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Cortical bone laminar analysis reveals increased midcortical and 
periosteal porosity in type 2 diabetic postmenopausal women 
with history of fragility fractures compared to fracture-free 
diabetics

U. Heilmeier1, K. Cheng2, C. Pasco2, R. Parrish2, J. Nirody3, J. M. Patsch1,4, C. A. Zhang5, 
G. B. Joseph1, A. J. Burghardt1, A. V. Schwartz5, T. M. Link1, G. Kazakia1
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Imaging, University of California San Francisco, 185 Berry Street, San Francisco, CA 94158, USA

2Department of Bioengineering, University of California Berkeley, 306 Stanley Hall, Berkeley, CA 
94720, USA

3Biophysics Graduate Group, University of California Berkeley, 574 Stanley Hall, MC 3220, 
Berkeley, CA 94720, USA

4Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, 
Waehringer Guertel 18-20, 1090 Vienna, Austria

5Department of Epidemiology and Biostatistics, University of California San Francisco, 550 16th 
Street, San Francisco, CA 94158, USA

Abstract

Summary—We investigated the characteristics and spatial distribution of cortical bone pores in 

postmenopausal women with type 2 diabetes (T2D). High porosity in the midcortical and 

periosteal layers in T2D subjects with fragility fractures suggests that these cortical zones might 

be particularly susceptible to T2D-induced toxicity and may reflect cortical microangiopathy.

Introduction—Elevated cortical porosity is regarded as one of the main contributors to the high 

skeletal fragility in T2D. However, to date, it remains unclear if diabetic cortical porosity results 

from vascular cortical changes or from an expansion in bone marrow space. Here, we used a novel 

cortical laminar analysis technique to investigate the characteristics and spatial radial distribution 

of cortical pores in a T2D group with prior history of fragility fractures (DMFx, assigned high-risk 

group) and a fracture-free T2D group (DM, assigned low-risk group) and to compare their results 

to non-diabetic controls with (Fx) and without fragility fractures (Co).

Methods—Eighty postmenopausal women (n = 20/group) underwent high-resolution peripheral 

quantitative computed tomography (HR-pQCT) of the distal tibia and radius. Cortical bone was 

divided into three layers of equal width including an endosteal, midcortical, and periosteal layer. 

Within each layer, total pore area (TPA), total pore number (TPN), and average pore area (APA) 
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were calculated. Statistical analysis employed Mann-Whitney tests and ANOVA with post hoc 

tests.

Results—Compared to the DM group, DMFx subjects exhibited +90 to +365 % elevated global 

porosity (p=0.001). Cortical laminar analysis revealed that this increased porosity was for both 

skeletal sites confined to the midcortical layer, followed by the periosteal layer (midcortical 

+1327 % TPA, p≤0.001, periosteal +634 % TPA, p=0.002), and was associated in both layers and 

skeletal sites with high TPN (+430 % TPN, p<0.001) and high APA (+71.5 % APA, p<0.001).

Conclusion—High porosity in the midcortical and periosteal layers in the high-risk T2D group 

suggests that these cortical zones might be particularly susceptible to T2D-induced toxicity and 

may reflect cortical microangiopathy.

Keywords

Cortical bone laminar analysis; Cortical pore distribution; Cortical pore number; Cortical porosity; 
Diabetic bone disease; Type 2 diabetes

Introduction

Cortical bone is a major component of bone tissue that accounts for up to 80 % of the human 

skeleton’s weight. Several studies have demonstrated that bone’s mechanical competence 

and fracture resistance depend on cortical bone microstructural properties such as cortical 

porosity, crystallinity, and presence/absence of microcracks [1, 2]. In particular, cortical 

bone porosity has been found to contribute substantially to bone strength, stiffness, and 

fracture toughness [3–5]. In human cadaveric studies, differences in cortical porosity 

accounted for about 75 % of the observed age-related reduction in bone strength [6]. 

Similarly, cortical porosity explained up to 40 % of the variance in fracture toughness in 

human tibial bone most likely by reducing bone net loading area and therefore reducing the 

area for microcrack propagation [7].

Due to its relevance for bone fragility, cortical porosity has recently been studied as a 

potential predictor of fracture. In vivo studies have measured cortical porosity via high-

resolution peripheral quantitative computed tomography (HR-pQCT) and focused on those 

diseased populations, in which conventional methods of fracture risk assessment such as 

dual X-ray absorptiometry (DXA) or the WHO-fracture risk assessment tool (FRAX) may 

underestimate the true fracture risk. Their findings demonstrated that cortical porosity of the 

compact-appearing cortex predicted prevalent forearm fractures in osteopenic 

postmenopausal women independent of areal bone mineral density (aBMD) and WHO-

FRAX score [8]. In addition, recent intervention studies reported that pathological cortical 

porosity and its associated strength deficits are per se reversible by pharmacological 

treatment [9, 10]. These results indicate that cortical porosity may be an important target for 

treatment of bone fragility [11] and a promising radiologic endpoint for randomized 

controlled trials.

To date, in vivo HR-pQCT studies have not investigated the spatial distribution of cortical 

porosity within the cortex although cortical pores have been shown to be heterogeneously 

distributed throughout the cortex in early micrometer and videodensitometry studies [12, 
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13]. This is somewhat surprising as spatial pore distribution is an important co-determinant 

of bone strength [14], and understanding cortical porosity distribution can help generate 

hypotheses about the biological mechanisms that drive cortical porosity. Potential 

mechanisms include pore space enlargement by expansion of the marrow cavity, expansion 

of the vascular network in the cortex, or both. Within the compact cortex, formation of large 

cortical pores has been attributed to clustering of osteons and merging of Haversian canals 

[15]. At the endocortical border, “trabecularization” or marrow space expansion is 

hypothesized to drive observed increases in cortical porosity [16]. Multiple mechanisms of 

pore space expansion likely are at play in diabetic bone disease, and spatial distribution of 

porosity can shed light on which if these mechanisms is driving pathologic cortical porosity.

Spatial distribution assessment via in vivo methods such as HR-pQCT has been hampered 

by the lack of appropriate automated software tools. With the development of the HR-pQCT-

based cortical laminar analysis technique [17], it is now possible to assess the spatial 

distribution of cortical pores on the order of 100 μm in diameter or larger within three 

concentric layers of the cortex. Here, we applied this novel technique to the cortical bone of 

type 2 diabetic (T2D) patients with history of fragility fractures who have been found to 

show increased amounts of cortical porosity [18, 19]. Our long-term goal is to better 

understand biological drivers and mechanical influences of cortical porosity in T2D. The 

primary goal of this study was to assess the nature and spatial distribution of cortical 

porosity by determining cortical pore number, size, and radial distribution within endosteal, 

midcortical, and periosteal layers of cortical bone in T2D postmenopausal women with 

history of fragility fractures (DMFx, high-risk fracture group [20]) and to compare them 

with T2D postmenopausal women without fractures (DM, low-risk fracture group). Our 

secondary goal was to assess these metrics in non-diabetic postmenopausal women with (Fx) 

and without history of fragility fractures (Co) and to compare our results to previously 

characterized cohorts.

Material and methods

Subjects

Eighty postmenopausal women were enrolled in this cross-sectional study as described in 

detail previously [18]. The study was HIPAA compliant, approved by the UCSF Committee 

on Human Research, and written informed content was given by all study participants prior 

to enrolment. Subjects were recruited into one of the following four study groups: (1) 

healthy controls, i.e., non-diabetic subjects without any history of fragility fracture (Co, 

n=20); (2) healthy, nondiabetic controls with a prior history of fragility fractures (Fx, n=20); 

(3) fracture-free T2D women (DM, n=20, assigned low-fracture risk group); and (4) T2D 

women with a positive history of fragility fractures after the onset of diabetes (DMFx, n=20, 

assigned high-fracture risk group).

Inclusion and exclusion criteria for this study have been listed in detail previously [18, 20]. 

To summarize, we only included postmenopausal women (aged 50–75 years, BMI between 

18 and 37 kg/m2) that were mobile and did not report any medical condition or medication 

use with known impact on bone metabolism [20]. Disqualifying medications included, e.g., 

the chronic (>6 months) intake of estrogens, adrenal or anabolic steroids, antacids, 
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anticoagulants, anticonvulsants, pharmacological doses of vitamin A, fluorides, 

bisphosphonates, calcitonin, tamoxifen, parathyroid hormone (PTH), or thiazolidinediones. 

For diabetics, diagnosis of T2D underlied the American Diabetes Association criteria [21]. 

In addition, T2D individuals had to be on antidiabetic treatment by oral therapies and/or 

insulin for a minimum of 3 years. Subjects with fragility fractures were only enrolled if their 

fracture met the criteria for a fragility fracture defined as low-energy fracture sustained 

during a fall from standing height or less. Moreover, fractures had to be remote (as verified 

by history, radiographs, and by spinal MRI screening for acute occult fractures) [20]. 

Subjects presenting with fractures of other origin (such as pathologic fractures through 

tumors, tumor-like lesions, or sustained from a high-energy trauma) were excluded from the 

study.

Laboratory analyses

Blood samples were obtained between 8 and 11 a.m. from all subjects after an overnight 

fast. Blood was allowed to clot in an upright position for 40 min and then centrifuged at 

2500 rpm for 15 min within 1 h of collection. Serum was subsequently transferred to 1.5-mL 

plastic screw cap vials and immediately sent for basic blood workup. Remaining serum 

aliquots were rapidly frozen and stored at −70 °C until further analysis. At Quest 

Diagnostics, concentrations of blood glucose (mg/dL), HbA1c (%), parathyroid hormone 

(PTH) (pg/mL), total 25-hydroxyvitamin D (ng/mL), and serum creatinine (mg/dL) were 

determined. To estimate glomerular filtration rate (eGRF), the Modification of Diet in Renal 

Disease equation (MDRD) was applied and glomerular filtration rates were corrected 

accordingly for race in African- American women [22, 23].

HR-pQCT imaging

The distal tibia and distal radius of all patients were scanned using the same clinical HR-

pQCT system manufactured by Scanco Medical AG (XtremeCT, Scanco Medical AG, 

Brüttisellen, Switzerland). Although the ultradistal scan sites have been established as the 

standard HR-pQCT acquisition sites for trabecular analysis [24, 25], the distal scan sites 

cover a portion of the diaphysis with a relatively higher ratio of cortical bone to trabecular 

bone. As the goal of this present study was to analyze the laminar pore distribution within 

the cortex, we therefore focused HR-pQCT imaging on these distal scan sites. A well-

established in vivo standard imaging protocol with 60 kVP, 900 mA, 100-ms integration 

time, and 126-mm field of view as imaging parameters was used [26, 27]. In general, the 

tibia and the radius of the non-dominant body side were scanned. In case the patient reported 

a history of fracture at the non-dominant upper or lower extremity, the contralateral tibia or 

radius was imaged, respectively. For the scans, the patient’s extremity was immobilized in a 

carbon fiber cast and anchored in the scanner to minimize motion. A single anteroposterior 

scout radiograph was obtained to allow correct positioning of the tomographic scan volume. 

A reference line was first placed along the tibial and radial midjoint, and a scan region was 

identified from the scout view using a fixed offset of 37.5 mm proximal to the reference line 

at the tibia and a fixed offset of 24.5 mm for the radius [18]. For each skeletal site, a total 

scan volume encompassing 9.02 mm in length (110 slices) proximal from the offset was then 

acquired. Per scan, 750 projections were obtained and the effective patient dose was 

estimated at 3 μSv. Average time per scan was 2.8 min. Images were reconstructed to a 
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1536×1536 matrix, allowing for a final nominal resolution of 82 μm isotropic voxels. To 

calculate densitometric bone parameters, image attenuation values were calibrated against 

the attenuation values derived from a standardized hydroxyapatite (HA) phantom that was 

imaged daily on the scanner for quality assurance. To account for potential image motion, all 

acquired scans were visually scored for presence and severity of motion artifacts using the 

manufacturer’s artifact grading scheme [28]. Only scans with image quality scores of 1 to 3 

were utilized for further image analysis. In total, 79 out of 80 tibia scans and 74 of 80 radius 

scans fulfilled the image quality criteria and were available for image analysis.

Image analysis

Cortical segmentation—For both skeletal sites, initial contours of the cortical bone 

compartment were created using a semi-automated three-step imaging processing chain, as 

described in detail previously by Burghardt et al. [29]. In a first step, a chaperoned iterative 

autocontouring process was employed to identify the periosteal and endosteal cortical 

margins from adjacent soft tissue and cancellous bone, respectively. The autocontours were 

then visually checked for accuracy by an experienced radiologist (JMP), and minor local 

corrections were made, if necessary. In a second step, the resolved pores within the cortical 

bone compartment were extracted (intracortical porosity segmentation) by using a 

combination of 2D connectivity filter and hysteresis region growing algorithm [29]. This 

method excludes transcortical foramina or surface erosions, as well as artifactual void due to 

endosteal or periosteal surface roughness. In the last step, the segmented cortical 

compartment and the intracortical porosity segmentation mask were digitally merged to 

create a final, refined mask of the cortical compartment. A customized image processing 

language (IPL v.506a-ucsf, Scanco Medical AG) with in-house functionality was used to 

carry out cortical segmentation.

Cortical bone laminar analysis—After cortical segmentation, the refined cortex was 

subdivided into three concentric regions of equal width corresponding to the endosteal, 

midcortical, and periosteal laminar layers as described in detail elsewhere [17, 30]. To attain 

this division, the inner and outer borders of the cortical compartment were first discretized. 

Next, midcortical boundaries were generated at points one-third and two-thirds between the 

endosteal and periosteal boundaries. Continuous boundaries were formed by a series of 

dilations followed by a thinning routine. To determine the location of pore skeletons for 

assignment to layers, a skeletonization procedure was utilized to deconstruct the pore 

network into individual elements [31]. Based on the location of its pore skeleton, each entire 

pore was then assigned to a laminar layer on a slice-by-slice basis. We refer the reader to 

Nirody et al. for further details on the division of the cortex and the assignment of pores to 

laminar layers [17]. Laminar analysis was performed using MATLAB (R2012a Student 

Version, The MathWorks, Inc.).

Quantification of cortical bone laminar analysis metrics—For each skeletal site, 

three layer-by-layer metrics were computed to characterize cortical porosity in more detail: 

total pore area (TPA, mm2/mm2), total pore number (TPN, mm−2), and average pore area 

(APA, mm2). In each slice of the analyzed volume, TPA was calculated as the sum of all 

pore areas assigned to a specific layer. TPN was calculated as the total number of pores 
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within each layer. Both TPA and TPN values were normalized by the area of each layer to 

account for different layer areas. APA was calculated as the mean pore area within each 

layer. All metrics are reported as means across all slices in the analyzed volume. Interscan 

reproducibilities of laminar cortical analysis metrics were assessed from two repeat 

acquisitions in 15 female subjects as described previously [17]. The computed root-mean-

square coefficients (RMS-CV) ranged from 3.04 to 3.94 % for the midcortical TPN, TPA, 

and APA metrics, from 4.37 to 6.09 % for the periosteal metrics, and from 5.77 to 9.35 % 

for the endosteal TPN, TPA, and APA parameters [17].

Statistical analysis

The distribution of each variable was explored via visualization of histograms and Shapiro-

Wilk tests. Intergroup differences in demographic and metabolic variables and differences in 

laminar metrics within each group were assessed using oneway analysis of variance 

(ANOVA) with subsequent post hoc Tukey-Kramer tests, independent t-tests, or Pearson’s 

chisquared test as appropriate. For our primary comparison, we investigated laminar analysis 

metrics in the DMFx and DM groups via Mann-Whitney U tests or independent t-tests, 

respectively. For our secondary goals, laminar metrics were compared between Co and Fx 

subjects and Co and DM subjects using one-way ANOVAwith subsequent Tukey post hoc 

tests. To account for the slight difference in racial distribution between Co, DM, and Fx 

groups, we adjusted the ANOVA in these comparisons for race. Additional adjustment for 

age was employed in the Co-Fx comparison, as Fx patients were significantly older than 

controls. All analyses were performed using IBM SPSS® Statistics 20.0 (IBM, Armonk, 

NY) and STATA 11 software (StataCorp LP, College Station, TX, USA). Statistical 

significance was defined as p<0.05.

Results

Subject characteristics

As evident from Table 1, DMFx and DM groups exhibited similar demographic and 

anthropometric characteristics (age p=0.117, BMI p=0.838, and racial composition 

p=0.667). Both diabetic groups (DMFx and DM) showed similar levels of moderate to 

poorglycemic control (HbA1c>7 % p=0.999, fasting blood glucose levels>126 ng/mL 

p=0.809) and comparable levels of kidney function (eGFR p=0.465) and of bone regulating 

hormones such as PTH (p=0.962) or total 25-hydroxyvitamin D (p=0.375). The main 

difference between DMFx and DM subjects consisted in their diabetes duration with the 

DMFx group suffering for a significantly longer period of T2D compared to the DM group 

(DM 7.6 ±3.1 years; DMFx 13.3±8.8 years, p=0.012) [18]. With respect to the non-diabetic 

groups, control subjects (Co) were significantly younger than Fx patients (p=0.001) and 

exhibited lower total serum 25-hydroxyvitamin D levels than Fx subjects (p=0.003) but also 

showed less supplementary vitamin D intake upon chart review [18]. All other baseline 

characteristics were comparable among these two non-diabetic groups. Across both fracture 

groups (DMFx and Fx), we observed similar rates, sites, and ages of fragility fractures: 

overall, 55 skeletal fragility fractures were sustained in both groups. In both groups, 

fractures of any skeletal site were included. A detailed breakdown of the skeletal sites can be 

found elsewhere [18]. On average, subjects of the DMFx group had suffered their latest 
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fragility fracture 3.1±2.7 years ago, while participants of the Fx group had a mean fracture-

free interval prior to study enrolment of about 3.3 ± 3.6 years (independent t-tests; p = 

0.837). In each group, the fragility fractures were remote (>11 months old, Fx n = 16, DMFx 

n =17), and none of the fragility fractures was sustained less than 5 months prior to the 

examination date. On spinal MRI screening, no occult acute vertebral fracture was detected 

in any of the four study groups [20].

Overall porosity parameters

When looking at the overall amount of porosity (global cortical porosity) in the distal tibia 

and radius cortex, we observed as in our original study [18] that DMFx subjects had 

significantly elevated global cortical porosity (tibia + 87.9 %, p=0.011; radius + 365.1 %, 

p<0.0001), larger pore volume (tibia + 95.3 %, p=0.020; radius +370.4 %, p<0.0001), and a 

higher variability in pore size (tibia + 19.3 %, p=0.019; radius +36.0 %, p=0.035) compared 

to fracture-free diabetics (DM) [18]. Diabetic subjects without fractures (DM) showed the 

lowest means in global cortical porosity of all four groups, but differences compared to 

control subjects were not significant (p = 0.210) nor were comparisons between unfractured 

(Co) and fractured non-diabetic controls (Fx) (p=0.310) [18].

Spatial pore distribution between groups

Results regarding the spatial cortical pore distribution are summarized in Tables 2 and 3 and 

are visually depicted for the DMFx and DM groups in Fig. 2.

When evaluating the radial distribution of pores within the tibial cortex, we observed that 

DMFx subjects demonstrated the greatest relative differences in midcortical and periosteal 

TPA, TPN, and APA compared to DM subjects. DMFx subjects exhibited up to 3-fold 

higher porosity in the midcortical layer (+271 % TPA in DMFx vs DM, p=0.001) and up to 

2-fold higher porosity in the periosteal layer compared to DM subjects (+123 % TPA in 

DMFx vs DM, p=0.028). The endosteal layer showed comparable levels of TPA among both 

groups. High midcortical and periosteal porosity in DMFx patients was associated with 

higher total pore numbers (+121.7 % TPN, p=0.005 and +83.3 % TPN, p=0.033, 

respectively) as well as higher average pore sizes (+39.0 % APA, p = 0.007 and +18.3 % 

APA p = 0.044, respectively) compared to DM patients.

When looking at the distribution of pores within the cortex at the distal radius, we observed

—consistent with the results at the tibia—that the greatest differences in TPA, TPN, and 

APA between DMFx and DM subjects occurred at the midcortical layer, followed by the 

periosteal layer (Table 3). Interestingly, the results were even more pronounced at the distal 

radius than at the distal tibia. While at the distal tibia we observed a ~3-fold higher porosity 

(TPA) in the midcortical layer in DMFx vs DM subjects and a ~2-fold higher TPA in the 

periosteal layer in DMFx vs DM subjects, at the distal radius, we detected a ~14-fold higher 

TPA in the midcortical layer and a ~7-fold higher TPA in the periosteal layer in the DMFx 

group (see Table 3; +1327 % midcortical TPA in DMFx vs DM in distal radius, p<0.001; 

+ 634 % periosteal TPA in DMFx vs DM in distal radius, p=0.002). We also noticed that the 

relative difference in cortical porosity by layer seemed to be factored upwards by three to 

five times in the distal radius, but in consistent percentage relative to the tibia. This resulted 
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in p values for almost all comparisons between DMFx and DM groups at the distal radius 

that were even more significant than at the distal tibia. Comparison of laminar metrics 

among the non-diabetic groups (Co vs Fx) and among the non-fractured groups (Co vs DM) 

did not yield any significant differences at either of the two skeletal sites.

Spatial pore distribution within each group

For each skeletal site, spatial pore distributions within each group are visualized in Fig. 1.

With respect to the distal tibial cortex, in all four groups, TPA, TPN, and APAwere high in 

the endosteal layer, lower in the midcortical subregion, and lowest in the periosteal 

subregion, generating a transcortical gradient of decreasing porosity, pore number, and size 

from the endosteum to the periosteum. Within this transcortical tibial gradient, differences 

between endosteal and periosteal values of porosity, pore number, and size were statistically 

significant within each group, with the exception of APA in the controls that showed a trend 

toward significance between endosteal and periosteal layers (endo APA vs peri APA, 

p=0.063). TPA values were 2.5 to 5.6-fold higher in the endosteal tibial layer compared to 

the periosteal tibial layer across all four groups. TPN values were 2.3 to 4.3-fold higher in 

the endosteal tibial layer compared to the periosteal tibial layer across all four groups.

When looking at the spatial pore distribution for the distal radius within each group we 

found, consistent with our tibia results, that the porosity formed a transcortical gradient with 

the highest TPA, TPN, and APA values in the endosteal layer and the lowest values in the 

periosteal layer. Moreover, we again observed a proportional scaling factor of the layer-wise 

porosity of the radius relative to the tibia. While at the tibia TPN was about 2.3 to 4.3 times 

higher in the endosteal vs periosteal layer across groups, at the radius, TPN was about 4.5 to 

9.4 times higher in the endosteal compared to the periosteal layer (p<0.001).

Discussion

In this study, we aimed to investigate the spatial distribution of cortical pores at the tibia and 

radius in type 2 diabetic postmenopausal women with prior history of fragility fractures 

(DMFx, assigned high-risk group) and a fracture-free T2D group (DM, assigned low-risk 

group) and to compare their results to non-diabetic controls with (Fx) and without fragility 

fractures (Co) in order to better understand potential biological drivers and mechanical 

influences of T2D on cortical bone.

Our most striking finding was that at both skeletal sites, cortical porosity showed a different 

spatial distribution throughout the cortex depending on whether we examined the cortex of 

high-risk (DMFx) or low-risk T2D women (DM group). Compared to the low-risk T2D 

group, the high-risk fracture T2D group demonstrated an up to 14-fold increase in cortical 

porosity that was concentrated in the midcortical layer, followed by a moderate increase in 

porosity in the periosteal layer. Interestingly, the endosteal cortical layers-although showing 

the highest absolute levels of porosity across all groups-exhibited comparable amounts of 

cortical porosity in both diabetic groups in the tibia. From a bone biomechanical perspective, 

our results are in line with the observation of Burr et al. who stressed the impact of pore 

distribution for bone strength: pores located closer to the marrow cavity had a less 
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detrimental effect on bone mechanical properties than those located near the periosteal 

surface [14]. Given that cortical fractures have shown to start at microcracks located near 

increased cortical porosity [32] and that bending stresses are at maximum at the periosteal 

surfaces [33], the high preferential midcortical and periosteal distribution of pores in our 

high-risk T2D group could explain the higher skeletal fragility that was prevalent in this 

diabetic group.

Although the relative difference in cortical porosity was highest in the midcortical and 

periosteal layer between DMFx and DM groups, we also observed within each cohort and 

for both skeletal sites a transcortical porosity gradient, with the greatest porosity being 

exhibited in the endosteal layer. Such a gradient of cortical porosity is in good agreement 

with the existing literature [14] and is commonly for the most part explained as a result of 

bone aging and the so-called age-related cortical drift [34]: while young individuals’ cortical 

porosity tends to be homogenously distributed throughout the cortex, aging (beyond the age 

of 40 years) leads to bone resorption mainly along the endocortical surface resulting in 

increased endocortical porosity [14]. At the same time, some bone is compensatorily 

deposited at the periosteal boundary, constitutively resulting in a relative low periosteal 

porosity (compared to endosteal layer) and leading to an increase in bone diameter. The 

transcortial gradient that we observed in all of our subjects (who all were postmenopausal 

women of at least 55 years or older) might therefore represent the bone microarchitectural 

snapshot-equivalent of these changes. If and how this increased endosteal porosity also 

contributes to fracture initiation is to date not clear. The fact that endosteal porosity was 

consistently greatest across all groups, even in the healthy control group makes an 

involvement in fracture initiation less likely. However, from a microstructural point of view, 

studies have shown that an increase in osteonal density goes along with a decline in fracture 

toughness, namely a decline in microcrack initation toughness and microcrack growth 

toughness [35, 36]. In addition, recent experimental evidence suggests that cortical fractures 

initiate particularly at microcracks that are located near elevated cortical porosity [32]. The 

higher number and size of cortical pores that we observed in the endosteal layer may 

therefore facilitate fracture initiation. However, future studies are needed to investigate and 

validate these hypotheses in vivo.

When comparing our results to the current literature, we found that different conditions 

affecting bone metabolism were linked to different spatial cortical pore distribution patterns. 

In a longitudinal study of osteopenic women, we observed that cortical porosity increased 

exclusively in the endosteal layer [37]. In another study examining the effect of disuse on 

bone, we found a longitudinal increase in cortical porosity uniformly throughout the cortex 

[38]. In contrast, the results of a recent cross-sectional study by Nirody et al. using the same 

layer analysis technique indicated that age-related increases in porosity are most extreme in 

the midcortical layer [17].

In synopsis, these data give cause to hypothesize that the different patterns of pore 

distribution that we observed in different diseases may be reflective of unique underlying 

biological mechanisms.
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Although our study was focused on T2D, it is interesting that we also observed—similar to 

Nirody et al. [17]—the highest increase in cortical porosity in the midcortical layer in our 

high-risk T2D group when compared to the low-risk T2D group. From a clinical perspective, 

our high-risk DMFx subjects were slightly but not significantly older than the low-risk DM 

participants. Both groups showed similar poor glycemic control with an HbA1c in the range 

of 7.9 %. However, DMFx subjects had been suffering from T2D for a significantly longer 

time than DM individuals, making these DMFx individuals exposed for an average of 13 

years to the detrimental effects of prolonged diabetic hyperglycemia [18]. As T2D is 

considered to cause accelerated body aging [39], this increased midcortical porosity in 

DMFx patients may be in part attributable to an accelerated bone aging, a phenomenon that 

we have already observed in this specific cohort at other skeletal sites such as proximal 

femur [20] and the radius [18].

Unlike Nirody et al. [17], we observed in addition to the pronounced increase in midcortical 

porosity also a less pronounced but still moderate increase in periosteal porosity at both 

skeletal sites in the DMFx group. The mechanisms underlying this increased porosity in the 

outer two thirds of the cortex of these patients are to date not known. Potential explanations 

could involve T2D-induced changes in bone’s response to loading [40] or changes in cortical 

vascularization. In addition, studies have shown that a longer T2D duration is associated 

with an increased accumulation of advanced glycosylation endproducts (AGEs) which scale 

with higher rates of osteoblast apoptosis [41] and a higher osteoclast resorptive activity [42]. 

Moreover, a longer T2D duration was also found associated with a higher amount of 

microvascular and macrovascular diabetic complications [43]. In this context, it is 

remarkable that a recent HR-pQCTstudy established for the first time a link between higher 

overall cortical porosity and the presence of microvascular complications in T2D individuals 

[44]. In this light and given that midcortical and periosteal layers are highly susceptible, so-

called watershed zones of the bony cortex [45, 46], one might speculate that the increased 

midcortical and periosteal porosity that we observed in the DMFx group may be driven by 

T2D-induced alterations in cortical vascularization. However, further histological and 

functional studies of the intraosseous vessels in diabetic bone are needed to elucidate the 

vascular effects of diabetic microangiopathy on (cortical) bone.

Although diabetes has been associated with alterations in the bone marrow [47] and bone 

marrow fat composition [48], we did not observe a change in endosteal porosity in any of the 

diabetic or non-diabetic groups at the distal tibia. For the radius, endosteal porosity was 

slightly higher in the DMFx group compared to DM subjects, but these relative differences 

were still subtle compared to the large differences in midcortical and periosteal porosity that 

we noted in this specific patient group. This makes it less likely that the significantly higher 

cortical porosity that we observed in DMFx subjects may be driven by mechanisms such as 

bone marrow expansion through trabecularization of the cortex, as such an expansion would 

affect the endosteal layer first.

With respect to the assignment of pores to the layers, it seems at the first glance somewhat 

concerning that some of the DMFx patients showed very large pores [18] that could 

introduce a “central tendency” bias resulting in the predominant assignment of pores to the 

midcortical layer. However, when we reviewed in detail the original HR-pQCT images of all 
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the DMFx subjects, we found that the majority of DMFx subjects showed increased but fine, 

well-dispersed and circumscribed pores, very similar to the mean porosity that is depicted in 

Fig. 2. Even when looking at the DMFx subject with the most extreme pore size, we saw 

only a few pores extending more than one pixel into the neighboring layer. When we 

additionally reran the statistical analysis excluding those DMFx cases showing the largest 

pores, our HR-pQCT results did not change (data not shown). The midcortical layer and the 

periosteal layer still showed the highest significant increases in porosity in DMFx groups 

compared to DM subjects. Taken together, we therefore believe that our results can be 

interpreted with confidence in the pore assignment technique and that our results are not 

driven by those “extreme” DMFx cases with the largest pore sizes.

Our study has several limitations. First, this cross-sectional study was mainly exploratory in 

nature and the number of subjects enrolled was therefore relatively limited (n = 20 per 

group). However, a priori power analyses for both skeletal sites (distal tibia and radius) 

revealed that despite this relatively small sample size, our study was sufficiently powered 

(power of 99.9 % at distal tibia and power of 90 % at distal radius) to detect differences in 

laminar cortical pore volume between the diabetic groups, at levels of significance ranging 

from p = 0.01 to p=0.001. The sufficient power of our study size is also reflected in the fact 

that we did observe statistical significant differences in cortical laminar metrics at both 

skeletal sites (see Tables 2 and 3). Although our study was sufficiently powered, future 

studies are desirable to validate our findings in a larger cohort. Limb dominance has recently 

been found to impact bone microarchitecture, and a lower cortical porosity was reported for 

the dominant relative to the non-dominant tibia [49]. Reviewing limb dominance in all of 

our patients, we observed that 97.3 % of all radius scans (and 100 % of all DMFx and DM 

radius scans) were acquired at the non-dominant radius. For the tibia, only 2 out of 20 

patients in the DMFx groups had been scanned at the dominant tibia due to residual surgical 

metal at the non-dominant side which had never been removed. These findings make it 

unlikely that limb dominance might have influenced our results. With respect to the tibia, 

these findings suggest further that the magnitude of our tibial cortical porosity differences 

between DMFx and DM subjects would have been even more pronounced if these two 

DMFx patients had been scanned at the non-dominant tibia. Another pertinent limitation is 

that we analyzed the tibia and radius cortex via HR-pQCT, which imposes limitations with 

respect to image resolution. Cortical bone is organized in hierarchical levels, starting from 

the lamella to the first-level structures such as Haversian canals and resorption cavities (80 

to 500 μm) down to lacunae and canaliculi as second-level (5 to 20 μm) structures [50, 51]. 

Despite providing the highest resolution that is currently possible for in vivo bone imaging, 

HR-pQCT is only able to resolve pores that are larger than approximately 100 μm in 

diameter [17]. That is, HR-pQCT can resolve larger Haversian canals and resorptive cavities 

but cannot resolve micropores that might represent osteocyte lacunae or canaliculi, unless 

they had enlarged to a detectable (>100 μm) size. Given that DM and DMFx differed mainly 

in their diabetic duration, it is possible that T2D affects the bone first on a microporous 

level, leading to micropores that are not detectable with HR-pQCT. Disease progression 

might then shift the pores into a resolvable size. Further high-resolution studies are needed 

to longitudinally assess T2D bone-and porosity changes below 100 μm and assess if this 

hypothesis is true. However, as evidence shows that larger pores have a more dramatic effect 
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on mechanical properties [36], we believe that HR-pQCT resolves the relevant porosity that 

is associated with the higher fragility risk in DMFx. The method by which pores are 

assigned to a cortical layer in the laminar analysis technique presents another potential 

limitation. Each pore is “skeletonized” or reduced to its centroid prior to being assigned to a 

single layer. Therefore, the laminar analysis technique does not account for pores that cross 

borders between layers but rather assigns the entire pore area to the single layer in which the 

centroid resides. This limits our ability to interpret the distribution of partial pores among 

layers. Finally, the software algorithm and the layer separation depend heavily on the proper 

segmentation of the cortical boundaries. These might be difficult to define in particular in 

cases with increased trabecularization of the cortex [16]. To assure most appropriate 

segmentation of the cortical boundaries, all boundaries were checked by an experienced 

radiologist (JMP) who confirmed that even in the DMFx group, the endocortical boundaries 

were still visually distinguishable.

In summary, our findings of increased midcortical and periosteal porosity in DMFx patients 

suggest that unique mechanisms—such as diabetes-related vascular changes—may be acting 

within these two layers in type 2 diabetic women with history of fragility fractures. 

Longitudinal studies are needed to investigate whether cortical porosity is the anatomic 

counterpart of T2D-induced vascular cortical changes. In addition, cortical pore laminar 

analysis is a helpful tool in defining and distinguishing metabolic bone conditions such as 

diabetic bone disease from other bone affecting conditions such as osteopenia and disuse on 

a microstructural level. Future studies should apply this technique longitudinally and to 

other cohorts with pathological cortical porosity, such as patients suffering from 

hyperparathyroidism.
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Fig. 1. 
Results of laminar cortical analysis by cortical layer, group, and by skeletal site. Results for 

the distal tibia are displayed on the left; results for the distal radius are shown on the right. 
Co controls, Fx women with history of fragility fractures, DM type 2 diabetic (T2D) women 

without fractures, DMFx T2D women with history of fragility fractures. Bars indicate 

differences between layers; boxed values indicate significant differences between DMFx and 

DM groups. **p ≤ 0.001, *p ≤ 0.05
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Fig. 2. 
Two representative HR-pQCT axial cross sections from the distal tibia scans of a) a type 2 

diabetic postmenopausal woman without history of fragility fractures (DM) and of b) a type 

2 diabetic postmenopausal woman with history of fragility fractures (DMFx). HR-pQCT 

cross sections (on the left) are displayed alongside the cortical pore laminar mask 

delineating the pores within the three cortical layers (on the right). The table below 

summarizes the exact TPA, TPN, and APA values per layer for the given subject and 

displays for comparison the mean TPA, TPN, and APA values of the overall diabetic group 

the subject belongs to. Pores classified as endosteal and periosteal are delineated in black; 

pores classified as midcortical are visualized in white
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