allEMewaves projected on the object.
For X-ray images, the reflectivity represented hg teflectance functiorm;(x,y),
should be replaced by theansmissivity,which is a function of thickness and
attenuation coefficient as shown in Equation (&ad)l Equation (2.5) in Chapter 2.

However, the model of Equation (3.1) is still appble.
3.2.3 Image sampling and Quantization

We already established that an image is a two dsioaal function as shown
in Equation (3.1), where the variabbeandy, and the values of the functidx, y) can
be either continuous or discrete. Digitization cems continuous values into discrete

guantities. A digital image is a discrete two-disi@nal function (i.e. both variables
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andy are digitized to integers) and the amplitudeshef function are represented by

finite levels of quantities.

To create digital images, we need to convert thegenfunction from
continuous into digital form. That involves twoopesses, sampling and quantization.
Sampling is to digitize spatial coordinates inteadete values; and quantization is to

digitize amplitudef(x, y), into different levels.

Sampling refers to taking samples in spatial domAssuming the sampling

step size to bax, then, a sampled one-dimensional function will be
f(n) = f(nAx) wheren = positive integers (3.4)

The values of Equation (3.4) corresponding to ewesppaced locations of the
continuous (analog) image. The output of Equaf®d) spans from a continuous
space which is composed of an infinite number odingities. The quantization of
amplitude is to round eachf(n) to the closest values at discrete levels. In magct

the number of quantization levels is a power of 2.

The size of samplindyx, determines theesolutionof an image. Resolution is
the measurement of the fineness of an image. Taktyjof an image is affected by its
resolution. A high definition image is a high ragan digital image, meaning each
portion of a scene is represented by more pixeig. fésolution of a digital image is
somehow determined by the nature of the image aitiqui sensors. For digita-ray

images, the resolution is determine by spacingefsensor array.
Digital Image Representation

An M by N digital image is a two dimensional discrete fuoietivith digitized
amplitudes. In this thesis, we use the convenkamndy to represent the discrete
coordinates. Some authors prefer osandn instead ofx andy to represent integers.
In a digital image, the vertical directionxsand the horizontal direction ysaxis. The

values of the origin aréx, y) = (0,0). The last pixel is located a¥¢1, N-1).
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Figure 3.1 Coordinate convention used to represent digitalgesa (Images from
Gonzalez, Digital Image Processind’ &dition)

In Matlab Image Processing Tool Box, the coordisate all positive integers. The

values of origin aréx, y) = (1,1). And the last pixel is located &( N)
3.2.4 Basic Relationships between Pixels

In this subsection, some basic terminologies oitalignages are defined. The
basic concepts of pixel operations come from sebrh Most of the definitions

provided here are defined by the concepts of seirth

Neighbors of a Pixel

As defined, a digital image is a 2-D array of psxelhe pixels surrounding a
specific pixel &, y) are called the neighbors. The nearest four pigetsthe ones
directly adjacent to the center pixel §). They are pixelsxtl, y), (x+1, y), (X, y-1),
and &, y+1). The nearest 8 neighbors are the nearest 4tipdusther four pixels in
two diagonal directions including-, y-1), (x+1, y+1), (x-1, y-1), and k-1, y+1). As
expected, the nearest 24 neighbors are the pixedsSoby 5 sub-image except the
center pixel. Figure 3.2 illustrates the locatidmearest 4 and nearest 8 to a center
pixel.

The nearest four neighbor pixels of a pgt(x, y) are denotedN, (p). The

nearest 8 neighbors are denok&qp). And similarly, the nearef pixels are denoted



48

Np (p). If a pixel falls on the border of an image, savef its neighbors will fall

outside the image.

X x| x| x

X|o|x X|o|x
X x| x| x
a b

Figure 3.2lllustrations of (a) nearest 4 neighbors and (l@rest 8 neighbors

Adjacency, Connectivity, Regions, and Boundaries

To say two pixelg andq are connected, two conditions have to be satisfied
the two pixels have to be adjacent, and the gregl lealues of the two pixels satisfy
the criterion of similarity. The similarity betweemo pixels is determined by a
predefined sety. All elements in seV belong to a group of similarity. If the gray
values of two pixels both fall inside the 8&tthe two pixels are said to be similar in
gray values. The simplest case is binary imagetwbnly have 0 and 1 as pixel
values. In the binary casé = {1}. For gray level images, the set can con@smany
elements as necessary.

The adjacency of two pixels means the gray valti¢seotwo pixels belong to
the same set of similarity and each pixel is a m®dg pixel to the other. Three types

of adjacency are commonly used:

(1) 4-adjacencytwo pixelsp andq with values fromV, if g belongs to the set

Nz (p)
(2) 8-adjacencytwo pixelsp andq with values fromV, if g belongs to the set

Ng ()
(3) m-adjacencgmixed adjacency): two pixe[sandq with values fromv, if

() g belongs to the sé&t, (p)
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and
(i) qisinNp (p) and the seN4 (p) N N4 (q) has no pixels whose

values are fronv

Figure 3.3 gives examples of the cases of diffeaeljeicencies. Figure 3.3(a) is
a 3x3 binary image comprised of only 1's and O'sFlgure 3.3 (b) the dashed lines
connect the adjacent pixels together. All thosea@al)t pixels belong to the center
pixels’s 8-nearest neighbors, and all of them htaeesame pixel value i.e. they all are
in set V = {1}. Figure 3.3 (c) is an example of mj@cency. The dashed lines connect
the m-adjacent pixels together. Note that the paxethe top right is not am-adjacent
pixel to the center pixel because they belong &éo4inearest neighbor to each other

while their pixel values are both in set V={1}.

0 1 1 0 L."",:_l 0 11

0 1 0 0 1 0 0 1 0

0 0 1 0 0 1 0 0 1
(a) (b) (c)

Figure 3.3 (a) a 3x3 binary image (b) pixels that are 8-adjageto the center pixel
(connected by the dashed line) (c) m-adjacency

A path between two pixelgandq is a sequence of pixels such that each pixel
is adjacent to its previous and next pixel. Fomepke, the dashed lines in Figure 3.3

(c) form a path between the top right pixel andghel on the bottom right.

AssumingS is a subset of pixels in an image, two pixeBndq are said to be
connected irSs if there is a path between them and all the pirelghat path consist
entirely of the pixels ir5. The set of connected pixels $hare called the connected
component ofs. If there is only one connected component, meathiegpixels in the

whole set S are connected, S is then called a ctetheet.

As discussed, the connectivity between two pixetpiires the two pixels meet

the criterion of similarity and adjacency. A regisndefined by the connectivity of a
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set of pixels. In a digital image, a subset of [@Xe is called a region iR is a
connected set. For example, the 1's in Figure 8thfa region. The boundary of a
regionR is defined as a set of pixels in R that have astl®ne of its neighbors not
belonging taR.

The edges in an image are the regions of pixelstthae a discontinuity of
gray level values. The boundary of a region is tbenainly an edge. However, within
a region, there could be other edges as well sinsgossible that the values of pixels

in a region are not uniformly or smoothly distribdt
3.3 Image Enhancement in the Spatial Domain

In the previous section, we have defined what aalignage is and several
conventions used to describe properties of a digitage. The term spatial domain
refers to the two dimensional image plane itsedin® people also refer it as the pixel
domain. There are techniques that process imagédransformed domain such as the
frequency domain or wavelet domain. The term imagdancement refers to
processing an image to meet the specific objedfva problem. Therefore, different
methods are applied to meet different needs. Famele, the approaches that work
best for enhancing the contrast of an X-ray imagghtrmot work best for a human
photo. In this section, we will discuss some o thost used image enhancement

techniques that can be applicable to most kindsiafes, including X-ray images.

The most common purposes of image enhancementoateast stretching,
image smoothing, and image sharpening. In thisseove will briefly discuss some

general image enhancement approaches in the porehid.
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3.3.1 Contrast Enhancement

Contrast is the degree of difference in pixel eallbetween an object and its
background. When the difference is large, the dbgtands out more from the
background. Contrast enhancement or contrast Isingtcs a very useful technique for
low contrast images such as X-ray images. Sevecahiques are popular for contrast
enhancement such as histogram transformation amag tgvel transformation.
Histogram transformation adjusts the histogram igklpvalues and maps the new
histogram back to the corresponding pixels. Grayellegransformation refers to
manipulation of grayscales of pixels through aaiarequation. For X-ray image a
commonly used contrast enhancement approach is ribgative transform.

Negative transform can be expressed as
s=T(r)=L-1-r, 0<r<L (3.6)

where L is the upper bound of input gray level. Negatnams$form is a commonly
used method for contrast enhancement of X-ray imagégure 3.4 is an example of

negative transformation applied to a mammogram.

Figure 3.4 (a) The original mammogram image (b) the negatisesformed image
(Images from Gonzalez, Digital Image Processifijegition)
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3.3.2 Spatial Domain Filtering

Image Noise

Digital images are prone to a variety of types ofsa. Noise is the result of
errors in the image acquisition process that rasysixel values that do not reflect the
true intensities of the real scene. There are aévays that noise can be introduced
into an image, depending on how the image is adedtecan occur during image
capture, transmission or processing, and may bendiemt on or independent of
image content.

Noise is usually described by its probabilistiaccteristics. For example,
white noise, which has a constant power spectrisninfiensity does not decrease with
increasing frequency), can be modeled by Gaussasenwhich is a very good
approximation of noise that occurs in many prattesesNoise can be additive, which

has a general form
90, y) =f(xy) +n(xy) (3.9)

where g(x,y) is the imagef(x,y) degraded by noisg(x,y). In Equation (3.9),

noisen(x,y) and image signdi(x, y) are independent.

Multiplicative noise is the case where noise fsirection of signal magnitude,
which can be expressed as

gx,y) =fl,y)+ fO,ynlxy) = f,y)(A +n(x,y)) (3.10)

This kind of noise is rarely seen.
Impulse noise, or called salt and pepper noisea iendom impulse that

appears to be white and black dots superimposesh @amage.

Linear Filtering
Filtering refers to operations that eliminate thmvpr of the signal within a
certain frequency bandwidth. If the signal is a wvmensional image, the frequency

here refers to the number of changes of gray-leakles within a spatial frame. The
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higher the number, the greater the frequency will BT herefore, in a smooth region of
an image, that region contains low frequency. Tdgans that have high contrast of
gray-level values are seen as high frequency regibar example, in an image of a
zebra on grassland, the regions of the zebra wihigh frequency regions since there
are constantly changing gray-level values, duehéodiripes. On the other hand, the
background regions, such as the grassland or theas& the low frequency regions

since they are relatively smooth in gray-level eslu

Noise, since it introduces a sudden change in gcale values, makes the
noise-degraded regions high frequency regionsltér fihat smoothes that region will
reduce the high contrast in gray-scale values. Tiltat is a low pass filter since it
eliminates the power in high frequency compone@tee result of low pass filtering is
blurriness of edges. The edges of an image arpixie¢s that have an abrupt change in
value relative to their neighbor pixels. Because tigh frequency portions of the
image are removed, the contrast in pixel valuedse reduced in the spatial domain.
As a result, the image becomes blurred. If afiéerfng, the contrast of the image is
enhanced, for instance, the edges of the obje¢teiimage become sharper, that filter
is then a high pass filter since it removes therlsiass in an image.

In spatial domain filtering, a filter is a sub-ingggvhich can be called a mask,
a kernel, a template, or a window. The elementshef sub-image are called the
coefficients. Linear filtering an image is to cohx®the mask with the region on the
image being masked. The mask shifts along the inragggo directions and compute

the value of the pixel located at the center offillber mask.

The general form of linear filtering ad by N imagef with a filter mask of

sizembynis given as

n—1
g(x,y) = Zg’:_‘(lrzl/_zl)/z Zti_n__lw(s, ) f(x+sy+t) (3.10)
2

Figure 3.5 illustrates how the convolution in Egomt(3.10) is done. The
mask shifts along ix andy directions until every pixel i is covered as the center
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pixel under the mask. Each center pixel of vafide, y) is then replaced with value

g(x, y)after the operation.

Smoothing Spatial Filters

Two examples of smoothing filter are given in FE®.6. The first kernel is a
general form of a 3 x 3 mask, the second and tkemhels are the coefficients that
function as smoothing filters.

For an imagé, output imagey’ s value at locatiorx(y) will be

95 = e [F G yIWo + f(x — Ly — Dwy + f(x,y — D,
oW

+ fx+Ly—Dws+fx—1Ly)w,+ f(x+1,y) wg
+ f(x—1L,y)+ Dwg+ f(x,y + Dw, + f(x+,y + Dwg]

(3.11)

w(-1,0) |w(-1,1)

w(l,-1) | w(0,1)

w(1,0) w(l.1)

Mask coefficients,

Pixels of image being masked

Figure 3.5lllustration of spatial filtering. A 3 by 3 mask egtes on an imadgX, Y).
The region under the mask is shown on the secordjem(lmages adopted from
Gonzalez, Digital Image Processind’ &dition)
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Figure 3.6 A 3 by 3 filter mask (a) and two examples of lowddilter coefficients (b
& C).

The second mask in Figure 3.6 is called the mdgar Bince it simply takes
the mean of the values of the region being mask&tis operation smoothes the
contrast of pixel values between the center pixel #s neighboring pixels. If the
center pixel has a much greater value than its i§hbers, it will be reduced to
average of all 9 pixels. The third mask in Figuré & another averaging filter with
different weights. Here the center pixel has theaggst weight in averaging, while its
diagonal neighbors have the least influence. Thsathing filter therefore will not
result in an image as blurry as the result of tlexipus one. The size of filter depends
on the objective of the processing and the resmiuti the image. A3 by 3ora4 by 4

mask are most often used.

Sharpening Linear Filters

Sharpening filters are masks that after convolvimgh an image, they
enhance the fine details in the image that have bd@red. Sharpening is usually
done by a linear combination of an all pass fitted high pass filter. The output of an
all pass filter will be the original image. As eapled before, a low pass filter
smoothes an image by lowering the contrast betwesghboring pixels. We can
expect that a high pass filtering is an operati@at will enhance such contrast.

One of the most commonly seen high pass filtethesLaplacian mask. The

Laplacian of a continuous functidms defined as
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V2f = oo (3.12)

For f (x), a discrete function, the definition of the fimder derivative of a one

dimensional functiorf (x) is

of [f(x+4%) — ()]

ox Ax (313)

Since we are dealing with a discrete function, shmallestAx we can get idx = 1.
This definition tells us that in a digital imagestminimum difference we can use for
taking a one dimensional derivative is one, whgthe distance between two adjacent
pixels. That is

of _f&x+1)—f)]

ax 1 = fx+1D-f(x) (3.14)

For the same reason, we can easily see that tbadeerivative in one dimension is
then defined as

62
a—x]zc= FOa+D-fOI-fG) - fx-DI=fx+D+fx -1 —2f(x)

(3.15)

For f (X, y), a 2 dimensional digital image, the Laplaciarthe sum of the partial

second derivatives in bo# andy- directions

Vf=[f(x+1Ly)+f(x—1y)—2f(xy)]
+[fey+1D) - flxy—1 —2f(x,y)]
=fx+Ly)+fx-Ly)+flxy+D—-fxy—-1)
—4f(x,y) (3.16)

An intuitive way to look at the Equation (3.16)tieat the differences between
a pixel and its four neighbors are summed. Theegftire outcome of the Laplacian

operation can be viewed as a map that records #umitnde of difference between a
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pixel and its neighbors. So, it is expected thaelsi belonging to the edges in an
image (defined as a region having a discontinuasisiloution of grey-scale values)
would be non-zero value after filtering. In a snfoggion, if a pixel has a value equal
to all its neighbors, the output of the operatisnzero. This means that the low

frequency component is filtered out.

Figure 3.7 gives examples of 3x3 high pass Laptafiieers. These high pass
filters are all Laplacian since all of them implemhéhe Laplacian equation above. The
two on the top are direct implementations of thai&mpn (3.16). The two on the
bottom are the Laplacians that take the two dialgdivactions into consideration.

Each direction adds another2f(x, y) to the sum. It becomes

VE=[fx+1Ly)+fx—-1Ly)+fl,y+Df(x,y—D]-8f(x,y). (3.17)

It is not important whether it should be the certerthe neighboring pixel to be
negative. What matters here is that after convaitthe contrast will be computed

and recorded.

0 0 0 ;| 0
3 1 1 -4 1

0 0 0 1 o)
a b

1 1 1 1 1 1

1 8 -1 1 8 1

1 1 -1 1 1 1
c d

Figure 3.7(a) and (b) are Laplacians in x- and y- directiqgnyand (d) are Laplacians
in x- and y- plus two diagonal directions.

The output of high pass filtering can be very ukébr image enhancement.

The process called unsharp masking is expressed as

fs(xJY)zf(x’Y)—f(xJ’) (318)
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where f;(x,y) denotes the sharpened image obtained from unghagking, and
f (x,y) is the blurred version(which could be obtainedrfriinear low pass filtering)
of f(x,y). The origin of unsharp masking comes from develgdilm in the dark
room. People found that a combination of the imagelf and the negative of its
blurred version will give a sharper image. A moengral form of unsharp masking is

called the high-boost filtering, which is definesl a

fhb(fo)zAf(fo)_f_(xly) (319)

whereAd > 1. We can then rewrite the equation to

fhb(x’Y)z(A—l)f(xJ’)‘Ff(x’J’)—f(xJ’)’ (320)

Therefore, we obtain

fhb(xf)/) = (A - l)f(x,y) +fs(x:3’)’ (321)

The high-boost filter given above has a very gobilitg to sharpen images. Figure
3.8 gives two examples of the high-boost sharpefiitay by choosingf (x,y) to be

the Laplacian filtered image. The high boost filleen can be expressed as

fun(x,y) = Af (x,y) £ V*f (3.22)

It will be plus in the equation if the center okthaplacian is positive; and the sign

will be a minus if otherwise.

Figure 3.8 Four-neighbor and 8-neighbor Laplacian filters.

Figure 3.9 gives examples of how the spatial dorfia@ar filters discussed so

far work. Figure 3.9 (a) is the original image afires. Figure 3.9 (b) is the result of
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low pass filtering with a 3 by 3 average filter.eWan see that the details of heads and
tails on the coins are smeared by such an operdtitells us that while a linear low
pass filter is able to smooth out the noise, itl wiso cause blurriness and loss of
details. Figure 3.9 (c) is the result of filteritige coin image with a high pass filter. As
a result, the high contrast portions on the imagegcially the edges of the coins, are
emphasized while low contrast regions, the backgioand the regions within the
rims are all filtered out. Figure 3.9 (d) is tlesult of processing Figure 3.9(a) with a
high boost filter when A=1 and (x,y) is the Laplacian. The visual quality has

improved by enhancing the details.

So far, we have discussed several spatial lindardiused for noise reduction
and quality enhancement in image processing. Lasg fiiers can smooth the image,
and therefore, reduce the noise. The tradeoff §imgua linear low pass filter is that
we can lose the details that might be crucial. @ndther hand, a high pass filter can
help sharpening an image by enhancing the contiastever, the noises in the image
will be enhanced as a result. To obtain a desinadelt, we often will need to apply a
proper combination of those filters. In additiornthe linear filers, other filters, such as
the order-statistics filter and adaptive filtere aften used, which will be discussed in

the following sections.

Figure 3.9 (a) The original image (b) result of smoothing (e3ult of Laplacian (d)
unsharp masking. (Image obtained from Matlab da&ba
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Order-Statistics Filters

Order-statistics filters refer to the operationattbhse the statistics in masked
sub-images. The response of those filters is baseardering the pixels contained in
the filter masked region. The response of therféileany point is determined by the
ranking result. In this section, we discuss onel kifi order-statistic that deals with
impulse (salt-and-pepper) noise—the median filterHdeagth since it is one of the

most commonly used filters.

Median Filter

As discussed in the previous section, using a lassilter will help us reduce
noise and gives a smoother image. It is also tnaé lbw pass filtering will blur the
edges of objects, leading to loss of importantrimiation. Also, not all kinds of noise
can be eliminated by a smoothing filter. Figure03(d) shows an image of four coins.
If we add one type of noise caused by random ingsutsilled “salt and pepper” noise
(because it looks like sprinkling salt and peppertlee image) to Figure 3.10 (a), we
obtain the image as shown in Figure 3.10 (b). Afteering the noise-degraded image
with a linear low pass filter, the noise is stiltrsmoothed out. Because impulse noise
has extreme values relative to neighboring pixglss not eliminated by averaging
with its neighbors. Figure 3.10 (d) is the resultapplying a 3x3 mean smoothing
filter. Even though the magnitude of the noiseoiwdred, the noise is still there. One
type of filter that is good at dealing with impulseises is the median filter.

Different from the linear filter that performs oaiution, median filtering
takes statistical information of the masked regaoid finds the median values of the
pixels within the mask. The output imaf€x, y) of median filteringat any point

(x,y) can be expressed as

fl,y) = {28‘3‘522{9(5' )}, (3.23)

In the equation abové(x, y)is the value of the pixef(s, 9 represents values in the
region being masked. S is the set of coordinatésimg(s, ). A median filter works

by replacing the center value of masked region wWithmedian value of that masked
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region. Figure 3.10 (c) is the result of applyin by 3 median filter to the degraded
image in Figure 3.10(b). The correct image is almaoiglly reconstructed. A contrast
of performance between the median filter and theammélter is illustrated by
comparing Figure 3.10(c) and Figure 3.10(d). It barseen that the edges are blurred
in Figure 3.10 (d) but are preserved in Figure 3c)0

Median filtering works very well in eliminating re® in a cargo X-ray image,
especially for low-dose X-ray systems. When petietraquality is poor, the X-ray
image will be noisy. The extreme values in a regian be eliminated by a median

filter.
L@ " ® @
© @ ‘@ @

Figure 3.10 Demonstration of median filter (a) original imadp {mage degraded by
impulse noise (c) result of median filtering (dsu# of smoothing filtering. (Image
obtained from Matlab database)

Minimum and Maximum Filters

Other order-statistics filters include minimum antaximum filters. The
minimum filter replaces the center pixel with thenimum value in the filter masked
region, while the maximum filter replaces with th@ximum. In fact, the minimum
filter has exactly the same effect as grayscale phwogical erosion and the
maximum filter is just the grayscale morphologichlation when the structuring

element is a 2-dimensional square. Morphology bélldiscussed in later sections.
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Removing Noise by Adaptive Filtering: Wiener Filter

The concept of adaptive filtering is that for argilj the nature of the noise
might vary with time or spatial location. For exdmm 10-minute speech signal could
encounter different sorts of noise during the spe&milarly, an image can have
different noises in different regions. TaKeray images for example, the thicker the
object, the noisier the image of that region w#. b-iltering the signal adaptively
means dividing the signal to different blocks, witkeach block or window, the nature
of the noise assumed to be the same or, at lggstpamately the same. Based on the
property of each region, we adjust the coefficia@itilter adaptively. The coefficients
of the adaptive filter are obtained by estimatimg function of local or regional noise,
and as a result, the adaptive filter will give ancome that has minimum mean square
error (MSE).

Let M, N denote the dimension of our adaptive filter windawdS,, denote the
region being masked by tté by N window at a given time. Lej(x, y) be the noise
degraded image, and (x, y) be the output of the adaptive filter. Only foutues are
needed to obtain the output: (a) the pixel valueg@,y), (b) the local mean
which is the average of the pixel valuesggk, y)within S,y | (c) the variance of the

noise that causegl(x, y), o7 and (d) the local varianegf within the regiors,y, Here,

we have
M,N
1
=g . 8 (3.24)
X,y ESXy
1 M,N
ot=gm Y B&YE - (3.25)
X,YESXy
oy
fo,y)=gCy) ——=% [9Gy) —u, | (3:26)
0j,

The only thing that must be estimated is the vaeaof the noise of the whole image,

o, which is usually unknown. It can be obtaingd b
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2 1 N 2
0f = —— o.(x,v) 3.27

where oy, (x,y)?is the local variance of each pixel (x, y) withimetwindow masked
region. The assumption is that the noise of thelevhmage is the approximate

average of the local variance of all the subimages.

The adaptive filter discussed above is called anéfidilter because it is based
on the idea proposed by Norbert Wiener during 0% and published in 1949. In
Matlab, the “wiener2” function applies a Wienetdi to an image adaptively, based

on the equations (3.24) to (3.27) above, tailoiisglf to the local image variance.
2
When the local variance is much greater than theradl variance, the terng%
L

becomes insignificant and the filtered imdg@e y) will be almost the same as the

original imageg(x, y); wiener2 performs little smoothing. Where tlocal variance is

2
o} . .
small,a—Z becomes large and wiener2 performs more smootfinig. approach often
L

produces better results than linear filtering mdthdiscussed before. The adaptive
filter is more selective than a comparable linalierf preserving edges and other
high-frequency parts of an image. In addition, ¢hare no design tasks; the wiener2
function handles all preliminary computations angpllements the filter for an input
image. However, the wiener2 function requires mooenputation time than linear

filtering.

Figure 3.11 (a) is an image degraded by Gaussiee.néigure 3.11 (b) is the
result of applying a 5 by 5 Wiener filter. FigureLB(c) is the result of applying a 5x5
median filter. We can see that both the Wieneerfitnd median filter did a good job
filtering out the noise. But, the Wiener filter g&v a smoother background than the

median filter.
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Figure 3.11(a) A noise-degradeidhage of Saturn (b) result of applying a 5 x5 Wiene
filter. (c) Result of applying a 3x3 median filteflmage obtained from Matlab
database)

3.4 Morphological Filtering

Morphological Operations

Morphological operations refer to procedures thealdwvith the shape and
structure of objects. The mathematical morpholdgogzeration is a tool to extract
useful information for representation and/or dgm@n of region shape such as
boundary, skeletons and convex hull. Morphologioplerations were originally
applied to binary images to extract informationaof object’s structure or to modify
the shape of an object. The concept was then eatetadgray-scale images. In this
section, we will only discuss four morphologicaleogtions that are most commonly
used as noise reduction filters: erosion, dilatmose, and open.

Each morphological operation is defined by a fovegd and a structuring
element. Foreground is a set of connected pixelgabfe 1 in a binary image. The
structuring element is a set of connected pixela @kertain size and shape such as
square or circle that will operate on the foregilnased on the defined operations.
All the morphological operations come from the ineombination of two operations:

dilation and erosion.
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Dilation and Erosion

Dilation expands the foreground by a structure el@mwhich is a mask of
zeros and ones. Dilation slides the mask centeugir every point of the foreground
(the center of the structuring element mask muswhbkin the foreground all the

time), then mark the regions covered by the maskraground in the output image.

Mathematically, dilating a foregrour&lwith a maskB can be expressed as
A®B={z|(B), nA=0} (3.28)

where@® is the notion for dilation, z is all the non-zgaxels of the output, ar‘((ﬁ)Z
is the translation of the reflection of B. A traaisbn (B), is the displaced version of
an object centered at pointa reflection of B denoted® is the flipped version of B. If

the structuring element is symmetric, using B iadteof B does not make any

difference in the result.

What Equation (3.28) says is that the output ddtdih is a set of pixelsthat
is the region covered by all the translationsBoWhile B has at least one element
overlapped with A. In other words, the centeBdfias to be within A. Figure 3.12 (a)

demonstrates how a square foreground is dilatestrbgturing elements.

n

(a) (b)

Figure 3.12(a) The dilation of the dark-blue square by a dskicturing element,
resulting in the extra region of the light-blue arp with rounded corners. (b) A
square is eroded by a disc structuring element. dtheome of this operation is the
light-blue region. (Images obtained from Wikipediader Dilation and Erosion)
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Conversely, erosion is an operation to expand #ekdround, contract the
foreground. It works by placing the mask so thaoletof it lies inside the foreground.

The mathematical expression for erosion is
AOB={z|(B), N Ac A} (3.29)

Again, zis the element belonging to the set of output gixeB), is the translation of
structuring element B centered at point z. Whatdfign 3.29 says is that the output of
eroding A by B is a set of pixeissuch that all pixels of any translation of B ceatk
atz will fall entirely within A. Figure 3.12 (b) dematrates how erosion is performed.
The setA (the bigger squaré$ eroded by a structuring eleméhta disc.

Opening and Closing
The opening of A by B is obtained by the erosidrAoby B, followed by

dilation of the resulting image by B:
A°oB=(AOB)@®B, (3.30)

Opening is able to eliminate small artifacts bydeng the objects smaller than the
structuring element in the image and later usidgtidn to reconstruct the remaining
eroded objects. Opening can also smooth the boymdan object. Opening can also

be expressed as
A o B =U{(B),|(B), < 4} (3.31)

which means that it is the locus of translationshef structuring element B inside the
image A. Figure 3.13 (a) shows a dark-blue squanegbopened by a disc structuring
element. The resulting light-blue area is the tataa covered by the disc moving
inside the square when the whole disc is inside sipgare. The four corners are
smoothed by the opening operation.
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(a) (b)

Figure 3.13(a) Opening a dark-blue square by a disc strugjueiement. The light-
blue region is the result of opening. (Images otgdifrom Wikipedia, under Opening
and Closing)

The closing operation, denoted §yf A by B is obtained by the dilation of A
by B, followed by an erosion of the result of A By

A*eB=(A®B)OB (3.32)
The closing can also be expressed as
A o B = (A° o B)¢ (3.33)

whereX¢ denotes the complement of X. For binary imagesjgans X¢ =1 —X.
Again, B is the flipped version of B. A region of two comted squares is denoted as
the dark blue region in Figure 3.13 (b). The resdltlosing it by a disc structuring
element is shown as the total region of light aackdlue. As we can see, the dark
and light regions are the complement of what isdéer applying opening to the non-
dark region. Closing can also eliminate the smhajécts and smooth the boundary of

an image.

Gray Scale Morphology

Morphology of gray-scale images is based on theesammcepts as those for
binary images. Grayscale structuring elementsaretions of the same format, called
"structuring functions”, but are now a functiont @oset. The structuring function is

operating on a 2 dimensional function f (x, y).
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The grayscale dilation of f by b is given by

(f @ b)(s,t) =
max{f(s —x,t —y) + b(x,y) | (s —x),(t —y) € Ds; (x,y) € Dp} (3.34)

whereD; andD,, are the domains of f and b respectively.

What Equation (3.34) says is that each pikglt) of f is used as the center of
the structuring function b. Within the mask-coveredion, for each point, the value
of b corresponding to f is added. Then, the maximfirall the values after the
addition is the output of dilation of pix€k,t). A flat function is most commonly

used for structuring function b. That is
0, (x,y) €D,
b= (3.35)

—o0, otherwise

If bis a flat function, the output of dilation is egalient to the local maximum of the

mask covered region.
Similarly, the erosion of f by b is given by
(f ©b)(s,t) =
min{f(s —x,t —y) + b(x,y) | (s —x),(t —¥) € Dg; (x,y) € Dp} (3.36)

Here, erosion is defined as the minimum of the meginasked by the structuring

function.

Just as in binary morphology, the opening and etpsif f by b are given respectively

by
feb=(fOb®b (3.37)

and

feb=(@®b)ODb (3.38)
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An opening followed by a closing is often used lionmate all the dark and bright

artifacts in an image. This operation is called phofogical smoothing.
3.5 Image Segmentation

Image segmentation refers to techniques that aepdine region of interest
(ROI) or object of interest (OOI) in an image fradhe background. It is an essential
preliminary step in most automatic pictorial patteecognition and scene analysis
problems. Depending on the objective and charatiesi of the problem, one
technique is chosen over another. Some popularadetinclude boundary (edge)

detection, thresholding, and k-mean.

Since the goal of image segmentation is to parntiein image into meaningful
sub-images (regions), we must define what formeggon. One necessary condition to
define a region is connectivity. A region must loenfed by connected pixels. As
defined in Section 3.2.4, the connectivity is delied by similarity. To identify a
tumor in a chest X-ray image, the region of theduims a group of connected darker
pixels, the similarity here is defined by the irg#y. For different applications, other

criteria for similarity such as color, size or tesd can also be used.

Image segmentation is also an important techniffjwea cargo material
discrimination X-ray imaging system. Several systare this technique to segment
the regions of possible threats. This techniqualse used as a filter to get a smooth

image. In this section, we will briefly discuss eeal popular methods.
3.5.1 Segmentation by Thresholding

A thresholding technique is preferred because inituitive properties and
simplicity of implementation. The idea of threshalglis to select a grey scale vallie
so that, in an imagkXx, y), any point §, y) for whichl(x, y)>T will be called an object
point, and otherwise, the point will be called @kground point. The object points
will then be assigned a value 1, while the backgdopixels will be set to zero.
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The main issue with this segmentation approachaschoice of threshold. A
user can manually try different values and therectethe best one according to his
need. However, for most intelligent systems, aomated threshold selection method
is required. There are two kinds of threshold cela depending on the user’s
objective and the nature of the images. The fggglobal thresholding, meaning the
whole image will be segmented using a single tholesiWhen the image is relatively
simple and the contrast between the backgroundoajetts is good, using a single
threshold is usually sufficient. However, if an igeais affected by other factors, for
example, the illumination, a single object or olbgeof interest might have different
grey scales over different regions. In that casmgia single threshold will not be able

to separate the objects of interest

Global Thresholding

Global thresholding uses the same threshold owemtole image grid. The
assumption of this method is that there is suffitieontrast between the object and
background. That is, the histogram of grey scaleesof the image is nice and clean;
object pixels and background pixels pile up twdshih the histogram and the distance
between the two peaks is wide. In that case, amyeven the valley, the regions
between the two hills, will be a good candidatetha threshold. The algorithm below

[37] can determine the global threshold automdtical
1. Select an initial threshold

2. Segment the image using tiAisTwo groups of pixels will be formed: 1(X, y) >=
Tand G(X,y) <T.

3. Get the average of grey scale valugand u of regions G and Grespectively.
4. Set new threshold to e (u+uy)/2
5. Get the difference between the new threshaditla@ previous one

6. Repeat step 2 to 5 until the difference is thas a preset value, i.e. T is converged.
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The initial value of T can be obtained by eithemgaiting the average of the grey
level values of the image, in which case, the sizebject and that of the background
should be comparable, or by computing the averdgigeomaximum and minimum of

the grey level values.

Adaptive Thresholding

Using a single threshold for the whole image in sarases will fail to segment
the whole object because pixels in different regiare significantly different in grey
level value due to the uneven illumination. Theaid# adaptive thresholding is to
divide the whole image into subimages and seldfgrdint thresholds according to the
grey scale value distributions of each of the salges. Choosing threshold(s)
adaptively will solve the problem addressed at libginning of this paragraph. To
minimize the error in segmentation, an approachwshm [37] is to get a good
estimate of the probability density functions (POf)the grey level values of the
background pixels and the object pixels in eachinsage. If both are Gaussian-like,
set the threshold to

2
T=424 (2 (3.39)

2 Ui—uy PZ

Wherecs? is the variance of both PDFs ang andu, are the means, ané, andP,

are the probability of object and background pixelpectively.

The most difficult part of this method is the esiion of the PDFs. A good
estimate is sometimes impossible to obtain or ewWen is possible, very time
consuming. That makes this method impractical ipliegtions that require fast

processing time.
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3.5.2 Segmentation by Clustering

Clustering refers to a technique that classifiasadnto different groups. A
cluster of data is a group of similar elementshi@ tlata set. Each cluster has a center
called the “centroid”. Figure 3.14 shows two group2-dimensional vectors, each
group forms a cluster centered about a centroid.cEmtroid can be seen as the center
of mass of each cluster, representing a featuteigtdistinct from other centroids. A
vector is classified to a cluster if its distanoetie centroid of that cluster is smallest

compared to its distances to other centroids.

Cluster 1
3f  * Cluster2 te .
X Centroids "t AR S
2 s fe o .'
L
. c“- . u."- -
1 » EY I -cbfo" - *
. LW b )
of * AR *
v, -
b ,‘ . %y s ‘:'
-y L e
r AT, 4 P
AT 3l‘ PO
- -
2 s 3 e F
» - "
3t .
.
4 .
4 2 0 2 4

Figure 3.14Two clusters of a data set.

When clustering is applied to an image, pixels @aitioned into different
groups by defined properties of similarity. Eadbister can be similar in intensity,
texture, or other features. Among all clusteringhods, K-means is the most popular

one.

K-means clustering partitions the data into k aasdt was invented in 1956.
The most common form of the algorithm uses an titerarefinement heuristically
known as Lloyd's algorithm. Lloyd's algorithm $gaby partitioning the input points
into k initial sets, either at random or using some lstigrdata. It then calculates the
mean point, or centroid, of each set. It then oot a new partition by associating
each point with the closest centroid. Then therostg are recalculated for the new

clusters, and the algorithm is repeated by alterapplication of these two steps until
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convergence occurs, which is obtained when poiatdomger switch clusters (or

alternatively centroids are no longer changed).

In terms of performance, the algorithm is not gnéeed to return a global
optimum. The quality of the final solution deper@gely on the initial set of clusters.
Since the algorithm is extremely fast, a commonhoetis to run the algorithm
several times and return the best clustering fouhddrawback of the k-means
algorithm is that the number of clusters k is apuinparameter. An inappropriate

choice of k may yield poor results.

K-means clustering is widely used in computer wisid he initialk set can be
obtained by equally dividing the whole image irkosubimages or by randomly
assigningk pixels in the image as initial centroids. The fBxidat meet the similarity
requirements, for example similar gray-level valwegll be grouped to its closest

centroid.
3.5.3 Segmentation by Region Growing

As discussed before, a region is defined by sityl@and proximity. That is, a
region is a group of connected similar pixels in iarage. Region growing is a

segmentation technique based on the region directly

Let the whole image be a regi® The result of segmentation then divides the
whole region inton subregions, each of them is denotd They will have the

properties:

(@ U R =R
(b) R; is a connected regioix1, 2, 3, ...n
()R, NR; =@ foralli #j

Region growing is a procedure that groups pixelsubimages into larger
regions based on the predefined criteria. The isléa start with a set of ‘seed’ points

and from these points grow regions by includingghbor pixels to the seed that have
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properties similar to the seeds by the predefinédrm of similarity. A region stops

growing when it can no longer find any similar réigr pixels.

It is possible that a pixel meets the criteria fiwop or more regions. In that
case, it means that pixel is on the boundary cdcatjt regions. One can classify that
pixel to the cluster that the pixel is most simiiar

Two subregions can also be merged by some predefangeria. That
procedure is called “region merging”. If two addat subregions are similar in some
sense, for example, if the difference in their oegi averaged gray-scale is less than a
preset value, or the color of the two regions gmpreximate the same, the two
subregions are then merged into a new region. €eragion then continues to check
its adjacent subregions and merge subregions noatibther subregion meets the

criteria to merge.
3.6 Summary

In this chapter, we have discussed the generas idedigital image processing
including the hierarchy of image processing, teotugies frequently referred to in
pixel domain image processing, and several uséterd for noise reduction. The
concepts of morphological operations and image seggtion have also been covered

in this chapter.

A cargo security imaging system is comprised obéhmajor tasks: image
enhancement, noise reduction, and segmentatiorgelreahancement is to enhance
the visual quality of X-ray image, letting small jetis be easily identified by
inspectors. For the purpose of material discrimamatthe task of noise reduction was
not to smooth the image, but more importantly, éconstruct the signal so that

accurate information about the attenuation ratiolma obtained.

Image segmentation in a cargo X-ray image refergdémtification of the
regions of interest. The regions of interest arssfiide regions where contraband

materials could be hidden. Since an X-ray image nsap of relative thickness that is
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obtained after photons penetrate through layersaiérials, the measured thickness of
an object can be affected by the objects put betordehind it. It is a very
challenging task to identify a single object inX&nay image of a cluttered container.

In the following chapters, we will discuss combminmage processing
techniques for material discrimination in cargoaimaging systems.
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Adaptive Masking for Cargo

Material Discrimination

4.1 Introduction

In Chapter 2, we introduced the concept of duatgnX-ray imaging system
for material discrimination. Although the technigboas been widely used in medical
applications, it has only recently been applieth® detection of high-Z materials for
cargo inspection. For cargo image systems, a meljdevel of X-ray energy is used
to ensure the penetration quality and to triggér paduction as well. The ratio of the
high energy scan to the low energy scan attenugtortransmission) can be an
indicator of the scanned object’s effective atomienber (Z). However, for multiple-
layered objects, e.g. a blob of uranium in a dte&| the effective Z will be dominated
by the material with greatest attenuation. To desdreavily shielded high Z material,
it is hard to determine what the threshold ratioudtt be for classifying that object as
high Z. As the thickness of the shield becomestgrethe calculated effective Z will
get closer to that of the shield. This impliesttbhtaining the effective Z value of
each pixel is not sufficient for the purpose ofed#ibn since the effective atomic

number can be manipulated by the selection of dimgimaterial and its thickness.

In this Chapter, we will discuss an approach wstlfirdeveloped for high Z

material discrimination using a 9-MeV to 6-MeV duwalergy system. We designed

76
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experiments to test if such system can perform Higletection at a reasonable speed.
All image processing operations are done in thdiapdomain. A global minimum
ratio threshold is used in this model. Our appro&hdesigned to find not just
unshielded but more importantly, hidden high Z mate. We have named our
algorithm “adaptive masking”. This method solves groblem associated with using
a single threshold ratio for decision making and e#ectively eliminate many false
alarms. Test results show an increased accurachight-Z detection using this
approach. Experimental results illustrating theeetiVeness of the method will be
shown at the end of this chapter. We will start digcussion by introducing some

related works.

4.2 Related Works

Research into material discrimination for cargeaX imaging systems is still
in its early stages; there has not been a longyisThere exist some, though not
many, publications related to image processingthi@ specific application. In this
section, we will briefly discuss several recent lmabions in the history of this
specific field.

The pioneering work of Ogorodnikov and Petruninthie early 2000s [3-7]
proposed a method using the ratio of the measuteghsparencies,” which is
equivalent to the ratio of attenuation coefficigntd two levels of X-ray energy
(4MeV/10MeV) scans. Four basic groups of materiate classified: Organic,
Organic-inorganic, Inorganic, and Heavy metals. tdgdrbon (CH2, Z~=5), silicon
(Si, Z=14), iron (Fe, Z=26), and lead (Pb, Z=82yevehosen to be the base material
for each group. For the purpose of visualizationTA plane is used. T is the
transparency, which is the same thing as transomssind Z is the equivalent atomic
number for each corresponding pixel on the transiomsimage. The TZ plane is
obtained from the lookup table created by experisiefor a specified material, the
plot of ratio versus transmission is obtained. Feg4.1l is an example of the
visualization of such system. As we can see, watan organic material therefore the

color of water is close to red. The six purple ksiare made of heavy metals.
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To obtain an image with the quality as shown inuFég4.1, as the authors
pointed out, the source needs to be moving at @ ksv speed to have sufficient
samples per pixel to suppress pixel noise. Alsoltipte scans might be taken and
then averaged to remove the noise and boost SNE Eguirements limited the
feasibility of a practical system. The main poifittieeir work was the possibility of

such technology.

T B3

e

Figure 4.1 The visualization of system proposed by Ogorodnikind Petrunin. Image
of container in TZ-palette: organic—red, inorgabice, heavy metals—lilac. (Image
obtained from [6])

In 2002, Ogorodnikov et al [5], applied some imggecessing methods to
their earlier work. A bilateral filter [7-8] was @d to reduce the pixel noise on the
image. A bilateral filter works like the adaptivikdr mentioned in Chapter 3, which is
an edge-preserving filter. It works by averagihg pixels with a mask if all pixels
satisfy the preset requirement of similarity, othiee, it keeps the value of the center
pixel. Leader clustering [9-10], a region growinigaithm for image segmentation
was also used in the paper. The reason for domgighto obtain a smoother filtering
result.

Based on Ogorodnikov's theory, Zhang et al. [2&pmsed an H-L (high and
low energy transparencies) curve method for mdtex@gnition in dual energy X-ray
inspection systems. The H-L curve they used isoa @i the ratio of high and low
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energy attenuation coefficient ratio versus atomimber. Their method is reported to
demonstrate good performance in discriminationratfical objects. The concept of
intrinsic difference between materials is introdiide quantitatively investigate the
possibility of material recognition under a givenise level. As discussed in Chapter
2, the H-L plan method presumes that the same rakteill have the same ratio

regardless of the hardening effect. This assumpsamue only when the source is
purely monochromatic or penetration is good, st the spectrum is not affected by
the thickness of the objects.

For detecting low Z plastic explosives in luggag@ng et al. [30] proposed a
method to segment X-ray images in carry-on luggigeairport security systems,
which is based on the Radon Transform to deterrtieeoptimal number of clusters
and to evaluate the segmented images. For the garpese of explosive detection in
baggage, Ying et al. [35] used a CT scanner fodtra energy system. The resulting
Z images display three-dimensional X-ray images thake it easier for inspectors to
identify the objects. Taking a different image mssing approach, Chen et al. [25]
proposed wavelet-based image fusion that appliekgoaund subtraction-based noise
reduction and an enhancement technique to recandtma final image for airport

luggage scan.

The dual energy material discrimination methodsuised above only work
either under ideally controlled situations or the luggage inspection where
penetration quality is easier to achieve than d@sge container counterpart. The
inevitable statistical errors are either ignoredreated as a challenge for future work
in most related papers. A system with reasonstd@ning speed for use in the flow
of commerce will inevitably have statistical errdrsat lead to misidentification of

materials, since the differences between ratiaiftédrent materials can be very small.

Bjorkholm [13] proposed a method to deal with thatistical errors and
simplified the task of a DE cargo inspection systdime goal is just to discriminate
high atomic number metals from other materials. @ngortant assumption in his

model is made: general goods cargo containers weomtain a lot of metal. If metals
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are detected inside the container, most of the threg are iron or copper. Therefore,
for a measured transmission (the inverse concepttefuation), if the ratio of high-
and low-energy transmission is greater than a llotds(e.g., that of iron), a pixel can
be eliminated as representing a high-Z metal. & c®ncept equivalent to eliminating
pixels with a ratio of attenuations less than &shold. For consistency, we will use
ratio of attenuations to describe this method. iart of the method is to identify all
pixels of passing the threshold first and then elate the false alarms. The first step
is identifying all pixels having ratio greater thanthreshold; the second part uses
statistics. To characterize the system’s noise,average ratiaR and the standard
deviationc associated with a measured attenuation valuedaris obtained through
series of experiments. Then, for a measured attiemya thresholdr for a ratio is
assigned to be equal to or a little bit greatentRaThe probability of a pixel having a
ratio R which is greater than the thresholdis given by integrating the normal
distribution from(T — R)/o to . This value is calleg; which is the probability of
false alarm of a single pixdf a cube of iron with thicknedscauses attenuatian in
high energy image, and the measured ratio forighBf the samen caused by other
materials with higher atomic numbers will yield grer ratioR’; therefore, the
probability of R’ greater tharT will be greater than that d® All pixels above the
threshold will be marked. False alarms in the imaigefiltered out by using a 9 by 9
examination window. Only when the number of margeetls in that window exceeds
some predefined threshold can those pixels be deresi a threat. The probability of
detectingn pixels aboverl within an 81-pixel examination window will be givdyy
binomial distribution:

P(uIBL) = e 1P

(1 -p)®™ (4.1)

While this method provides a good direction, selvgueestions remain. How do we
determine the threshold number of pixels passitig tAreshold in an examination
window? And, if the false alarm object is signifitiy larger than the size of the
examination window, which is usually the case,ftise pixels won’'t be removed. In

addition, shielding effects can lower the ratiotire region of a shielded object,
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making it hard to detect. In this case, a realad&te can be easily eliminated by such

a method.

4.3 Adaptive Masking Model

To resolve the issues with Bjorkholm’s method, wedified his method and
came up with our adaptive masking model. The goaltliis method is simple: to
locate all possible high Z objects while elimingtiall false alarms. Our approach has
proven to be very effective in signal enhancemiage alarm elimination, and visual
qguality improvement. The whole task of materialegtring is comprised of three
major parts: noise-reduction, z-image creation, amgut visualization. As discussed
before, there has not been work that covers aktiparts of the task. It is reported that
to get good results, a lot of conditions need towsd-controlled, such as X-ray
images have to be noise-free. That can be achibyadasing a very slow scanning
speed, or taking a sequence of images and theagngrthose images to reduce the
Gaussian noise. For the signal to be strong, a-thigle X-ray system is preferred.

However, doing so would violate safety regulations.

Unlike the methods from other publications in whighray images are
obtained under highly ideal situations, we arenigyio develop models that work in
more realistic situations. That is, we are dealiitn a system where data is obtained
from a realistic speed, low-dose X-ray source. ¢besequence of that is very high

level of noise that causes very weakly discrimimgtiatio images.
4.3.1 Z-image Creation

The goal ambitious to identify the atomic numberatlf objects inside the
cargo container is in fact nearly impossible toieef and unnecessary. Since most
threat materials either have very high atomic nuntlbere radioactive and need to be
shielded by heavy metal, it would be reasonablaldsign a system that detects
materials with atomic numbers higher than lead &@=8& high Z material often used

for shielding radioactive materials. For that regsour method looks for materials
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with ratio of attenuations higher than a thresh@ifdnimum high Z ratio) in the
images of a dual energy imaging system. That &,look for the lilac or darker
regions in Figure 4.1, and screen those regionsfohigh Z image, which is a binary
image that flags pixels belonging to high Z materigs the final output we obtain.
Alarmed pixels in the high Z image are the regishere the effective atomic number

is higher than that of common metals.

As discussed in Chapter 2, due to the high unceytaassociated with
thickness, the calculated ratios of pixels in teickr denser regions are relatively not
reliable. Therefore, instead of using the ratiotlas indicator of effective atomic
number for each pixel, we use Equation (2.40) toutate the probability of each
pixel being high Z. A probability image is then dséo indicate each pixel's
probability of having a ratio of attenuations gexahan that of a predefined threshold.
However, the system operator may not have the leayd to interpret the meaning of
those probabilities; he is not able to make a dmtibased on that information. An

algorithm needs to be intelligent enough to makasilen for its users.

The problem remaining is what is the cutoff probigbwe need to call a pixel
high Z and trigger the threat alarm. What qualiiesa “high” probability? What is the
meaning of “low probability”? Also, taking the shdeng effect into consideration,
what should be the threshold for the minimum higra#o? How do we segment the
high probability regions from the image? Those allequestions that need to be
answered. Determining these thresholds (for ratid far probability) is not an easy
task. As we discussed in Chapter 2, the probabdity function of thickness. A very
high Z material can be heavily shielded and giveva calculated probability. Table
4.1 provides the measured ratios of several steelded high Z materials from one
experiment. The atomic numbers of the objects areng Each column is the ratio
using different thicknesses of shielding. EmployBjgrkholm’s presumption that it is
not usual a cargo container has a high percenthgeetal, and Liang’s assumption
that the ratio of a specified material is constarg,decided the minimum ratio be set

to the ratio measure when a high Z object is shildehind 10" of steel. This
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thickness is almost equivalent to the maximum patieh. From data provided by

Table 4.1, the minimum ratio can be a number batvie@l and 1.02.

Table 4.2 shows the corresponding probabilitiesutated by Equation (2.40)
for those objects. Recall that

Ronin — R
Phighz = 1—0.5[1+erf< = )l .

\/—Z—O'R (2.40)

A global minimum ratio being used here is 1.02, clhis approximately the ratio of
100cc of lead shielded by 10 inches of steel frapeemental data. The objects being
tested here are all cubic, so that a 100cc objdchawve a thickness about 4.64cm or
1.84 inch. The ratios are taken from the valueshef center pixels of the objects.
Table 4.1 shows that for shielding steel thickentB inches, the errors make the ratio
unreliable. Due to noise, thicker shielding can epdhaving greater probability than

thinner shielding, since the accuracy of probabwitould also be affected by pixel
noise.

Table 4.1Ratios of equivalent thicknesses for different lsteid objects.(N/A=not
available)

shielding\Material | 100ccwW 100ccPh 200ccW 200ccPb 150ccDu
{Z=74) (Z=82) (Z=92)

5" 1.047 M/ A M/ MSA 1.07

7" 1.054 1.036 N/A N/A 1.06

a" 1.044 1.05 M/ MSA 1.052

g 1.031 1.037 1.04 1.046

10" 1.026 1.021 1.026 1.012

11* 1.024 1.015 1.016 1.013

Table 4.2The corresponding probabilities for Table 4(lN/A=not available)

Shielding\Material | 100cc W 100ccPb 200ccW 200ccPb 150ccDu
5" 97 N/A N/A N/A L9938

7 975 .B6E MNSA NSA 972

g JB73 LB98 M A N/ A 964

g" LG43 729 713 S8l

10* 591 576 564 A28

11* 557 AET A1l .397
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Table 4.3Probability of copper (Z=29) under different stekields

Thicknessof | 5 7 a8 g 10 11
shield{inch]
Probahility 0 005 004 .26 .33 3

Regardless of the effect of pixel noise, we cah stie a trend in the ratio
behavior. For the same object, as the thicknesshaflding increases, the ratio
decreases. This coincides with the theoreticaliptied that the effective attenuation
coefficient of an object is a linear combinationaifmaterials of the composition, and

the ratio of steel starts to dominate as it gatkér.

Recall that when X-rays pass through multiple layef objects, the total
attenuation can be expressed as

pEDE= Y wEZ) b (4.2)

material i

For a steel-shielded high Z object, the observad imthen

_ t] + titeer _ apy + budtee (43)
t; + titeer apz + biigee

wheret? andt} are the equivalent thickness of high Z materiaifrhigh- and low-

energy scans respectively, atlfl,,, andtl.,,, are the equivalent thickness of steel

from high and low energy scans respectively, amdtyo constanta andb are the

thickness of the materials. The thicker the stéleé more weight it has when

computing the ratio. Wheb>>a, the ratio will be dominated by the steel term, viahic

on average has a ratio of attenuation coefficiahtsut 0.99.

Table 4.3 is the calculated high Z probability oR@0-cc copper bar under
different shielding conditions. The atomic numbércopper is 29, which is not high
Z. Putting a copper bar next to a high Z objectimela shield can test how well the
system works. Ideally, their values should all bese to zero since their theoretical
ratio is less than 1.02. Without the effect of moithe calculated probability should be
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zero. As we can see from Table 4.3, a 9-inch-steielld caused probability of about
0.3. This is due to the pixel noise that makesr#ii® higher than that obtained when
the shield is only 5-inch thick. Comparing Table® 4nd 4.3, we see that the
probability of high Z and copper are close for khghielding. An indication of that

result is that th&NRin those scans are not good enough for high Zidigzation.

The result shown in Table 4.2 tells us that usindixad threshold of
probability for segmentation might cause two kindgroblems: if the threshold is set
low to identify heavily shielded objects, it migtduse a lot of false alarms. On the
other hand, if the threshold is set high, then hgashielded objects will not be
detected. In fact, due to the unpredictable natficargo containers, neither of the two

choices seems to be a good one.

When the images of high and low energy scans apeply aligned, and the
frequency of X-ray can be controlled to be bandtéah and when scattering is not a
big issue, a good way to determine the probalifitgshold is to create a lookup table
through a series of experiments, finding the thoshprobability for different

thicknesses. This has similar effects to creatitapkup table for minimum ratios.

We here provide a solution that can avoid the rdeedhaking a lookup table;

it is theadaptive masking methoddaptive masking is based on the fact that we can
adaptively choose our probability threshold in oegi of different thicknesses. If a
definite value of the threshold for different thiess is not available, we need to use a
method that does not require that kind of informrati Recall that in Chapter 3 we
discussed a thresholding segmentation method wsingutomatic threshold finding
algorithm. If a group of pixels has a greater vatun its background, the minimum
value of that group will be selected as the thriesfar segmentation.

If we look at the last row of Table 4.2, we willesthat all the high Z targets
shielded by 11 inches of steel have a probabilieater than 0.4. Ideally, if a non-high
Z object is also behind the 11-inch shield, itxgkited probability should be less than
0.4. Therefore, applying the automatic thresholdilgprithm to the 11-inch- shielding
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region probability image, we can segment the higlegion with a threshold of 0.4.
By that principle, we can assume that under thatesbackground, the high Z object
will have higher probability than other objects ath@refore can be segmented by
thresholding. The segmented image is then calledZtimage or Z-map, which we
will use for visualization. The overlay image ofniZap and thickness map is the output

displayed to users.
4.3.2 Image Types

Four kinds of images used in our model will be nefe to throughout the rest
of this chapter: equivalent thickness image whigsents the attenuation, ratio image,

probability image, and Z image.

As discussed in Chapter 2, the attenuation canxpeessed in equivalent
thickness. There are two equivalent thickness imatjee high energy equivalent
thickness map and the low energy equivalent thiskmeap. For convenience, we just
call them the thickness maps or T-maps. The forehemptedH (x, y) is obtained via
the X-ray scans with a 9 MeV source, while theelattlenoted.(x, y) is the result of
6-MeV X-ray scans. Each pixel iH(x,y) and L(x,y) represents the equivalent

thickness of the X-rayed object in terms of thekhiess of calibration material.

The ratio map or th&® map is obtained by taking the ratio of high an@ lo

energy thickness maps:

H(x,y)
L(x,y)

R(x,y) = (4.4)

The probability ma@ (x, y), is the probability of a pixel having ratio greate
than the preset minimum ratio, and is obtained jpglyang equation 2.40 to each

pixel:

_ Ripin — R
Phith = 1—-0.5% (1 + erf \/E—o- (240)
R
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The range of the P map will be [0 1]. If a piXe]y) with R(x,y) > Rpin, We can
expect thaP (x,y) = 1. For pixels withR(x, y) < Rpyin, P(x,y) = 0. If R(x,y) =
Riin, P(x,y) = 0.5.

Finally, the Z-map is the output of our materiatesning algorithm, which
indicates pixels that have high probabilities ohigehigh atomic number material and
the system makes a decision to identify them ak Higixels. The details of how Z

map is formed and processed will be discusseden &ctions.

Pseudocoloring is applied to those data imagesther purpose of easy
analysis. The standard colormap, Jet map, is usee. A colormap is an m-by-3
matrix of real numbers between 0.0 and 1.0. Eawhis interpreted as a color, with
the first element specifying the intensity of teght, the second green, and the third
blue. That is, each row is an RGB vector that ég=fione color. Th&th row of the
colormap defines the kth color, where map(k,:) €&)[rg(k) b(k)]) specifies the
intensity of red, green, and blue. Let Cmax detimemaximum and Cmin denote the
minimum value of intensity in an image, the ran§éhat image [Cmin, Cmax] will be
rescaled to [0, 1] for the purpose of colormappiag.a result, the minimum values in
the image will be represented in blue and the mawinwill be shown in red. If an
image is a binary image, then red will be 1 ancéhil represent 0. Figure 4.2 shows

the jet colormap and the corresponding grayscale.

minimum > Maximum

Figure 4.2 Jet colormap (bottom) and its corresponding grdgétog). Jet ranges
from blue to red, and passes through the colors,cyallow, and orange. The jet
colormap is associated with an astrophysical fieidsimulation from the National
Center for Supercomputer Applications.
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4.3.3 Image De-noising

Noise reduction is probably the most important siepthe algorithm for
material discrimination. As we have discussed, &oisan cause erroneous
measurements of equivalent thickness. As a resit, measured ratio and the
calculated probability will not be reliable highi@dicators. To obtain a desirable R-

map, two noise-suppressed T-maps are needed.

There are several useful filters that can helpettuce the level of noise. Low
pass filters such as Gaussian filter can efficiestippress the noise by averaging
neighboring pixels. For random noise such as saltgepper noise, a median filter is
a good choice. Due to the fact that the noise wealanling with here is dependent on
thickness, we suggest using a Wiener filter sihcg an adaptive filter that deals with
noise on a region by region basis. Another advant#gchoosing the Wiener filter
over others is that the Wiener filter, unlike otlspatial averaging filters, is an edge-

preserving filter. Edge-preserving is crucial windrects are small.

Figure 4.3 (a) and (b) show two T- maps of a setith a 100cc cube of
tungsten (right) and a 2-inch thick copper bart(lékhind 8 inches of steel using
high- and low-energy X-rays respectively. Visudhg two images (a) and (b) are not
that different. The ratio of the two images in Figd.3 (a) and Figure 4.3(b) is shown
in Figure 4.3(c). Figure 4.3 (d) is the probapilihap obtained from the ratio map in
Figure 4.3(c), using the threshold ratio = 1.02 stashdard deviations from calibration
data. All images are shown in pseudo-color andler &xar is provided for each image

to see the range of the image data.
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Figure 4.3 (a) The high energy scan thickness map of a settipM0cc W and 2"-
thick Cu bar behind 8 inches of steel (b) the lovergy scan thickness map (c) the
ratio map (d) the probability map

Since we only are interested in finding high atomisnber material with a
ratio greater than 1, we only show the range orrdalie map from 1 to the maximum
value. The bright spots on the map are pixels Wigher ratios than their neighbors.
As shown in the image, the pixels correspondinghttungsten cube are relatively
brighter, conversely, there are not many brightso the copper bar region. Figure
4.3(d) illustrates what was discussed in Sectio®14.There is a blob of high
probability pixels clustered in the tungsten cubgion, with probability ranging from
0.5 to 0.9 that is higher than in the other regidrtserefore, as we mentioned in the
previous section, that group of pixels can be sedgeteout by using the automatic

thresholding algorithm discussed in Chapter 3.

The probability map in Figure 4.3 (d) shows tha #uges of the steel shield
have high probabilities when in fact those pixelsrbt belong to a high Z material.
The false high probability is due to the fact thaltotons scatter in a more

unpredictable way at the boundary of probed objstrise it is the interface of two
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materials. If more photons are scattered on thesdghen scanned by the higher
energy source, the equivalent thickness tends tudber on the edges of high energy
scans and the ratio of the edge will be greater that on the inner region. The other
possible reason for the edge effect is imperfegistetion of two energy thickness

images. However, this is not the case here.

Figure 4.4 shows the same images as Figure 4e3difference in this set of
images is that the thickness maps are filtered witl8x3 Wiener filter before
computing the ratio. A noticeable improvement carfdund in the R-map and P-map.
Figure 4.4(a) and (b) are obviously smoother thgguré 4.3(a) and (b). The two
images Figure 4.4 (c) and Figure 4.4(d) are botlkchmsmoother and have more

prominent targets than their counterparts in FiguBe

Figure 4.4 (a) The filtered high energy scan thickness map sétup with 100cc W
and 2”-thick Cu bar behind 8 inches of steel (&) fitiered low energy scan thickness
map (c) the ratio map (d) the probability map
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4.3.4 Gray Scale Morphological Filtering

Gray scale morphological filtering is discussedimapter 3. The two principal
morphological operations are dilation and eroskeor. binary images, dilation allows
objects to expand, thus potentially filling in sinAbles and connecting disjoint
objects. Erosion shrinks objects by etching awagpdi@g) their boundaries. These
operations can be customized for clearing unwasneal objects in a binary image by

choosing a proper shape and size of the structefargent.

For gray scale images, dilation can be seen aaaiegl a pixel value with its
local maximum in the region under the structuringdtion, if the structuring function
is a flat function. On the other hand, erosion vwods a minimum function that
replaces a pixel's value with its local minimum. péding is erosion followed by
dilation. As a result, it removes high gray-levegiions smaller than the structuring
function mask (bright artifacts) from an image. Qersely, closing is dilation
followed by erosion. The consequence of minimizimg maximized image is that low
gray-level regions (dark artifacts) in an image Wwé eliminated. Opening followed by
closing can eliminate all dark and bright artifactghich is called morphological
smoothing. For pseudocolored images using thermap shown in Figure 4.2,
dilation reduces the area of blue pixels and irsgeathe number of warm color
(orange to red) pixels; erosion does the oppoditdilation; opening can smooth out
the warm-colored artifacts, while closing smooths@ld color artifacts.

Grayscale morphological filtering can be very helph enhancing the signal
in probability images. Figure 4.5 (a) shows a T nafy@ copper bar and a 100cc
tungsten cube behind 9 inches of steel. The caldranaterial used here is copper.
The image looks like a mosaic because the magnibfidee thickness causes great
uncertainty in the measurement. One can alsohsgehie upper region of the steel
appears to be thinner than the lower region. Thidue to the random scattering of

photons that taints the upper detectors.
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If the detector size is about half inch wide (1@%cthen a 100-cc cube will
only be about four pixels wide. Taking edge effiatd consideration, there could be
only four useful pixels left. The problem of lowsmution can be reduced by
upsampling and interpolation. To upsample is toefihzeros between samples.
Interpolation is done by assigning the value of learest pixel to the inserted zero.
Applying upsampling and interpolation increases tésolution and gives a greater

degree of freedom in choosing image filter size.

Figure 4.5 (a) is the upsampled version of a 474ypixel image. The original
image has a resolution 0.5 inch/ pixel. After upphng by 4, a half-inch-wide region
is represented by 4 pixels. We applied a 5x5 Widitier to the thickness maps to
obtain the probability map shown in Figure 4.5 (bhe pixels belonging to the
tungsten region are dominated by low values, extepthe pixels in the lower right
corner that has relatively high value. Also, it d@nseen in the P map that there are
red edges around the boundary of the steel plakechwindicates a false high
probability in those regions caused by the edgeceffSince grayscale closing can be
viewed as smoothed maximization, we can enhancsig¢imal in the tungsten region
by applying a closing filter. Figure 4.5 (c) shoavgesult of applying a 15 by 15 square
closing operation. As a result, the signal in tHeol® tungsten region is enhanced; a
bright, yellow square stands out from the backgdodrhe consequence of closing is
the enhancement of edge artifacts. To eliminatedlogh value artifacts, we used an
11 x 11 opening filter. The result, shown in Figuté& (d), has no false high
probability edges any more. However, some of thgeepixels have value equal or
greater to the target value. By looking at the Fpsnsuch as Figure 4.5 (d), one still
cannot tell if there are high Z materials locatedtbe edge. The solution to this is

adaptive masking which will be discussed later.

The size of the structuring element is determingdrial and error. The key
point is that the size of the structuring elemdrdudd not be as large as the smallest
object we want to detect. Otherwise, the object baneliminated by the erosion

operation. Also, since morphological operations act linear, the order of the
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opening and closing filter does matter to the tsswA reverse order of closing and
opening is so called morphological smoothing, ajpglythat to the P-map will not

preserve the weak signals.

Figure 4.5(a) T map of a copper bar and a tungsten cube behinch@s of steel. The
image has not been filtered. The mosaic image astdunoise and low resolution(b)

P map of (a). The region of the copper bar haspovbability. The shielding effect
makes the tungsten region show only several ppedtgive higher to its background.
(c) P map of (a) after applying a closing filter with1l& by 15 square structuring
element to (b). The region of the copper bar basgrobability. The shielding effect
makes the tungsten region show only several predtgive higher to its background.
(d) Applying an opening filter to (c) with an 11x11 sge structuring element. The
red artifacts around the edges are eliminated #fteoperation. The tungsten region is
now a yellow square in the image.
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4.3.5 Adaptive Masking

Adaptive masking is the proposed method to idenhfgh Z materials,
especially shielded high Z objects. The heart ¢ "pproach is to eliminate false
alarms caused by scattering or system-associateseg.nbhe word adaptive means
processing the image adaptively on a region byoregasis. As mentioned in Section
4.3.2, the probability map can be segmented irdb-rand low- probability regions by
using thresholding segmentation approach. If sgvelbjects of interest share the
same background, it means that in a region, aletarare shielded by the same level
of thickness. Applying the thresholding method t@gion on the probability map will
segment out the high probability objects. Evern#ttregion is heavily shielded, if the
penetration is acceptable, high Z material willl dtave relative higher probability
than other objects in that region. A regional shiidd can be determined by the

automatic thresholding algorithm described in Sec8.5.1.

As we can see in Figure 4.3 and Figure 4.4, orpthbability image there are
pixels with high value outside the region of thalrarget. Even after morphological
filters are applied, there are still some falsenhpgobability pixels left. Those pixels
still will not be eliminated after automatic thresting. To solve this problem, the
idea of masking is introduced. A mask is a logio@trix (zero and ones) that
indicates the locations of pixels belonging toregk object. The multiplication of the
mask image and the segmented high probability invéiianake sure that all pixels

falling outside the region of an object be elimetht

Adaptive Masking Algorithm
The algorithm is based on several assumptions:
1. In a region, the area of the background is at leasttimes of the objects
inside it.
2. When shielded by the same material, i.e. shariegsdime background, the
objects to segment will still have higher calcutafgrobabilities than other

objects.
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3. Mid- or low-Z materials will have relatively low taulated probabilities that

will be classified to background after segmentation

The assumptions made above are very reasonablie gederal, are applicable in
actuality most of the time. If an object is appmately the same size as its shield,
then that object combined with the shield is comsad an isolated region. In that case,
applying the threhsolding segmentation method &b thgion will not screen out an
object. However, if the region itself has a proligbgreater than 0.6, it is reasonable

to assume that whole region is a high Z target.

The adaptive masking segmentation comprises twds:pahe first is
segmentation of the high energy T-map. Threshgldsnapplied to each shielded
region. The purpose of this is to segment the d¢bjas “masks” for thresholding of

the probability map.

The flow chart of T map segmentation is shown guFé 4.11. First choose an
initial thresholdT, to be the average of the maximum and the miniméithe grey
level values of the whole imagKyx, y). Then, divide the pixels in the image into two
groups:G, (x,y) andG,(x, y) such that the former contains regions whose vauoes

greater than the threshold and the latter is thieafethe areas. That is

0, Vx,y € I(x,y) <T

61 () :{I(x,y), vx,y € I(x,y) =T (4:5)
and
_ (0, Vx,y € I(x,y)=T
G2(x,y) _{ I(x,y), Vx,y € I(x,y)<T (4.6)

Using the mean of the grey level values of eaciloregbtain a new threshold and use
it to get the newG, (x,y) and G,(x,y) until the threshold converges. According to
assumption 1, we are interested in looking for cisjesmaller than the background.

Therefore, if the result of the segmentation (tegian thatG,(x,y) > 0) gives an
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object bigger than Y2 of area of the backgroundneed to redo the whole process on

G,(x,y) iteratively until the size reaches this criteria.

The loop ends whenever the néyw(x, y) is identical to the oldr, (x, y) from
the previous iteration. In that case, it means mwenpixels can be segmented from
that region. If the area df,(x,y) > 0is greater than 60% of the background, it is
either because there is no object inside that neginthe region itself is an object. In
either case, we consider the whole region an abjsiter segmentation from the
thickness map, label all the objects by assigningraber to each isolated, connected
region. The result of T map segmentation can beessed as

1, Gi(x,y) >0

M =y e =0 &7

Figure 4.6 (b) shows the result of T map segmemtatf a simple setup. Two
objects, a copper bar and a 100cc tungsten cubeshaglded by 8 inches of steel as
shown in Figure 4.6 (a). The whole shielding zaneonsidered a region. The two
objects in that region are then segmented by thari#thm described above. Figure 4.6
(b) is a binary imageM(x,y) formed of logical 0 and 1 shown by blue and red

respectively.
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Figure 4.6 (a) Thickness map (b) output of segmentation (@ Tittered P map (d)
thresholding segmentation of (c).

The second part of the adaptive masking algoritisn thresholding
segmentation on the P map. By applying the saneshiotding method as tAiemap,
it is expected that the high probability areasacteregion will be segmented. Figure
4.6 (c) and (d) show the result of P map threshgldiegmentation. However, as
shown in Figure 4.6, there may still be many spusgibigh probability pixels after
thresholding segmentation.

Also, the automatic thresholding algorithm willilfao work when the
probability map is too noisy. The reason for thatthat the contrast between the
objects and the background is low. The thresholghtgonverge very fast, classifying
a lot of background pixels as object pixels. Figdré(b) is the probability map of a
setup with a 100 cc tungsten cube put behind l@emof steels. The image is
processed by a close followed by an opening moggicél filter. Figure 4.8 is the
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result of using the automatic thresholding algonitto separate pixels into two groups
thatG,;(x,y) =T andG,(x,y) < T whereT is the calculated threshold. Apparently,
a lot of background pixels are classified into fpound pixels because of the low
contrast between the probability of the backgropmxéls and the probability of target
pixels.

To fix the problem of erroneous classification $edi by fast convergence, we
modified the automatic threshold finding algorithenfit our objective. That is, we
will keep doing the threshold finding on the proltib image until the output is
meaningful; otherwise, we will determine that nathcan be found in the probability

map.

As shown in figure 4.6 (d), the result of segmeatatan still give spurious
pixels, the two yellow blobs on the top in figuré@) are pixels belonging to the
edge of the shield. To eliminate those false regiove apply a maski to filter out

the unwanted regions.
The masking of the threshold®dmap by masi can be expressed as

0, if M(x,y)=20

Pmasked(x; }I) = {Pth(x; }I), if M(x, y) _1 (4.8)

or simply,

Praskea(%,Y) = Pen(x,¥) M(x,y) (4.9)

whereM (x, y) is binary image which is the resultbimap segmentation expressed by
Equation (4.4); Py, (x,y) is the segmented® map resulting from automatic
thresholding. One example of the result of maskghown in Figure 4.9. The
segmented® map in Figure 4.6 (d) is masked by the 2 regionSigure 4.6 (b). As a
result, the two yellow clusters on the top are gbaeause there is no corresponding

object inM. The flow chart oP-map segmentation is shown in Figure 4.12.
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a b

Figure 4.7 (a) The thickness map of a copper bar and a tangstbe shielded by 10”
of steel (b) the probability map of (a)

G, 04 &,0xy)

B 8 &85 B

E

A0 100 150 200 250

a b

Figure 4.8 Gy(X, y) andGx(x, y) after applying the automatic thresholding aldort
There are a significant number of background pikeling values closer to the target
pixel value than other background pixels. Thereftihe automatic threshold finding
algorithm will converge to a value midway betweba minimum oiG; and maximum
of Go.

a. b.

Figure 4.9 (a) The thresholding segmented P map as showrgurd-4.6 (d). (b) The
result of masking. Only the region that correspaioda red region in Figure 4.6 (b) is
preserved.
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The problem shown in Figure 4.8 can also be dedtt by employing the
“mask” from the segmentation of th& map. Comparing imagg,(x,y) with
M(x,y), if the outcome of segmentation of tRemap dose not significantly overlap
with any subregion iV (x, y), then we can say that no high atomic number nedteri
detected. If an object in the segment€dmap falls within a segmented high
probability region, and the region of segmenteds larger than the region of an
object, it is possibly the result of something Ikigure 4.8. In that case, keep applying
the thresholding algorithm to segment the &\, y) of Equation (4.2) until either
a segmented image that has a region highly ovesthppth an object is found and its
size is very close to the size of that object,the loop ends as a result of no high
probability object in that region.

Figure 4.10 gives an example to illustrate howrthdtistage threshold finding
algorithm works. The result @ map segmentation shown in figure 4.8 (a) is put
back into the thresholding algorithm again for &eot segmentation. The
segmentation result G1 and G2 is shown in the skstage of Figure 4.10. The G1
of the 2 stage still has area greater than the area dutigsten, and still covers the
region of the tungsten. We therefore still neegubthe G1 of the"™ stage for further
segmentation. If we do™stage segmentation, the resulting G1 will haveoverlap
with the mask. So, the loop will stop at thd &age. The output of the algorithm
therefore will be the overlapped region of G1 af 8f stage masked by the 2 regions
of maskM respectively.



101

Result of 15t stage

G2
21d Stage

31d Stage

4t Stage

Figure 4.10Results of each stage of thresholding.

There are two advantages to doing the adaptive ingaskresholding: one is
that we don't need to select a fixed value for hfgthreshold; the second is that we
are able to eliminate false alarms. The same obpatthave different probabilities on
a P-map if the thickness of shielding material e@srirom region to region. Adaptive
thresholding can automatically determine the higthiZshold in a region of a given
background thickness. A chunk of false alarm pixads be removed by adaptive
masking as long as no corresponding object withpaoable size is segmented from
T-map.
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Separate I into regions
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|
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region?

Yes

STOP

Figure 4.11Flow Chart of T map thresholding algorithm
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Figure 4.12Flow Chart of P map adaptive masking algorithm.

4.4 Experiments and Simulations

For testing our method, we set up a simple duatggntest bed system. We
used the Linac X-ray system that generates phabr®édvieV and 6MeV maximum
energy levels. The maximum penetration of the Xsnaythe ability to penetrate up to
16 inches of steel. Our testbed setup has 47 deseittat create 47x70 pixel images.
Each pixel represents a half-inch wide region. uwing X-ray source produces 440
pulses per second and scans objects at a speé&didtes per second. Each detector
is calibrated using copper as the calibration nedteko detector collimation is done.

Therefore, random scattering can taint the thickmesasurement.

Several materials are used for experiments: tungdéad, copper and tin.

Copper is a low Z material, and tin, which has atonumber 52, is usually a source
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of false alarms. Tests of different configuratidnem simple to more complex are
performed: (1) One high Z and one non-high Z obfeshind the same shield. The
ideal is one region has zero probability while tamet region has values that stand
out from the background (2) Several high Z and Ibebjects behind the same shield.
The ideal is all high Z detected without any misdaise alarm. (3) Objects behind
different shields. Shields can be overlapped wilcheother or placed at distant
locations. A minimum high Z ratio of 1.02 is amgulito all pixels for calculating the

probability.

For testing our methods, the image processing ithgois coded in the Matlab
7.6 environment. Matlab is a very powerful langeidgr scientific calculation. The
image processing toolbox provides image proceddiegs such as median filter and
the Wiener filter. The image processing toolboxoalgrovides functions for
morphological filtering; functions like dilationr@sion, opening and closing are all
implemented and all kinds of structuring functicar® provided. The downside of
Matlab is its processing speed. The real imagirsgesy will be coded in other lower

level languages such as C++.

4.5 Results and Discussion

Figure 4.13 (a) shows the high energy scan thicknesp of a setup of three
separate shields made of 10, 8, and 7 inches ef sten left to right respectively.
Each of them has a cube of 75cc of tungsten (WO¢ 05 tungsten, and 100cc of lead
(Pb) placed at the right of the shield and a cof@e) bar on the left respectively. The
first region on the left looks noisy because ithis thickest region in the image. Figure
4.13 (b) is the P-map of (a); it's a result of uppding the T-maps by a factor of 4,
then applying a 5x5 Wiener filter, followed by aagscale morphological
closing(11x11) and opening(7x7). As expected, thadp of the first region is the
noisiest one; a lot of background pixels have walegual or greater than the
foreground region. Figure 4.13 (c) is the result afaptive masking. P-map
thresholding segmentation is applied to the theggons one at a time. The output of
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thresholding is then masked by the regions obtainemh T-map segmentation. By
employing region thresholding followed by maskirg| targets are successfully
identified. Segmentation is achieved without using global threshold for the whole
grid.

Figure 4.14 is the result of a more complicatedisef one-inch steel plate is
placed with some overlap with seven other platethefsame kind. The overlapped
region has a target behind it. Two free air objests also put in the scene. The idea
here is to test if our algorithm can successfudigniify all high Z materials indicated
by the red arrows. The tin cubes (pointed to byatamge arrows) are used here to test
the discrimination ability of the model. The rdsof the algorithm is shown in the
bottom Z image—a binary image that indicates theelpi classified as high Z
materials. In this case, all targets are correddyected without any miss or false
alarm. Tin has an atomic number that producesia hagher than common metals.
Statistically, when a tin object and a high Z objace both heavily shielded, the
difference between their ratios can be as smalhastatistical error. It is possible
that in some cases, tin objects will appear to lg Iprobability on theP-map.
Discriminating high Z materials from such metabrge of the major challenges.

0.3

0.2

0.1

12
1.

Figure 4.13(a) The thickness map of 75ccW behind 10" of sté&¢cW behind 8” of
steel, and 100ccPb behind 7” of steel, 100ccPlh@)mage processed P map (c) The
regions on P map being detected as high Z materials
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Figure 4.14Top: the setup of 1 inch steel plate overlappeth Wit of steel plates. A
tungsten cube is placed behind the overlappedmegiib objects behind the shield are
indicated by the arrows. The red arrows point totdrget material, the orange arrows
point to tin. Two objects are there without shieti Bottom: The Z image indicating
the targets being identified.

Table 4.4 summarizes the performance of the syshentotal 300 different
combinations of thickness and targets, testingeal,| tungsten, and tin, we find the
rate of miss and false positive are less than 1%0@cc lead cube was only missed
one time when it was shielded by 9 inches of st€ehsidering the low resolution,
low penetration and noise contamination the syshas, the performance of our
algorithm is very encouraging. It shows that owtmod is, in fact, an effective way

for high Z object discrimination.



Table 4.4Summary of test results

ickness| 5" 7 8” 9” 10” 117
Objec
75cc ALL PASS ALL PASS ALL PASS| No data available o Nata available ALL PASS
100cc ALL PASS ALL PASS ALL PASS| Pb missed once APASS ALL PASS
150cc ALL PASS ALL PASS ALL PASS| ALL PASS ALL PASS ALL PASS
200cc ALL PASS ALL PASS ALL PASS| ALL PASS ALL PASS ALL PASS
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4.6 Conclusion

In this chapter, we introduced a procedure shawrigure 4.15(b) that can be
used in dual energy X-ray imaging for detectinghh@gmaterials. Preliminary testing
shows that the technology has good potential flodifig targets with high atomic
numbers. Upcoming experiments will allow examinated more complex scenarios.
In contrast to the method shown in Figure 4.15 &#hough the specific effective
atomic number of an object cannot be indicatedhi@ output image, suspicious
regions that contain high Z materials can be deteasing our method. Also, false

alarms can be effectively suppressed in a way neyarted before.

Denoising of X-ray images can help system opesaidentify objects more
efficiently in enhanced images. When the resolui®tow and the signal is weak,
upsampling the image can give a greater degreeefidm in choosing filter size. The
downside of upsampling will be slower processingespsince the data will b’
bigger when we use an upsampling fadtbr If the display resolution is improved

and/or signal is strong, upsampling is not needed.

Our adaptive masking approach for high Z matetistrimination is not only
limited to the application of cargo imaging systemsould also work very well for
airport luggage inspection system. In addition heesholding, other segmentation
techniques such as region growing can also be fmefthding masks. Because the
background of a cargo container image can be anptex, the adaptive thresholding

masking technique still requires system operammdnually select region of interest
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to separate object from its background in the setecegions. In this case, a system
operator will visually determine a region with slanibackground and use a mouse to
select a region for further high Z analysis. A yukhutomated high Z detection
algorithm based on the model in this chapter mayire having a shape identifier

algorithm that can classify object based on itshgetoic information.

In later chapters, we will discuss other approactiat require less human
involvement in high Z detection. To more accuratégfine the masks in a cargo
image, other segmentation methods are used inste#ittesholding. However, the

concept of masking remains the same.

Dataacquisition

l Calibration

| Calibration |

3

[ STD: stdh(x,y), stdl(x.y} ]

‘ H{x.y) I l L{x.y) I

. v

‘ Bilateral Filtering ‘

.

{ R(x, y) =H(x, y)/L(X, ¥} I

Rix, y) =Hlx,y)/Lx.y)

| Morphologicalfiltering |

.

| Adaptive thresholding, masking |

() (b)

Figure 4.15 (a) the flow chart of a general material discrintioa system. (b) The
modified high Z detection algorithm.

Chapter 4, in part, is a reprint of the materiait @appears in the Proceedings of
SPIE (2009), Fu, Kenneth; Ranta, Dale; Guest, CRads, Pankaj “A novel algorithm
for material discrimination using a dual energy ging system.” The author of this
dissertation is the primary investigator and authaf this pape
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Segmentation of Objects in Cargo X-

ray Images

5.1 Introduction

We have discussed in Chapter 4 using the locatdrnsbjects as masks to
check if the detected high Z pixels fully or atdemostly cover an object. The method
for creating such masks is T map adaptive thresimgpldThe thresholding is
fundamentally fast and straightforward. However, foisy images or more complex
scenarios, thresholding segmentation might intredspurious regions. Therefore, the
segmentation method discussed in Chapter 4 mighk tetter for airport luggage X-

ray image scenarios that are not as complicated.

In this chapter, we introduce another segmentatiethod to screen out the
objects of interest. Our new approach for segntiemtas a combination of clustering
and a seeded region growing method. This segmentatethod has proved to be very
efficient. To detect hidden objects, we use a mdilling technique to find regions
whose intensities are greater than that of theirosmding regions. Doing further

regional analysis to those regions can extract @tarformation about them.

109
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5.2 Segmentation Based on Intensity

Different applications should use different methadsimage segmentation.
For example, if our purpose is to find a gun in>&may luggage image, simple
methods such as the thresholding method discuss€tapters 3 and 4 will definitely
not work. A more appropriate way is to develop #tgra recognition system that
identifies certain shapes in an image. For singolals such as separating whatever
the object is from the background, we probably wilit use pattern recognition
techniques since we have no prior knowledge whatavee segmenting and what
geometric information we need. In that case, segatien by thresholding might be a
better choice if the pixels of the object we arekiog for form a somewhat even
distribution of intensity. The other method we case is clustering. Clustering
partitions an image into several subimages basdteosimilarity of selected features.
Two clustering methods are often used, which wil briefly discussed in the

following sections.
5.2.1 K-means clustering

As discussed in Chapter 3, k-means clusteringtmarsi data into k mutually
exclusive clusters, and returns the index of thuster to which it has assigned each

sample or observation.

A sample of the data is treated as an object haaifggation in space. Or in
mathematics, each sample is treated as a vectarcitor space. Each element in that
vector space is aN dimensional vector and each dimension represeigatare of the
data. For example, a vector from census data doaild three dimensional vector of
(‘gender’, ‘age’, ‘income’). For image data, a vacspace could be (x, y, intensity) or

simply a one dimensional vector (scalar) of intBnsi

The distance between two sampieendj in an N dimensional space is then

defined as the distance of two vectors in vectacsp
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2
D;; = \/(xu—xu)z + (x2i-%07)" + (R3i=x3))% + -+ +(xyi—xnj)?>  (5.1)

whereD;; is the distance between two samples and denutegrojection of theth
dimension of vector . The similarity between two samples is then d=fiby the
distance between the two samples. K-means findatéipn in which objects within
each cluster are as close to each other as pqgsarieas far from objects in other
clusters as possible.

Each cluster in the partition is defined by its nbem objects and by its
centroid, or center. The centroid for each clusdethe point to which the sum of
distances from all objects in that cluster is mizma. For that purpose, it uses an
iterative algorithm that minimizes the sum of dmtes from each object to its cluster
centroid, over all clusters. The location of theatceid might be updated as the k-
means algorithm moves objects between clusters$ tinetisum cannot be decreased
further. The result is a set of clusters that asecampact and well-separated as

possible.

The hardest problem for this algorithm will be gedection of initial locations
for centroids and the number of centroids, Especially for the purpose of image
segmentation, if no prior knowledge is availablee will not have a good result
without several experiments. The selection of ddifé initial points can generate

different results.
5.2.2 Leader Clustering

The leader cluster algorithm partitions a data set into grobpsvirtue of a
radius distanc@ in feature vector space. A leader object is assediwith each group
and all other objects in the group lie within dista T from that object. Figure 5.1
illustrates how the leader clustering algorithm keorThe algorithm starts by selecting
the first data point and assigning it as the fiestder object, A. Subsequently, the
remaining samples are examined and those thatidrathe distance T are assigned

to group one. The first data sample examined Hikt dutside the radius T is assigned
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as the next leader object, B. This procedure ratiéel to identify cluster centre C as
well as the remaining centroids. This algorithm tiesadvantage of being fast since it
only requires going through the data once. All ®@ugentroids are at least a distance
T from each other, which means that it is dependarthe ordering of the data set and
that a distance T is specified rather than the rarmobclusters.

Like K-means, the result of the leader algorithsnailso affected by the
selection of the initial point. In Figure 5.1, theis one red point in cluster A that is
also within the radius of cluster B. However, sicées the first leader, that red point
is classified to A rather than B. However, if Btie first leader, that red point would

end up in cluster B.

Figure 5.1 Leader Clustering. Each point in the data is aordota vector space. Note
that there is a red point in cluster A that is alsthin the radius from leader B.

For clustering a grayscale image, a three dimeakioector space of (x
coordinate, y-coordinate, intensity) is used. Thegans we will group two pixels
together if they are close to each other and ttase Isimilar intensities. In that case,
for a big object with its pixels distributed ovewale range in the image, the pixels of
that object could end up in different clusters.Althere might be a case where a few
pixels belonging to a cluster lie within anotheuster. On the other hand, if the
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constraint of distance is lifted, two distant olbgewith same intensity will end up
being classified into same group. Then the resuitf ino use if our purpose is to label

all isolated regions.

5.2.3 Intensity Grouping: a Hybrid of Leader Clustaging and Region
Growing

Intensity grouping is an image segmentation approme developed for the
purpose of X-ray image segmentation. However, fy@ieation of this segmentation
is not limited to just X-ray images. It could albe applied to any images. The
clustering method we used is a combination of ehlirsty algorithms and region
growing. It has the advantage of leader clusteriasgt, straightforward, and only one
scan of data is needed. Unlike the leader or k-selrstering methods, our approach
does not require a predefined number of clustera madius to define the size of a
cluster. Also, there is no need to select theahientroids. As a result, all connected
regions in an image will be segmented regardlesthaif size. If the result of our
algorithm ends up with too many tiny regions, wél apply region merging to that

result.

The algorithm for pixel classification

The idea of intensity grouping is to classify ndighing pixels with similar
intensities together. For a pixe{, (y), if its valuef(x, y) is close to the mean value of
its neighbor pixels, that pixel is then groupedetibgr with its neighbors. The number
of neighbors is at least 8. A greater number cao &le used depending on the
property of the image we are dealing with.

A step sizeA is selected, each pixel in the image will be assigto a value
guantized by the step size. The total number dcflfeis determined by the step size.
For example, if an equivalent thickness image hasmamum value of 12", there will
be totally 6 levels in the image as a result oktdting: pixels thicker than 1” but
thinner than 3” will be assigned to level 1; pixelgh thicknesses between 3” and 5”

will be assigned to level 2, and so on. If a psxealue is close to the average of its
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neighbors, that means that pixel and all or attlgasst of its neighbors belong to the
same region. We then assign the quantized valuts akighbor's mean to that pixel.
If the value of a pixel is not similar to its nelgirs, that means that pixel is either on
the edge (if we check only the 8 neighbors) omiggghbors belong to at least two
different regions. In that case, we will use thixepas an origin, divide its neighbors
into four quadrants, and check the average valfiesach quadrant, and assign the
closed quantized quadrant mean to that pixel. Waig, the clustering is much faster
than the recursive K-means algorithm, and leadesteting methods that requires
finding new leaders all the time. More importantiyr method will create continuous

regions but not the broken clusters resulting flkemeans and leader algorithm.

In Matlab, our method is done using filters. Ffileers are defined: one mean
filter Q, and four quadrant mean filters @ Q. A radiusr is selected to define the
size of the filters. The size of the filter is ther+1 by 2+1. If r is equal to 1, that
means we are looking at the regional average oflj@cant neighbors. Figure 5.2
shows five mean filters with=1. The input image is filtered by those fivedik. The
outputG(x, y) of mean filter Q will be the mean of the maskedion centered ak(

y). The output of the rest four filte€s; to G4 are the mean of each quadrant anchored

at (x, y).
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Figure 5.2 The 5 filters used for clustering(a) Q calculatthg mean of the masked
region (b) Q, calculating the mean of the first quadrant cateat the pixel(c) &
calculating the mean of the second quadrant (d{e@ndre Q and Q respectively.
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Figure 5.3Two pointsp andq in a binary image. Poirg lies within a region, its value
will be equal to the average of the masked redgibume(area). Poirp is placed on the
edge. Its value is equal to the average of thediwadrant (yellow area).

Figure 5.3 illustrates how the clustering worksngsia binary image for
example. Two points p and g are in a binary imadge former is on the edge of a
region and the latter is within a region. Whenlay3 mask is used on poiptwe see
that the value op is quite different from the mean of the maskedaegWe then
check the mean of the 4 quadrants. The value obtityuts of the 5 filters shown in
Figure 5.3 that is closest to the valuepakill be the output of);, which is the mean

of the yellow area. Therefore, the quantized valuthe mean value of yellow area is
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assigned to poinp. For pointg, since it is located within a region, its valued e
the same as the average of its neighbors. Alsdjuédilters will give the same result.

We therefore, assign the quantized mean valueatikel.

Most of the points outside the foreground regiohi Wave a value of zero
since the outputs of the 5 filters are all zerast & background pixel next {o its
value is equal to the output @ andQs, which is still zeroEven if it is close to the
edge of a foreground, it won’t be classified todmeedge pixel We can then expand
this concept to grayscale images. Assuming thegfotend and background in Figure
5.3 are both homogeneous regions. The output stering will be two regions with a

guantized value.

Labeling the region

After classifying all the pixels in the image, tidole image is reduced to
several quantized values. For each level, we fired tumber of regions with pixel
value equivalent to that quantization level, anggnt assign a number to each
connected region. The total number of regions af timage will be the summation of
all regions of all levels. The Matlab function “laflel” is used for our region labeling
for each level. The function “bwlabel” is used fording the number of regions in a
binary image and assigning a number to each regida.treat all pixels in the
clustered image with value equivalent to a quahtmalevel as a binary image and
find all the regions within that level. The totalmber of regions can be obtained after

all levels are checked.

Region Merging

The result of our clustering algorithm is affectadthe selection of step size.
A small step size will create too many unwanted tegions, which is not desirable
for doing regional analysis. A step size too big cause two regions belonging to
different objects to merge into one region. Oneitsoh for that problem will be region
merging.

The idea of region merging is to combine regionthwimilar value into one

region. In our region merging algorithm, the latgesgion is used as the “seed”
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region. We check the regions surrounding the segibm: if the difference between
the averaged values of the two regions is less thanedefined criterion, we then
merge those two regions together. Each time, we @ region by dilating the region

with a 3 by 3 square structuring element. The mgjithat are overlapped with the
dilated region are the surrounding regions of tH#ated region. We check all

surrounding regions to see if any of them couldrgeged. After all neighbor regions
are checked and merged, a new region is formed fHgion continues growing by
the same way until no more regions to be mergedbeafound. We then select the
next seed, which is the second biggest value ortltreter map, and start the whole
merging routine again. The merging will stop after more seeds can be found.
Region merging is not always necessary for somglsimegional analysis. However,
it will give a more precise description of the distitions of objects in an image.

5.3 Object Segmentation Using Region Filling

One way to segment an object from its backgrowncegion filling. Binary
region filling is an algorithm that starts from aimpt p within a boundary, then
replaces all values within that boundary with liguFe 5.4 is an example of binary
region filling. Figure 5.4 (a) shows an image cosgmb of white circles with black
inner spots. Any black spot can be used as a sa@at] the seed will grow to identify
all black pixels and then replace them with 1'gjufe 5.4 (b) is the result of filling all

circles.

The morphological algorithm for region filling Imsed on a set of dilations,
complementation, and intersections. The fillingutes< of an imageA can be
expressed as

Xi = (X—1 @ B)NAC k=123,... (5.2)

whereX, = p, X,_, ® B, is a dilation by a symmetric structuring elemBn A is
the complement of the image. The algorithm terneimaat the iteratiork when
X, = Xx—1. The whole region inside the boundary definitefomgs toA¢. Starting

from a pointp, the point is expanded through the dilation openatThe intersection
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with A of the dilated region therefore will be the regimfithe dilated region within
the boundary. The region continues dilating urité tegion being dilated is equal to

the region inside the boundary.

Figure 5.4 (a) The image with holes (b) after region fillingples are filled (image
obtained from Gonzalez)

The biggest problem of this morphological algamths that we have to
manually select a starting point. For an automatgdrithm to work, the computer
needs to be able taletermine background points from inner sphere point

Another method for region filling is using the fbdill algorithm on the
background. Flood fill, also called seed fill, is algorithm that determines the area
connected to a given node in a multi-dimensionahyarWhen it is applied to the
background region in an image, for example, thé& degion outside the white circles
in Figure 5.3, it will replace all the ones in bgobund with zero. The result of
background flood fill will only leave the black doinside the circles. The remaining
dark spots are then complemented (replacing thetih $8) and then added to the
original image. This is the method used in Matlab fegion filling. This method
works very well when we are dealing with a totahclosed foreground. When any of
the white circles in Figure 5.4 have a leak taritger black spot, that black region will
be defined as background by the flood fill algamth

Here, we propose a new method for automated rdglmg. This method is
based on finding a pair of indicators for the stgrand end point of an interior region.
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Gradient of a two-variable function is defined as

_of  of
Vi(x,y) = T oy (5.3)
As shown in Chapter 3, the gradient in a digitehg® is
d
Vf(x) =a—£=f(x+1)—f(x) (5.4)
in the x-direction and
of
Vi) =a—y=f(y+1)—f(y) (5.5)

in the y - direction.

In a binary image, if a pixel is inside a regidn,value will be the same as its
neighbors, we will havEf (x,y) = 0. If we scan along the x-axis, when a background
pixel is next to the boundary of the foreground, witt have f(x,y) = 0 and f(x +
1,y)=1. There for the gradient in that directiGp= f(x + 1,y) — f(x,y) will be
G, =1-0=1. Similarly, for a foreground boundary pixel, snitcs next pixel will
be a background pixel witfi(x + 1,y) = 0, the gradientG, will be G, =0—-1 =
—1. Therefore, when scanning along the x-directiomeafare going into a foreground
region, we will encounter an increase in pixel ealtThat is, we will encounter a
gradient =1. When leaving the foreground region, wi# encounter aG, = —1.

Equivalently, it is the same for scanning in y diren.

Figure 5.5 shows an object in a binary image. dlhject has a hole inside its
boundary. Two points having, = 1 are pointed by arrows. The first one is located
on the boundary when its next pixel in x-directemers the boundary. The second
location is located inside the hole region. It istbe boundary when the next pixel

becomes the foreground pixel.

On the same x-level (horizontal), two location ingvG, = —1 are also
indicated. The first one is located on the innasrutary of the foreground. The second
is on the outer boundary of the foreground. We sz that the hole starts from the

pixels next to the pixels having, = —1 and ends at the pixel witfi, = 1. Also,
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from Figure 5.5, we can see that if a hole regigiste, when scanning along x-
direction, we will expect to encounterGa = 1 followed by aG, = —1, followed by
another pair ofz, =1 andG, = —1. Between those points, we will hag = 0.
By replacing the zeros between the start and emttgpshown in Figure 5.5, we are

filling the hole.

Gx=1

Y
SEEEE:

[ S Sy e

Start End

Figure 5.5 An object with a hole inside its boundary. The tlwoations of Gx=1 are
indicated, one is located outside the object, aneni the boundary of the hole. The
two locations of Gx=-1 is also pointed, the firsteas located in the boundary of the
hole, the second one is located on the boundary.
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Figure 5.6 The result of region filling. The pixels betweetars and end points in
Figure 5.5 are replaced with 1s.

Unlike the seed growing methods for region fillingur method is

straightforward. More importantly, it avoids theopkem of defining the interior
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region. We simply take the gradient of the wholage, find two pairs of (1, -1) and

fill ones to the pixels between the end point aadt point of the two pairs.

If all regions that need to be filled are fullychied inside an enclosed
boundary, then, it does not matter, we can do thdignt scanning and filling in x- or
y- direction. They will give us the same result. Jwarantee the most accurate result,
we apply this procedure to all regions respectivielythat case, the pair finding result

will not be affected by a few artifacts.

Filling Gaps
Another advantage of using our methods over therior seed growing or
background flood fill method is that our methodwlé us to fill in not only enclosed

holes, but also regions not fully enclosed. Werdefithose regions as “gaps”.
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Figure 5.7R1 is a “hole” region. R2 is what we defined agap. R2 can be filled by
placing ones betweeh, = —1 andG,, = 1.

Figure 5.7 shows two objects. The first object hahole inside it. The hole
region is denoted R1. The second object has atigagap region is denoted R2. From
the discussion above, we know that R1 can be fithggblacing 1s between a pair of
gradient=-1 and gradient=1 in the x or y directiBlowever, to fill in R2, we can only
use that method in y-direction. If our goal is iibifh both holes and gaps, then, we
will take gradients in both x- and y- directionsidatake the union of the results in

both directions as the final output.
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To segment shielded objects in an X-ray imagecare use the region filling
method described above. First, we know that thesldéhbbject lies within a
background region. Also, we know that it must hantensity (thickness) greater than
its background region. Therefore, to segment tiggoreof shielded objects, we first
cluster the whole thickness map using our hybrigtering method. After we obtain
the cluster map, we look at one level at a timeatT$, when dealing withth level,
we segment regions that are classified to leyedtore them in a binary image, and
deal only with those regions. Then, we fill in th@les on that binary image. If a filled
region has a greater intensity than the currerdlleythat filled region is a region of
shielded object. Otherwise, that region is simpbt ja hole with intensity less than its
background. After all the holes of all levels ared, all objects of interest are
identified. Those objects can be used for furtmalysis.

5.4 Application to Material Discrimination

The result of the hybrid clustering method and rigion filling algorithm is
very useful for the development of a material diegration algorithm. The clustering
map gives regions of background and object. Thezefbis easier to do analysis on a
region by region basis not on a pixel by pixel basihe average thickness of a region
can be calculated. Therefore, the ratio of high lamdenergy scan thicknesses can be
obtained. With the ratio information, we can obt&iformation on the materials inside

the images.

The concept of adaptive masking discussed in @haptan also be extended
to other segmentation approaches. The objects segthby the region filling method
can be used as masks for filtering out high Z faleems. Although this method is
more complicated than using thresholding, the tefidegmentation is more accurate
than thresholding segmentation. For complicateshados, the method we discussed

in this section is more desirable.
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5.5 Results and Discussion

Hybrid Clustering

Figure 5.8 shows the result of our hybrid clustgnmethod. Figure 5.8 (a) is
the thickness map from a 9MeV energy source. Adtergcube is placed at the center
of 10” thickness of steel plates. A tin cube iscplato the right of the tungsten cube at
a slightly higher position. On top of the plates #&ayers of lead bricks. The bottom
layer has more bricks than the top layer. Nexth® steel plate is a large lead bar
positioned on a stand. Figure 5.8 (b) is the resfulhe hybrid clustering method. The
step size used here is 27, the radius of the mask. iAs a result, all pixels are
classified to one of 5 intensity levels. Connegiectls belonging to the same level are

defined as a region.

20 40 B0 80 100 1200 140 160 180

20 60 80| 100 120 140 1860 180

W Tii1 Lead Hu

Figure 5.8 (a) The thickness image (b) the cluster map, eaubr aepresents a
different intensity level.

40/

As we can see in Figure 5.8 (b), a smoother imagke result of clustering.
The region of the 100 cc tin cube has become mommipent compared to Figure
5.8(a). Figure 5.9 (a) shows the result of labeling cluster map. Each region is
assigned a color. In this case, we start labelgregions from the lowest intensity
level. Thicker regions in the label map have high@mber. As a result, there are 28
regions in the labeled region map. Figure 5.9 ¢kgn example of using (a) as a mask

for high Z pixel masking. For each of the 28 regiaihthe number of pixels identified
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as high Z within that region exceeds a threshdleln tthat region (object) is identified
as a high Z region (object). In this case, theshoéd used is 50% of the total pixels.
Figure 5.9 (b) is an overlay of high Z region ahé priginal high energy thickness
map. The high Z regions appear as red in the imbgeliminate some tiny artifacts
in small regions, we applied a morphological smowh(opening followed by a

closing) to the masked output.

number of regions=28 HighEnergy & High Z Owerlay

'
20 40 60 80 100 120 140 160 180

Figure 5.9 (a) The labeled region map. Each number representsnected region.
(b) The overlay of high energy thickness map ampremted high Z regions.

Segmentation using Region Filling

Figure 5.10 shows different objects positioned belsteel plates of different
thicknesses: 8”, 10” and 2”. Each shielding redias one high Z object and one non-
high Z object. Figure 5.10 (b) shows the clustepraa a result of hybrid clustering.
The quantization step size used here is one ine&hcdvi see that each shielding zone
has been classified to one region. Inside eacHdgieegion, there are several sub

regions that have greater intensity.
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Figure 5.11Histogram of figure 5.10 (
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Figure 5.11 shows the histogram of the cluster stagwn in Figure 5.10(b).
Because the calibration material used here is aopgn inches of steel is
approximately equivalent to 8.7 inches of coppefteAquantization, the 10”-steel
region will be classified level 9 in the clusterpn&rom this histogram we know that
pixels of level 2, 7 and 9 are dominating. It ieréfore reasonable to assume that
those are the background pixels. To segment fouegrdrom those background

regions, we fill in the holes inside those regidrikere are any.

The top row of Figure 5.12 shows three backgrowgions. After histogram
analysis, our algorithm will pick the dominant regs (probability greater than 15%).
It first finds all regions with intensity equal ®in cluster map. Then, it fills all the
holes in those regions using the gradient paritgckhmethod. Here we take the
intersection of the result of x-direction fillingnd y-direction filling to make sure all
the holes and only the holes are filled. A morphalal smoothing is applied to the
result to eliminate all small artifacts. The fisglgmentation result is shown in Figure
5.13. Figure 5.13 (a) is a binary image that shties segmentation of shielded
regions. Figure 5.13 (b) is the result of usingggs)mask on the thickness map. The
masked region shows that the segmentation methes adairly good job when the
quality of original image as shown in Figure 5.40i6 poor in the sense of resolution

and noise.

We applied the hybrid clustering and the multistegion filling algorithm in
300 different cases from a simple setup (one opgwt shield) to more complicated
setups like Figure 5.10 (a). They all give similesults as shown in Figure 5.13 and
Figure 5.9. Our method has a very high rate of ssgfal segmentation.
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Figure 5.12Regions of different background and the resultegfion filling. (a) the 8
in region (b) the 10 inch region (c) the 2 inchioeg(d) filled region of (a). (e) filled
region of (b). (f) Filled region of (c).
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Figure 5.13(a) result of segmentation, the binary image shildocations of objects
(b) the masked regions of the object on thicknegg.m

Figure 5.14 shows the result of using our clusgeand masking algorithm for
material discrimination on a real cargo contaimeside the container, there is an area
of bottled waters. Behind boxes of bottled waténgre is a 300cc lead ball, 150cc

lead cube, 150cc tin cube, and a 100cc lead cubiedd. Next to the water region,
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there are electronics including items such as mogjitcomputer cases, and wave
generators. Three 100cc tungsten cubes are hiditém whe electronics and two

100cc tin cubes are placed between the tungstessciimother lead plate is placed on
top of a pillar. Outside the container, there idatery. Next to the battery is a
concrete tower with lead bricks on it. Next to tmacrete tower, a lead rod is put on a
stand. Our goal is to identify materials with atomumber greater than or equal to
tungsten (Z=74). Therefore, lead and tungsten shta discriminated from tin.

Figure 5.14 (a) shows the cluster map of usingiacRB-step size and 1-pixel radius
hybrid clustering. A total of 491 regions are idked. Each region is assigned a
number (color). Each region is used as a mask e¢gkcif that region has more than
40% of its pixels identified as high atomic numldggure 5.14 (b) shows the overlay
of the segmentation result and the 9-Mev X-ray sSoaage. The segmented objects
are shown as red regions in (b). The detectionbpéats behind the water region
requires another technique called “layer separatiwhich will be discussed in

Chapter 6. The result here shows that the maskdidt out most of the false alarms

except a small region on the floor of the container

Region Merging

Based on the property of the X-ray image, it is sbmes better to use a small
step size for clustering and then apply the regimanging algorithm to the first stage
clustering result. Figure 5.15 shows a result oftring with a half-inch step size
with radius equal to one pixel. The 8-inch stdatgshielding region is classified into
many subregions because of noise. A total of 28®ns are the result of clustering.

We then merge any two regions whose differencegion mean is less than
lcm. As a result, about half of the regions aregaer A smoother image with only
121 regions is shown next to the original one. Begnerging has a benefit of
avoiding improper classifications due to large stz though more processing time is

needed.
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Figure 5.14 (a) The cluster map of the cargo container scajilh@ overlay of
material discrimination result and a cargo X-ragrsgnage.

merged regions, num ber of regions=121

T "

Cluster map, number of clusters=233
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Using our cluster method with radius 1 and step After merging all regions within lem-
size 0.5 inch. As a result. 239 regions were range. A smoother cluster map was
created. Still, many small regions need to be created

merged.

Figure 5.15The labeled cluster map before and after regiorgmer
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5.6 Conclusion

In this chapter, we discussed a new clusteringcagm. This new approach is
simpler than the traditional k-means and leadesteling and yet it provides greater
accuracy in segmentation. Unlike k-means, we doeed to adjust the centroids in
each iteration because we use a set of fixed ddetrahich are the levels of
guantization; nor do we need to worry about whanberk should be used. Unlike
the leader cluster algorithm that requires a piaddfradius which might limit the size

of an object in an image, we let a cluster (reggnow as large as necessary.

The result of clustering and region filling segnagimn is very helpful in
material discrimination algorithms. The clusterorgegion filling segmentation result
can serve as masks to eliminate false identifioatiof high Z material. The result of
masking a noisy cargo Z image shows that the cingtend masking approach is a

very powerful tool for a good material discrimir@atiimaging system.

Chapter 5, in part, is adapted from the material appears in the Proceedings
of SPIE (2009), Fu, Kenneth; Guest, Clark; Das kBpfSegmentation of suspicious
objects in an X-ray image using automated regiindgi approach.” The author of this

dissertation is the primary investigator and autifdhis paper.
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Layer Separation for Dual Energy

Imaging

6.1 Introduction

In Chapter 4, we discussed a method that used kmlghoinimum ratio for
computing high Z probability; and the concept ofskiag to eliminate false alarm
regions was also introduced. The problem with tinathod is that it still requires
human visual inspection to select a region of gdein an X-ray image. In other
words, it is not fully automated. The assumptioattthe ratio of one specified
material is a constant was employed in that moé@lkis assumption is challenged
when the spectrum of X-rays is not well-controlteda mono-energetic beam. Also,
in Chapter 4, we applied Bojorkhom’s method of hifydiscrimination by finding all
pixels with value above a threshold. That threshslthe ratio of steel, and was in
fact, a function of attenuation (equivalent thicksle We simplified his model by
applying the same ratio to all pixels regardlesshefthickness of the object. In this
case, mid-Z objects can have higher probabilitynteame shielded high Z objects.
The remedy for that is adaptive thresholding andkimgy that screen out objects under
a similar background. An upside is this method doetrequire the system to be
stable. An unstable system can have different ng@dof an object’s ratio at different
time. Therefore, the ratio vs. attenuation lookaipié may work on one day but fail to

work when there is a tiny change in initial corafis. Since adaptive thresholding and
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masking only look for relatively high probabilitegions, the performance will not be

very sensitive to the minor changes of a system.

In this chapter, we propose another approach testbth® accuracy of the
performance of an automated dual-energy imagingesysThis method for high Z
material discrimination can more accurately idgn@éf region of shielded high Z
objects. The method in this Chapter uses a ratkup table to find possible high Z
regions. In order to find more accurately the stedl object, the lookup table is not
based on just the ratio of steel but the ratioteélsshielded high Z objects. Once the
relationship between the attenuation and ratioble@s established, we use that to find
the minimum ratio threshold for each pixel and catepthe probability. Masking is
still applied to the probability image, but the hmd is slightly different. One
assumption for building the ratio vs. attenuatiookiup table is that metals have
higher ratio than other materials, and high Z disjece shielded by metals. Therefore,
for regions where high Z materials are hidden réi® will be higher than the ratio of
common metals. In actuality, this is not totallyer In some situations, a measured
attenuation will have a ratio lower than that oé ame attenuation caused by steel
shielded objects. This may cause misses of deteatidhe low-Z-shielded regions.
The layer separation technique was developed tveeghis problem to boost the

detection rate.

6.2 Background

Recall in Chapter 4 we discussed the high Z detectiethod in Bjorkholm’s
paper [14]. In this paper, the threat detectiorbased on a lookup table of the
threshold ratios vs. attenuation. For variouskihéss of steel, the average ratiand
the standard deviatiom are measured and calculated through a seriespefiexents.
Then, for a measured attenuation, the threshagdassigned to each pixel based on its
high energy attenuation. Detection is called whethe total number of pixels that

pass the threshold, exceeds a preset \Mlidgn a 9x9 examination window.
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For then pixels that pass the threshold, the probabilitpagsing the threshold
for each of themp; is obtained by integrating the normal distributfoom (T — R)/o
to 0. And the probability of an 81-pixel square reglmavingn pixels passing their

thresholds is given by

81!
P(n|81) = mpi(l —p)¥ . (6.1)

The false alarm probability or each examinationdein is the sum oP(n|81) for all

N > Nmax

Praise = Z P(n|81) (6.2)

It is clear that the probability of false alarm asfunction of thresholdl. The
probability of false alarm will decrease as theeimold increases. While Bjorkholm’s
method correctly points out the need to considatissical error by computing the
probability of each pixel, his model of defininglda alarm as shown in Equations
(6.1) and (6.2) is, nevertheless, of questionahlee: One obvious reason for thapis
is not identical for all pixels. A binomial distakion requires that all trials have the
same probability of success. In this casepa must be the same. This is simply not
the case. Also, the curve f,,, Vs. Prqise Will be a bell-shape curve centered at
Npax = 40 whenp; = 0.5. This creates a problem that the probability ¢gdaalarm
decreases even wheéh, ., increases. It contradicts the assumption thahitjeer the
threshold (of the number of detected pixels) is,ldwer the probability of false alarm

would be.

Both the measured attenuation and ratio are a cwdbeffect of multiple

objects in the path of the X-ray beam. The combnagid is obtained by:

_ M(EH:Zeff)t _ Zmaterial i.ui(EH; Zi) ti
.U(EL; Zeff)t Zmaterial i .ui(EH: Zi) t

(6.3)

The ratio is dominated by the term with greatesnatation. Therefore, if one object is
much thicker than the other, or has much greatenaation coefficient, that object
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will dominate the ratio value. Therefore, when ghhZ object is heavily shielded by
steel, the ratio of the shielded region will beslekstinguishable. Figure 6.1 shows
curves of ratios of different 100cc materials deel by steel using Equation (7.3) and
values from Table 6.1. Lead (Pb) and tungsten (& )ctassified as high-Z materials,
while tin (Sn) is classified as a mid-Z metal. dincbe seen that as the steel becomes
thicker, the three curves will converge to the wealof the ratio of steel. The
differentiability in ratio of the three objects Wie lost when the steel becomes thicker
than 25 cm, because of the statistical noise. Whakes the problem more
complicated is that the system does not know tlukiless of any of the material. All
the information available is the attenuation, whiclour case, is expressed in copper
thickness. There is no way to tell how thick anegbjreally is unless we know its
attenuation coefficients, and from there, we conhvbe copper thickness to the
material thickness. To do that requires knowledigégn® material, which is something

we don't have.
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Figure 6.1 Theoretical curves of ratios (for mono-energetMé&v / 6 MeV spectra) of
different 100cc cubic materials shielded by varithisknesses of steel.
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Figure 6.2 Theoretical curves of ratios vs. measured attéomaif different 100cc
cubic materials shielded by various thicknessest@él. Attenuation is expressed in
term of copper thickness.

The idea of a ratio lookup table is based on tha faat for the same
attenuation observed, the higher atomic number nmaht@ill have higher ratio of
high-and low-energy attenuation coefficients. Aswgh in Figure 6.2, the theoretical
ratio vs. attenuation curves, a curve betweenitheurve (green) and tungsten (red)
can serve as the curve of minimum threshold. Hewesomputing the probability
based on the threshold obtained from a lookup taléteel-shielded object’s ratio can
be problematic for identifying other layered obgdtor example, based on values in
Table 6.1, if a 2-cm thick lead object is shieldsd5cm of steel, the total attenuation

of a 9MeV energy scan will be

u(E,2)t = Z wi(E, Z) t;

material i

= Ustee1(IMeV,26) * 5em +  Ujpqq(9MeV,82) * 2cm

cm? g3 cm g3 ~
= [2.97 * 7.86 (— ) * 5cm + 4.82 x 11.35 (— ) x 2cm| * 1072
g cm g cm

=2.2614. (6.4)

2
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The same attenuation can be achieved by othedsigelitht cm of water.
Usteer (IMeV,82) * 2cm = Uyqrer (IMeV,10) * t

_ Bsteet(9MeV,82) x 2cm
Hwater(9MeV, 10)

= 20.2cm (6.5)

Now, compute the (9MeV/6MeV) ratio of the steelettied object, the ratio will be

2 3
[2.97*(”;‘)*7.86<C9 )*50m+482<g) 1135(9 )*ZCm]

3 2 3
[3 05 * (”; ) +7.86 (% ) + 5¢m + 4.39 (C’;’ ) +11.35 (% ) * Zcm]

Ry =

= 1.03. (6.6)

The (9MeV/6MeV) ratio of the water shielded objebg ratio will be

3 3
[231 (Cm>*1(i>*202cm+482< ) 1135(9 )*2cm]
g cm g

2 3 2
[2.77 * (C’;‘ ) «1 (% ) % 20.2cm + 4.39 (C’; ) +11.35 (% ) * 2cm]

R2:

= 1.003. (6.7)
If an unshielded tin object causes the same attemyas thickness is

P .usteel(gMeV; 26) *5em + ,Lllead(gMeV, 82) *x 2cm
T tsn(9MeV, 10)

2.2614
= = 8.1 cm. (6.8)

2 3
3.82 % 10~ 2(””) 7.31<i>
g cm

The ratio of the object will be

[3 82 (C’;’ ) 731<C

2
[3.583 (Cm ) «7.31 (
g

Sl

) * 2.126m]
R3 =

= 1.0661. (6.9)

3=

) * 2.126m]
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For the purpose of high Z detection, the ratiogshodd T is a value greater than the
ratio of steel. It can be obtained by measuringrdt® of 2-cm thick lead behind
various thicknesses of steel. As demonstrated watamps (6.4) to (6.7), for a
measured attenuation of 2.61 caused by 5cm of ste@l2 cm of lead, the ratio
threshold from the lookup table will b&.03 + 6 for & being a tiny variation.

However, for the same attenuation caused by 2cleanof shielded by 20cm of water,
using that threshold is too high and will elimin#ite possibility of detecting the lead
object. Moreover, (6.8) and (6.9) show that arheaentimeter thick non-high Z
object, tin, can cause the same attenuation witio tzeing 1.066. The fact that
R; > R, means in order to correctly detect the lead, eedrto lower the threshold,;
however, the fact thatR; > R;implies the need to increase the threshold in ondér

to have false alarms caused by a thick tin.

In reality, curves ideally separated by up to 4@upper thickness as shown in
Figure 6.2 do not really exist, because differemtterials have different hardening
effects. The curve of tin will cross over the oth&o cures when the total attenuation
is about 25cm. Also in reality, organic materid¢ésv-Z), which are very common in
cargo containers, act the same as water, havingaime shielding effect as shown in
(6.7). Using a single threshold (obtained from ¢heve of the same material) will not

effectively detect the shielded high Z objects.

To solve the problem of choosing the thresholdorimiation of whether an
object is shielded and the type of the shieldindema is important. The techniques
discussed in Chapter 5 are very helpful in develgpghe approach to achieve that
goal. The so called “layer separation” algorithnfirtess objects and backgrounds
using the hybrid clustering approach. The ide® iddfine the property of each region
(based on the ratio) and separate objects fromn Hamkground if they are shielded.
Therefore, low-Z shielded objects can be identi@ed their ratios and probabilities
can then be adjusted to obtain a more desirabldtrdhis method is proven to be
able to significantly improve the accuracy by s@sging false alarms and increasing

the detection rate. It will be discussed in thetrsection.
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Table 6.1Attenuation coefficients and ratios for some mater (Values obtained
from NIST website)

H-0O Steel (Fe) Sn Pb
_ (Z=10) (Z=26) (Z=50) (Z=82)
densitv(g'em-) | 1 7.86 731 11.35
Hsvev p |2 31E-02 297E-02 | 3 g9E_02 4.82E-02
Hemev /p 2.77E-02 303E-02 |3.583E-02 4 39E-02
y = D9V 10.8339 09738 L 0661 10979
HeMe

6.3 Methodology

The objective is to develop an algorithm for a daakrgy system that can

discriminate all hidden high Z objects in a cargotainer. The ability to find objects

behind metal was already demonstrated in Chapt&hd.more important goal is to

find the objects with various kinds of shielding.

6.3.1 Image creation

The X-ray images are obtained through a 9/6 MeM donargy system moving

along the container at a speed of 33 inches pensegps). The strength of the source

is enhanced by 30% over that originally used inpgiéa4. The vertical resolution of

the system is about 0.5 inch. The X-ray source ®Xitay pulses at a repetition rate

of 400Hz with high energy and low energy generaiéernately. Each detector of the

system is calibrated individually. The number obfams received by each detector is

then converted to the equivalent thickness of copiper each scan, two equivalent

thickness images are created, one from high enaufpes and one from low energy

pulses, denoteHi(x, y) andL(Xx, y) respectively. The calibration process alseates

two lookup tables for standard deviations of eaeasared thickness for high and low

energy scans. The ratios of the two images arentekereate a ratio image, which can

be expressed as

R(x,y) =

H(x,y)

L(x,y)

(6.10)
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Before the ratio is taken, the two X-ray images fitered by a Wiener filter to

enhance the quality of ratio information.

A lookup table of minimum ratio for high-Z versustal attenuation (in terms
of equivalent copper thickness) is created, in thise by using the ratios slightly less
than the ratios for 100cc of lead behind varyinigkthesses of steel. For different
systems, the values of the lookup table will béedént. Even a slight change in the
same system will yield different results. Figur8 @) shows the lookup table we use
for creating results demonstrated in this chapié'e minimum size of interest is
100cc cube of lead, which is approximately 4.6 biokt on each side. Its equivalent
copper size is 6.9cm. For pixels with a measuregkniess less than 6.9 cm in the high
energy image, the minimum ratio requirement willtbe ratio of an unshielded lead
cube (flat part of curve). This is based on theuaggion that if an object is thinner
than 6.9cm of copper, it is either a larger objbich is not as dense as lead (i.e.
lower Z) or a smaller, denser object. Each equitatieickness on the curve shown is

the sum of 6.9cm of lead plus the thickness ofldimg steel.

Lookup tabile for minimum ratio requirem ent Ratio of 1.03 for Pb with 4%sigma
T T T T T T - T T

S

Threshold

Mirimum ratio

Frequency of occurance

: : : :
: : '

L) w =~ in o ~4 w @0
T T T T T T T T

0 0.0s 01 015 02 035 03 035 04 -
total messued thickress (m) 1.05 11 115 12
a b Equivalent Thickness Ratio

Figure 6.3 (a) Curve of minimum ratio versus total thicknesquirement of being
high-Z. (b) For a measured R=1.09 and equivalempep thickness 19cm, the
probability of being high Z is the area of the redion.
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The certainty of a pixel being high Z is obtained dalculating each pixel's
probability of having ratio greater than the minmmuatio threshold. As discussed,
assuming the noise is Gaussian-like, the probgligibbtained by integrating over the

normal distribution fron(R,,,;, — R))/ og to. The probability can be expressed as

P(x,y)=1-0.5 I1 + erf(Rmi”(x’ y) —R(x, y))l

\/EUR(XJ’)

where gyis the standard deviation of the measured ratid, By, is the minimum

(6.11)

ratio requirement, which is a function of thicknesbtained from Figure 6.3(a). If a
pixel has calculated thickness equivalent to 19€mopper in the high energy image,
and measured ratie=1.09, its minimum ratio for being high Z will beOl according

to Figure 6.3(a), and the certainty of that pixeinlg high Z will be the area of the red
region shown in Figure 6.3(b). If an observed rasicequal to the minimum ratio
threshold, the probability will be 0.5. If it isdhier than that threshold, the smaller the
standard deviationg, the higher the probability will be.

6.3.2 Image segmentation

The entire image is segmented into regions, ot@lssbased on the high energy
attenuation. Pixels with similar equivalent thickeeand ratio will be grouped together
as a cluster. The segmentation method used heteeifiybrid clustering method,
which is a mixture ok-mean and seed growing segmentation approach destus
Chapter 5.

For a quick review, flow charts of the segmentatagorithm are shown in
Figure 6.4 and Figure 6.5. For hybrid clusteriragtepixel of an input imagéx, y) is
compared to the value to its neighboring regiomsirid by d filters Q, to Q; compute
the average values of four quadrants centered, a).(A (2d+1) by (2+1) filter Q
computes the average value of the four quadramis.dDthe outputs of the five filters,
which is closest to the value ofx, y), will be quantized and assigned to the new
image lo,t. The quantization is done by choosing a “step”sitee non-quantized

values will be rounded to the closest level of dizamion, which is an integer multiple
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of step size. In imagk.;, the connected pixels with the same value forraggon, or

cluster; each cluster is then labeled by an integer

Filterinput image
I{x,y) by the five filters

|

Outputs Q(x, y), Qa2 {xy), Qz (xy),
I(x, v) Qs (xy) Qalxy)

l

I{x, y) similar to Q{x, y)?

Quantize Q(x, v) Pick the most
similaramong Q.
to Q.

l

Quantize

r

Assign that value to lou(x, y)

r

Check connectivity

k.

Define and Label Regions

Figure 6.4 Flow Chart of hybrid Clustering Algorithm.
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Findthe region with greatest

value as the seed region

¥
—| Dilatetheregi

L3
Check all regions stepped by
on

the dilated seed regiol
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and the neighbor region <
criteria

| |
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the grown region from

I'l:l'.-rz[::ljIJ

¥

.l':.-_.; andsaveitto

another map lrﬂ'.g-'-__',gg

Stop

Figure 6.5 Flowchart of region merging algorithm.

Region merging, as shown in Figure 6.5 is performmad,, to refine the
clusters. Neighboring clusters will be merged tbgetvhen their difference is within
a preset value. This is done by using the thickegion as a seed. Starting from the
seed, we check all adjacent regions and mergetbalyegions that meet the criteria.
After a new merged region is formed, we check teghboring regions and go
through the same procedure again. The region gfapging when no more regions
that meet the criteria can be found. The next seetiosen from the second thickest
regions and the procedure is repeated. The algostbps when no more seeds can be

found.
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6.3.3 Layer Separation

Layer separation is performed on regions that hielded by low Z materials
and those regions only. The reason for doing shasthe lookup table is developed
using mid-Z shielding (shielding material with i~1.0). Low-Z shielding (ratios
less than 1.0) results in lower total ratios foiekled objects. Based on experimental
results, the ratio range for these regions are(pager) ~0.97 (bottle water). The
method of layer separation is illustrated by Figaré. An object of thicknest is

placed behind another kind of material of thickngs$he total attenuatioM ' is:

M =ty + prt, (6.12)
while the attenuation caused by the backgroundlis o

M =ty (6.13)

Also, we haveM > M since X-ray goes through more layers. Therefooe,efach
region that the attenuation is greater than itk@wawund, we can assume that the
object is shielded by the background object as detnated in Fig. 6.6 (a). Therefore,

the attenuation caused by the object alone will be
M'=M —M= u,t, (6.14)
The ratio of Object 2 in &(, E ) dual energy system is

_ M"(Ey) _ M'(Ey) — M(Ey) _ ma(Ep)t,

A=W E) “ME)-ME)  mEG

(6.15)

The attenuation or the equivalent copper thickméshe background is calculated by
(1) identifying the location of the shielded obje¢®) dilating the object by the
morphological operation, (3) subtracting the orajiregion from the dilated region.
The remaining ring-shaped region is the backgroondghielding for the object, and
the thickness of that region is the thickness ef mmaterial shielding the object of
interest. Figure 6.6(b) to (d) illustrates the qgadure. The red region in (b) is the

object of interest buried in a blue background.(diy the red region is dilated by
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applying a 3x3 square structuring element. Therirggl region in (d) is the region 1-
pixel outside from the object region, the averajenaation of that region is used as
the attenuation of the first layenr)itwhich is subtracted to obtain the attenuation of

the second layerJt

Figure 6.6 (a) X-rays pass through two layers of object. i)(d) indicate the
procedure of finding the thickness of background.
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Figure 6.7 Flowchart of layer separation algorithm.
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Using the layer separation method described abibveattenuation ratio for
the object of interest can be more accurately tatled. Although noise and scattering
will still affect the precision of the newly calatéd attenuation, this method can help
detect high-Z objects where they might otherwisehigglen. As discussed, we only
need to apply this layer separation method to regiwhere the lookup table created
for metal shielded regions fails. Figure 6.7 ilhasts the procedure of applying layer

separation on such regions.

For each cluster obtained from the results of segmtien, we calculate the
average ratio of that region. All regions with caless than 0.96 are identified.
Regions with ratio less than 0.7 can be disregasitezke hydrogen (Z=1) has R=0.82,
any pixels with ratio lower than that are unreasbmarhose pixels are assumed to be
air or materials with very low attenuation. Theigatof high-Z objects shielded by
those materials will not be significantly affectaccording to Equation (6.3). After all
those low atomic number material regions are idieati we perform the region filling
algorithm. All regions being filled are the candelaegions for objects of interest. If a
filled region has greater ratio than its backgrqunitl can possibly be metal. We also
ignore regions whose sizes are too small to beideres] a threat. Layer separation is
then performed on the possible metal regions. Eigu8(b) shows a ratio map of a
cargo scan shown in Figure 6.8 (a). The red regionsigure 6.8 (c) indicate the
regions of low ratios. Two holes are left in thgd®er region meaning that there are
possibly two objects being shielded. They are thjeat of interest (OOI.) Figure 6.8
(d) shows the regions being filled by filling algbm. Both of those regions have

average ratios greater than their background.

The ratios of the layer separated objects are lzabmi The lookup table for
minimum ratio threshold is then mapped to the nalewated equivalent thickness.
Because greater error will be associated with #ve thickness, the standard deviation
of the new thickness is assumed to be greater.imze noise, we take the average

over all pixels in that region to obtain the thieks and its corresponding standard
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deviation. That is, all pixels in the low Z shietdesgion will be assigned a single

value of thickness.

Region filled by region fi]]jng.

Figure 6.8 (a) A cargo container image. On the left sidehef tontainer are boxes of
bottled water. (b) The ratio image. The light blegions are water. Two green
regions inside the water region are object of eger (c) Regions of ratio<0.97. (d)
Result of region filling. The filled regions are w@ashielded.

6.3.4 Decision Making

If a pixel has probability greater than the minimpnobability threshold, we
call it a detection. Noise from scattering and istiagl errors will cause false
detection. We eliminate false detection pixels byleanocratic procedure: if in a
certain region, the number of pixels detected edeeecertain threshold, all pixels of
that region will be called detected. Otherwise,aohthe pixels in that region will be
counted as detected. By doing this we eliminatayrfalse alarms. We name this
kind of false alarm reduction method “masking” ilmapter 4 since the regions are

used as masks to map all detected pixels to maksioles.
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6.4 Results

Figure 6.9 (a) shows a cargo X-ray image in colgrnvath the greatest value
red and the smallest value blue. There are a ¢btalght objects being tested inside
the cargo container. Object 1, 2, 3 and 4 are gld=shind boxes of bottled water.
Object 1 is a 400cc lead ball, and objects 2 aack4ust 100cc cubes of lead. Object 3
is a 200cc steel cube. Objects 5 to 9 are plackmhtelectronics. Objects 5 and 7 are
100cc of lead; objects 6 and 8 are 100 cc cub&s,olvhich is a material of high ratio
that can easily cause misclassification. The pwemdgutting those objects there is to
test how well the algorithm can distinguish the 4m@avy metal tin from heavy
metals. Object 9 is a 100cc cube of tungsten, whicbur classification belongs to
heavy metal group. Outside the cargo containeretla@e two batteries sitting on
stands. Batteries contain a high percentage of [Hagly are therefore very likely to be
classified as a threat object. On the right ofithage, there are steel plates shielding a
pile of bricks. On top of the bricks are lead bsckinally, a lead brick is standing
next to the right of the steel plates. Those uhdadlead bricks are used to test how

well the system can identify the free air unshidldejects.

Figure 6.9(b) shows the result of hybrid clusterinthe pixels whose
equivalent thicknesses are within a half inch défee are grouped together. Each
color in this map represents an object (region)e Bssumption here is that most
objects inside the container are relatively unifannthickness. For objects with shapes
having various thicknesses, they can be clustereddifferent regions. Figure 6.9 (c)
is the ratio map of the high and low energy scdiie ratio in the water region is
about 0.932. The average ratio of object 1 is 1.@@proximately the same as the
ratio of steel. The average minimum ratio for tregion is 1.012. Therefore, it won't
be classified as a high Z object using the metihojorkholm’s paper. Figure 6.9 (d)
shows the new ratio image after we applied therlagparation on that region. The
new ratios for objects 1 to 3 are recalculated. iéw ratios for objects 1, 2 and 4 are
1.19, 1.092, and 1.0677 respectively. As a resuiist of the pixels in those regions of

interests pass the minimum ratio requirement. Igeatke will have the new calculated
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ratio values approximately equal to that of the higided lead bricks. Due to

statistical errors, the new ratio of object 1 enp4o be 0.11 greater than that.

Figure 6.9 (a) The X-ray image of a container scan, whiclshewn in a colormap
with minimum being blue and maximum being red. éNiwbjects being tested are
placed in different regions. (b) The cluster mapnodge(a). (c) Ratio map of (a). (d)
Ratio map corrected by layer separation. The ratfdbree objects in the water zone
are recalculated.

Figure 6.10 illustrates the improvement that lasgegaration can make for high
Z material classification. The image in Figure 6(apis the same image as Figure 6.8
(a) shown in inverted grayscale. Object 3 is maseainable in this kind of display.
The second row indicates all the pixels whose piiba of ratio exceeding the
minimum ratio requirement are greater than or etual5. All those pixels are shown
in red. We can see that noise has created mareydlssification pixels. Especially in
the steel plate and brick region, the standardatiewi is greater due to the low
penetration caused by greater object thickness.ifflage in Figure 6.10 (c) is the
result of applying masking to eliminate the falémmas. For each cluster, that region
is called a high Z region only if the total numhbmridentified heavy metal pixels
exceeds 40% of the total number of pixels of tegtan. A significant improvement in

the brick region can be seen. This masking methagkiy useful in eliminating false
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alarms. While having great effectiveness, it is aggiually less complex and
intuitively makes more sense than using a 9 by &rexation window. The two
batteries outside the container are alarms siregdbntain a lot of lead. An inspector
can eliminate the possibility of that kind of oljdweing threat when additional

information is available.

After layer separation is applied, the ratios @& thur objects in the water zone
are recalculated. The probabilities of those objdtaving ratio exceeding their
thresholds are also recalculated and segmented.r@sult, shown in Figure 6.10 (d),
the three high Z objects produce alarms. The 2@0eel cube still has a relatively
smaller ratio. This image shows a very successfsililt of material classification for

the practical customs use purpose.

The superiority of our approach can be demonstriayecomparing the results
shown in Figure 6.10 (d) and Figure 6.10 (e). FegbirlO (e) shows the effective Z-
image of the container created by the conventiarethod, where red represents high
effective Z value and blue represents low effecBv@he water region in Figure 6.10
(e) indicates a very low atomic number. The regiohghe three water-shielded
objects also appear to be very low Z objects adegrib this Z image. This illustrates

how the conventional method fails to make a prattiggh Z detection.

A series of experiments were conducted to tesinmethod. Most of the low Z
shielded objects can only be identified through tiige of layer separation.
Occasionally, false classification happens in theggons, but it occurs less than 8%
of the time, which is a much better performancentharrent systems that can only
provide information about the effective atomic nanlbut cannot identify shielded
objects.
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Figure 6.10 (a)The same scan shown in Figure 6.9 is displayednverted
grayscale;(b)all pixels with 50% probability of bgigreater than the minimum ratio
requirement are indicated in red. At this stagelayer separation or masking is done.
Random red pixels can be seen on the edges oftebfdso, not all pixels in a heavy
metal region are red. (c) Result of applying maskeliminate false alarm pixels.
Random pixels are gone and heavy metal objectdlgati red (d) Result of applying
layer separation in the water region to recalcuthte probability. All three heavy
metal objects are detected this time. (e) z-imdgaioned from conventional approach.

6.5 Conclusion

In this chapter, we proposed a method for shieligtl Z material detection.
Our approach overcomes the shortcomings of prelioppposed methods. By
applying hybrid clustering and masking, an objectised as an examination window.
In this way, we can more effectively remove thedahlarms caused by large objects.
By applying layer separation, we are not limitedotdy measuring the effective Z
value of each pixel like all the current systems W can actually find a hidden
threat. Because statistical noise is not the oalyce for false alarm, factors such as
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random scattering can also affect the measurenfethicikness or ratio in a cluster
and several occasions of false classification @lfgoessible.

The concept of layer separation is very importamtd dual energy system.
Besides the method we introduced in this chaptar ddjusts the measured ratios and
maps them to the threshold map, one can also cenpatprobability by creating a
different lookup table for each different shieldimgterial. By identifying the ratio of
an object’s background, we can then switch to treesponding lookup table for high

Z discrimination. This will be one aspect of outure work.

Although decent results can be obtained, curretitly,outputs of the system
stil need human assessment as a safeguard. Hgweuerapproach shows a

promising step toward a fully automated classifa@asystem.

Chapter 6, in part, is a reprint of the matergaitaappears in the Proceedings of
SPIE/IS&T (2020), Fu, Kenneth; Ranta, Dale; Gu&3ark; Das, Pankaj “Layer
separation for material discrimination cargo imagisystem.” The author of this

dissertation is the primary investigator and autsfahis paper.
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Processing X-ray Images in the

Wavelet Domain

7.1 Introduction

In previous chapters, we focused our discussioprooessing X-ray images in
the spatial domain. The convolution of spatialefit and images is equivalent to
multiplication of the Fourier Transforms of the tw®&rocessing images in the spatial
domain has the same effect as processing themeiriréquency domain. There are
three major parts in developing an algorithm fortemal discrimination: noise
reduction, visual quality enhancement, and macHe®sning. So far, the noise
reduction parts of our algorithms are all done pyglging a Wiener filter. The Wiener
filter, by estimating local variance, (or local spa amplitude), achieves MSE
optimization. This kind of filter is reported to bery effective in processing X-ray
images [47]. In this chapter, we will exploit th@péication of processing X-ray

images in a totally different domain—the waveletrdn.

Recently, processing images in the wavelet domais dmined popularity.
Wavelets have a broad range of image processingicafipns such as coding,
compression, denoising and image fusion. Wavedabising methods are proposed
to deal with noise associated with radiography imggsuch as X-ray imaging

(Poisson), or magnetic resonant (MR) imaging (Rici&lere, we propose a wavelet
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based algorithm for a dual energy imaging systenhigh Z detection. The concepts
of wavelet denoising and fusion will be briefly dissed in Section 7.1.1 and Section
7.1.2. In Section 7.2, we discuss our wavelet rélgm. Our method for high Z
detection is still the statistical model aided lohaptive masking. A final review of the
statistical model and a new interpretation willgieen in Section 7.2. The main point
of this chapter is to show how wavelet domain psstey can be applied to our
system, and to investigate whether processingrages in the wavelet domain will
provide any advantage that processing images il domain does not.

‘ a

Spreadinf Edge - I

8| . Target stands
out from the

Edges of steel
background

appear to have —
high ratio.

Figure 7.1(a) low energy X-ray image (b) high energy X-reyage (c) ratio image.
7.1.1 Wavelet domain denoising for X-ray images

Figure 7.1 shows three images from a dual eneygiesi: the high- and low-
energy thickness map, and the ratio map. In thiskmaaps, regions are mosaic-
looking. The reason for this is that greater theds causes less penetration. As
discussed in Chapter 2, a major source of noisé-fiay imaging is quantum noise,
which is modeled by the Poisson distribution. TlésBon nature of the system is due

to the variation of number of photons emitted #fiedent time. While scanning with a
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moving source, different locations will receive iears counts of photons even when

the scanned object is uniform.

For Poisson noise, the standard deviation is ¢juare root of the mean and,
the signal to noise ratio is proportional to thenslard deviation. When penetration is
good, the variation between counts is insignificaite result of poor penetration is
low counts of photons, which means smal®XR and greater uncertainty. The
problem of noise in low-count photons can be death using wavelet domain
processing [71-74]. The ratio map in Figure @).3hows the problem of the edge
effect. We previously proposed using morphologitedring and adaptive masking to
solve this problem. In this chapter, we also attetopresolve this issue in wavelet

domain.

A wavelet y(t) is a waveform function that, when scaled anitesth forms
bases that in linear combination can representandtinction in a so-called wavelet
domain. Those bases are called child wavelet oy hadvelet. The positive real
numbera represents the scale, or dilation, of the wavéhet;integetb represents the
shift int. For discrete signals, discrete wavelet transéo(®WT) are applied, and

each baby wavelet is in the form of

Yrn() = a"29(a ™t — nb). (7.1)

where the integem represents the level of the transform, and integerthe shift in
time. Commonly used values foa,(b are (2, 1). Going through high- and low-
frequency wavelet filters, a sign8ican be decomposed to an approxima#erand
detail D1. Following the same procedure, the approximafipoan be split inté®; and
D,. This process is iterated for each level Af For a total ofJ levels of
decomposition, the signal can be represented a#earl combination of the

approximation and all levels of detail:

S=4+%_,D;. (7.2)
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In Equation (7.2), the approximatiod, is a low frequency, high-scale (greatey
component of the signal, while tligs are the high frequency, low-scale components.
In the time domain, wavelets are defined by the edetvfunction y(t) and its
complement, the scaling functias(t).The wavelet function is, in effect, a bandpass
filter, which represents the details of each sc@lee scaling function is a lowpass
filter, which filters the lowest level of the trdosm and ensures that the whole
spectrum is covered. From the concept of Equafia?),(using the wavelet functions

and scaling function as bases, a time domain si¢fdlas the expression:

]
f(t) = Z c,{Z_%<p(2_]t —n) + Z d,ﬁ2‘§¢(2-ft —n), (7.3)

n j=—w

where the scaling coefficients are

¢l = 2% f F(©) o277t —n)dt, (7.4)

and wavelet coefficients

dl = 2‘%ff(t)¢(2-ft —n)dt. (7.5)

The coefficient of each vector base and is therirproduct of the function
f(t) and the base wavelet function. The first term igud&ion (7.3) is the
approximation component of the signal at scalehe second term is the detail
component, which is the sum of all details at ellelsj </J. A great benefit that
wavelet domain presentation has over Fourier donpagsentation is it provides
information of changes in the signal in differeme frames. In the frequency domain,
we can only tell the strength of different frequgcomponents, but the information of

the relationship between frequency and time isgian.
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For a two-dimensional image, there are three dataitions for each level
Df, D/, andDP, representing the details in horizontal, vertiaid diagonal
directions, respectively. The process of splittihg image or signal into multiple
levels of wavelet representations is called wavdetomposition. A decomposition
method that gives fuller scope of the image is Wwetv@acket analysis, which
decomposes not only the approximations, but thaildets well.

One advantage of doing DWT s that it concentr#ftesenergy of the signal
into a small number of coefficients, and the lowRSIgart of the signal will be
distributed into a large number of coefficientseTilea is that by discarding a larger
number of coefficients belonging to low SNR, noiseemoved. By performing the
inverse transform, a denoised image can be obtamtwe spatial domain. This noise
reduction method is called wavelet shrinkage, whiets first proposed by Donoled
al. [64] The process that discards coefficients smé#flen a certain threshold is called
thresholding.

Thresholding can be hard or soft. Hard thresholdiety any coefficient less
than or equal to the threshold to zero. That i$ tamge observations are retained, and
therefore, hard thresholding will give a cruderutesSoft thresholding subtracts the
threshold from coefficients that are greater tham threshold, and sets coefficients
less than the threshold to zero. By shrinking thefftcients, soft thresholding gives a

more continuous function of the data. Thresholdsngxpressed as:

_(w lw| >t
nu(w, t) —{0 w| <t (7.6)
w—t w=t
ns(w, t) ={ 0 wl<t , (7.7)
w+t w< —t

where ny andng are thresholded wavelet coefficients after hau soft thresholding

respectivelyw is the original wavelet coefficient amds the threshold.

There are several ways to determine the threshsmidh as VisuShrink,
RiskShrink, and SureShrink[64-66]. In this Chaptee use SureShrink. Stein’s
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unbiased risk estimate (SURE) is an unbiased estmed mean square error (MSE).
It guarantees that the MSE will always be less thgi2logn/n for a data set of
lengthn with variances? . That limit of mean square error is used agliheshold of
the wavelet coefficients. One advantage of usingShrink is that it is an automatic
procedure [65-66] to determine the threshold favaaelet at each levg) instead of

using a single threshold for all levels of wavelets
7.1.2 Wavelet Fusion

Image fusion refers to the process of combining twanore images into a
single image. The images are usually the same seeqgeired from different
instrument modalities or captured by different teghes. By combining different
features into a single image, image quality caremi@anced or analysis can be made
more easily. Image fusion has important applicaionbiomedical imaging, remote

sensing, microscopic imaging, security vision systeand computer vision.

The principle of image fusion using wavelets is nwerge the wavelet
decompositions of the two original images usingidns methods applied to
approximation coefficients and detail coefficienthe two images must be of the
same size and are supposed to be associated wigxeid images on a common
colormap. For images of two different sizes, thages must be resized and properly

registered before fusion.

Wavelet
Coefficients

Fused Wavelet
Coefficients Output image

iy B |
DT

Figure 7.2Wavelet fusion system overview

DT
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The process of wavelet fusion is depicted in Fegli2. Two registered images
I, andl, undergo the discrete wavelet transform. The wawelefficients are fused by
a predefined fusion rule. The inverse discreteelgivtransform is taken on the fused

wavelet coefficients.

The fusion rule is chosen based on the purpogsheofusion. Several simple
rules include maximum, minimum, mean and randomxiMam rule takes the
maximum of the two coefficients; conversely, thenmmum rule chooses the
minimum. Mean takes the average of the two coeffits. Random rule randomly
picks one of the coefficients. The rules applie@pproximate and detail coefficients
do not need to be the same. Intuitively, applyimgymaximum rule to both details and
approximations can obtain an enhanced image. Bése&dsimple rules, more complex
rules have been proposed. For example, Burt andzioski [61] proposed a
“weighted average” method in which combination oéfficients is done adaptively.
At each position, weights aessignedo the source images, and the combined result is
the weighted sum of the coefficients. In addittorfusing the absolute value of the
wavelet coefficients, Hilet al proposed a method for fusing the complex coefilitsie
It is reported in [62] that the image quality isyanced by such approach.

Chenet al in [25] proposed applying wavelet fusion to aitpsecurity dual
energy imaging. It is claimed that the detectiote rean be significantly improved.
However, the threat detection method is not pravidehe paper and how the wavelet
fusion helps the decision making is also not dermatesd. It is also not clear what
kind of fusion rule is applied in their work. i#, nevertheless, demonstrated in their

work that wavelet fusion can enhance the qualit(-ody images.

7.2 Data and Methodology

Image creation
We still use a 9 to 6 MeV dual energy system. T\aialent thickness images

are created corresponding to high- and low-energgys, respectively. The intensity
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of the images is a function of X-ray attenuatioheTotal attenuation of an object is
expressed by its copper equivalent thickness.

Wavelet shrinkage denoising on X-ray images

Two kinds of information are needed for a DE systa regular X-ray image
of good quality and contrast for visual inspecti@amd a ratio image that gives
information for automated threat detection. Asvelman Figure 7.1, the edge artifacts
on the ratio image can cause misclassificationgatbe edge. The problem is harder to
solve when the ring is wider than one pixel. A lasp filter, such as a Gaussian filter,
may be able to smooth the edge, but it would sraedrerase the target, especially
when the target signal is weak. A median filtealiso good at eliminating the edge
effect when the edge is only one-pixel wide. If #dge is thicker than 2 pixels, a
median filter that is able to eliminate the edgeafwill also reduce the strength of
the signal. Wavelet shrinkage denoising is perfaroe both high- and low-energy X-
ray images. The denoised images are used to ctleateatio image. In this case,
wavelet “D6” or “db6” from Daubechies family is ukeThe highest decomposition
level is 3. Using a high decomposition level doesyield different visual results. Soft
thresholding is chosen since it gives a smootlvegr fesult when SureShrink is used.
Ratio image

The ratio image is crucial to the performance @fEasystem. In our model, a
desirable ratio image must be limited to an appab@revel of detail. The objective
here is to create a smooth ratio image that pravitle average ratio information for
each region in the image. In other words, similatios will cluster in a region
belonging to the same object. A blurry but smogttio image is preferable to the
images that keep the extreme values from the edifacts. The denoised X-ray
images used to create the ratio image will not geddfor visual inspection. The ratio
in free air will have extreme values since the @pgquivalent thickness of air is
extremely small. The ratio of free air could endhging from thousands to infinity.
To avoid this problem, pixels with thicknesses ti@nthan one-tenth of an inch are set

to be zero on the ratio image. Since the thickoésise container is more than the 0.1-
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inch cutoff thickness, ignoring the thin air regsonill not have any negative effect on

the result.

Probability image

Using the property that the same attenuation caboigeddifferent material will
have a different ratio, a curve of the attenuatodnhigh-Z object versus ratio is
created. A minimum size lead cube (100 cc) is pldnehind different thicknesses of
steel, the total attenuation caused by both steéllead and the effective ratio are
recorded. This data is used as a training set dentifying pixels with similar
thickness and ratio. Once the relationship betwkerobserved attenuations and ratios
is analyzed, a curve of ratio versus attenuation k& obtained by interpolation. An
example of such curve is shown in previous chapkegure 6.2. If the same
attenuation is caused by an object with an atormarober higher than that of lead, its
ratio value will fall above the curve generatedthg training set. In other words, the
curve from the training set is the minimum ratiqueement for a pixel with observed

attenuation to be classified as high-Z materialoThypotheses are used hdre:and

H. The former represents the class of non-high Z,ldkter represents the high-Z
class. For a pixel with 9 MeV X-ray attenuatifyf? = T, and ratioR, the probability

of that pixel belonging to clas$; is

P—PHT—1—05l1+ f(wﬂ 7.8
1 = P(H4|T) = . €r \/faR (7.8)

whereR,,,;, is the minimum ratio requirement for the observég®? to be high Z.
This probability is based on the assumption thattbise can be modeled as Gaussian.

The standard deviation of the ratigis obtained by

o= () ¢ () 79)

T, %1
whereT,*? andT,®? are the attenuations represented in equivaleckribss for high-

and low-energy X-ray pulses, respectively. The daath deviations of high- and low-

energy thickneséoy, o1,) are derived from the calibration data, taking iatecount the
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number of pulses used to form each pixel. The poitibaof hypothesisHo when

observing attenuation is thereforeP (Hy|T) = 1 — P(H,|T).

A high-Z probability image shows the probabilitiyeach pixel having a ratio
greater than its minimum ratio threshold. The cphad computing probability in
Equation (7.8) is different than the probabilRygy, z calculated in Chapter 4 where a
global minimum threshold ratio is used. In thatesathe computed probability is
independent of the observed attenuation. The aecisisolely based on the observed
ratio. From the discussions in Chapter 6, it isvaithat the lookup table method can
produce a more accurate prediction. Moreover, tleeliption can be more accurate
when information of the object’s background is pded. For two scenarios that
w, andw, represent the background being mid-Z and low-Zpeetvely,
P(H{|T,w,) > P(H,|T, w,)because the curve is based on mid-Z shielded abject
P(H,|T,w,) is obtained through layer separation, and lageasation will introduce

errors to the calculation of probability.

Fusion, clustering and masking

We apply hybrid clustering to the wavelet-fusedg®e. Fusing the high- and
low-energy images can provide a smoother imageewgriéserving sharp edges. The
wavelet used here is still “D6.” The wavelet leeabsen here is 3. The fusion rule for
both approximate and detail wavelets is “mean”, mmeathe output is the average of
the two coefficients. The fusion rule “mean” is sko over “maximum” because
“maximum” does not give an improved result over dhniginal two X-ray images. For
pixels belonging to mid-Z and low-Z regions, thevlenergy image will have greater
equivalent thickness, and the opposite is true picels of high Z regions. The
maximum rule will just replace pixels of low-z andd-Z regions in the high-energy
image with the values of their low-energy imagerdeyparts. In this case, the contrast
is actually depressed and nothing gets smoothed.

Hybrid clustering is an image segmentation methsdduto group pixels
within the same intensity level. Contiguous pixeigh similar intensities will form a
region or cluster. ldeally, each cluster represeittser an object or the background.
A region is used as a mask on the probability im&ggions with only insignificant
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percentage of high probability pixels will not bensidered high-Z regions. Masking
is on a region-by-region basis; if a significantaamt of pixels are classified as high-Z

pixels, the whole region causes an alarm.

Decision making

The algorithm for high-Z detection is summarizedhe flow chart in Figure
7.3. High energy and low energy images are botltgased by wavelet shrinkage
denoising. For the high-energy image, the minimatiorfor each pixel is calculated
based on the previous experimental data. The twoised images are used to obtain
the ratio image and, subsequently, the probabhititgge. In parallel, the unprocessed
X-ray images are fused by wavelet fusion to obtasmoother image for clustering.
Clustering is used to map the probability image decision making. Two kinds of
decision are being made. One is for pixels, andater is for the whole cluster
region. A pixel is a high-Z pixel iP; = 0.5. For each region, if more than 30 percent
of its pixels are classified as high Z, the whagion will be a high-Z region. The 30
percent criterion is chosen based on experimemtssifong signals, it is very likely
the case that 100 percent of the pixels in a regm@nhigh-Z pixels. For a heavily
shielded object, only about 30 percent can passthienum ratio requirement.

» LowEnergy Image: L
Data. N > gy Imag > DWT —»
Acquisition . Wavelet L,
"fusmn Shrinkage IDWT
High Energy Image: H » DWT |
¥ v
H’ L
A4 A4
Clustering Comparing
with training P ¥ ¥
£ = Ratio H'/L
A
> Compul.:l.ng Decision
Probability

Figure 7.3 Flowchart of the wavelet-based DE imaging syst¢lDWT=inverse
discrete wavelet transform)
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7.3 Experimental Results

Test for unshielded objects discrimination
The photos in Figure 7.4 show the setup for testimg performance in

differentiating non-shielded objects. From leftright, the objects are a 400 cc lead
cube, a 100 cc tungsten cube, a 100 cc lead cBbe;cland 100 cc of tin, and 150 cc
of steel. Only the first three objects are high-Atenials. The X-ray images are
unprocessed (a.2) and wavelet-denoised (a.3) mghgg X-ray images, respectively.
Edge artifacts can be seen in those X-ray images.Wavelet-denoised X-ray image
is blurred after processing. The three images lanso (b) are the unprocessed ratio
image (b.1), the thin-air, background-removed ratwage (b.2), and thin-air,
background-removed ratio image obtained from wasdaoised X-ray images (b.3).
The top image shows that the ratios of air areeexély high. Those unreasonably
high values are mostly caused by random scatteve.force the ratios in regions
thinner than a half-inch of copper to be zero téambthe bottom two images. A
salient difference between the processed (b.3uapdocessed (b.2) ratio maps is that
the image (b.3) is much smoother, especially orettges of the objects. The benefits
of applying wavelet denoising can be better illattd in Figure 7.4(c). Figure 7.4
(c.1) shows the high-Z probability image obtaineahf the ratios in Figure 7.4(b.2).
The image shown in Figure 7.4(c.2) is the high-@bability image obtained from the
wavelet-denoised X-ray images. All objects are gldbd, and the penetration is
good, the signal is strong and the uncertaintyatibris low. As a result, most of the
pixels have either very high probability or zer®lpability. In Figure 7.4 (c.1), the
edge artifacts caused several false positive pxelthe edge of the three non-high-Z
objects. The wavelet-denoised image in (c.2) does show the false positives

associated with the edge artifacts.
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Figure 7.4 (a) Top: photo image of setup. Middle: high-eneXgyay image. Bottom:
DWT denoised X-ray image. (b) Top: ratio image. el setting all the pixels in top
image to zero if that pixel's location has thickaédsss than half-inch of steel in top
image. Bottom: ratio image of wavelet-denoised ima@) Top: probability image
from unprocessed X-ray images. Bottom: probabilitwge from wavelet-processed
X-ray images.

Test for shielded objects discrimination

Figure 7.5 shows the test of shielded object diete¢photo of the target setup
is shown in Figure 7.4(a). Three objects are mldszhind 10 inches of steel. The two
on the left are high-Z objects: a 100 cc lead cutda 100 cc tungsten cube. A 100 cc

tin cube is placed next to them for possible fassitive tests. Bricks of lead are
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positioned on top of the steel plates. Figure @)shows the unprocessed high-energy
X-ray image, the experimental configuration. Figurd (b) is the noisy ratio image.
Based on that ratio image, we do not have any denfie about whether any high-Z
object is behind the steel. Also seen in this imagethe sawtooth-like artifacts on the
edges of the steel. Figure 7.5(c) shows the préibalmhage obtained from the ratio
image 7.5(b). The probability image is noisy. Thige artifacts caused the edges of
steel plates to appear to have high probability.
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Figure 7.5 (a) high-energy X-ray image of test configurat&own in Figure 7.7 (a).
(b) Ratio image (c) probability image. (d) Wavdidered high-energy X-ray image.
(e) Ratio image of wavelet-denoised images. (fpBbdity image.

Figure 7.5 (d) is the wavelet-denoised high-ené¢ggy image. It is too blurry
for X-ray inspection. However, this image is nabguced for visual inspection but for
material discrimination computation. Fig. 7.5 (épws the ratio image of the two
wavelet-denoised X-ray scans. The sawtooth effescemoothed by the wavelet
denoising. Figure 7.5(f) is the probability imager fthe filtered ratio image. A
significant difference between the probability m@&pand the probability map (c) is
that not only does the image (f) appear to be eedout also that all the regions of
non-high-Z objects do not produce high-probabiltixels. Because they are not



167

shielded by any non-high-Z object, the regionshef ead bricks appear to have very
high probability.

Fusion, clustering and masking

Figure7.6(c) shows the result of wavelet fusi@uomparing this result with the
original, unprocessed high-energy X-ray image shawfig. 7.6(b), the steel plate
regions are now smoother. This is the enhancedantlagt can be used for visual
inspection, together with the result of high-Z d&tn. A clustering algorithm is
applied on this fused image. Neighboring pixelshwdifferences within 1.25 inches of
copper equivalent thickness will be grouped togethéigure 7.6(d) is the clustered
fusion image. All subimages (regions) will be ladzkland each subimage will be used
as a mask for decision making.

Figure 7.7 illustrates the steps of masking. Titst §tage shows that the high-
Z image will be masked by the cluster map on thiobo for decision making. The
cluster map is a label image that assigns an integeach distinct region. Each color
in the cluster represents a number. The resultagking is shown in the second step.
The shape of the high-Z map is now in accordandh thie shapes of the clusters.
Pixels outside a high-Z cluster will be discardetijle the original non-high-Z pixels
in a high-Z cluster will be filled in. Overlayinpé¢ output of masking with the wavelet
fusion-enhanced image gives the final output. Tdusrlay image not only tells if

there is an alarm, but also tells the user whatatlp look for.

Comparing Wavelet De-noising with the Wiener filter

Figure 7.8 shows two probability images obtainexnf a pair of the Wiener
filter-processed X-ray images (left) and from arpai wavelet-denoised images
(right). The image in the middle is the result pplying a 5 by 5 median filter on the
first probability image. One high-Z object is sklietl by 10 inches of steel. Both cases
do not have a very strong signal of high Z becanfslkow X-ray penetration. The
result of the Wiener filter shows that edge effestth exist after the filtering. When
the median filter is applied to reduce the edgeat$f the signal from the high-Z

object is also weakened. Its wavelet-denoised @opatt, though it has a weaker
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signal for the object, has taken care of the edtjtacts by itself. By selecting a
suitable wavelet, we can obtain a smoother imdgewagh the signal is weaker.

100 120 140

Figure 7.6@) Experimental setup: Two high-Z objects and hea-high-Z objects are
shielded behind 10 inches of steel. (b) The highrgy image. (c) The result of
wavelet fusion. Comparing this image with (b), thecled steel plate region is much
smoother in this image. (d) The clustering resultapplying hybrid clustering to
image (c).
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Figure 7.7 First column: cluster map and high-Z map. Secasidron: the output of
masking on the top will be overlaid with the fusetage to create a high-Z alarm for
inspectors, shown in the last column.
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Figure 7.8 (a) Probability image obtained from a pair of W&erfilter-processed
thickness images, (b) the median-filtered imagé€adf and (c) the probability image
from a pair of DWT denoised thickness images.
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7.4 Conclusion

In this chapter, we introduced a wavelet—based cagmpr to enhance the
performance of a dual energy imaging system. luciey the amount of Poisson
noise, the false negative rate has significanthpged. Also, the false positives caused
by edge effects can be effectively removed. Bycilg a proper wavelet, we found
that wavelet domain noise reduction can be a vdfgcteve alternative for the
conventional Gaussian filter or Wiener filter.

Our algorithm in this chapter is a dual-action &agh. We separate the tasks
of enhancing image quality and the detection réte.found that we do not need to
enhance the detection rate by enhancing the qualiKray images to keep the edge
details. We choose a wavelet that creates blubtigrsmoother images after wavelet
denoising. This method can eliminate the falsenadacaused by artifacts.

A similar result can also be obtained from a Wiefilegr. While the Wiener
fillering on X-ray images can reduce the X-rayage noise and improve the
detection rate, it often needs to be combined withiphological filtering or median
filtering on the probability image to eliminate teelge effects that can lead to the
elimination of already weak object signal due taawhe shielding or low X-ray
penetration quality.

By taking advantage of having two images in a DEtay, we use wavelet
fusion to obtain a denoised image, which can lateuused for image segmentation.
There is no meaningful difference between a Widiltered X-ray image and wavelet
fused image. Our results show that there is a piateior applying a wavelet-based
approach in the application of dual energy imaging.

Chapter 7, in part, is adapted from the material appears in the Proceedings
of SPIE/IS&T (2010), Fu, Kenneth; Ranta, Dale; Gu&lark; Das, Pankaj “The
application of wavelet denoising in material disgnation system.” The author of this

dissertation is the primary investigator and autsfahis paper.
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Conclusion

The material discrimination function of cargo imagisystems is a vital
technology for national security. The ability toteld contraband material hidden
inside a cluttered cargo container can prevenetteg from happening. Although the
theory of using dual energy systems for materigtrimination is well developed, the

technology to build a practical system has stitlfady matured.

The key to realize such an imaging system is aligdignal and image
processing technology. With help from those fiettig, X-ray image can be enhanced,
and the detection rate of target materials canidgmeficantly improved. In this thesis,
we have demonstrated several novel methods forowimy the performance of such
systems. All those methods have given promisingllt®sHowever, more precise

algorithms are still needed to achieve an optinesction rate.

8.1 Achievements

For a single pixel in an X-ray image, the onlyoimhation we can obtain is the
intensity at the point. However, we have no waytafing how many layers of
materials are in the path that photons pass throliggrefore, the ratio of absorptions
from high and low energy scans cannot be the simglieator for screening out high
atomic number materials. The current proposed D&egys can only provide the
effective atomic number to the user but not really automatic threat detection

system. We have provided solutions for this inadegu

171
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The Poisson noise from the X-ray system will adccentainties to the
measured ratio. A model to calculate the probabitif a pixel being high Z is
proposed. Based on that model, we have developentadelgorithms to enhance the
signal and reduce the false detection rate.

An adaptive masking model that uses a modifiecbraatic thresholding
technique is a good approach to detect high Z middaterials in a small region.
Using such an approach, a threshold to determm@nbbability of triggering a threat
alarm is not needed, and at the same time, the &dsm rate is greatly reduced.

For more complicated scenarios, we need an dgorihat can do a more
precise job of region finding. We have developewa image segmentation approach
that has the advantages associated with leatleans clustering and seed growing, but
without encountering the disadvantages associatédtiiem. An approach that uses
region filling to detect shielded objects also basn developed. The detected objects
can be used as masks for the adaptive maskingithlgorWe can then use those
objects for further region analysis.

Different from the adaptive masking approach fireds high atomic number
materials on a region by region basis, a pixel belpanalysis algorithm is also
proposed. For a single pixel for which an equivaldnckness is calculated, the
theoretical minimum ratio of high- and low-energgass can be calculated. This
minimum value is the theoretical threshold thatxalphas to pass to be called high Z.
False alarms are eliminated if the number of highixgls within a region is less than

a preset threshold.

One significant improvement to the system is thet separation approach. It
provides additional information for making judgm&nflthough the method has not
been perfected yet due to the limited data we hthee experimental results show a
promising future of this approach. Future work viditus on perfecting this roach.

Lastly, the applicability of wavelet-based methbds been tested. Ours is one

of the few works that apply wavelets to a secunigpection system, especially in
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dual-energy imaging. We have shown that wavelebdéry and fusion can be a good

substitute of other traditional approaches.

8.2 Future work

We have not exploited all possible ways to impréive performance of the
system. The first, and probably the most importask is noise reduction of the X-ray
image. In addition to the Wiener filter and wavalenoising, there are still different
approaches such as neural network or independenparzent analysis (ICA). The
approach of adaptive wavelet coefficient threshmjdbased on regional statistical

properties is also worth trying.

For shielded objects, layer subtraction is a goa§t t@ reconstruct the ratio of
absorptions of objects in each layer. However, 32 information of the container
will probably provide a more accurate result. Reo-dimensional images, the best
way to do layer subtraction is to subtract the khéss of the background from the
thickness of the foreground. That relies on a goathod of image clustering, which
still has its limits. In addition to the region grimg-based approach for image
segmentation, we believe that a combination of red\bfferent approaches will give

us an optimal performance.

The data we have is from a system that still hasaréor improvements. The
improvement of hardware includes control of scattgrstabilizing the system, and
enhancing the penetration quality. Once the harewside is improved, more

sophisticated algorithms can be developed.

8.3 Closing Remarks

The technology of dual-energy imaging for cargo enat discrimination is
still in its fledgling state. We are doing the péeming work of finding the solutions

for some fundamental problems. Still, there ardlehges waiting to be met.
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On the Christmas Eve of 2009mar Farouk Abdulmutallab made the headlines.
He successfully passed the security check poith@tSchiphol Airport, Amsterdamyb
sewing the explosive material knownRETN (pentaerythritol tetranitrate, or pentrite) in
his underwear, attempting to detonate the bombcdesn Northwest Airlines' Flight
253. The stories such as Mxbdulmutallab’s havedemonstrated the importance of a
material discrimination system. Although our work this thesis was based on
detecting radioactive materials, similar ideas lbarapplied to explosive detection for
airport security as well.

We hope our work can provide some ideas to readleosare also working in
this field and want to help further fortify our ratal security. We are confident that
the current challenges will be solved in the nedure and this technology will keep

evolving in advance of any terrorist strategies.



Appendix

Useful Matlab Functions

A. For Noise Reduction
Al. Wiener filter

The “wiener2” function in Matlab was implementectarding to Eq.(3.24) to
Eq.(3.27). We use that for high and low energy iesagoise reduction. Image | is

filtered by an M- by N Wiener filter by typing
J = wiener2(I,[M NJ]) ;

The default values for M and N are 3 and 3. Thélaigd low energy images denoted
H and L respectively and their filtered version &d L1 is obtained by

H1 = wiener2(H) ;

L1 = wiener2(L)
Ratio image R is then H1./L1. The operation “./”ans point by point division.

A2. Median filter

The function for median filter in Matlab is “ mek2.” The output image J is
obtained by

J = medfilt2(1,[M NJ)

where | is the input image and M and N defineddilze of the filter window.
A3. Wavelet shrinkage
The wavelet denoising in this thesis was donékyfdllowing way:

First, compute the default values for denoisingibyng the command “ddencmp”

[thr,sorh,keepapp,crit] = ddencmp(‘den’,'wp’,x);
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The first parameter ‘den’ indicates the operatiwant to do is de-noising.
The second parameter is the wavelet approach. Bgts®y ‘wp’in stead of ‘wv’, we
are using the wavelet packet, in which both appnate and detailed are used for
decomposition. The third argument x is the imagee Dutput of the function will
return the global threshold ‘thr’, the method ofegholding, “sorh” ="s” for soft
threshodling and “h” for hard thresholding respealif. The output keepapp will be
either 1 or 0. When it equals one, the approxinmatall be kept. This is the case
when wavelet package was chosen. The last outpitit="sure” if “wv” is used and
equals “threshold” when “wp” is selected.

Then, the denoising is done by using the wpdenoonpmand, which is a
function for wavelet packet denoising and compsdUsing the parameters obtained

above and other inputs, we have

xd = wpdencmp(x,sorh,level,wave,crit,thr,keepapp);

where X is the image, level is the level of decosifpan, wave is the wavelet use. In
our case, level=3, and wave="db5’.
B. Morphological operations for masking

The matlab command for dilation, erosion, openiramd closing are
“imdilate”, “imerode”, ‘imopen” and “imclose”. Thewll have the same structure.
First, a structuring element needs to be definadthe case that a 3 by 3 square
structuring element is used for those operatioresshave a structuring element str to

be

str=strel( “square ", 3) ;

Then, a dilation operation on an image | will baiaged by
J=imdilate(l, str);

It is the same thing for all other morphologicakaogtions. To find the background of

an object, we can simply use the following method:
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[L M]=bwlabel(l);
mask=zeros(size(L));
mask(L==i)=1;
maskl1=imdilate(mask,str);

background=mask1-mask;

here, on a binary image |, each distinct regioassigned a label by using command
“bwlabel”, the value of the labels are stored im #rray L, and output M is a scalar,
giving the total number of regions. A new image $kiais initiated by setting all of

its pixels to zero. To dilate the object i, we gasa value 1 to mask on the pixels that
L equals i. After that, its dilated version maslgl dreated by using the imdilate
function. The extended area of the object is regibithe object’'s background. By

having the binary image of the background regioe, ave able to analyze the
properties of the background, i.e. ratio, thicknesgs For example, the background

thickness of object number 5 will be

[L M]=bwlabel(l);

mask=zeros(size(L));

mask(L==5)=1;

maskl1=imdilate(mask,str);
background=mask1-mask;

BG_thickness= background.*High_energy;
BG_thickness2= background.*Low_energy;

Ave_ BG_thickness= mean(nonzero(BG_thickness));

Ave_BG_thickness2= mean(nonzero(BG _thickness2));

Therefore, layer separation can be achieved by
New_object_thickness=mask.*High_energy-Ave_ BG_thikness

In the line above, mask.*High_energy gives a thedanimage that provides only the
information on the object region, which is defineg mask. Then each pixel in the

image is subtracted by an value, which is the aeeraackground thickness we
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obtained from the previous line above. Similarlye tadjusted low-energy thickness

will be

New_object_thickness2=mask.*Low_energy-Ave_BG _thic kness;
And the new ratio in that region is obtained by
R_new=New_object_thickness./New_object_thickness2.

C. Clustering algorithm for segmentation

The following code is used to perform the clustgrmethod in chapter 5.
Three inputs are needed: radius of the filter wimdad,” high energy image being

filtered “hi”, and step size “step.” Five filterd qo g4 and Q are defined. Output is |I.

for i=rd+1:r-rd
for j=rd+1:c-rd
gl=hi(i:i+rd,j-rd:j);
glv=mean(nonzeros(ql))*100/2.54/step;
g2=hi(i-rd:i,j-rd:j);
g2v=mean(nonzeros(q2))*100/2.54/step;
g3=hi(i-rd:i,j:j+rd);
g3v=mean(nonzeros(g3))*100/2.54/step;
g4=hi(i:i+rd,j:j+rd);
g4v=mean(nonzeros(q4))*100/2.54/step;
gv=[qlv g2v q3v g4v];
Q=hi(i-rd:i+rd,j-rd:j+rd);
Qv=round(mean(nonzeros(Q))*100/2.54/step);
if .9<hi(i,j)*100/2.54/step/Qv &
hi(i,j)*100/2.54/step/Qv<1.1
temp(i.j)=Qv;
else
dif=abs(hi(i,j)*100/2.54/step-qv)
[y,1]=min(dif);
temp(i,j)=round(qv(l));
end
end
end
I=temp; I=I+qb;
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