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Synthetic matrices emulating the physicochemical properties
of tissue-specific ECMs are being developed at a rapid pace to
regulate stem cell fate. Biomaterials containing calcium phosphate
(CaP) moieties have been shown to support osteogenic differen-
tiation of stem and progenitor cells and bone tissue formation. By
using a mineralized synthetic matrix mimicking a CaP-rich bone
microenvironment, we examine a molecular mechanism through
which CaP minerals induce osteogenesis of human mesenchymal
stem cells with an emphasis on phosphate metabolism. Our studies
show that extracellular phosphate uptake through solute carrier
family 20 (phosphate transporter), member 1 (SLC20a1) supports
osteogenic differentiation of human mesenchymal stem cells via
adenosine, an ATP metabolite, which acts as an autocrine/paracrine
signaling molecule through A2b adenosine receptor. Perturbation
of SLC20a1 abrogates osteogenic differentiation by decreasing
intramitochondrial phosphate and ATP synthesis. Collectively, this
study offers the demonstration of a previously unknown mecha-
nism for the beneficial role of CaP biomaterials in bone repair and
the role of phosphate ions in bone physiology and regeneration.
These findings also begin to shed light on the role of ATP metab-
olism in bone homeostasis, which may be exploited to treat bone
metabolic diseases.

bone metabolism | mineralized matrix | biomimetic material |
phosphate signaling

Harnessing the ability of adult stem cells to differentiate and
contribute to tissue repair has enormous potential for wound

healing, tissue regeneration, and restoration of organ functionality.
However, controlling the fate of transplanted and/or endogenous
progenitor cells to treat compromised tissues and organs remains
a significant challenge (1, 2). Studies have shown that biomaterials
recapitulating various physicochemical cues of the native tissue
can be used to direct stem cell differentiation (3–9). Biomaterials-
assisted transplantation of stem cells provides a promising ap-
proach to deliver cells to the targeted site and direct their
differentiation to functional tissues. We and others have shown
that biomaterials containing calcium phosphate (CaP) moieties,
a major constituent of native bone tissue, can promote osteo-
genic differentiation of progenitor and stem cells and can facil-
itate in vivo bone tissue formation (10–20). However, to use CaP
biomaterials efficiently for bone tissue repair, it is of paramount
importance to understand the molecular mechanisms underlying
the osteogenicity (osteogenic differentiation of progenitor cells
in the absence of any exogenous chemical or biological osteogenic-
inducing factors) and osteoinductivity (de novo bone growth in
vivo even in locations where there is no vital bone) of a CaP
mineral environment.
The osteogenicity and osteoinductivity of CaP minerals have

been attributed to different factors, such as the ability of CaP

to modulate extracellular calcium (Ca2+) and phosphate ðPO3−
4 Þ

ions and the adsorption and release of osteoinductive growth
factors like bone morphogenic proteins (BMPs) (18, 21–24).
This is further supported by findings that exposure of osteoblasts
and progenitor cells to Ca2+- or PO3−

4 -rich medium promotes
their osteogenic differentiation (25–27). Additionally, it has been
shown that among various CaP materials, the ones that dissoci-
ate easily to Ca2+ and PO3−

4 contribute to better bone healing
(13, 21). Despite the large number of studies demonstrating the
potential role of CaP minerals and Ca2+ and PO3−

4 on osteogenic
differentiation of osteoblasts and progenitor cells, the molecular
mechanism through which these ions regulate osteogenic com-
mitment of stem cells remains largely unknown. Recent studies
have shown that influx of extracellular Ca2+ through L-type
calcium channels promotes osteogenic differentiation of osteo-
progenitor cells (28). However, very little is known about the
mechanism through which PO3−

4 supports osteogenesis. During
skeletal growth and bone remodeling, PO3−

4 plays an important
role in apatite formation (29, 30). In addition to osteoblasts and
progenitor cells, studies have shown that exposure to PO3−

4 alters
the cell phenotype of nonskeletal tissues, such as human vascular
smooth muscle cells, into osteogenic-like cells (31, 32). Central
to phosphate metabolism is solute carrier family 20 (phosphate
transporter), member 1 (SLC20a1, or PiT-1), a sodium-phosphate
symporter that transports PO3−

4 ions from the extracellular milieu
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into the cytoplasm and plays a key role in mineralization of both
vascular smooth muscle cells and osteoblasts (33, 34).
Here, we unravel a previously unknown mechanism, centered

on phosphate metabolism, through which the CaP-rich mineral
environment promotes osteogenic differentiation of human mes-
enchymal stem cells (hMSCs) by using an engineered matrix con-
taining CaP moieties. Our studies show that the extracellular PO3−

4
plays an important role in promoting osteogenic differentiation
of hMSCs by regulating intramitochondrial phosphate content
and ATP synthesis. ATP is then secreted and metabolized into
adenosine, which promotes osteogenic differentiation of hMSCs
via A2b adenosine receptors.

Results
Biomineralized Matrix-Induced Osteogenic Differentiation of Stem
Cells Uses SLC20a1. Recently, we developed a mineralized matrix
containing CaP minerals by using the principles of biominerali-
zation (35). This mineralized matrix recapitulates different static
and dynamic physicochemical cues of native bone ECM, in-
cluding its composite structure, CaP-rich environment, and dy-
namic dissolution/formation of matrix-bound CaP minerals (which
establish equilibrium with the surrounding milieu) (11, 35). This
mineralized matrix possesses osteogenicity, osteoconductivity, and

osteoinductivity (10, 11). Analyses of the mineralized matrix
with SEM showed the presence of irregularly shaped spherulites
(Fig. S1A, Right). Elemental analysis revealed that these min-
erals are mainly CaP with a Ca/P ratio of �1.43; this is close
to the Ca/P ratio observed in other bioactive ceramics, such as
β-tricalcium phosphate (1.5) and hydroxyapatite (1.67) (36). No
such minerals were observed in corresponding nonmineralized
matrices (Fig. S1A, Left). The presence of CaP minerals in
mineralized matrices was further confirmed by X-ray diffraction
analyses, which demonstrate peaks (20° ≈ 26°, 31°) corresponding
to the diffraction spacing present in hydroxyapatite [PDF-4-010-
6312, based on PDF4+ (International Centre for Diffraction
Data)] (Fig. S1B). Measurement of Ca2+ and PO3−

4 contents of
the mineralized hydrogels indicated that they contain 70.1 ±
1.9 mg and 105.8 ± 3.98 mg of Ca2+ and PO3−

4 per dry weight,
respectively (Fig. S2A). As expected the CaP components of
the mineralized matrix underwent dissolution to Ca2+ and PO3−

4
when exposed to a medium devoid of these ions (Fig. S2B).
The hMSCs cultured on these mineralized matrices in growth

medium, lacking any osteogenic-inducing soluble factors, con-
sistently up-regulated the osteogenic markers, osteopontin (OPN)
and osteocalcin (OCN) (Fig. 1 A–C). In addition to osteogenic
markers, hMSCs cultured on these matrices showed up-regulation
of sodium-phosphate symporter SLC20a1 (Fig. 1D and Fig. S3A).
Interestingly, knockdown of SLC20a1 with siRNA (Fig. S3B)
resulted in the down-regulation of OCN and OPN gene ex-
pression (Fig. 1 E and F) and decreased immunofluorescent
staining for OCN (Fig. 1G).

Inorganic Phosphate-Regulated Osteogenic Differentiation of hMSCs
Uses SLC20a1. Because SLC20a1 transports PO3−

4 and the bio-
mineralized matrix contributes to the extracellular PO3−

4 , the role
of extracellular PO3−

4 on osteogenic commitment of hMSCs was
further validated by culturing them in medium supplemented
with varying amounts of PO3−

4 . Similar to mineralized matrices,
the hMSCs cultured in high PO3−

4 (5 mM) medium showed up-
regulation of various osteogenic markers, such as osterix, OCN
and type I collagen, compared with control cultures (Fig. 2 A and
B and Fig. S3C). The gene expression of SLC20a1 was up-
regulated in hMSCs cultured in 5 mM PO3−

4 medium and
down-regulated upon SLC20a1 knockdown (Fig. 2C). Western
blot analysis and image quantification demonstrated that SLC20a1
knockdown down-regulated extracellular signal-regulated kinases
1/2 (ERK1/2) activity, an important mitogen-activated protein
kinase involved in osteogenic commitment during phosphate
induction (Fig. 2D and Fig. S3D). Akin to mineralized matrices,
the knockdown of SLC20a1 annulled the PO3−

4 -mediated osteo-
genesis of hMSCs (Fig. 2 E and F).

Increase of Intracellular ATP on Mineralized Matrices Is Dependent on
SLC20a1.We observed a significant increase in intracellular PO3−

4
of hMSCs cultured on mineralized matrices as measured by the
phosphate assay, but this increase was attenuated upon the
knockdown of SLC20a1 (Fig. S4A). In addition to intracellular
phosphate, intramitochondrial phosphate was increased on min-
eralized matrices but was down-regulated after partial loss of
SLC20a1 (Fig. 3A). Because an obvious function of inorganic
PO3−

4 is to act as a substrate for ATP synthesis in the electron
transport chain of the mitochondria, we next examined ATP
production. A significant increase in intracellular ATP was ob-
served for cells cultured on mineralized matrices, as evidenced
by a luminescent assay, and this increase was abrogated with the
partial loss of SLC20a1 (Fig. 3B). This finding was corroborated
by the increase of fluorescence intensity of quinacrine staining
for intravesicular ATP on mineralized matrices and the decrease
in intensity upon SLC20a1 knockdown (Fig. 3C). To examine
further whether PO3−

4 is directly involved in ATP synthesis, we
cultured hMSCs in medium containing 5 mM PO3−

4 . Similar to

Fig. 1. Mineralized matrix containing CaP minerals promotes osteogenic
differentiation of hMSCs. OCN (A) and OPN (B) gene expression after 7 d
(7d) and 14 d (14d) of culture on mineralized (M) and nonmineralized (NM)
matrices. (C ) OCN immunofluorescent staining (green) after 14 d of cul-
ture on M and NM matrices. (D) SLC20a1 protein expression after 3 and 7 d
of culture. OCN (E) and OPN (F) gene expression after 7 and 14 d of culture
with and without SLC20a1 knockdown. (G) OCN immunofluorescent staining
(green) after 14 d of culture. The plus symbol (+) denotes SLC20a1 siRNA,
and the minus symbol (−) denotes corresponding scrambled siRNA. (Scale
bars: 100 μm.) Data are represented as the mean ± SD (Student t test or one-
way ANOVA followed by Bonferroni post hoc test; *P < 0.05; **P < 0.01).
Groups with different letters (a–c) are significant, P < 0.05; n = 3.
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cells on mineralized matrices, hMSCs cultured in 5 mM PO3−
4

medium showed higher levels of intracellular and intramito-
chondrial phosphate compared with those cultured in 1 mM
PO3−

4 medium; this exogenous PO3−
4 -assisted up-regulation was

found to decrease upon SLC20a1 knockdown (Fig. 3D and Fig.
S4B). Measurement of intracellular ATP by luminescent assay
displayed a similar trend, where ATP levels increased in 5 mM
PO3−

4 medium but were abolished with SLC20a1 knockdown
(Fig. 3E). Additionally, quinacrine staining for intravesicular
ATP demonstrated an increase in ATP fluorescent signals for
hMSCs cultured in 5 mM PO3−

4 medium, which diminished after
SLC20a1 knockdown (Fig. 3F).

Mineralized Matrices Promote Osteogenic Differentiation Through
A2b Adenosine Receptor. The function of ATP as a signaling
molecule, in addition to being an energy source, has long been
established (37). ATP can mediate osteogenic signaling through
purinergic receptors (38, 39). To determine the role of extra-
cellular ATP on osteogenic differentiation, we inhibited the
transport of ATP to the extracellular milieu with the vesicular
transport inhibitor N-ethyl maleimide (NEM). The addition of
NEM significantly abrogated OCN and OPN gene expression
(Fig. 4 A and B) and decreased OCN immunofluorescent in-
tensity (Fig. 4C) on mineralized matrices, suggesting that inhibition
of ATP transport negatively affects mineralized matrix-assisted
osteogenesis of hMSCs. However, pharmacological inhibition of
purinergic receptors with suramin did not abrogate osteogenic
differentiation of hMSCs on mineralized matrices, as shown by
OCN staining (Fig. S5A). Additionally, we were unable to detect

any significant amount of ATP in the culture medium at a mea-
surable threshold of 100 ng/mL (Fig. S5B). On the contrary,
HPLC measurements showed a significant amount of adenosine
in cell cultures involving mineralized matrices, and this presence
of extracellular adenosine was abrogated with SLC20a1 knock-
down (Fig. 4D). To validate the role of adenosine in the miner-
alized matrix-mediated osteogenesis of hMSCs further, we exam-
ined the role of two likely candidates of adenosine signaling:
A1 and A2b adenosine receptors. Specific pharmacological in-
hibition of A1 and A2b adenosine receptors by 8-Cyclopentyl-
1,3-dipropylxanthine (DPCPX) and 8-[4-[4-(4-Chlorophenzyl)
piperazide -1-sulfonyl)phenyl]]-1-propylxanthine (PSB603) inhib-
itors, respectively, demonstrated that the PSB603 down-regulated
the increase in OCN and OPN gene expression on mineralized
matrices, whereas DPCPX had no effect (Fig. 4 E and F). The
decrease of OCN in presence of PSB603 was also demonstrated
by immunofluorescent staining for OCN (Fig. 4G).
We also examined the effect of adenosine on osteogenic dif-

ferentiation of hMSCs by culturing the cells on nonmineralized
matrices in growth medium containing exogenous adenosine. We
chose nonmineralized matrices because they do not support oste-
ogenic differentiation of hMSCs in growth medium despite having
similar chemical composition of the polymer network, except for
the CaP moieties (Fig. 1 A–C). Supplementation of adenosine in
growth medium promoted osteogenic differentiation of hMSCs
on nonmineralized matrices, as evidenced by the up-regulation
of OCN and OPN (Fig. 4 E–G). Furthermore, the exogenous
adenosine-mediated osteogenic differentiation of hMSCs was abro-
gated in the presence of PSB603 but not in the presence of
DPCPX, akin to mineralized matrices, thus corroborating the
role of extracellular adenosine as a signaling molecule.

Discussion
A number of studies have shown that CaP biomaterials like bio-
active glasses, ceramics, and mineralized matrices promote bone
healing (13–15). In addition to the physical cues provided, studies
have shown that the dissolution kinetics and the ability of the CaP
minerals to undergo dissolution/formation modulating the extra-
cellular mineral environment play a key role in osteogenic func-
tions of CaP materials (11, 18, 21). In this study, by using a
mineralized matrix, we investigated the metabolic mechanisms
by which the CaP-rich microenvironment contributes to osteo-
genic commitment of hMSCs. We chose nondegradable matrix
because it allows us to eliminate the interference of matrix deg-
radation on osteogenic differentiation, which has previously been
shown to play a role in bone tissue formation (3, 40).
The finding that osteogenic differentiation of hMSCs via min-

eralized matrix and high PO3−
4 medium can be negated through

SLC20a1 knockdown suggests that PO3−
4 content in the extracel-

lular milieu, and its transport through SLC20a1, is an important
mediator of mineralized matrix-induced osteogenic differentia-
tion of hMSCs. However, a fundamental question remains as to
how PO3−

4 from the extracellular milieu promotes the osteogenic
phenotype of hMSCs. Phosphate serves as the primary substrate
for the F1F0-ATPase production of ATP in the mitochondria,
regulates the production of mitochondrial ATP through activa-
tion of mitochondrial NADH, and improves the distribution of
energy between cyto-b and cyto-c (41, 42). The increases in in-
tracellular and intramitochondrial PO3−

4 provide an explanation
for the observed higher ATP synthesis in hMSCs cultured on
mineralized matrices or in high PO3−

4 medium. This is in accor-
dance with studies showing that inhibition of SLC20a1 and ATP
synthesis disturbed endochondral ossification and suppressed
mineralization in conjunction with reduced PO3−

4 uptake in
chondrocytes (43) and that ATP production affects the osteo-
genic commitment of hMSCs (44). The role of extracellular ATP
during osteogenic differentiation, however, remains uncertain
because ATP, acting through purinergic receptors, has been

Fig. 2. Elevated levels of inorganic phosphate in culture medium promote
osteogenic differentiation of hMSCs through SLC20a1. Gene expressions of
osterix (A) and OCN (B) after 7 d and 14 d of culture in growth medium
containing varying amounts of PO3−

4 ions. (C) SLC20a1 gene expression after
7 d of culture in normal (control; 1 mM) and high-phosphate (5 mM) medium
with and without SLC20a1 knockdown. (D) Activation of ERK1/2 kinase after
1 d of SLC20a1 knockdown. OCN (E) and OPN (F) gene expression after 14 d
of culture in low- and high-phosphate medium with and without SLC20a1
knockdown. GM, growth medium (1 mM PO3−

4 ); OM, osteogenic medium;
[Pi], concentration of PO3−

4 ; 3 mM, 3 mM PO3−
4 ; 4 mM, 4 mM PO3−

4 ; 5 mM,
5 mM PO3−

4 . The plus (+) symbol denotes SLC20a1 siRNA and the minus (−)
symbol denotes scrambled siRNA. Data are represented as the mean ± SD
(one-way ANOVA, followed by Bonferroni post hoc test). Groups with dif-
ferent letters (a–c) are significant, P < 0.05; n = 3.
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implicated both in promoting osteogenic differentiation (38, 39)
and in inhibiting formation of mineralized nodules (45, 46). The
lack of detectable extracellular ATP, together with the fact
that pharmacological inhibition of purinergic receptors did not
have any significant effect on mineralized matrix-mediated osteo-
genesis of hMSCs, suggests that the increase in intracellular ATP
promotes osteogenic commitment through routes other than
extracellular ATP acting on its own.
The presence of a significant amount of adenosine, an ATP

metabolite, in the extracellular milieu suggests that membrane-
bound ectonucleotidases (CD39), such as ectonucleoside tri-
phosphate diphosphohydrolase, ectonucleotide pyrophosphatase/
phosphodiesterase, and ecto-5′nucleotidases (CD73), rapidly
metabolized ATP to adenosine (47). These findings, in conjunc-
tion with the pharmacological inhibition studies, clearly identify
the role of adenosine signaling through A2b receptor on miner-
alized environment-assisted osteogenic differentiation of hMSCs.
The role of exogenous adenosine is further corroborated by the
findings that hMSCs on nonmineralized matrices undergo osteo-
genesis in the presence of medium containing adenosine and that
this phenomenon is abrogated upon pharmacological inhibition
of A2b adenosine receptor. These results are consistent with
emerging studies that show the pivotal role of adenosine signaling
via A2b adenosine receptor in both in vivo and in vitro bone
development and osteogenic differentiation of stem cells (48–50).
A recent study by He et al. (51) showed the role of adenosine on
bone metabolism in normal humans and patients with multiple

myeloma. Furthermore, these authors have shown that osteoblast
cells from A2b receptor and CD39-KO mice exhibit diminished
osteogenic differentiation.
It is important to note that although the focus of the current

study is phosphate metabolism associated with a mineralized
environment, it does not refute the beneficial effect of Ca moi-
eties of the CaP minerals. As stated earlier, the CaP moieties of
the mineralized matrix undergo dissolution/precipitation responding
to the concentration of Ca2+ or PO3−

4 ions in the surrounding
environment, thus creating a dynamic environment. This is very
similar to exogenous supplementation of Ca2+ or PO3−

4 , which
leads to CaP precipitation as the ion concentration in the me-
dium increases to establish equilibrium. The importance of such
a dynamic mineral environment and the interdependency between
the extracellular Ca2+, PO3−

4 , and CaP was demonstrated in

Fig. 3. Mineralized matrices regulate intracellular PO3−
4 and ATP content

through SLC20a1. (A–C) hMSCs cultured on M and NM matrices with and
without SLC20a1 knockdown. (A) Intramitochondrial PO3−

4 after 1 d of cul-
ture. (B) Intracellular ATP luminescent assay after 4 d of culture. (C) Quina-
crine staining for ATP after 4 d of culture. (D–F) hMSCs cultured in normal
(control; 1 mM) and high- (5 mM) PO43− medium with and without SLC20a1
knockdown. (D) Intramitochondrial PO3−

4 after 1 d of culture. (E) Intracellular
ATP luminescent assay after 4 d of culture. (F) Intravesicular ATP staining
with quinacrine after 4 d of culture. Pi, phosphate ion. The plus (+) symbol
denotes SLC20a1 siRNA and the minus (−) symbol denotes scrambled siRNA
Data are represented as the mean ± SD (one-way ANOVA, followed by
Bonferroni post hoc test). Groups with different letters (a–c) are significant,
P < 0.05; n = 3. (Scale bars: 200 μm.)

Fig. 4. Mineralized matrix-mediated osteogenic differentiation through
A2b adenosine receptor. OCN (A) and OPN (B) gene expression of hMSCs
after 3 wk of culture on NM matrices, M matrices, and M matrices with
vesicle transport inhibitor NEM. The plus (+) and minus (−) symbols denote
the presence and absence of NEM, respectively. (C) Immunofluorescent
staining for OCN after 3 wk of culture on NM, M, and M in the presence of
NEM. OCN (green) and nuclei (blue). CTL, control. (Scale bars: 200 μm.) (D)
HPLC measurement of adenosine in culture medium after 7 d. The plus (+)
symbol denotes SLC20a1 siRNA, and the minus (−) symbol denotes scrambled
siRNA. OCN (E) and OPN (F) gene expressions of hMSCs cultured on M and
NM for 3 wk with (+) and without (−) the presence of adenosine, A2b re-
ceptor antagonist (PSB603), or A1 receptor antagonist (DPCPX). (G) Immu-
nofluorescent staining of OCN after 3 wk of culture on NM and M for 3 wk in
the presence and absence of adenosine, PSB603, or DPCPX. OCN (green) and
nuclei (blue). (Scale bars: 100 μm.) Data are represented as the mean ± SD
(one-way ANOVA, followed by Bonferroni post hoc test). Groups with dif-
ferent letters (a–c) are significant, P < 0.05; n = 3.
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a study by Khoshniat et al. (52), where these authors showed that
inhibiting the formation of CaP minerals abrogates the extra-
cellular PO3−

4 -promoted osteogenesis of osteoblasts even though
CaP minerals were not endocytosed. As mentioned earlier, CaP
minerals also function as a reservoir for growth factors (22, 23).
It is likely that the osteoinductive factors adsorbed onto the
mineralized matrices can also contribute to phosphate metabolism.
Previous studies have shown that BMP-2–mediated differentia-
tion of MC3T3-E1, preosteoblasts, and their ECM mineralization
involves intracellular phosphate uptake, wherein BMP-2 promotes
PO3

4− transport through up-regulation of SLC20a1 (53). Similar
findings were also observed in calcification of human vascular
smooth muscle cells (54). In addition to BMPs, other osteoin-
ductive molecules (e.g., NEL-like molecule-1) have been shown
to promote preosteoblast mineralization through SLC20a1 (55).
Conversely, supplementation of PO3

4− in growth medium has been
shown to up-regulate BMP-2 expression of various cells similar to
other metal ions, such as Ca2+ and strontium (18, 24, 25, 56).
Together, the results propose a molecular mechanism, depicted

in Fig. 5, in which the dynamic dissolution/precipitation of CaP
minerals from the mineralized matrices dictates the concen-
trations of Ca2+ and PO3−

4 in the extracellular milieu. Extracellular
PO3−

4 enters the cells through SLC20a1 and subsequently into
the mitochondria, which serves as a substrate for ATP synthesis.
ATP is then secreted and metabolized into adenosine, which
subsequently promotes osteogenic differentiation of hMSCs
through the A2b adenosine receptor via autocrine and/or paracrine
signaling. The active function of PO3−

4 in this study reveals the
underappreciated role of phosphate ions of the CaP minerals in
the vicinity of osteoprogenitors during bone remodeling. The
roles of PO3−

4 and ATP as precursors of osteogenic inducers in
bone formation imply that their aberrant regulation could result in
osteoporosis, a principal disease of imbalanced bone remodel-
ing. Recent studies have found that mice lacking P2Y (13), a
receptor of ADP, results in reduced bone turnover (57) and that
polymorphisms in the P2X7 receptor gene are associated with
reduced lumbar spine bone mineral density and accelerated bone
loss in postmenopausal women (58). Validation of the PO3−

4 -ATP-
adenosine signaling cascade in osteoporotic animal models could
unravel new therapeutic targets.
In sum, by using an osteogenic, osteoinductive biomimetic

matrix, we have unraveled a mechanism by which bone minerals
contribute to bone tissue formation from bone marrow-derived
stem cells. Furthermore, this study demonstrates the role of
phosphate metabolism on osteogenic commitment of stem cells
and the role of adenosine signaling in this process. These findings
pave the way to new targets and approaches in treating critical
bone defects and bone metabolic disorders.

Materials and Methods
Cell Culture. The hMSCs (p7071L; Institute for Regenerative Medicine, Texas
A&M University) were cultured on mineralized matrices, nonmineralized
matrices, or tissue culture plates. More details about mineralized matrices,
cell culture, and medium are provided in SI Text.

siRNA Knockdown. For knockdown of SLC20a1, hMSCs were transfected
with siRNA oligonucleotides (Invitrogen) according to the manufacturer’s
instructions. Briefly, 30 nM siRNA targeting SLC20a1 (sense: GGGUGUC-
AAGUGGUCUGAACUGAUA, antisense: UAUCAGUUCAGACCACUUGACACCC)
and scrambled control siRNA (medium GC content) were transfected with
RNAimax transfection reagent (Invitrogen) under serum-free conditions for
5.5 h before cells were washed with PBS and changed to growth medium.

Characterization of Cell Phenotype. The changes in cell phenotype responding
to various culture conditions were analyzed by PCR, Western blot, and im-
munofluorescent staining as described in SI Text.

HPLC Experiments. HPLC measurements were carried out to measure extra-
cellular ATP and adenosine. Commercially available ATP and adenosine were
used as controls. Fig. S5B shows the measurable threshold of ATP. Details
are provided in SI Text.

Statistical Analysis. Beyond the biological replicates, experiments were re-
peated independently at least twice. Statistical analyses were performedwith
one-way ANOVA, followed by a Bonferroni post hoc test or a two-tailed Student
t test. Different letters and asterisks represent significance at P < 0.05.
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