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Abstract

The molecular origins of hydrophobic effects are still under debate. The traditional

view, in which apolar solutes induce clathrate-like structure in the surrounding sol

vent, has come under attack by those who contend that the large aversion of oil for

water results mostly from the small size of the water molecule, and not from water

structuring. Neither of these views directly addresses the large positive heat capacity

of transfer, the defining feature of hydrophobicity.

To help to clarify the molecular origins of hydrophobicity, we have performed

extensive simulations on a simple model of water. Water molecules are represented

in the model by LJ disks with three hydrogen-bonding arms, arranged as in the

Mercedes-Benz logo, hence the name “MB water”. We show, using NPT Monte Carlo

simulations, that the model, thermodynamically-speaking, looks a lot like water, in

viii



the bulk and as a solvent. It qualitatively reproduces several of water's anomalous

trends with temperature and has the correct transfer thermodynamics for small inert

solutes.

Using the model we have investigated the microscopic origins of hydrophobicity.

At low temperature, water molecules are ordered around small inert Solutes and have

strengthened hydrogen bonds relative to bulk water molecules. There is evidence for

multiple modes of clathration. As temperature is increased, the shell water structure

melts out faster than the bulk water structure. This hydrogen-bond breaking gives

rise to the calculated heat capacity, as we have shown quantitatively using Muller's

two-state model. Hydrogen bonds in the bulk and shell have roughly equal strength

and numbers at Ts, when the transfer entropy is zero. Beyond this temperature, more

structure is observed in the bulk than in the hydration shell.

Using an exhaustive enumeration scheme, and a formal expansion of the entropy

with small systems of MB water molecules, we have determined that the entropic order

in these systems is overestimated at the two-body level. Nevertheless, the ratio of

intact and broken H-bonding states of two waters in the bulk, and the corresponding

enthalpy difference, are reasonably close to the parameters for the two-state model.

Explanation of the hydration shell parameters requires extrapolations to very large

^ 4 (lº■
Systems.
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Chapter 1

Introduction



Investigations into the anomalous properties of water, and the phenomenon known

as “hydrophobicity”[3, 7], have a long and rich history. This is not surprising consid

ering the ubiquitous nature of water, which makes up some 65%-70% of human body

mass and bathes the cells of all living creatures. Further, the mechanisms underly

ing transfers of hydrophobic solutes are believed to be involved in a diverse array

of biochemical processes, such as protein folding, micellar aggregation, and ligand

binding[2].

Water is also interesting because it has many anomalous or unusual thermody

namic properties which set it apart from simple liquids. These include, but are not

limited to: a temperature of maximum density in the liquid phase over a wide range

of pressures, an unusually high surface tension, a minimum in the isothermal com

pressibility as a function of temperature, and a large heat capacity throughout the

liquid range. These properties are believed by many to arise from the ability of water

to form tetrahedrally coordinated hydrogen bonds. However, the extent of the coor

dination of hydrogen bonds in liquid water, and the resulting structural features of

this fluid, have been debated vigorously over the years|7, 34, 38].

Hydrophobic trends are equally striking. At all temperatures, transfers of non

polar solutes are highly unfavorable from a free-energetic standpoint. Given the

strong cohesive energy of water, one would expect that the introduction of an inert

solute would be opposed enthalpically, due to the necessity of creating a cavity to

accommodate the solute. However, at room temperature, such a transfer is actually

enthalpically favorable from the gas phase, and at least neutral from the solute's own

pure liquid phase. Instead, these processes are opposed by entropy. Even more re

i
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markably, the transfer is accompanied by a large heat capacity, often referred to as the

signature of hydrophobicity[5]. This means that the low solubility of apolar solutes

becomes less entropy-driven and more enthalpy-driven at higher temperatures. These

properties should be contrasted with transfers to simple solvents (e.g., neopentane),

where the solutes are only slightly insoluble, and the transfer is enthalpy-driven and

not marked by an appreciable heat capacity.

It is not possible or relevant to thoroughly review here the large body of literature

on these topics; comprehensive reviews on the theoretical and experimental studies

of water|6, 7, 38, 47) and hydrophobicity[2, 3, 16, 39) have appeared. It is safe to

say that the waters are still a bit murky despite the wealth of data gleaned over the

last half of a century from solubility experiments|30, 46], microcalorimetry||11, 33],

NMR18, 25, 27, 36), x-ray[28] and neutron scattering experiments|37), and IR(1, 8,

17 and Raman spectroscopy[4, 10, 14, 15, 35, 43, 44, 45]. Theoretical work from

simulations' [9, 12, 22, 23, 24), integral equation theory[19, 31, 32, 40), and scaled

particle theory[21, 29) have shed some light on the problem at hand. Yet, the field

is lacking a unified picture of the physics behind hydrophobic effects. We seem to be

stuck in a mass of details, with words like “structure makers” and “structure break

ers” to characterize solutes in waters, which change depending on the experimental

technique used 26]. Often it is not even clear what we mean by “structuring” on

a microscopic level. It is not uncommon in the simulation literature, for example,

to report a simple orientationlly-averaged pair correlation function and perhaps the

"For work in this area prior to 1993, see reviews [3] and [47], and references therein.



coordination numbers around solutes|13, 20, 41, 42]. Though informative, this leaves

us yearning for a more complete picture.

I do not propose that we have all of the answers. However, in this work I have

examined a model that can explore a more diverse array of properties of water and

aqueous systems. It is a two-dimensional model of the physics of hydrogen bonding

liquids, not an atomically-accurate model of water. Its limitations are that it gives

up atomic detail, and 3-dimensionality, but it uses only few parameters, and is com

putationally simple enough to explore these broader-scale questions of physics. Its

parameters are intuitive and conceptual, allowing us to directly observe the effects

of removing or changing each one. Using direct comparisons to simple theoretical

liquids with such subtle modifications we hope to identify the microscopic features

that are necessary and sufficient for each of the anomalous properties of water. With

this model, and comparisons to subtle modifications of it, our goal is to generate

hypotheses that can be tested by experiments and molecular simulations, but cannot

otherwise be generated by more realistic models of water.

In order to demonstrate that the essential details for a qualitative description

of water and hydrophobicity have not been left out in this simplification, we make

many comparisons of the model to experimental trends in Chapter 2 over a wide

temperature range. The results are remarkably good. We present a wide array

of microscopic structural evidence arising from the model to explain the observed

thermodynamics.

Simply “observing” structural details in simulations which might determine the

thermodynamics is not entirely satisfying. We endeavored to make a more quan

4



titative connection between the microscopic and macroscopic pictures. Hence, in

Chapter 3, we have used the two-state model of Muller|26 to quantitatively link the

observed hydrogen-bond fraction in our simulations to the thermodynamics that we

calculate exactly. The parameters of this two-state model are further justified by

exhaustive enumerations of the states available to the model water molecules. The

success of this two-state framework in our model system allows us to make some

predictions and suggestions for real experimental analysis.

The exhaustive enumerations we have performed give indications that the “struc

turing” in water and hydrophobicity have a strong many-body component. In other

words, a quantitative estimate of the entropy of these systems cannot be obtained

from systems of two waters, or one water and a solute. In Chapter 4, we perform a

rigorous multiple-body expansion of the entropy, using full angular correlation func

tions obtained from our simulations. This analysis gives us quantitative insight as

to the sufficiency of two- and higher-body terms. Additionally, we are able to draw

some conclusions about the relative contributions of translational and orientational

order in these systems. The Appendices provide some formulae and derivations for

work presented in Chapters 2 and 4.

Having focused in this work on simple systems of a single LJ particle in MB

water, we have really only scratched the surface of what can be explored. Hence,

in Chapter 5 we outline the scope of some of the areas that are amenable to study

with the model. As the speed of computers increases at a dizzying rate, one thing

will remain constant: this model will always be one to two orders of magnitude more

computationally efficient than standard 3D models.
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2.1 Abstract

We use a simple computational model, proposed originally by Ben-Naim, to study

the anomalous properties of water and the hydrophobic effect. Waters are mod

eled as two-dimensional (2D) Lennard-Jones disks, with three orientation-dependent

hydrogen-bonding arms, arranged as in the Mercedes Benz (MB) logo. Phase space

is explored using NPT Monte Carlo simulations. For pure water, the MB model qual

itatively predicts the density anomaly (and the related negative thermal expansion

coefficient at low temperature), the minimum in the isothermal compressibility as a

function of temperature, the large anomalous heat capacity, and freezing to the 2D

model analog of ice, a low-density hexagonal crystal phase. For the solvation of non

polar solutes (disks without H-bonds), the model predicts the experimental trends

with temperature of the free energy, entropy, enthalpy, molar volume, and heat ca

pacity. A unique feature of these simulations is that they provide well-converged heat

capacities of transfer, an important fingerprint of hydrophobicity. This model gives

an explanation for the temperature, Ts, at which the transfer entropy of nonpolar

solutes is zero: below this temperature, shell water molecules have more hydrogen

bonding than bulk water molecules; above Ts, the reverse is true.

2.2 Introduction

Water is regarded as an unusual and poorly understood liquid. Water properties have

been reviewed extensively in the literature [29, 31, 60, 63, 66,68]. Relative to simpler

liquids, water has certain anomalous thermodynamic properties: a temperature of
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maximum density in the liquid phase over a wide range of pressures, an unusually

high surface tension, a minimum in the isothermal compressibility as a function of

temperature, and a large heat capacity throughout the liquid range. These proper

ties are thought to arise from the ability of water to form tetrahedrally-coordinated

hydrogen bonds. There remains vigorous debate, however, over the role of hydrogen

bonding in the properties of liquid water 31, 60, 63].

Water is also unusual as a solvent, particularly for nonpolar solute molecules

[11, 17, 30, 58,66). Unlike simpler solvents, the insertion of nonpolar solutes into water

is: (1) strongly unfavorable, (2) strongly opposed by entropy at room temperature,

and (3) accompanied by a large positive heat capacity. These properties define the

hydrophobic effect.

The physical basis for the hydrophobic effect has been the subject of debate.

One group [17, 44, 45, 56, 57 holds that the large aversion of oil for water results

mostly from the small size of the water molecule, and not from water structuring

by the solute. Others believe that the large positive heat capacity of insertion of

nonpolar solutes is a defining feature of hydrophobicity, and that it results from

hydrogen bonding and the ordering of water molecules around the solute. Some of

this difference of opinion may be semantic [37, 62].

In order to provide a physical explanation for the properties of water and the

hydrophobic effect, many different computer simulations have been performed' [32,

34, 46, 48, 49]. These simulations usually aim for realism in representing the geometric

"For work in this area prior to 1993, see reviews [17] and (68), and references therein.

14



structure of water. But there are two intrinsic limitations of an atomistically-accurate,

three-dimensional model of water. First, such models require large computational

investments, and some properties – particularly those involving derivatives of the

free energy — are computationally prohibitive to study, such as the molar volume

and the heat capacity of transfer. Yet these are precisely the properties that are

considered “signatures” of the hydrophobic interaction (27). Second, simplified models

can often address questions of principle that cannot be addressed in more realistic

models. Realistic models tend to include many variables, geometric details, and types

of interactions, including electrostatics, dipoles, hydrogen bonding and van der Waals

interactions. In simpler models, with fewer parameters, it is easier to ascertain the

dominant interactions, and to trace the connection from assumptions about driving

forces to the observable properties.

Our aim here is to develop a simplified model, with the details stripped away.

We want to see how much of the behavior of pure water, and of the hydrophobic

effect, is simply due to a balance between Lennard-Jones interactions and orientation

dependent hydrogen bonding. No other electrostatic terms are included explicitly.

Our aim is a simplest “toy” model of the physics, not a most-realistic model of the

geometry. We use a two-dimensional model. Its limitations are that it gives up atomic

structural detail, and three-dimensionality, but it uses only few parameters, and is

computationally simple enough to explore properties that are difficult to study in

more realistic models.

The two-dimensional model that we explore is one of a family of models first in

troduced by Ben-Naim [7] in 1971. He investigated the structure of the pure fluid
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(7,8], and a dilute hydrophobic solution (6,9] using an integral equation formalism.

Then, he explored several parameter sets using NVT Monte Carlo simulations at

a single phase point for each parameterization, and obtained more accurate distri

butions of the pure fluid [10]. Concurrently, more realistic 3D models were being

developed [64, 65). Consequently, the Ben-Naim model was all but neglected until

recently when Andaloro and Sperandeo-Mineo showed that it was simple enough to

teach students about hydrophobicity without high-powered computers [3]. Andaloro

and Sperandeo-Mineo explored a wider range of structural features of this model fluid

around a fixed inert solute [3], and showed enhanced local structuring. Although their

simulations were not well converged, they nonetheless showed that the model gives

useful insights.

To date, what has not been explored in this model are effects of temperature

and pressure, or thermal properties other than the internal energy. Many other 3D

simulations are similarly limited. Pair correlation functions and counts of hydrogen

bonds converge quickly; but the calculation of the transfer thermodynamics is quite

expensive computationally. The computational requirements of the 3D models make

systematic studies of solvation extremely difficult. With a simplified model, however,

we can study systematically here the link between microscopic structures and the

macroscopic thermodynamics.

The present paper shows that LJ and orientation-dependent hydrogen-bonding

are sufficient, even in a 2D model, to capture a remarkably broad range of the

experimentally-observed thermodynamic properties of pure water and the hydropho
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bic effect. Many of the results are consistent with more realistic simulations”.

This paper is organized as follows. In Section 2.3, we define the MB model,

briefly reviewing others of similar philosophy. Section 2.4 contains a description

of the computational methods used. Then, in Sections 2.5 and 2.6, we compare

our computed thermodynamic trends with those of experiments on bulk water and

nonpolar solutions, respectively. Section 2.7 is a summary.

2.3 Model Description

Waters are represented in this model as two-dimensional disks with 3 symmetrically

arranged arms, separated by an angle of 120°, as in the Mercedes Benz logo. Molecules

interact pairwise through a Lennard-Jones (LJ) term and an explicit hydrogen bond

ing (HB) term,

U(Xi, Xj) - ULJ (rij) + Uh b (Xi, Xj)
-

(2.1)

We use Ben-Naim's notation, summarized in Figure 2.1: Xi denotes the vector

representing both the coordinates and the orientation of the ith particle, and rº, is the

distance between the molecular centers of particles i and j. The LJ term is defined

Ulj(rij) = 4 elj |(})"
-

(#)
5 (2.2)

*Preliminary results from this work have been reported at the International Symposium on Molec

in the usual fashion

ular Thermodynamics and Molecular Simulation in Japan [38].
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Figure 2.1: Two representative MB water molecules with indices i and j, separated

by a distance rig. Each molecule has three hydrogen bonding arm vectors: is and j

respectively (k, l = 1, 2, 3). The intermolecular axis vector is denoted ug, and the

angles that the closest arm of each molecule make with this vector are labeled @., and

Øj.
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where ety and a LJ are the well-depth and contact parameters, respectively. Neighbor

ing water molecules form explicit hydrogen bonds when the arm of one molecule aligns

with the arm of another, with an energy that is a Gaussian function of separation

and angle,

3

Uh b(Xi, X}) = en p G(rij - rhp) XD G( is u■ – 1) G(ji up + 1), (2.3)
k,l=1

where G(a) is an unnormalized Gaussian function,

G(a) = exp■ —a.”/20°]. (2.4)

The unit vector is represents the kth arm of the ith particle (k = 1, 2, 3) and

■ ; is the unit vector joining the center of molecule i to the center of molecule j.

The parameters e HB = –1 and rh B = 1 define the optimal hydrogen bond energy

and bond length respectively. By this definition, the strongest hydrogen bond occurs

when one arm of one water is perfectly collinear with the arm of another water. We

make no distinction between donors and acceptors; this contribution to the energy

is just defined by the degree to which two arms line up. Angular deviations from

this lowest-energy hydrogen bond have a Gaussian variation in energy, with a single

width parameter used to attenuate the interaction. The same width parameter is

used for both distance and angle deviations (although in principle, two separate width

parameters could be used: one for hydrogen bond stretching; the other for bending).

Figure 2.1 shows the definitions of the distances and angles between two model water

molecules.
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In total, there are 5 parameters. Ben-Naim explored several combinations of

parameters, of which we chose one for this work. The interaction energy, eLJ is one

tenth of €HB, and the LJ contact distance is 0.7 that of rhb. The width of the

Gaussian o = 0.085 was chosen to be small enough that a direct H-bond is more

favorable than a bifurcated H-bond. All energies and temperatures will be reported

in reduced units, normalized to the strength of the optimal hydrogen bond (e.g.,

T* = kBT/|éHB|, H° = H/|éHB). Similarly, all distances are scaled by the length of

an idealized hydrogen bond separation (e.g., V* = V/r■ b).

2.3.1 Comparison with other simple models

A completely different two-dimensional model has been investigated by Okazaki, Nosé,

Kataoka and Yamamoto (55), who subsequently studied a three dimensional model

that was related to it [42]. The model of Okazaki et al. displays four anomalous

behaviors of water: a temperature of maximum density, a minimum in the isothermal

compressibility, a shift in the temperature dependence between isobars of the thermal

expansion coefficient, and the singular properties of supercooled water. Our model

differs from theirs in the H-bond geometry, and ours is simpler insofar as it lacks

any long-range electrostatics. No analysis of the solvation properties of their model

has been published, to our knowledge. The success of the MB model indicates that

explicit electrostatics and the distinction between donors and acceptors are not the

central components of the physics of hydrophobic hydration.

Yet another primitive model was explored by Dahl and Andersen (24, 25); it too
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captures several anomalous properties of liquid water. Their three-dimensional model

used a hard-sphere reference with a double square-well hydrogen bond potential that

is tetrahedrally coordinated. The thermodynamics were computed by a cluster expan

sion approximation. More recently, Nezbeda et al. have investigated the structural

properties of related models [43, 51, 53], comparing the solutions of several approxi

mations with Monte Carlo simulations. These authors used the model to investigate

the phase behavior of inert gases and n-alkanes with some qualitative success [52, 54].

These models, like the one we explore, neglect the long-range Coulombic interactions,

and model the H-bonding explicitly. Simulations of these three-dimensional models

are still reasonably intensive; hence the thermodynamics are only accessible through

the approximate theories.

Among other recent, simplified 3D models of water are those based on an orienta

tional octupole-octupole interaction [18, 19, 20, 26]. These octupolar models, which

have been developed by Blum and co-workers, have few parameters, and can be solved

analytically, but are more or less still in the development stage. Lattice models of

water have been studied by various researchers [13, 14, 21, 28, 59), based upon the

model of Bell [5]. In these models, waters are configured on a bec lattice with a

discrete number of orientational states, and the thermodynamics is often solved by

a zeroth- or first-order approximation. These models have also been able to capture

numerous anomalous properties of water, but the confines of the lattice may be too

restrictive to correctly model the qualitative trends of hydrophobicity (28].
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2.4 Simulation Methods

2.4.1 General Procedure

To obtain thermodynamic and structural properties of MB water, we performed

Monte Carlo simulations in the NPT ensemble [2]. At each successive step, a move

for one molecule is chosen randomly among the following three options:

a — a + $14Ma:, y → y + $24My, b → q + $340 (2.5)

where the & 's are random numbers generated over the interval –1 < & sº 1, and

Aa, Ay, and Aq) are fixed maximum displacements in the coordinates and angle of

the chosen molecule. These increments are automatically adjusted during an initial

equilibration simulation to achieve approximately a 50% acceptance ratio. To hold

the pressure constant, every 5 passes [41] (1 pass = N molecules), an attempt is made

to scale the dimensions of the box, and all of its component particles, according to

q; – q.(1 + šAq), (2.6)

where the qi's represent the particle coordinates and box length, and the random

number 8 and maximum volume increment Aq are defined as above.

Unless otherwise indicated, all simulations in this study were performed on systems

of 60 water molecules (covering the same area as a cross-section of a 3D system having

about 500 particles), using standard periodic boundary conditions and the minimum

image convention. The starting configuration of each phase point was selected at ran

dom, and the first 2 × 10° passes were discarded as the system equilibrated. Statistics

were gathered over the next 1 × 10' passes. Simulations with solutes were carried out
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under the same procedures with 60 water molecules and a single LJ solute (with the

same well-depth and contact parameters as the water molecules) fixed in the center

of the simulation box.

2.4.2 Computational Speed Enhancements

To speed up the hydrogen bond calculation, two computational enhancements were

implemented; they have virtually no effect on the Markov chain of states generated.

First, an interparticle distance cutoff is chosen, beyond which hydrogen bond energies

are assumed to equal zero. The cutoff was chosen such that the energy of neglected

interactions does not exceed 1 × 10−", corresponding to a distance of ~ 0.577. We did

not use a cutoff for the LJ interaction, other than that implied by the minimum image

convention. The second speed-up involves the form of the hydrogen bond calculation.

Since the Gaussian-width parameter is so narrow, two arms of one molecule can never

make an appreciable interaction with the same neighboring molecule (of course, one

arm can interact with arms of different neighbors, forming a bifurcated hydrogen

bond). Therefore, it is unnecessary to calculate all 9 arm-arm interactions for two

water molecules. Instead, we pre-determine which arm of each molecule is nearest to

the intermolecular axis vector, and then calculate only the hydrogen bond between

the appropriate two arms. This is accomplished with the following simple formula,

and speeds up the total simulation time by roughly a factor of 2:

Uh b (Xi, Xj) F 6 H B G(ri;
-

rh B) G(u(i, ■ j)
-

1) G(v(j, uj) + 1) : (2.7)
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where the expressions,

u(i, ■ j) - MAX( i. uj, i. ■ j, is: ■ j)
a.
-v(j, iii;) = MIN(ji u■ , jº u■ , is u■ ), (2.8)

select out the appropriate arm of the ith and jth molecule, respectively, and the

Gaussian function, G(a), again has the form defined in Eq. 2.4.

Most of the simulation runs were performed on the farm of DEC Alphas at the

University of Sydney, requiring approximately 30 hours of CPU time per phase point.

A comparable study on a 3D model would take approximately two orders of magnitude

longer, due to the number of particles that would be needed.

2.4.3 Calculations of Thermodynamic Quantities

Mechanical averages such as the enthalpy and volume are computed in the standard

way, as the average of those quantities over the course of the simulation. The heat

capacity, C, the isothermal compressibility, k", and the thermal expansion coefficient,

o”, are computed from the fluctuations:

C, < H” - – « H >”
C. F kn

-
NT-2 * (2.9)

+ < V*2 > — « V* >2
r = —H·-, (2.10)

+ < V*H* > – « V* > < H* >
Cy – T-2 & V* > » (2.11)

where kB is the Boltzmann constant.

For the insertion of a model solute into water, all thermodynamic averages were

computed using the Widom test-particle method (67) and related fluctuation formulae.
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The Widom method is a specific case of the free energy perturbation technique. A

ghost particle is placed at random among the N molecules of the pure fluid, but

not allowed to interact. Instead, an appropriately-weighted Scaling of the solute's

hypothetical interaction with the fluid is computed. In this manner, the free energy

change, and appropriate thermodynamic derivatives can be computed in terms of the

configurations generated in the reference pure fluid. In principle, the configurations

which contribute strongly to the solution (i.e., the ensemble of N + 1 particles) will

arise in the reference fluid through fluctuations, and make a significant contribution to

the computed thermodynamic values, if the simulation is run long enough. However,

in practice, such configurations are never fully explored if the reference ensemble

differs greatly from that of the solution (e.g., as in the case of a large solute, where a

cavity large enough to accommodate it would never be found in reasonable simulation

time [15]). Guillot and Guissani used the Widom method to compute free energies,

enthalpies, and entropies at several temperatures for methane and various noble gases

[34, 35]. Although this was a pioneering study, showing the wide utility of the test

particle method, the transfer entropies and enthalpies were poorly converged. Also,

the criticism of Beutler et al. suggests that the higher noble gases in the simulation

by Guillot and Guissani were probably too large.

The advantage of the test-particle method is that the thermodynamics of trans

fer can be calculated accurately for small solutes using only a single simulation; free

energy perturbation (FEP) and thermodynamic integration (TI) methods require

multiple-step transformations. Also in the Widom method, there are multiple inser

tion sites in each snapshot of the fluid, so several attempted insertions can be made
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per frame. These two features make the insertion method far superior to both FEP

and TI, so long as the solutes inserted are small. As a check, we compared our test

particle results with those calculated using FEP and TI at a few temperatures, and

obtained nearly-perfect agreement. In Appendix A, we collect together the appropri

ate test-particle equations for computing transfer free energies, enthalpies, entropies,

molar volumes, and heat capacities.

As an additional check, we determined that our simulations are not limited by

artifacts of box size. We found no dependence of the thermodynamic properties on

the size or shape of the simulation box. For a few state points, simulations were

carried out with 120 water molecules, to compare with the usual 60. Figure 2.2

shows a typical comparison of the pair correlation function for the two box sizes. All

thermodynamic values are identical within the error bars.

2.5 Results for Bulk Water

MB Water Captures Some Experimentally Observed Properties of Real

Water. Constant-pressure simulations of pure MB water at a reduced pressure of

0.19 reveal several similarities to pure water. Trends at a lower pressure of 0.12 were

also explored, and had all of the same qualitative trends, except for a more poorly

defined minimum in the isothermal compressibility. A limitation of our study, as with

many others, is that we do not know the full phase diagram”, but the part we have
*We believe the liquid range of MB water is probably small and it is possible that the pressure

we have chosen to show for the calculations here may be above the critical pressure (61]. But even

if this is the case, this does not limit the value of the model for the properties we study here.
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Figure 2.2: Pair correlation function at T = 0.20, P’ = 0.19 for boxes containing 60

(solid line) and 120 (dashed line) particles overlap exactly. This observed box size

insensitivity is representative of other temperatures and pressures studied.

explored is sketched in Figure 1 of reference (61).

MB Water Freezes into an Ice-like Structure at Low Temperatures. At

low temperatures, MB water has a non-close packed ice-like ground state, having low

density and crystalline ordering. The hexagonal symmetry is the same as would be

observed in real 3D ice, viewed down the c-axis. MB ice forms spontaneously from

a random initial state in constant pressure MC simulations". An ice configuration
*Note, however, that the “ice” that forms in a square box is not of the lowest-energy possible

in the model. A perfect honeycomb lattice of a × b molecules fits in a rectangular unit cell of sides

# x by: where a and b are both even; so a square will stretch the hydrogen bonds along one of the

coordinate axes, in order to retain the periodicity through the boundaries. Hence in representing

ice in this model accurately, one should begin with a rectangular box of the proper dimensions.

But the shape of the box has absolutely no effect on the converged properties of the simulations for

disordered fluid states, which is the state of interest here.

27



Figure 2.3: Two snapshots a system of 60 MB water molecules. On the left, the

ground-state “ice” configuration forms a perfect hexagonal honeycomb lattice; and

on the right, a typical liquid configuration at T = 0.20, p = 0.9.

is shown in Figure 2.3, along with a typical fluid configuration, for which there is

considerably less regularity. As with real water, MB ice has lower density than MB

liquid water. In the MB model, the lower density of ice arises because the hydrogen

bonding interactions that favor low-density ordered packing are stronger than the van

der Waals interactions that favor random higher-density packing.

The liquid is denser than the ice phase. As noted above, MB ice has an open,

low-density structure. The ice structure is a result of the optimization of hydrogen

bonding. Heating melts the ice, leading to a liquid of higher density than the solid,

indicating that MB ice would float on its liquid, just as real water does. Moreover, it

follows from the Clapeyron equation, dp/dT = AS/AV, that since the molar volume

is lower in the phase of higher entropy (assumed to be the liquid), the liquid/solid

phase boundary will have the typical “backward” slope that water has, dp/dT ~ 0,
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whereby the melting pressure decreases with temperature. The thermal expansion

coefficient, a = } (#), shown in Figure 2.4 (c), is just the derivative of the function

in Figure 2.4 (a). As in real water, the thermal expansion coefficient becomes negative

at low temperature, and equals zero at the density anomaly temperature.

The density anomaly. If liquid water is heated above its melting temperature,

a remarkable behavior is observed: the density at first increases, then ultimately

decreases as in more normal liquids. The temperature at which the density trend

changes from increasing to decreasing is the density anomaly, or temperature of max

imum density (TMD). Figure 2.4 shows that MB water has a density anomaly similar

to that of real water.

What is the physical basis for these properties? The MB model gives the following

interpretation. The structure and thermodynamics of the ice phase is dominated by

hydrogen bonding. The relatively low density of ice is due to the fact that hydrogen

bonding is stronger than the van der Waals interactions. Optimal hydrogen bonding is

incommensurate with the tighter packing that would be favored by the van der Waals

interactions. Ice melts when the thermal energy is sufficient to disrupt and disorder

the hydrogen bonds, broadening the distribution of H-bond angles and lengths. Now

among this broadened H-bond distribution, the van der Waals interactions favor those

conformations of the system that have higher density. Hence liquid water is denser

than ice. Heating liquid water continues to further deform hydrogen bonds and

increase the density up to the density anomaly temperature. Further increase of

temperature beyond the density anomaly weakens both H-bonds and van der Waals

bonds, thus reducing the density, as in simpler liquids.
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Figure 2.4: Comparison of various simulated temperature trends in pure MB water (a,

c, e, and g) and experiment (b, d, f, and h). Experimental data is replotted from [29]:

Molar volumes, (a) and (b); thermal expansion coefficient, (c) and (d); heat capacity
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defined so that P*W* = PV/eith). Error bars reported throughout this work are one
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The compressibility correlates loosely with density. As the density increases, the

molecules are better packed and the compressibility decreases. As bonds break (both

hydrogen bonds and van der Waals interactions) with increasing temperature, the

fluid density decreases and compressibility increases. Hence just as there is a maxi

mum in the density, there is also a minimum in compressibility.

An alternative explanation of the density anomaly is due to Stillinger (63). He

explains the density anomaly in terms of the shift from ice-like six-membered H

bonded rings towards more strained H-bonded ring networks. Robinson and co

workers [22, 60] gave a related explanation: hydrogen-bond bending promotes the

crowding of second- and more distant neighbors. These may all be different perspec

tives on the same physics. It may be that different diagnostics report consequences

of the same shifted balance between H-bonds and van der Waals interactions.

Pure Water has a High Heat Capacity. Water has an unusually high heat

capacity. MB water also has a high heat capacity, of approximately the correct magni

tude (~ 12 cal mol "C" at its peak, for the configurational component). Moreover,

the temperature dependence of the heat capacity of MB water is similar to that

found experimentally (see Figure 2.4 (e)). MB water has a minimum in the isother

mal compressibility vs. temperature, but it is not as pronounced as in experiments

(see Figure 2.4 (g)).

What accounts for the heat capacity of pure water? Since the heat capacity is

defined as Cp = (ÖH/0T)p, the heat capacity describes the extent to which some kind

of bonds are broken (increasing H) with increasing temperature. Breaking bonds is

an energy storage mechanism. The heat capacity is low in the ice phase because
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thermal energy at those temperatures is too small to disrupt the H-bonds. The heat

capacity peaks at the melting temperature where the solid-like H-bonds of ice are

weakened to become the liquid-like H-bonds of liquid water. The reason liquid water

has a higher heat capacity than van der Waals liquids have is because water has an

additional energy storage mechanism, namely the H-bonds, that can also be disrupted

by thermal energies.

2.6 Results for a Single Solute Molecule in Water

The Thermal Anomalies of the Hydrophobic Effect are also Found in MB

Water. To study the transfer of hydrophobic solutes into MB water, we performed

separate MC simulations for the pure fluid and the fluid with a single fixed nonpo

lar LJ solute (with the same parameters as their water counterparts) under various

external conditions. Thermodynamic quantities were obtained from the Widom test

particle method, as described earlier and in Appendix A. Structural distributions

were obtained directly from the simulated dilute solutions.

We find that MB water as a solvent is much like real water in its thermal behavior.

Figure 2.5 shows a comparison of the model thermodynamics to the corresponding

experimental values for the transfer of gaseous argon into water. The experimental

data was obtained from Crovetto et al. [23], using the Ben-Naim standard state [12],

and from Biggerstaff and Wood [16]. The correct temperature trends of the free en

ergy, enthalpy, and entropy of transfer are given by the model, as shown in Figure 2.5

(a) and (b). Hence the defining features of the hydrophobic effect are captured by
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positive heat capacities of transfer are shown in (c) for this work and (d) from the

same experimental source. Also shown are the apparent molar volumes of transfer

for (e) simulations and (f) the experiments of Biggerstaff and Wood [16] (symbols)

replotted along with the analytical infinite-dilution expression of Harvey, et al. [36]
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Figure 2.6: Solute-water pair correlation function at the four temperatures indicated

in the figure.

the MB model: The large temperature dependence of the transfer enthalpy and en

tropy (and the curvature in the free energy) all indicate that the heat capacity is

quite large. Indeed, we have calculated the heat capacity of transfer, shown in (c)

alongside its experimental counterpart in (d), and it is large and positive, declining

with increasing temperature. Finally, the molar volume of transfer is also plotted in

Figure 2.5. It is interesting to note that, consistent with experiments, the slope of

this curve is considerably steeper than that in Figure 2.4 (a) for pure water. That

is, increasing temperature opens up more space around the solute than around water

molecules.

The solute-water pair correlation function gsw(r) is shown in Figure 2.6. It flat

tens out with increasing temperature. However, it is unclear how much of this effect

is actually induced by the solute per se, and how much is merely a reflection of the

natural breakdown of bulk water structure with temperature.
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To analyze the water behavior in the shells around the solute, we define the first

and second shells of water molecules as those within the first and second minima of

gsw(r) respectively. We analyze the angular distributions of water molecules in each

shell. Figure 2.7 (a) shows that at low temperature, the water molecules “straddle”

the solute, in order to avoid wasting hydrogen bonds, consistent with observations of

other simulation models [33, 46]. We also observe that this angular order diminishes

rapidly with temperature, particularly for those water molecules in the second shell

(see Figure 2.7 (b)).

Now we consider the water-water relationship. The first and second neighbors

of bulk and shell water molecules are defined as those molecules that are within the

first and second minima of gww.(r), the water-water pair correlation function. At low

temperature, gww.(r) for the first-shell water molecules is remarkably similar to that

of bulk water, despite the excluded volume of the nearby solute (see Figure 6 in (61).

The significance of this observation was discussed by Hirata and Rossky [40], where

references to several 3D studies making the same observation can also be found. We

also find that the orientational ordering of water molecules surrounding the solute is

more pronounced than that observed around bulk water molecules (see Figure 2.7 (c)

and (d) in contrast to (a) and (b)). Furthermore, Figure 2.7 shows that the angular

ordering around the solute is more temperature sensitive than around a bulk water

molecule.

The Entropy Convergence Temperature, Ts, is the point at which Shell

and Bulk Waters around a Solute Reverse Roles in Hydrogen Bonding.

As in real water, the MB model has a temperature Ts at which the entropy of
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transfer of the nonpolar solute is zero (4, 50, 58], i.e. TsASir = 0. What is the physical

basis for Ts? In the MB model, this temperature delineates two different behaviors

of shell water molecules around a solute. Below Ts, shell water molecules have more

and tighter H-bonds than bulk water molecules have (see Figure 2.8). Above Ts, this

behavior reverses: bulk water molecules have more and tighter H-bonds than shell

water molecules have.

In Figure 2.8, hydrogen bond coordination around a given molecule was calculated
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by summing all of its pairwise hydrogen bond interactions that are below an energetic

cutoff. Several cutoffs (in the range from —0.5 to -0.25) were explored yielding the

same crossing temperature and qualitative temperature trends. The binding energy

is defined to be sum of the energetic interactions of a given water with all other

water molecules in the simulation. (To be fair in making conclusions about relative

structuring, the interaction with the solute is left out.) From either measure, it is

clear that the shell molecules have more favorable energies and higher hydrogen bond

coordination than bulk water molecules below Ts. Beyond this temperature, the roles

reverse. The widths of both coordination number and binding energy distributions

are tighter at all temperatures for shell molecules (not shown).

At all temperatures we studied, the water molecules directly surrounding shell

molecules have more orientational order than those around bulk water molecules.

Second-neighbor water molecules around shell-water molecules have only slight or

dering up to Ts (Figure 7 in (61).

Why should shell water molecules be more ordered and have better H-bond coordi

nation than bulk water molecules? Matubayasi has proposed a geometric explanation

[47]. He showed that a solute adjacent to two shell molecules occupies a region of

space that is inconsistent with local solvent tetrahedrality (i.e. in reference to the

angle a third solvent molecule might make with the pair). Thus, inserting the solute

increases the probability of local tetrahedrality among the water molecules (since sol

vent molecules won't be in the occluded “mismatching” zone). Better tetrahedrality

correlates with better hydrogen bonding arrangements. This explanation, invoking

3- and 4- body correlations, may be important, but it is insufficient to explain Ts
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and the reversal of shell and bulk H-bonding we observe at higher temperatures. We

believe such geometric arguments may be part of the explanation for hydrophobicity,

but not all of it.

Inserting a Nonpolar Solute Also Inserts Local Free Volume. To study

molar volumes of transfer and ideas of clathration, we use Voronoi polygons. A

Voronoi polygon defines the region of space that is closer to a given molecule than

to any other molecule in the system. Thus, the volume of the polygon is a direct

measure of the local “space” attributable to each molecule. The number of edges in

these polygons gives a geometric measure of coordination.

The distributions in Voronoi volumes and surfaces (actually perimeters in 2D)

around the shell water molecules, bulk water molecules, and solute are shown in Fig

ures 2.9 and 2.10, respectively. The average volume, surface and coordination are

shown in Figure 2.11 as functions of temperature. The model shows that the molar

volume of the solute increases with temperature. This increased volume is largely

localized around the solute, consistent with the findings of Guillot and Guissani [34].

The average number of water neighbors around a solute increases with temperature,

while the average number of water neighbors around a shell water molecule decreases

with temperature. This information, taken together with the breadth of the distribu

tions around the Solute, suggest that well-ordered small collections of water molecules

at low temperature are replaced by highly variable fluctuating larger structures at

higher temperatures. The difference between shell and bulk local volumes remains

fairly constant over the temperature range.

The Voronoi volumes and surfaces surrounding the solute give some indication of
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Table 2.1: Computed Voronoi volumes and surfaces (perimeters) of idealized rings of

water molecules surrounding a solute.

Ring size Volume Surface

5 0.657 3.09

6 0.866 3.46

7 1.12 3.88

clathrate-like populations. We calculated the volumes and surfaces for idealized 5-, 6-,

and 7-membered rings of H-bonded water molecules around a solute (see Table 2.1).

The three peaks in the Voronoi distribution curves at the lowest temperature coincide

with these idealized values, indicating multiple modes of clathration around the Solute,

as has been found in 3D studies [1, 39]. These peaks weaken with temperature.

2.7 Conclusions

Our aim has been to model the thermodynamic properties of pure water and the

hydrophobic effect. We use a simple two-dimensional model of water that describes

a competition between Lennard Jones interactions that favor random dense states

and hydrogen bonding that favors ordered open states. At low temperature, MB

model water freezes to a low density crystal, like ice. The anomalous properties of

the volume of water with temperature are reproduced: (1) that the liquid state is

more dense, and (2) that there is a temperature of maximum density in the liquid

range, also known as the density anomaly.
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The MB model reproduces the thermal anomalies of nonpolar solvation, including

a large free energy that opposes the insertion of oil into water, a large entropic com

ponent at low temperatures, and a large heat capacity. The MB model supports the

classical picture of hydrophobic hydration, in which the orientations of shell water

molecules that are restricted at low temperature become accessible upon heating, as

summarized by Dill (27). At low temperature, first-shell water molecules are ordered

around small inert solutes and have strengthened hydrogen bonds relative to bulk

water molecules. There are multiple interchanging modes of clathration. This ex

cess ordering of the shell causes the transfer enthalpies and entropies to be negative.

As temperature is increased, shell water structure melts out at a lower temperature

than bulk water structure, consistent with the assumptions of the two-state model

of Muller [50]. The MB model has a temperature Ts at which the transfer entropy

changes sign. Tº coincides with the point where the hydrogen bonds in shell and

bulk molecules reverse their relative strengths and numbers. Mancera and Bucking

ham [46] found similar changes in hydrogen bonding coordination as temperature is

increased.

Finally, the steady increase in the molar volume of transfer with temperature is

linked to an increase in the local volume surrounding the solute. This occurs as a

relatively small number of ordered shell-water motifs give way to more-varied and

larger fluctuating structural arrangements.
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3.1 Abstract

Oil and water don't mix. Why not? Thermodynamic experiments characterize this

disaffinity, but not the molecular mechanism. Few all-atom simulations yet have the

capacity to explore the main fingerprint of hydrophobicity, the large positive heat

capacity of insertion of a nonpolar solute into water. Muller has devised a simple

double-two-state model to explain hydrophobic solvation, but it involves several pa

rameters that are not yet derivable from traditional structural models of water. Here

we use a statistical mechanical model of water, the MB model, to give physical mean

ing to the quantities in the Muller model. We find that inserting a nonpolar solute

into water strengthens hydrogen bonding in the first solvation shell by making the

poorer, higher-energetic hydrogen bonds thermally less accessible than good ones.

H-bonds in the solute shell are “more broken” than H-bonds in the bulk. We find

that hydrophobic solvation enthalpies and entropies are not accurately approximated

by pair interactions, or triplets, or even first-shell polyhedra: Solvation appears to

be more subtle than properties of pure water. We suggest a recipe for interpreting

spectroscopic experiments to bring them into consistency with thermodynamics for

determining the fraction of hydrogen bonds that are made or broken as a function of

temperature.

3.2 Introduction

The hydrophobic effect is poorly understood. Hydrophobic solvation refers to the

anomalous thermodynamics: a large positive free energy of transfer of nonpolar so

;
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lutes into water, dominated by a large negative entropy around room temperature,

and large positive heat capacity. For understanding the physics, the heat capacity

is the most fundamental of these properties, because the others can be derived from

it. Considerable insight into the nature of hydrophobicity comes from simulations'

(8, 11, 29, 32, 33], integral equation theory [20, 41, 42, 52 and scaled-particle theory

[23, 40), NMR experiments [19, 34, 36, 47 and neutron diffraction [51]. But such

studies have not yet shed much light on the key quantity, the heat capacity. The

closest attempt to achieve this goal is the recent work by Madan and Sharp (28,48],

who used the Random Network Model [18, 44, 45, 46 to calculate heat capacities,

and separate simulations to obtain structural detail. However, what is needed is an

approach which yields both microscopic structural data and macroscopic heat capacity

measurements from the same model.

What is the physical basis for the large positive heat capacity? If, in addition,

we also knew the physical basis for the temperatures, TH and Ts where the enthalpy

and entropy of transfer equal zero (2, 35, 43], we would then understand the full

thermodynamics of the hydrophobic solvation. This is because the thermodynamics

can be expressed as

AG(T) = AH – TAS (3.1)

= AH (Th) – TAS(T +■ . AC.d.T ■ .Ac TalT
-

H s) TH p + Ts p/ y

where T is the absolute temperature.

We develop here a model of the hydrophobic effect. Until now, there have been

*For work in this area prior to 1993, see reviews [4] and (61), and references therein.
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two main classes of models, but each has its problems. First, all-atom simulations

have been an important source of insight into water properties. But due to limitations

of current computational power, it has been notoriously difficult to achieve numerical

convergence for properties as subtle as the heat capacity. Second, there have been

thermodynamic models, such as “mixture models”, which assume that water has

discrete states, with hydrogen bonds that are either made or broken, for example [6].

These too have provided very useful insights, but such models (6, 35, 37 have many

adjustable parameters, so their physical bases are not always clear.

Here we take a third approach. We use a model of water for which the statis

tical mechanics can be explored completely, and which has been shown to have the

interesting and anomalous properties of water [50], but is simple enough that we can

obtain complete convergence on subtle properties, including the heat capacity. We

use the model to obtain the parameters for one of the most useful of the thermo

dynamic models, due to Muller [35], to provide a microscopic interpretation for the

anomalous thermodynamics of nonpolar solvation. We also derive from the model a

recipe for interpreting experiments to give the fraction of water molecules that are

hydrogen bonded in the bulk, and in the first neighbor shell around the solute.

3.3 The Model of Water and Nonpolar Solvation

We model water using the MB model [50], so-named because of the resemblance

of each model water molecule to the Mercedes-Benz logo. Waters are 2-dimensional

Lennard-Jones disks with 3 hydrogen bonding arms that can align with arms of neigh

.
:=
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boring water molecules. Constant-pressure Monte Carlo Sampling has shown that this

model predicts the volumetric anomalies of water and the temperature dependence

of transfer of nonpolar solutes. Hence the balance of hydrogen bonding and Lennard

Jones interactions in the MB model are sufficient to capture the thermodynamics of

the hydrophobic effect.

Our aim here is to derive the parameters for the Muller double-two-state model

[35] from our MB model simulations, hence providing a physical basis for interpreting

the large heat capacity of solvation. Muller's model focuses on the hydrogen bonds

among water molecules. They occur in four possible states: hydrogen bonds that

are intact in bulk water (BI), hydrogen bonds that are broken in bulk water (BB),

hydrogen bonds that are intact in the first-neighbor shell of a nonpolar solute (SI),

and hydrogen bonds that are broken in the first-neighbor shell around the solute (SB).

Muller treats the transfer of a solute into water as a process in which n hydrogens

that participated in hydrogen bonds in the bulk now become a part of the hydration

shell of the solute. The resulting heat capacity change is:

AC, -n C. - C, (3.2)p,

In Muller's model, the hydrogen bond breakage for either bulk or shell waters can

be described as a two-state equilibrium

H-bond(intact) => H-bond(broken), (3.3)

with equilibrium constant, Kh:

Kb = fº/(1 – f.) = exp(-AH;/kT + AS./k), (3.4)

.ºº
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where f is the fraction of bonds broken, and the subscript b indicates the bulk

phase (to distinguish it from the hydration shell). The two states have a free energy

difference AG; = AH; – TAS, where AH; is the enthalpy of breaking a hydrogen

bond in bulk water, and exp(AS./k) is the change in the degeneracy, i.e., the number

of configurations that have a broken bond, relative to the intact form. The constants

k and T are the Boltzmann constant and absolute temperature, respectively. In the

Muller model, AH; and AS., are assumed to be independent of temperature. Hence,

bond breaking contributes to the heat capacity AC, in the classical two-state fashion

[10]:

AC, , = (AH;)*f,(1 – f.)/kT’. (3.5)

A similar hydrogen-bond-breaking equilibrium applies to waters in the hydration shell

of the solute:

K. = f; /(1 – f.) = exp(-AH./kT + AS./k) (3.6)

and

AC. - (AH.)*f,(1 – f.)/kT". (3.7)

In addition to its effect on the heat capacity change, the transfer of the nonpolar

Solute into water will also change the enthalpy and entropy. Muller's original model

assumed, for simplicity, that the “upper” (broken) state is identical in the bulk and

in the hydration shell. But there is little reason to believe these states should be

the same. Lee and Graziano (25) have generalized the Muller model by assigning

two additional parameters, AHL and ASU, to reflect the offsets in the enthalpy and

entropy of the two upper levels. With these definitions, the contribution that the

. :

60



reorganizations of hydrogen bonds make to the enthalpy and entropy of transfer are,

respectively,

AH, = n (AHU – (1 – f.) AH + (1 – f.) AH; (3.8)

and

AS. = n (ASP – (1 – f.)AS. + (1 – f.).A.S. – kAF), (3.9)

where AF = F. – F is the mixing entropy with F, defined as

F} = f', lm fº + (1
-

fb) ln(1
-

fb) (3.10)

and F, is defined similarly in terms of f.

The generalized Muller model has a total of seven independent parameters (n,

AH;, AS, AH., and AS. determine the transfer heat capacity change; and the

remaining two AHt, and ASU complete the determination of the transfer enthalpy

and entropy, respectively). The first one, n, the number of waters in the hydration

shell, can be estimated on geometric grounds based on the surface area of the solute

[43]. In the past (25, 35], the quantities AH; and AS., have been estimated using

the difference in heat capacity between steam and liquid water, and the estimate

of Pauling [39] for f. at 0 °C. Since the values for C, and f, are unknown, the

remaining parameters in the original model, AH. and AS., have previously been

estimated using a best fit to the hydration enthalpy, entropy, and heat capacities of

nonpolar transfer. Lee and Graziano introduced AHL, and AS, (which were assumed

to be zero in Muller's treatment) to show that relatively small values for each could

support their view of enthalpy–entropy compensation [21, 23, 24, 27). Hence, the

main limitation of this model is the many parameters that are freely adjustable. Lee
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and Graziano have noted that (25) “Many different models can be made to reproduce

the observed thermodynamic properties by only a small adjustment of the model

parameters because of the built-in amplification by the size of the hydration shell.”

The overabundance of free parameters can be circumvented if the hydrogen bonded

fraction of bulk and shell waters were known as a function of temperature. The MB

model gives such information [50]. So the MB model can both test the two-state

assumption and produce a consistent set of parameters for the Muller model. Least

squares fitting of the Monte Carlo simulations of the MB model to Eq. 3.4 separately

for the bulk and hydration shell yields the energy gaps and relative degeneracies

directly. If the two-state approximation is adequate, then these four parameters

should be sufficient to fit the hydrogen-bond-breaking contribution to the heat ca

pacity change. The enthalpy offset could then be determined from a direct fit to the

reorganizational contribution to the total hydration enthalpy [12, 21]. The reorgani

zational contribution is defined to be the portion of the transfer enthalpy which is

due to the change in water structure induced by the solute (i.e., the direct attrac

tion of the solute for the solvent molecules must be subtracted from the full transfer

enthalpy):

AH, = AH! – Ea. (3.11)

Here, AH, is the total enthalpy of transfer, E, is the solute-solvent interaction energy,

and, AH, corresponds to the enthalpy change predicted by the double-2-state model.

The one remaining parameter, ASU, determines the degeneracies of the bulk states

relative to the shell states. Since the entropy is not formally separable (60) into

ºº D.
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reorganizational and direct contributions, a fit to the transfer entropy yields a value

for this parameter that may only be approximate. This is because the Muller model

only includes information about the reorganizations of hydrogen bonds, and the actual

counting of configurations may be affected by the direct solute-water interaction.

3.4 Exhaustive Grid Enumerations of Few-Body

Systems

What is the minimal number of water molecules needed to understand the essential

physics of hydrophobic solvation? Hydrophobic solvation has been modeled by pair

interactions. Or sometimes hydrophobic solvation is regarded as a property of “tetra

hedrality” of water, implying the importance of 3-body or 4-body arrangements of

waters [31]. And sometimes hydrophobicity is considered to result from polyhedral

clathrate cages [1, 16], implying 6-body or 7-body effects might be important. Such

polyhedra are also found in the MB model [50].

Our aim in this section is to perform few-body exhaustive grid enumerations to

find out how many water molecules in the MB model adequately predict the MB

Monte Carlo results. We enumerate all relative orientations and separations of two

model water molecules on a grid. We then systematically add additional waters

one-at-a-time and enumerate their contributions to the partition function by similar

exhaustive grid enumeration.

To do this, we fix a first MB water molecule in space. A second water molecule

:
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Figure 3.1: Distribution of the hydrogen bond energies (in units of eii B |) of neigh

boring water molecules in the bulk (solid) and shell (dashed) is bimodal for the MB

model at all temperatures studied. The temperature shown (T = 0.18) is below Ts.

is added to the system and moved in fixed increments in the acy coordinate system.

Water number two is constrained to be within a neighbor distance from the first (i.e.,

within the first minimum of the water-water pair correlation function, gww.(r), as

determined from previous full Monte Carlo simulations). At each relative position,

the angles of each molecule are sampled in fixed increments (the grid size is made small

enough so that subsequent reductions cause no changes in the relative distributions

obtained) from 0° to 120° (this upper limit is dictated by the molecular symmetry).

Our Monte Carlo simulations of the MB model show that water configurations fall

into two distinct classes, which can reasonably be defined as having intact or broken

hydrogen bonds. Figure 3.1 shows the distribution of energies for water neighbors in
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the shell and the bulk. This distribution is clearly bimodal, indicating that the two

state approximation is valid, and that it is meaningful in the MB model to refer to

“intact” and “broken” bonds, even though the hydrogen-bond energy function for the

MB model is continuous and unimodal. The minimum in this bimodal function is very

broad, so there is little sensitivity to how we choose the cutoff that delineates intact

from broken bonds. We explored several cutoffs from 0.5 to 0.25, each yielding similar

results for the Muller model parameters, and show results for a cutoff of 0.33. To be

consistent, we chose the same cutoff for the grid enumeration as for the Monte Carlo

simulations. For comparison with the double-two-state model, we bin the total energy

of a configuration into two classes (one entry for each pair of water neighbors). Each

distribution, for “intact” or “broken.” H-bonded waters, is then Boltzmann-weighted

to yield the average energy and entropy. For example, the average values for the

distribution corresponding to the bulk-intact (BI) state are:

< Ebi > = XXe Q(e) exp■ —e/kT/XD Q(e) exp■ —e/kT) (3.12)
e 6:

< SB1/k > = < EB1 > /kT + ln(XD Q(e) exp■ —e/kT) y (3.13)

where the sums are performed over the energy bins or levels, e, and Q(e) is the density

of states obtained from the enumeration. Similar calculations are performed for states

BB, SI, and SB. Taking differences of these quantities gives the parameters relevant

for the Muller model:

AE,(T) = < Ebb > — 3 Ebi >

AE,(T) = < Esb > – 3 Esi > (3.14)

ASE/k(T) = < SBB/k > – 3 Sei■ k >

, sº
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AS./k(T) = < SSB/k > – 3 SS I/k > . (3.15)

corresponding to the AH; and AS (or AH. and AS. for the shell) of the Muller

model, Whereas the Muller model assumes that these quantities don’t depend on

temperature, they do in the MB model, but only weakly.

We follow the same general procedure when additional water molecules are in

cluded in the enumeration. When a solute is present, the fixed reference water is

always within its hydration shell (i.e., the solute and fixed water are separated by

a distance within the first minimum in the solute-water pair correlation function,

gsw(r)). Each water molecule that is added to the system must be a neighbor of

an existing water, so the system remains contiguous (i.e., if water molecules are the

nodes of a graph, and if edges indicate joined neighbors, the graph is connected).

In practice, the exhaustive-grid enumeration scheme described above could only

be carried out with at most 4 molecules. Hence Boltzmann-weighted sampling (i.e.,

Metropolis Monte Carlo) was performed as well on systems of 2-12 water molecules

(with and without a solute), without periodic boundary conditions, but with the same

connectivity requirements around a fixed reference water as above.

In order to attempt to use the MB model to determine the physical basis of the

remaining two parameters, AHU and ASU, of the Muller model, we use two methods.

The first is purely geometric. We simply take each of the pure-water configurations

obtained in the enumerations described above, and determine what percentage of

the volume would be occluded by the systematic placement of a solute in fixed

space increments. By its nature, this geometric approximation predicts that broken

2,
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and intact states are occluded with equal frequency. In the second, more rigorous

approach, we performed the equivalent of the Widom test-particle method [58] to

obtain energy distributions for the intact and broken bonds in the hydration shell,

while sampling only pure water configurations. This method allows us to compare the

bulk and shell distributions on the same relative scale. In practice, this is achieved

by randomly placing a ghost-solute particle in the shell of the reference water, and

calculating the solute's hypothetical interaction, 8, with the system. Each of the

neighboring water molecules of the hypothetical solute may be participating in some

broken and intact hydrogen bonds with other water molecules also in the hydration

shell. If we define some quantity mbi to represent the number of intact H-bonds

among the bulk-water configurations that are in the shell of an arbitrarily-placed

ghost solute:

mBI = #intact H-bonds in pure sample,

then the reweighted ratio of intact H-bonds in the shell would be:

(m bi exp(-|38)) y
(exp(-|38)) w :

In SI = (3.16)

where the ensemble averages are computed over the N-water system. For each system

configuration recorded, an increment of mbi is made for the bulk-intact energy bin

that corresponds to the total system energy. The distribution obtained in this manner

will reflect the likelihood of having a bulk-intact bond present with a given total

system energy. A corresponding increment of msl is added to the (total-system

energy + 8) bin for the shell. The proper Boltzmann-reweighting of Eq. 3.16 ensures

that this SI distribution is on the same relative scale as the BI distribution. Analogous

º
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T-intact

Bulk Shell

Figure 3.2: Schematic diagram of the two-state model which best fits the simulation

data. Enthalpy gaps are normalized by the strength of the hydrogen-bond (i.e., A.H.,

AH., and AH1, are all in units of le Hb).

definitions relate BB and SB. As a check, we determined that the shell distributions

obtained this way are indeed the same as those obtained directly with the solute-water

system sampling (apart from an arbitrary multiplicative constant that is dependent

on the simulation time).

3.5 Results

3.5.1 Parameters for the Muller Model

Figure 3.2 shows an energy diagram for the best Muller parameters derived from the

MB simulations. We find that hydrogen bonds in the solvation shell are stronger

than hydrogen bonds in the bulk, a result that has also been observed in all-atom
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Figure 3.3: Fraction of broken hydrogen bonds in the hydration shell (Ö), and bulk

(+). The least-squares fit to a separate two-state formalism for each is shown. Pa

rameters for these fits are in the text.

simulations (9, 38]. Here, this arises because the solute effectively increases the energy

gap between intact and broken H-bonded states, making poorer H-bonded configu

rations thermally less-accessible than good H-bonds. Moreover, a broken H-bond in

the solvation shell is “more broken” than a broken H-bond in bulk water.

The temperature dependence of f, and f, are shown in Figure 3.3, along with the

least-squares fit to the two-state model. The fit yields the following four parameter

values: AH = 0.71, AS/k = 2.99, AH = 0.92, and AS./k = 3.88. The errors in

fitting are quite Small, due to the excellent convergence of the simulations.
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0.16 0.2 O.24 0.28

Figure 3.4: The heat capacity as a function of temperature. Along with the simulation

points (©), the theoretical two-state prediction is shown (dotted line). Only the

four parameters directly obtained from the hydrogen-bond fractions are used for the

water-reorganization contribution to the heat capacity. The mild contribution from

the solute-water interaction # = 1.23 has been added.

3.5.2 The Muller Double-2-State Model Predicts Well the

Monte Carlo Simulations

We now test whether the simple Muller model, with its assumption of only four states,

adequately captures the essence of the hydrophobic heat capacity in our continuum

energy model. In specific, we now determine whether the four parameters obtained

from fitting to our Monte Carlo simulations are sufficient to give back the config

urational contribution to the transfer heat capacity change. Figure 3.4 shows that

the double-2-state model works extremely well. This is particularly remarkable since
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Figure 3.5: The mild temperature dependence of the solute-water binding energy is

fit to a line with slope 1.23.

the heat capacity is a very sensitive function of such parameters. The double-2-

state model is not quantitatively accurate at very high or low temperatures, however.

Adding additional states, above the two upper states in the Muller model, would act

in the right direction to reduce these errors.

3.5.3 Interpreting TH and Ts

In past thermodynamic modeling of hydrophobic solvation, it has been common to

assume that solute-water interactions are simple, and that the nonidealities of hy

drophobicity arise in the water-water interactions. In particular, it is assumed that

the enthalpy of the solute-water interaction is independent of temperature. But Fig

ure 3.5 makes an interesting point to the contrary. Even though the solute-water

pair energy in the MB model is independent of temperature, the average solute-water

.
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enthalpy is not. This means that the solute-water interaction contributes to the hy

drophobic heat capacity. Why? This arises because the observable enthalpy is the

integral of (the solute-water energy) × (the solute-water pair correlation function),

and the latter quantity changes with temperature. That is, the average separation

and angle of a water molecule relative to the solute changes with temperature, so

even though the pair energy is a constant, the mean energy is temperature depen

dent. The key point is that hydrophobic hydration cannot be deconvoluted into two

simple components, a classical part and an “abnormal” part.

The model allows us to interpret Tif, the temperature at which the enthalpy of

solute transfer is zero. We define the reorganization enthalpy as the total enthalpy of

transfer minus the solute-water binding energy, as in Eq. 3.11. Once the binding en

ergy is subtracted from the transfer enthalpy obtained in the simulations, the resulting

reorganizational enthalpy can be fit to Eq. 3.8 to yield the value of AHu, since all

the other parameters are already determined. The fit, with a value AHu = 0.195, is

shown in Figure 3.6. The quantity AHL, determines only where the transfer enthalpy

crosses zero, but otherwise has no effect on the shape of the temperature dependence.

Hence, the crossing temperature, TH reflects the shift of the two fixed-gap bulk states

relative to the two fixed-gap shell states.

The model also gives an interpretation for Ts, the temperature at which the

entropy equals zero. The remaining parameter, ASU, plays a similar role for Ts that

AH1, plays for Th. If water reorganization accounted for all of the transfer entropy,

then a value of ASU/k = 0.46 would fit the data well (see Figure 3.7). The parameters

:
º

º º

:
:
:

72



0.6 H …”.
**

0.4 H. *
-

+c \- 3'
I 0.2 H. A

-

<! A.

O
- --

,8.
2,2'

-0.2 --"
-

0.16 0.2 0.24 0.28

T.

Figure 3.6: The reorganization enthalpy is plotted along with the two-state result.

The slope and shape of this curve are predetermined by the original 4 parameters.

The additional parameter which describes the offset between the two sets of energy

levels determines the intersection of the curve with the x-axis.
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Figure 3.7: The transfer entropy (TAS") is plotted along with the two-state result.

The slope and shape of this curve are predetermined by the original 4 parameters. The

additional parameter which describes the relative degeneracies of the upper energy

levels in each set determines the intersection of the curve with the x-axis.

described here and above provide a self-consistent set” and indicates that for every

three intact hydrogen bonds in the bulk, there are only two in the hydration shell

(i.e., exp(ASH; , st/k) = 2/3, where ASB, ,sr= ASs - ASBI).

Lee [21, 22, 25) and others [33, 59 have argued that the reorganizational entropy

should nearly exactly compensate the corresponding enthalpic term. The value of

AS, which would realize this expectation (0.88k) would indicate that there is a
*The 3 entropy parameters that we have determined are all fully satisfied if the 4 energy levels

have the following relative number of states: Beginning with the least degenerate state, the intact

hydration shell level, and moving clockwise in Figure 3.2, the relative number of states at the four

levels is some multiple of 1:1.5:30:48.
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roughly one-to-one correspondence” of hydrogen-bonding degenerate states in the

bulk and hydration shell. Unfortunately, the results we obtained for our exhaustive

enumerations disagree with both values for AS, (see Section 3.5.5), leaving this issue,

as yet unresolved.

3.5.4 Subtle Consequences of the Hydrophobic Effect

The “structuring” of water that results from nonpolar solvation is very subtle. It

manifests differently for the different types of experiment used to measure it. For

example, the temperature at which the enthalpy becomes zero is not the same as the

temperature at which the entropy becomes zero. Other properties too change signs

at different temperatures. An example is the NMR chemical shift.

Muller noted that his motivation for developing the double-2-state model was to

account for puzzling NMR chemical shifts upon nonpolar solvation. A downfield shift

is believed to indicate enhanced hydrogen bonding. But while downfield shifts are

observed at low temperatures, upfield shifts are observed at higher temperatures. The

implication is that solvation shell hydrogen bonds are not stronger than bulk hydrogen

bonds at all temperatures. Muller described the relationship between chemical shift,

Aó and the fraction of broken hydrogen bonds with the expression

A6/m = (n/111.1)[B(1 – f.) – A(1 – f.), (3.17)

where m is the molality of the solute in water and A and B are the downfield chemical

*Following the same convention described in the previous footnote, the relative number of states

at the four levels would be 1:1:20:48 to satisfy a nearly-complete compensation criterion.

:
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Figure 3.8: Predicted NMR chemical shift with assumptions from the text.

shifts that result from hydrogen bonds in the bulk and shell respectively. Although

our parameters our quite different than Muller's, Figure 3.8 shows that our model

also suitably accounts for this behavior. For simplicity, we've assumed that A =

B, and that they are both given the value of 5.5 ppm that Muller estimated from

the literature. Increasing the value of B relative to A merely shifts the crossing

temperature to the right.

Our parameters are different than those estimated by Muller. Our model shows

that there is a crossing temperature: shell H-bonds are more populated at low temper

atures and bulk H-bonds are more populated at high temperatures (see Figure 3.3).

In contrast, Muller's parameters predict that bulk H-bonds are more populated at all

temperatures. We believe this particular result from the original Muller parameters

is nonphysical, and is also inconsistent with results of all-atom simulations (9, 29, 38].

The problem arises from choosing parameters only to fit the heat capacity of hydra

tion, as Muller did (see Figure 3.9, where we have performed a least-squares fit to the

.
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Figure 3.9: Demonstration that (a) overfitting the heat capacity leads to (b) the very

same qualitatively-incorrect assumptions about hydrogen bonds of Muller's original

parameterization. Labels for curves and points in (b) are the same as Figure 3.3.

heat capacity to derive the parameters, rather than fitting f and f, directly).

3.5.5 Microscopic picture

Is there a simple two-body or three-body explanation for these parameters? We first

focus on the bulk-water case. The full enumeration of only two water molecules is

sufficient to give a remarkably good estimate of the bulk-water parameters. The

two-body approximation gives AH; = 0.71 and AS./k = 2.7 (from both the semi

exhaustive enumeration and the Boltzmann-weighted sampling), to be compared with

AH; = 0.71 and AS/k = 2.99 from the full many-body Monte Carlo simulation.

The unweighted distribution of states is shown in Figure 3.10. The underestimate at

the two-body level in the relative entropy of broken to intact H-bonded states implies

s

t ** -

** -
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Figure 3.10: The relative distribution of intact (solid) and broken (dashed) H-bonded

states for the enumeration of two MB waters.

that there are more intact states than in many-body systems. The presence of more

intact states leads to an overestimate in the H-bonded order (see Figure 3.11) relative

to the full simulation, which is most pronounced at low temperatures, due to the

effects of the Boltzmann weighting. This trend has been shown elsewhere in a formal

theoretical expansion of the entropy of MB water [49].

While the two-body partition function gives a reasonable model for bulk water, it

is not sufficient for nonpolar Solvation. For nonpolar solvation, the minimum number

of waters needed even to begin to get the correct trends is 5 water molecules – the

smallest number that can make a ring or clathrate around the Solute. But even a single

solvation shell is not sufficient to predict the solvation thermodynamics adequately.

Figure 3.12 shows this trend, where the values are plotted versus the reciprocal of

the system size. For systems of 4 or more waters, these plots are linear, and an

* *
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Figure 3.11: The distribution of hydrogen-bond energies at a low temperature (Tº =
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extrapolation to 1/n – 0 (infinite system size) yields the parameters AH = 0.88 and

AS./k = 3.5, which are close to the expected values (AH = 0.92 and AS./k = 3.88).

As a control, the bulk water values, also shown in Figure 3.12, show little change with

system size.

Enumerations for the remaining two parameters AH1, and ASU did not yield

values in agreement with those obtained from macroscopic fitting of the MB data. The

first, purely geometric method yielded a 39% reduction in states with the introduction

of the solute, occluding both intact and broken states with equal proportions. Though

this agrees well with the expected 33% reduction of intact H-bonded states, it is in

disagreement with the expected increase in broken states suggested by the expected

value (eap(AS/k) = earp(0.46) = 1.58). The more rigorous Widom protocol also

yielded poor agreement, even when extrapolated to infinite system size in the same

manner as the other two shell parameters. These extrapolations suggest the values

AHJ = –0.14 and ASU/k = –1.6, which not even the same sign as the parameters

that fit the macroscopic MB data. It is possible that the total energy of the system

is not the distribution variable we should be looking at. However, the total H-bond

energy (i.e., neglecting the LJ terms) in the system does not yield the expected values

for AHL and ASU either (and that distribution variable even fails to give the correct

values for the other 4 crucial parameters).
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3.5.6 Analysis of Spectroscopic Measurements

Numerous spectroscopic techniques have been applied, using a two-state assumption,

to obtain estimates of the H-bond fraction. Among these are Raman [5, 14, 15, 54, 56,

57], IR (26), and NMR spectroscopy [19, 34, 36, 47). Additionally, viscosity measure

ments have also been used [55]. Unfortunately, these estimates are all very different,

predicting, for example, a value of f, anywhere from 7% to 62% at 0 °C. The ther

modynamic predictions of the two-state model can be used to test the consistency

of each of these estimates. Assuming that the predominant contribution to the con

figurational heat capacity of pure water can be attributed to making and breaking

(or deforming) hydrogen bonds, any hydrogen bond fraction estimate should produce

heat capacities in reasonable agreement with experimental values.

We have taken various estimates for bulk water from the literature, and fit them

to Eq. 3.4 (see Figure 3.13) to obtain the corresponding enthalpy gap and relative

degeneracy for each, which we have compiled in Table 3.1. Then we computed the

resulting heat capacity contribution using these parameters and Eq. 3.5. Finally we

compare these curves with the configurational part" of the heat capacity from the
“Eisenberg and Kauzmann [7] have estimated the contribution of rotations, translations, and

vibrations to C, throughout the liquid range, based on known spectral frequencies. This value we

denote C. The corresponding value for C, may be obtained from the thermodynamic relation,

C.
F. C. +TVo°/s, where T is the temperature, V is the molar volume, o is the thermal expansion

coefficient, and k is the isothermal compressibility. This value of C, is then simply subtracted off

the total heat capacity of bulk water from the steam tables to obtain the configurational portion of

the heat capacity.

--
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Figure 3.13: Various experimental estimates in the literature for the fraction of in

tact bonds in the bulk (1 – f.), fit to the two-state formalism. (Ö, +, []): Hare

and Sorensen [14], with three different methods used to deconvolute their data,

as described in their work; (x): D’Arrigo, et al. [5]:

1 – f = XD: o if.../4); (+): Hare and Sorensen [15].

(A
* \ ): Walrafen [54] (where

º2
:ºº

º

sº=

3
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Table 3.1: Enthalpy and entropy parameters obtained from H-bond fraction estimates

in the literature.

Source Experiment used AH; AS/k

kJ mol−'

[5] Raman 10.5 4.36

[14] Raman 11.4 5.02

[14] Raman 12.0 5.76

[14] Raman 6.3 1.65

[15] Raman 7.5 2.33

[19] NMR 6.5 1.16

[54] Raman 12.5 3.07

(55) Viscosity 10.2 3.34

[56, 57. Raman 10.9 3.13

-

--- ;
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Figure 3.14: Bulk water heat capacity derived from the various estimates for the frac

tion of intact H-bonds, as compared with the configurational part of the heat capacity

in the steam tables (solid line). (a) (1, 4, 5): Hare and Sorensen [14] corresponding to

D, Ö, and +, respectively in Figure 3.13; (2): Hare and Sorensen [15]; (3): D’Arrigo,

et al. [5]; (b)(6): Walrafen [54] (7): Muller [35]; (8): Walrafen et al. [56, 57]; (9):

Walrafen and Chu (55).

steam tables [13] in Figure 3.14. The results are striking. Nearly all experimental

estimates of f, give widely inconsistent values for Cº., with the exception of the careful

Raman estimate of Hare and Sorensen [15]. Their data shows excellent agreement

over the whole temperature range. Note that Muller's original parameters give con

siderably poorer agreement (though they are reasonable at 0 °C, the temperature at

which they were parameterized).

The analysis that Hare and Sorensen used to deconvolute their spectra does not

require any a priori assumptions about the energy gap or spectral frequency of the
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pure broken and intact species. They merely assumed a one-to-one correspondence

between the Raman frequency shift and the energy state of the OD oscillator”. By

plotting the relative intensities of the signal at each frequency separately over the

temperature range in a van't Hoff plot, they were able to obtain the average deuterium

hydrogen bond energy as a function of the Raman shift. In this plot, there was a clear

minimum in energy at the same frequency as the hydrogen bond in the ice. Moreover,

in moving to higher frequencies, the energy increased steeply before reaching a plateau

region at a much higher energy (~ 3.2 kcal/mol). They attributed this region to the

non-hydrogen bonded species. In their subsequent two-state analysis, they determined

the average hydrogen bond strength to be about 1.9 kcal/mol, or about 60% of the

value obtained as the energy to completely break the bond. This is similar to our

observation of an average H-bond energy gap that is considerably smaller than the

maximum value (compare 0.71 to the maximum H-bond energy gap of 1.0 in the MB

model).

Given the success of their analysis, we believe it would be profitable for other

spectroscopic techniques to be deconvoluted in a similar manner. This may lead to

estimates of f,(T) across experiments in far better agreement than currently exists,

and consequently a consistent value for the strength of a hydrogen bond in liquid

Water.

Estimates of f, are far more difficult to obtain experimentally. This is largely due

to the fact that hydrophobic solutes are sparingly soluble in water, and thus don’t

*They used 10 mol % HOD in H2O in order to remove the coupling of the dilute OD oscillator

to other oscillators in solution, thus simplifying the spectral analysis.
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provide a strong enough signal to noise ratio. In the past, systematic studies have

been made on dilute alkane-substituted alcohol (30) ammonium (3, 53] and sulfonate

[17] solutions. Although the effects of the hydrogen-bonding groups of these com

pounds complicates the interpretation, a consistent analysis similar to the work of

Hare and Sorensen might yield reliable estimates of f,(T). The systematic variation

with increasing number of methylene groups recently observed by Hecht et al. [17]

is suggestive that their spectral peaks do indeed correspond to changes in the water

structure attributable to the hydrophobic moieties. Analysis of difference spectra

similar to theirs over a wide temperature range, and the resulting hydrogen bond

fractions are eagerly awaited.

3.6 Conclusions

We have used the MB model, a statistical mechanical model of water, to explore

the principles of hydrophobic solvation. We have found that the Muller Model, as

modified by Lee and Graziano, which approximates solvation using two states – hy

drogen bonds are made or broken – in the bulk and solvation shell, accounts well for

the thermodynamic temperature trends of hydrophobic transfers in the MB model of

water. The Muller model has as its primary parameters, an enthalpy gap and relative

degeneracy of states for both the hydration shell and the bulk. Our simulation allows

us to obtain these parameters from a microscopic model, from the fraction of broken

bonds. The heat capacity, enthalpy, and entropy which are calculated as a function of

temperature are in reasonable quantitative agreement with the corresponding values

i
pº

:
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from the same set of simulations.

By systematic exhaustive enumerations of multiple water conformations on a grid,

we find that the thermodynamics of pure water is reasonably well approximated by

two waters, but solvation requires more waters than fill a first shell.

In its most general form, the two state model has an additional parameter to

describe the relative shift in the two sets of intact-broken energy levels. This enthalpy

shift parameter is found to directly affect the crossing temperature of the transfer

enthalpy, Th. Analogously, a parameter to describe the relative degeneracies of the

two sets of energy levels is found to affect the temperature, Ts, at which the transfer

entropy crosses zero.

We have used the Muller formalism to screen experimental spectroscopic estimates

of the hydrogen bond fraction in the literature. We have fit these estimates to the

model in the same manner as the MB data, and have calculated the predicted con

tribution to the heat capacity of pure water. We have found that only the estimate

of Hare and Sorensen [15] is consistent with the experimental value for the configura

tional heat capacity obtained from the steam tables. Their data suggest that breaking

a hydrogen bond in bulk water costs approximately 1.9 kcal/mol, and results in an

entropy change of AS”/k = 2.33. If an analysis similar to that advocated by these

two authors is used on difference spectra of alkane-substituted solutes, it is hoped that

hydration shell parameters may be obtained in an analogous fashion. The current

study suggests that the heat capacity arising from these four parameters should be

in reasonable agreement with calorimetric measurements.

*

–

:

87



3.7 Acknowledgements

KATS greatfully acknowledges support under a U.S. National Science Foundation

Graduate Research Fellowship and a UCSF Regent's Fellowship. We thank NIH

for support. In Australia, this research was supported by the Australian Research

Council (ARC) (Grant No. A29530010), and SydCom, the USyd/UTS Distributed

Computing Facility funded by an ARC infrastructure grant. In addition, KATS would

like to thank Karen Tang for many pertinent and lengthy discussions.

:

88



Bibliography

[1]

[2]

[4]

G. Alagona and A. Tani. Structure of a dilute aqueous solution of argon. A

Monte Carlo simulation. J. Chem. Phys., 72(1):580–588, 1980.

R. L. Baldwin. Temperature dependence of the hydrophobic interaction in pro

tein folding. Proc. Natl. Acad. Sci. USA, 83:8069–8072, 1986.

R. Bhanumathi and S. K. Vijayalakshamma. 'H NMR chemical shifts of solvent

water in aqueous solutions of monusubstituted ammonium compounds. J. Phys.

Chem., 90:4666–4669, 1986.

W. Blokzijl and J. B. F. N. Engberts. Hydrophobic effects. opinions and facts.

Angeul. Chem. Int. Ed. Engl., 32:1545–1579, 1993.

G. D'Arrigo, G. Maisano, F. Mallamace, P. Migliardo, and F. Wanderlingh.

Raman scattering and structure of normal and supercooled water. J. Chem.

Phys., 75.4262–4270, 1981.

D. Eisenberg and W. Kauzmann. The structure and properties of water, pages

256–265. Oxford University Press, Oxford, 1969.

:

89



[7] D. Eisenberg and W. Kauzmann. The structure and properties of water. Oxford

University Press, Oxford, 1969.

[8] S. Garde, G. Hummer, A. E. García, M. E. Paulaitis, and L. R. Pratt. Origin of

entropy convergence in hydrophobic hydration and protein folding. Phys. Rev.

Lett., 77:4966–4968, 1996.

[9] A. Geiger, A. Rahman, and F. H. Stillinger. Molecular dynamics study of the

hydration of Lennard-Jones solutes. J. Chem. Phys., 70(1):263-276, 1979.

[10] S. J. Gill, S. F. Dec, G. Olofsson, and I. Wadso. Anomalous heat capacity of

hydrophobic solvation. J. Phys. Chem., 89:3758–3761, 1985.

[11] B. Guillot and Y. Guissani. A computer simulation study of the temperature

dependence of the hydrophobic hydration. J. Chem. Phys., 99(10):8075–8094,

1993.

[12] B. Guillot, Y. Guissani, and S. Bratos. A computer-simulation study of hy

drophobic hydration of rare gases and of methane. I. Thermodynamic and struc

tural properties. J. Chem. Phys., 95(5):3643–3648, 1991.

[13] L. Haar, J. S. Gallagher, and G. S. Kell. NBS/NRC Steam Tables. Hemisphere

Publishing, Washington, DC, 1984.

[14] D. E. Hare and C. M. Sorensen. Raman spectroscopic study of bulk water

supercooled to -33°C. J. Chem. Phys., 93:25–33, 1990.

º

:

90



[15] D. E. Hare and C. M. Sorensen. Raman spectroscopic study of dilute HOD in

liquid H2O in the temperature range -31.5 to 160 °C. J. Chem. Phys., 93:6954–

6960, 1990.

[16] T. Head-Gordon, J. M. Sorenson, A. Pertsemlidis, and R. M. Glaeser. Differences

in hydration structure near hydrophobic and hydrophilic amino acids. Preprint,

1997.

[17] D. Hecht, L. Tadesse, and L. Walters. Defining hydrophobicity: Probing the

structure of solute-induced hydration shells by Fourier transfor infrared spec

troscopy. J. Am. Chem. Soc., 114:4336–4339, 1992.

[18] A. R. Henn and W. Kauzmann. J. Chem. Phys., 93:3770–3783, 1989.

[19] J. C. Hindman. Proton resonance shift of water in the gas and liquid state. J.

Chem. Phys., 44:4582–4592, 1966.

[20] F. Hirata, B. M. Pettitt, and P. J. Rossky. Application of an extended RISM

equation to dipolar and quadrupolar fluids. J. Chem. Phys., 77:509–520, 1982.

[21] B. Lee. The physical origin of the low solubility of nonpolar solutes in water.

Biopolymers, 24:813–823, 1985.

[22] B. Lee. Isoenthalpic and isoentropic temperatures and the thermodynamics of

protein denaturation. Proc. Natl. Acad. Sci. USA, 88:5154–5158, 1991.

[23] B. Lee. Solvent reogranization contribution to the transfer thermodynamics of

small nonpolar molecules. Biopolymers, 31(8):993–1008, 1991.

91



[24]

(25)

[26

[27

(28)

[29]

[30

[31]

B. Lee. Enthalpy–entropy compensation in the thermodynamics of hydrophobic

ity. Biophysical Chemistry, 51:271–278, 1994.

B. Lee and G. Graziano. A two-state model of hydrophobic hydration that

produces compensating enthalpy and entropy changes. J. Am. Chem. Soc.,

118:5163–5168, 1996.

W. A. P. Luck. Spectroscopic studies concerning the structure and the thermody

namic behavior of H2O, CH3OH and C2H5OH. Disc. Faraday Soc., 43:115–147,

1967.

R. Lumry, E. Battistel, and C. Jolicoeur. Geometric relaxation in water: it's role

in hydrophobic hydration. Faraday Symp. Chem. Soc., 17:93-108, 1982.

B. Madan and K. Sharp. Heat capacity changes accompanying hydrophobic and

ionic solvation: A Monte Carlo and Random Network Model study. J. Phys.

Chem., 100:7713–7721, 1996.

R. L. Mancera and A. D. Buckingham. Temperature effects on the hydrophobic

hydration of ethane. J. Phys. Chem., 99:14632–14640, 1995.

M.-M. Marciacq-Rousselot and M. Lucas. Nuclear magnetic resonance chemical

shift of the water proton in aqueous alcoholic solutions at various temperatures.

Some thermodynamic properties of these solutions. J. Phys. Chem., 77(8):1056–

1060, 1973.

N. Matubayasi. Matching-mismatching of water geometry and hydrophobic hy

dration. J. Am. Chem. Soc., 116:1450–1456, 1994.

;

92



[32] N. Matubayasi and R. M. Levy. Thermodynamics of the hydration shell. 2.

Excess volume and compressibility of a hydrophobic solute. J. Phys. Chem.,

100:2681–2688, 1996.

[33] N. Matubayasi, L. H. Reed, and R. M. Levy. Thermodynamics of the hydration

shell. 1. Excess energy of a hydrophobic solute. J. Phys. Chem., 98:10640–10649,

1994.

[34] N. Muller. Concerning structural models for water and chemical-shift data. J.

Chem. Phys., 43:2555–2556, 1965.

[35] N. Muller. Search for a realistic view of hydrophobic effects. Acc. Chem. Res.,

23:23–28, 1990.

[36] N. Muller and R. C. Reiter. Temperature dependence of chemical shifts of protons

in hydrogen bonds. J. Chem. Phys., 42(9):3265–3269, 1965.

[37] G. Nemethy and H. A. Scheraga. Structure of water and hydrophobic bonding

in proteins. II. Model for the thermodynamic properties of aqueous solutions of

hydrocarbons. J. Chem. Phys., 36(12):3401–3417, 1962.

[38] S. Okazaki, K. Nakanishi, H. Touhara, N. Watanabe, and Y. Adachi. A Monte

Carlo study on the size dependence in hydrophobic hydration. J. Chem. Phys.,

74(10):5863–5871, 1981.

[39] L. Pauling. The nature of the chemical bond, 3rd ed., page 468. Cornell University

Press, Ithaca, NY, 1960.

93



[40] R. A. Pierotti. Chem. Rev., 76:717, 1976.

[41] L. R. Pratt. Theory of hydrophobic effects. Ann. Rev. Phys. Chem., 36:433–449,

1985.

[42] L. R. Pratt and D. Chandler. Theory of the hydrophobic effect. J. Chem. Phys.,

67:3683–3704, 1977.

[43] P. L. Privalov and S. J. Gill. Stability of protein structure and hydrophobic

interaction. Advances in Protein Chemistry, 39:191–234, 1988.

[44] S. A. Rice and M. G. Sceats. A random network model for water. J. Phys.

Chem., 85:1108–1119, 1981.

[45] M. G. Sceats and S. A. Rice. A random network model calculation of the free

energy of liquid water. J. Chem. Phys., 72(11):6183–6191, 1980.

[46] M. G. Sceats, M. Stavola, and S. A. Rice. A zeroth order random network model

of liquid water. J. Chem. Phys., 70(8):3927–3938, 1979.

[47] W. G. Schneider, H. J. Bernstein, and J. A. Pople. Proton magnetic resonance

chemical shift of free (gaseous) and associated (liquid) hydride molecules. J.

Chem. Phys., 28:601-607, 1958.

[48]. K. A. Sharp and B. Madan. The hydrophobic effect, water structure, and heat

capacity changes. Journal of Physical Chemistry B, 101:4343–4348, 1997.

94



[49]

[50]

[51]

[53]

[54]

K. A. T. Silverstein, K. A. Dill, and A. D. J. Haymet. Entropy of hydropho

bic hydration: A full angular multiparticle expansion. To be submitted to the

Journal of Physical Chemistry, Dec 1997.

K. A. T. Silverstein, A. D. J. Haymet, and K. A. Dill. A simple model of water

and the hydrophobic effect. Submitted to the Journal of the American Chemical

Society, 1997.

A. K. Soper and J. Turner. Impact of neutron scattering on the study of water

and aqueous solutions. International Journal of Modern Physics B, 7(16):3049–

3076, 1993.

A. Tani. Nonpolar solute-water pair correlation functions—a comparison between

computer simulation and theoretical results. Molecular Physics, 48:1229–1240,

1983.

J. Z. Turner, A. K. Soper, and J. L. Finney. Ionic versus apolar behavior of the

tetramethylammonium ion in water. J. Chem. Phys., 102(13):5438–5443, 1995.

G. E. Walrafen. Water, a Comprehensive Treatise, volume 1, chapter 5. Plenum

Press, New York, 1972.

[55] G. E. Walrafen and Y. C. Chu. Shear viscosity, heat capacity, and fluctuations of

liquid water, all at constant molal volume. J. Phys. Chem., 95.8909–8921, 1991.

[56] G. E. Walrafen, M. R. Fisher, M. S. Hokmabadi, and W.-H. Yang. Temperature

dependence of the low- and high-frequency raman scattering from liquid water.

J. Chem. Phys., 85(12):6970–6982, 1986.

:

95



[57] G. E. Walrafen, M. S. Hokmabadi, and W.-H. Yang. Raman isobestic points

from liquid water. J. Chem. Phys., 85(12):6964–6969, 1986.

[58] B. Widom. Some topics in the theory of fluids. J. Chem. Phys., 39(11):2808–

2812, 1963.

[59]. H.-A. Yu and M. Karplus. A thermodynamic analysis of solvation. J. Chem.

Phys., 89(4):2366-2378, 1988.

[60) Y. yu Shi, A. E. Mark, W. Cun-xin, H. F. and Herman J. C. Berendsen, and

W. F. van Gunsteren. Can the stability of protein mutants be predicted by free

energy calculations? Prot. Eng., 6(3):289–295, 1993.

(61] S.-B. Zhu, S. Singh, and G. W. Robinson. Field-perturbed water. Adv. Chem.

Phys., 85(3):627–731, 1994.

96



Chapter 4

Entropy of Hydrophobic

Hydration: A Full, Angular

Multiparticle Expansion

Kevin A. T. Silverstein, Ken A. Dill, and A. D. J. Haymet

97



4.1. Abstract

We study the entropy of water, and the entropy of a nonpolar solute in water. Such

entropies are often approximated using pair correlation functions. Are such two-body

approximations sufficient? Or are multi-body terms required? In this paper, we

first develop the appropriate multi-particle correlation functions, with the full angle

dependence included, in the NVT ensemble. This type of formalism goes beyond

the current capabilities of all-atom simulations, however, because collecting sufficient

statistics for such high-order functions is not computationally feasible. To remedy

this problem, we test the formalism on a simpler model instead. We use the MB

model of water, which is a simple two-dimensional model of water, in which molecules

are represented as Lennard-Jones disks with 3 hydrogen-bonding arms arranged as

in the Mercedes Benz logo. The MB model captures the volumetric anomalies of

water and the temperature dependence of hydrophobic solvation. We find that at

high temperatures, the two-body approximation is sufficient for both pure water and

a nonpolar Solute in water. However, we find that for liquid water and nonpolar

Solutions at moderate and low temperatures, the two-body approximation strongly

Overestimates the degree of water ordering. This means that at ambient and low

temperature, higher order terms in the entropy expansion cause a reduction of the

entropy in order for the sum of pair terms and higher order terms to yield the correct

entropy of water and of nonpolar solvation.
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4.2 Introduction

A fingerprint of hydrophobic solvation is the large negative entropy associated with in

serting a nonpolar solute into water. This entropy penalty, which has been ascribed 4

to order induced by the solute in the surrounding solvent, leads to the low solubility

of inert molecules in water at room temperature. What is the nature of this solvation

entropy? Since the same hydration thermodynamics, including the entropy, is ob

served for a disk solute in a simple, two dimensional model of water, recently studied

by us[10, 11, 25, 26), called the Mercedes-Benz (MB) model, we have exploited the

reduced dimensionality of the simple model to calculate the magnitude and sign of

certain terms in the full angular expansion of the entropy.

Notably, we find that (the ensemble invariant analogue of) the simple “glng "

term greatly overestimates the true entropy penalty at the temperatures of interest.

(i.e., The two-body term overestimates the order induced in the model water.) There

fore, higher-order terms must describe additional disorder in the liquid, and the sum

of the terms yields the correct, observed, thermodynamic entropy penalty.

This paper is organized as follows. In Section 4.3 we summarize briefly the his

tory of calculating entropy via multi-particle correlation functions, and the explicit

formulae used in this work for both pure water and the solution. In Section 4.4 we

describe the method by which a Fourier series expansion can be used to greatly speed

up the convergence of the angular correlation functions, after briefly reviewing the

model and computational procedures used. In Sections 4.5.1 and 4.5.2, the results

of our calculations for bulk water and a dilute nonpolar solution, respectively, are
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presented. Some of these results were presented in preliminary form at a conference

[11]. Finally, Section 4.6 is a summary.

4.3 Entropy Expansions

4.3.1 The Kirkwood - Green Expansion

For liquids with only pairwise-additive interactions between particles, many thermo

dynamic quantities, such as the average potential energy and the pressure, may be

calculated directly from the pair correlation functions. However, for important sta

tistical quantities, such as the entropy and free energy, an analogous direct and exact

calculation is not possible. Typically, such quantities have been calculated indirectly

using the techniques of thermodynamic integration and histogram-reweighting meth

ods, which involve the calculation of the properties of the solution over an entire range

of thermodynamic states between a reference (ideal) state and the state of interest.

Not surprisingly, these methods require significant computer resources.

A direct, but approximate, method for calculating the entropy (and hence the

free energy) from the pair correlations alone has been explored for a variety of liquids

|2, 12, 13, 15, 16, 22, 30]. This method is based on truncation of an exact, but infinite

order, expansion for the entropy in terms of multiparticle correlation functions. Even

for pairwise-additive systems, the expansion of the entropy in terms of multiparticle

correlation functions does not truncate at the pair level, but instead has contributions

from all orders [6, 23]. At present the calculation of multiparticle correlation functions
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is at best an extremely difficult task, and recent work has focused on manipulating

the entropy expansion in order to obtain the best possible estimate of the entropy

from the pair correlation functions alone [15].

Building upon the work of Kirkwood [14], H.S. Green [6], Nettleton and M.S.

Green [23] and Raveché (24), Hernando [12, 13 recast the entropy expansion into a

particularly useful form, via a partial resummation of the higher-order terms. This

expression has been generalized to a mixture of any number, pu, components by Laird,

Wang and Haymet [18], and applied to electrolytes systems by Laird and Haymet [17].

The resulting expansion may be written as the sum of four terms:

CO

Sig")/Nk = s” + s^+ sºn, + X s.t.(i)[gº'; m × ). (4.1)
i–3

The functions º' (r. ra, ...) are the m-particle (multicomponent) correlation func

tions of the liquid. In the ensemble invariant form [2], the first term

At

- X roln pa". (4.2)
o:=1

S E ;
is the ideal gas contribution, where 0 is the species label, Aa is the de Broglie thermal

wavelength, pa is the number density of component a, p = XD. i pa is the total

number density, and aa = pa/p is the mole fraction. The second term,

(2) – 2 &
SVT' E 5X.

o:= 1

At

Xºrº■ dº ■ º)|nºr.) -º)+1], (3)
(3=1

results from the usual second-order truncation of the entropy expansion, and contains

the familiar “g lng” term. The next term is the so-called “ring” contribution,

1
- - -

* = 50), ■ dkin I + H(A) |+ #TH'(A) – TrH(k)), (4.4)
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where I is the pu × [l identity matrix and

H(k)a, Epº/*hon■ k)0%. (4.5)

Hernando derived this term by extracting the leading contribution (“ring” diagram)

from each individual order of the expansion hierarchy, and summing these contri

butions to infinite order. The function has(k) is the Fourier transform of the total

correlation function hog(r) = goa(r) — 1. When pair correlation functions obtained

from the HNC approximation are inserted into this expansion, the sum of the first

three terms is exactly equal to the well-known HNC entropy. Since the first three

terms require structural information only up to pair correlation functions, they form

a particularly useful approximation to the total entropy.

Applications of formulae analogous to Eqns. 4.1-4.5 to aqueous systems initially

used the canonical (i.e., “g lng”) formulae [19, 30]. However, canonical formulae

should not be used with correlation functions determined from simulations (28), due

to their nonlocal nature [2] (i.e., they would require unattainably-large system sizes

for reliable convergence). More recent publications use the correct formulae [1] but

introduce additional approximations.

4.3.2 Entropy Expansion for Pure Water

To adequately describe the correlations among particles of a molecular fluid such

as water, we need to go beyond the traditional centers-averaged n-body correlation

functions. Water contains a high degree of angular ordering, and this information is

lost in these orientationally-averaged functions. Site-site correlation functions (e.g.,
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gš,(r), 9% (r), g;(r), 9%0(r, s,t), ...) have been used extensively in the literature.

However, even these functions do not contain a full angular description. It is necessary

to establish the distributions of the relative orientations between molecules in addition

to their relative separation. The resulting full angular correlation function can be used

to re-construct all of the site-site functions; but the reverse is not possible. Different

angular descriptions can be consistent with a single site-site correlation function [5].

The entropy of a molecular liquid can be expressed in terms of these and higher

order angular correlation functions'. The exact expression for the general case of a

mixture of molecular components is:

# = s” +8°, +8°, +... (4.6)

for N total particles at temperature T and volume V, and k is the Boltzmann con

stant. The first term, which is analogous to the ideal gas term for atomic species in

Eq. 4.2, but has additional angle-dependent variables, is derived in Appendix B:

Al

s" = 1 + XX ra |; — lin (poooº...Aro)
y (4.7)

o-1

where o is an index over 11 particle species, aro, va, po, oo, Ata, and Aro are the

mole fraction, number of degrees of freedom, number density, symmetry number,

translational thermal wavelength, and rotational wavelength, respectively, of species

o, and d is the Spatial dimension. Since the first term is an ideal-gas contribution,

*An expansion which includes the orientational degrees of freedom needed for a molecular fluid

was presented by Lazaridis and Paulaitis [19] in the canonical ensemble. As described earlier,

however, the canonical formulae is nonlocal. To obtain the correct, ensemble-invariant formulae, we

have applied the procedure of Baranyai and Evans [2].
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the two- and higher-body correlations account for the excess order in the liquid. The

2-body term is of the form

|t

s(*) = -à X rats | drdwadwº ■ º (r, wa, w8) in g; (r, was w8) (4.8)
o,3

_a(?) 190.3 (r, was w8) + | ;

where p = XD. i po is the total number density, Q is the total angular volume of

integration, 3 is another molecular species index, r is the center-of-mass interparticle

separation, wo represents the Euler angles of species o, and g;(r, wa, wa) is the two

body angular correlation function. Likewise, the 3-body expression is

S^' ' = — J. A. T AJC (4.9)| 3 o: 6.1 y
3|VQ o,3,7

X
| | | dradradr, du'adwaday, º,(ros. T3), Toy, wo: w8, wh)

(3)9. , (ras, T8), Toy, wo, w8, w)
× ln (2) (2) (2)

90.3 (ros. wo: w8).9% (r3+, 493; wh).9% (roy, wo, w)
3 2 2)º,(raa, T8), Toy: 9a, 493, w) + 39. (ros. wo. w); (ray, 493; wº)

-

30% (ros. wa, wa) + 1)

where Y is a third index over molecular species.

4.3.3 Entropy Expansion for a Solution

An expansion can also be written to describe the entropy of the solute-transfer process

[1]. Using the above general expression for a mixture of waters and solutes, the

derivative with respect to solute number (at constant T, V, and NW) is extrapolated

to infinite dilution. After subtracting off the so-called “liberation entropy”, we obtain
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the Ben-Naim standard state entropy:

Ast = As") + As") + ... (4.10)

where the 2-body term is

As") = — # | drswdwsduw ■ º ln 9%
-

9% + 1. (4.11)

-

6) (2). \*

-

#| drww.dww.dww. (º
ln ºw

y
V £2S

T, V, NW

and the subscripts W and S denote water and solute respectively, and we have used a

simplified notation for the correlation functions. The partial derivative in the second

term is taken at the limit of infinite dilution of the solute. In the case of an isotropic

solute, the integration over the Euler angles of the solute is omitted, and we are left

only with the angular degrees of freedom of the waters. From this expression, it is

clear that the only two terms that contribute to the 2-body transfer entropy is one for

the orientational and translational restrictions of the waters about the solute, and a

Second term for the water-water reorganization in the presence of the solute. At the

moment, we neglect the contribution of the second term, as some others have done

[19, 20, 21] because of the computational expense involved.

The 3-body term is comprised of two similar components:

2 (3)
3 p■ y 3 Q

As ) - — 3V■ ); | rºwdºw.ºrswººd-wºw, lºw ln
(#)9WW9s W19s W.,

(3) 2 2) 2 2 2 2- 9%w #29; w8% + 9%.9% -29% - 9% + 1
3 CO

-

pº ■ drºwdw: { odºw ln glºww3|Woº J, “ww.”w ðps dºw.º.w.g.:
T, V, Nw Wi W29W, Wºw, Wa

oftw CO (2) dºw
+ 3 Tôos■ 29% – 1 – #4 }. (4.12)

S T.V., NW, 9WW

105



This time, the first term describes the correlations of pairs of water about the solute,

and the second term represents water reorganizations at the 3-body level.

4.4 Model and Computational Details

To study the multiple-body correlations of a molecular liquid such as water, it is

necessary to track not only the intermolecular separations of particles, but their

relative orientations as well. For two-body interactions of real water, this would

amount to accumulating a correlation function that is a function of six variables in

3 dimensions (one center-of-mass separation variable, and five Euler angles). This is

not computationally feasible. Instead, we use a simplified, two-dimensional model of

water, the MB model 3, 26), which has recently been shown to have the anomalous

thermodynamic trends of water and the hydrophobic effect [26, 27). Fortunately in

d=2 there are only three variables (center-of-mass separation, and a single angular

variable for each molecule). This allows us to get well-converged correlation functions

that can be integrated accurately. The convergence of these correlation function can

be further enhanced by accumulating the angular information as a Fourier series (see

Section 4.4.2). Coefficients as a function of r are accumulated as ensemble averages

in the simulation in a manner similar to that of Streett and Tildesley [29].

4.4.1 MB model

In this subsection we review the properties of the MB model of water 3, 26). In

tº he model, water molecules are represented as disks in two dimensions, with 3 arms

:
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Ö.

Figure 4.1: Two representative MB “water” molecules, separated by a distance r.

The angle, p, that each molecule makes with the intermolecular axis is shown.

arranged as in the Mercedes-Benz logo. Molecules interact pairwise through a stan

dard Lennard-Jones term (2 parameters), and an explicit hydrogen-bond interaction

between arms of nearby molecules. There are no charges. The hydrogen bond has a

defined optimal distance ri■ B = 1 and optimal angle for each molecule's bonding arm

(q) = 0) with the vector that joins their centers (see Figure 4.1). Deviations from this

lowest-energy hydrogen bond are described by a Gaussian expression with a single

width parameter used to attenuate the interaction. The same width parameter is

used for both separation and angle deviations.

In total, there are 5 parameters. These are the same as those studied extensively in

Our earlier work (26), where more details are provided. The LJ well-depth parameter

is one-tenth of €HB, the minimum value of the hydrogen bond function, and the LJ

Contact distance is 0.7 of rh B. The width in the Gaussian a = 0.085 was chosen to

be small enough that the direct h-bond contact is more favorable than a bifurcated

:
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h-bond. All energies and temperatures are reported in reduced units (i.e., normalized

by |e H B |). Likewise all distances are scaled by rh B.

Monte Carlo simulations performed in this work were similar to those described

earlier, but were carried out here in the canonical ensemble. Boxes containing 60

molecules at two densities (the ice density, p = 0.7698, and p = 0.9) were studied

using standard periodic boundary conditions and the minimum image convention.

Dilute nonpolar solutions contained 60 water molecules and one LJ solute (with the

same well depth and contact parameters as the water molecules) fixed at the center

of the simulation box. Starting configurations at each temperature were selected at

random.

The model has been shown, using NPT Monte Carlo simulation, to have the

correct qualitative temperature dependence of a variety of pure water properties,

including the existence of a density anomaly and related negative thermal expansion

coefficient at low temperature, a minimum in the isothermal compressibility, a large

anomalous heat capacity, and spontaneous freezing to the d=2 model analog of ice,

a low-density hexagonal crystal phase. Also, for the transfer of nonpolar solutes,

the MB model predicts the correct temperature trends of the free energy, entropy,

enthalpy, molar volume and heat capacity.

4.4.2 Fourier Expansion of the Angular Correlation Function

In principle, the two-body angular correlation function for d=2, gºw(r. (b1, b2), can

be accumulated in a simple 3-dimensional histogram. The histogram can then be

:
- =

:
:
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accurately numerically integrated, provided that the binsize is sufficiently small. We

have gathered such histograms using a binsize for r and (p of 0.02 and 2° respectively.

Reasonable convergence is achieved in 1x10" passes (1 pass = N molecules).

It is far more efficient, however, to expand the angular correlation function in

a Fourier series. Streett and Tildesley have shown, in the analogous case for d=3

using spherical harmonics, that the coefficients of the series may be accumulated as

a function of r as ensemble averages in the simulation [29]. Using this method for

our system, excellent convergence of the correlation functions is attained in fewer

than 5× 10° passes, or about 1 to 2 orders of magnitude faster than the histogram.

Such an expansion is crucial to the three-body case, rather than just convenient as it

is here, since the three interparticle distances will already comprise a 3-dimensional

histogram.

In Appendix C, we have shown that the two-body water-water angular correlation

function can be expanded as the Fourier series

ºw(r. (b1, b2) = XD XD c(mi, m2; r)e” e”, m1, m2 = 0, 4–3, 4–6, ... (4.13)
ml m2

where i is the imaginary number, m1 and m2 are indices of the coefficients, and each

of the coefficients themselves, c(m1, m2, r) a function of r. Only indices that are

multiples of 3 contribute to the series due to the 27/3 symmetry of the MB water

Imolecule.

The coefficients of this series may be determined as a product of angle- and r

dependent terms which are accumulated as ensemble averages in the simulation:

c(m1, m2, r) = ºw(■ ) ( * cº) (4.14)r-Ar
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The first term of the product is simply the centers-averaged pair correlation function.

The second term is the ensemble average accumulated only over a shell about r of

thickness Ar.

The expansion for the solute-water angular correlation function, 9%(r. (b) is sim

pler, since the solute is isotropic. In this case, there is only one angular degree of

freedom, @., at the two-body level – that of the water molecule. Histograms of this

function are slow to converge because there are statistically fewer water molecules

around the solute than there are water-water pairs. Again, in this case, a correspond

ing Fourier series can greatly speed up convergence. Since this function is always

symmetric about 0°, and there is only one angle, a much simpler Fourier cosine series

expansion (which derived in a manner similar to the water-water series in Appendix

C) may be used in the solute-water case:

g■ (r, 0) =X cm (r)cos(mo), m = 0,3,6,... (4.15)

In this case, the coefficients may be obtained from

9%(r) m = 0

cm (r) = | (4.16)
U 29%(r) (cos(m6)), A, m = 3,6,9,...

where 9%(r) is the centers-averaged solute-water pair correlation function, and the

indicated ensemble average is defined as above.

4.4.3 Calculation of the Exact Entropy

The exact excess (xs) entropy (i.e., the sum of all terms beyond the ideal gas term)

was computed for bulk water using thermodynamic integration by two independent

ºº

gº º

-:

:
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pathways: one at constant density, from the chosen temperature out to the infinite

temperature regime; the other at constant temperature, from zero density up to the

desired density. In principle, only one pathway is necessary, but both were done for

verification of accuracy.

The entropy along the constant-p pathway is obtained from the thermodynamic

relation

Srs CKO

- TIC, ■ T 4.1# = ||. TC/T (4.17)

where To is the temperature of interest, and C, is the heat capacity, which is also

a function of the temperature, T. This procedure yields the excess entropy for any

temperature above To at that fixed density. In practice, simulations can only be done

at regular intervals up to some finite temperature. To overcome this obstacle, we

performed more than a dozen simulations beyond a chosen temperature spanning 6

orders of magnitude in T, and fit the curve of Co■ T vs. T to an expression of the

form Cº■ T = (c/T)” which went through all of the points within the error bars.

Along the constant-T pathway, the expression used by Hansen and Verlet [9] may

be used to obtain the free energy:

F* ■ po, [3p/p – 1]#-■ oº. (4.18)

Here, po is the density of interest, p is the calculated pressure at each density p along

the pathway, and 3p/p is the compressibility factor with 3 = 1/kT. In practice,

the compressibility factor is plotted as a function of density, and fit to a 5th or 6th

order polynomial, which is forced to have a 0th order term of 1. In this manner,

the above integral can easily be performed analytically. The excess entropy can then
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be obtained from the usual relationship, Sº/nk = 3U/n – 3F*/n, where U is the

system energy at the given density and temperature.

For the case of the nonpolar solution, exact transfer entropies were computed using

a fluctuation formula derived from the Widom method. This is the same approach

used by Guillot and Guissani (7,8] and us [26] in earlier works.

4.5 Results

4.5.1 Entropy of Bulk Water

The full two-body angular correlation function itself still comprises a four-dimensional

plot, and hence cannot be visualized in its entirety. Thus we display cross sections

of the full curve. Two such cross sections of the pure water distribution curve,

gww.(r, p1, gp2), are shown in Figure 4.2. The first surface plot shows the distribu

tions of a second water molecule, when the first one is fixed to point one of its arms

directly along the intermolecular axis (i.e., p1 = 0°). It is clear that the second wa

ter molecule has a pronounced preference to be situated one H-bonding unit away,

pointing its arm toward the first molecule. The large peak has been cut away in order

to better visualize the undulations marking the subsequent shells of water. In the

second plot of Figure 4.2, the first molecule is fixed at an angle of 30° relative to the

intermolecular axis of a given pair. This angle is just the right angle for an intervening

molecule to form a bridge with a second-shell water. In an ideal arrangement, such a

Second-shell molecule would also have an angle of 30° relative to the fixed molecule,

f

º

2

sº

-:

:

112



-
w W ºW

W. § º§

Figure 4.2: Two cross sections of the full water-water angular correlation curve

gww.(r, Ó1, Ö2), where (a) (p1 = 0° and (b) (b. = 30° for the phase point Tº = 0.20 and

p = 0.9.
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Figure 4.3: Convergence of the Fourier series estimate of ºw(r = 1.0, p1 = 0°, (p2).

(a) inclusion of all coefficients up to mi, m2 = 0 through iE9 as indicated by the

labels. (b) coefficients up to mi, m2 = +12 through iE21.

as shown by the largest peak.

The Fourier series used to expand the above correlation function converges with

relatively few terms. In Figure 4.3 we show the progression of a portion of the

correlation function, g■ ºw(r = 1.0, p1 = 0°, (p2), as higher order terms are added to

the expansion. The 0th order term in Eq. 4.13 (i.e., m1, m2 = 0) has no angular

dependence (see Figure 4.3). As more terms are added to the series, however, the

peak at the angle which will align the arms quickly assumes its final shape.

The minimal contribution of higher order terms is more directly apparent in Fig

ure 4.4. Here, we show the r-dependence of the real part of the coefficients themselves.

The 0th order coefficient in Eq. 4.14 is the water-water pair correlation. Higher order

coefficients make diminishing contributions which extend out to smaller radii.

The agreement between the direct histogram and series determinations of
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Figure 4.4: The real part of the coefficients (mi, m2) of the Fourier series estimate of

gºw (r. 91, q2), as a function of r. (a) 1: (0,0), 2 (0.3), 3 (0.6), 4 (0.9) (b) 5 (3.3),

6; (3,6), 7 (3,9), 8: (3,12).

:
Figure 4.5: Comparison of the Fourier series (solid line) and histogram (dashed line)

estimates for two cross sections of g■ ºw(r. Ó1, Ö2): (a) as a function of Ö2 with r and

di fixed at 1.72 and 30°, respectively. (b) as a function of r with p1 and p2 both fixed

at 30°.

:
s
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Figure 4.6: Comparison of the Fourier series (solid line) and histogram (dashed line)

estimates for the 2-body entropy integral.

gºw (r, p1, Ö2) at a few chosen temperatures is excellent. Because of this fact, and the

expense of accumulating histograms, correlation functions at all other temperatures

were obtained only from the Fourier series method. Two separate one-dimensional

cross sections of the function are plotted in Figure 4.5, comparing the two methods.

Perhaps the most comprehensive measure of agreement is the two-body entropy ex

pansion of Eq. 4.8. This integral is sensitive to all deviations from 1 in the correlation

function. In Figure 4.6 we show the integral as a function of the radius for both the

histogram- and Fourier-derived functions. From this figure, we see that (i) the inte

gral converges at large r, and (ii) the histogram and series are in excellent agreement

over the whole range of the correlation function.

The exact values for the excess entropy, computed separately using a constant-p

and constant-T thermodynamic integration pathway were in excellent agreement with
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Figure 4.7: Comparison of the 2-body entropy term (diamonds) vs. the exact excess

entropy (solid line, computed by thermodynamic integration) for the pure liquid.

Trends are shown as a function of reduced temperature for two different densities:

(a) p = 0.9, (b) p = 0.7698.

each other. For the phase point, T = 0.20, p = 0.7698, the two pathways yielded

values of -2.63 and -2.64 respectively. Similarly, for the phase point Tº = 0.20,

p = 0.9, the two values obtained were -2.78 and -2.82.

In Figure 4.7 we compare the 2-body entropy with the exact excess values for

two densities over a range of temperatures. It is clear that at high temperatures, the

2-body term accounts for essentially all of the excess entropy (deviations are probably

due to the finite size of the bins used in the numerical integration procedure). But at

lower temperatures, the two-body approximation leads to a significant overestimate of

the true model entropy. (The lowest temperatures shown are just above the freezing

point of MB water at these densities.) This discrepancy at low temperature must

be made up by 3- and higher-body terms. Note that the temperature dependence
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predicted by the two-body expression deviates significantly from the actual value.

4.5.2 Entropy for a Nonpolar Solute Molecule in Water

Figure 4.8 shows the full angular solute-water correlation curve, gsw(r, (b). The first

shell molecules prefer to straddle the solute (i.e., form a 60° angle), as we noted earlier

[26]. Similarly second-shell waters show a preference to point their arms towards the

first-shell molecules (and hence towards the solute) as well.

The Fourier cosine series used to expand this function requires only 3 terms for

convergence. In Figure 4.9, we show the r-dependence of the coefficients and the
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entropy integral, which is computed from the correlation function truncated at each

order. Since the 0th order term of Eq. 4.15 contains no angular information, the

corresponding entropy integral corresponds simply to that which would be obtained

by integrating only the centers-averaged pair correlation function. Figure 4.9 (b),

shows that the angular contributions to the entropy are significant. In Figure 4.10 we

compare the histogram and series estimates of the correlation function, using a cross

section of the function itself, and the full entropy integral. Again, the agreement is

excellent, with the series yielding better converged values.

In Figure 4.11 we compare the 2-body entropy term with the exact transfer entropy

computed by the Widom fluctuation formula. Just as in the pure water case, the two

curves are in excellent agreement at high temperature. Again, however, they deviate

significantly at low temperature, where a similar overestimate of the entropic order
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Figure 4.11: Comparison of the 2-body transfer entropy (+) vs. the corresponding

exact value (Ö, computed using the Widom particle insertion method) at p = 0.9.

Trends are shown as a function of reduced temperature for the transfer of a simple

inert Lennard-Jones solute with the same size as the solvent.

is observed relative to the corresponding exact values.

We have tested two approximations for the pair term which attempt to decouple

translational and orientational components of the pair entropy of hydrophobic hy

dration. In view of the above results, such an approximate decoupling would be of

practical value at the temperatures of interest if equally accurate and simple approx

imations where found for the higher order terms, and we know of no such approxi

mations at present. In the approximation for the pair term, if it is assumed that (1)

there are no orientational correlations (relative to the solute) beyond the first shell

of waters, and (2) within a shell, water orientations have a homogeneous distribu

tion, then the transfer entropy arising from solute-water correlations can be formally
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separated into the following components [19, 21]:

As") = As" + As", and (4.19)

As" = -pw ■ dr [gsw (r) lingsw (r) – gsw (r) + 1). (4.20)

The solute-water correlation function displayed here is merely a function of the center

of mass positions of the two respective particles, and,

Nw.sh,% h; ■ da'w ■ psh,(ww.) In psh,(ww) , (4.21)As" = — XD
sh;

where NW.sh, and psh,(ww) are simply the coordination number and the orientational

probability distributions, respectively, of the waters in the ith shell. The orientational

probabilities are all normalized such that ■ dwwp(ww) = Q.

As shown in Figure 4.12, at all temperatures, an extended version of this approx

imation (in which the orientations of waters in three shells, rather than simply the

first one are included) does remarkably well at reproducing the full two-body angular

entropy. More importantly, it is apparent in the second plot of Figure 4.12 that the

orientational degrees of freedom of the water are far more temperature sensitive than

the corresponding translational distributions.

4.6 Conclusions

We have used a multiparticle expansion of the entropy to calculate the two-body

contribution for MB water, and a dilute hydrophobic solution. To do this, we calculate

full angle-dependent pair correlation functions.
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We have determined that the two-body term overestimates the exact entropy at

low temperatures for both the pure liquid and for simple nonpolar solute transfers.

At high temperatures, the agreement is remarkably good.

We have tested the assumptions of Lazaridis and Paulaitis [19] in which the trans

lational and orientation components of the transfer entropy for simple solutes are

assumed to be independent. When the orientations of only a single shell are included,

their approximation underestimates the two-body entropy term at low temperature.

This underestimate, combined with the overestimate of the full two-body term, with

respect to the total excess entropy, leads to a fortuitous cancellation between two un

related errors as suggested by Smith et al. (28]. However, if the method of Lazaridis

and Paulaitis is extended to multiple shells, then the agreement of their approxi

mation with the full two-body term is reasonably good. Hence, the approximation

appears to be a valid means to avoid calculating the full angular correlation function

at the two-body level. In order to be of practical value, similar approximations of

comparable accuracy will need to be made for the other terms that contribute to the

full entropy.

Since it is clear that 2-body correlations alone fail to quantitatively account for

entropy penalty incurred by Solute transfer as well as the temperature dependence,

the natural next step is to see if inclusion of 3-body terms is sufficient.
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Chapter 5

Future Directions
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With only a limited amount of computer time we have been able to conduct a varied

and extensive study on a simple model of water and inert gas solutions. The Scope

of this MB model should not stop here. There are numerous fundamental problems

which still remain unresolved, and are clearly within the domain of the model. In this

chapter, I will briefly outline some of these problems for which today’s computers are

already sufficient using the MB model.

5.1 Convergence Temperatures

If the transfer entropies and enthalpies as a function of temperature are plotted for

solutes of different size, an interesting observation is made: Each of the entropy curves

(and separately the enthalpy curves) converge at a unique temperature■ 1, 13. (T: and

Tº for entropy and enthalpy, respectively). In other words, at some temperature

T;, the transfer entropy is independent of solute size, and a similar situation holds

at a different temperature for the enthalpy. This curious behavior was explained

mathematically by Lee■ ?1]. He showed using basic algebra, that if (i) the enthalpy

and entropy scale linearly with some property of the solute (e.g., the surface area

or the number of hydrogens in the hydrocarbon) – which must hold since the free

energy is also linearly dependent on that same property(6, 13, 15), and if (ii) the

heat capacity change is independent of the temperature over the limited temperature

range of interest, then the convergence temperatures must exist.

Using the Widom insertion method, we can quickly get an idea whether the con

vergence behavior occurs in the MB model. In Figure 5.1 we see that the enthalpies
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ature for several solute diameters: (x), 0.1; (D), 0.3; (+), 0.5; (6), 0.7.
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and entropies of transfer do indeed converge at distinct temperatures in the model.

Furthermore, Figure 5.2 demonstrates that the enthalpy, entropy and free energy

all scale with solute diameter (which is proportional to the perimeter in 2D). Lee's

assumption of constant heat capacity also holds over the range of temperatures en

compassing both convergences, as shown in Figure 5.3.

All of this evidence is suggestive that the model has in it the proper physics.

The difficult part is determining what the physical cause of the convergence is, re

gardless of the mathematical truism that implies its existence. Garde et al.[10] have

suggested a link of the convergence temperatures to the relative temperature insen

sitivity of water's isothermal compressibility compared to simple liquids. They used

an information theory model which tracks the fluctuations of void volumes in stan

dard simulated water models. It would be interesting to investigate this and related

microscopic factors which could lead to the solute-size-independent thermodynamics
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at the convergence temperatures in the MB model.

5.2 Other Problems

Numerous other issues can be addressed with today’s computational power with the

MB model. Below, I have itemized a list of some of those that are likely to bear fruit.

1. Solute Size and Curvature Effects. What are the effects of solute size,

shape, and curvature on hydrophobicity? Throughout most of the literature,

only a very small range of solute diameters have been systematically investigated

(Ne-Xe, corresponding to diameters of 3.04 to 3.98 A). (One exception is the

work of Wallavist and Berne■ 36), who have looked at larger spheres and ellipses

Due to computational time requirements, however, this study reported only free

energy changes and shell coordination numbers. In principle, we can investigate
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the full range of thermodynamic trends (including temperature dependence) as

a function of solute size, shape, and curvature. Such a comprehensive study

currently cannot be done with traditional water models. At some point, we will

hit a limit beyond which clathration of waters around the solute will no longer

be feasible. This must also hold in the 3-dimensional world. By systematically

investigating different solute sizes and shapes we will determine (a) if certain

shapes “fit” naturally into the surrounding solvent structure and (b) if there is

a predictive rule of which do and don’t. In such a study, we would expect to

see a curvature dependence due to the incompatibility of solute structures and

water geometry. Careful free energy determinations of the various shapes and

curvatures may allow us to reconcile the factor of 3 difference in microscopic

and macroscopic surface tension measurements [34].

. Role of Solvent Size. What are the necessary ingredients for water's anoma

lous properties? Several researchers [20, 22, 31, 32 have argued that water's

anomalous Solvation properties are simply due to its unusually small size. This

conclusion is in apparent conflict with much of the computational literature

and the results obtained here, where hydrogen bonds play a key role. Much

of the disagreement appears to arise from different definitions of hydrophobic

ity. Solvent size may indeed be a factor in determining the poor solubility of

hydrophobic compounds in water. However we have shown that the marked

temperature dependence is dependent on the unusual structural peculiarities

of water (and it is likely that solvent-mediated effects between solutes are de
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pendent on the structuring as well). We believe this temperature dependence,

as signified by the large heat capacity, and the structural features of water are

crucial to the understanding of water's anomalous solvation behavior. Hence,

we hope to clarify which thermodynamic properties arise from water's Small

size and also from the hydrogen bonds. To do this the current results should be

compared to transfers in a simple LJ fluid with particles the same size as our

current model water. Such a comparison, focusing on cavity distributions, has

been conducted at a single phase point [32], however the LJ system in this study

was under unphysical and inappropriate conditions (at a temperature and pres

sure that is near-critical, so that the LJ fluid would have a density comparable

to water). It is possible, using a 2D model, to examine a far wider range of

the solvation behavior (i.e. enthalpy, entropy, free energy, heat capacity, struc

ture, etc.) in the reference LJ fluid throughout the liquid range to avoid the

complication of an improper reference system.

. Const-p vs. Const-V Transfers. Since the paper of Honig et al.[34], ar

gument has surfaced over the difference of const-P vs. const-V transfers [2].

Matubayasi and Levy 28, 29 and Cann and Patey(5) have laid down some theo

retical arguments for the differences in the two ensembles. While the difference

between the two at a single phase point is merely a pV term (which is insignif

icant for real water), if you consider any dependence (e.g., temperature) of

the transfer thermodynamics, they could be drastically different at const-P vs.

const-V (because the pathways in phase space are very different). Our ability
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to address this issue may be limited by the fact that the pV term in MB water

is significant (due to our relatively high pressures).

3-body Correlations. Since we have shown that the two-body term over

estimates the entropy, it is worth investigating whether the next term in the

expansion is sufficient, or whether the series is non-convergent, as our exhaus

tive enumerations might suggest. Without question, the 3-body term can be

calculated with current computer power in the MB model (and the full angular

terms are impossible in 3D, since the necessary spherical harmonic expansion

would require a prohibitive number of terms to converge|35]).

Ring Entropy term. As Laird and Haymet[19] have shown, Hernando's ring

term{16, 17] (a summation of the 3- and higher-body closed-circuit configura

tions that merely requires the Fourier transform of a 2–body correlation func

tion) recovers most of the excess entropy that is due to 3 and higher-body

terms in the case of simple atomic fluids. A similar term may do the same for

angle-dependent potentials such as MB water.

Solutions of Model Methanol. With simply the addition of a single, rotating

arm on the Solute, we can model methanol, and it’s full temperature dependence

with temperature. Since methanol is soluble in water, a lot of experimental

data (including structural information from diffraction studies) is available for

comparison.
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7. Comparisons of Model Water and Hydrazine. The solubility of apolar

compounds is anomalously low in hydrazine at room temperature|25). Like

water, this has been attributed 24 to the extensive H-bonding structure of

the liquid. However, a large opposing entropy and compensating favorable

enthalpy change accompanies the transfer of argon from hydrazine to water.

This suggests there are great differences in the molecular details of the transfers

in these two systems, which are masked by the comparatively small change in

free energy. In our simple system, hydrazine can be modeled by joining 2 waters

together at one of the “arms”.

8. Pressure effects. Alkanes and alkanols have very different AVºr values. With

just the addition of a H-bonding group, alkanols have much smaller negative

volumes of transfer (from pure phase to water) than their alkane counterparts[9,

27]. Also, Kauzmann was frustrated by the inconsistency of AVºr for these model

compounds with AVºn■ for proteins.[18]. Hence it would be valuable to gain a

better understanding of the structural origins of the unusual pressure effects

on pure water and solvation. In conventional MD studies, Billeter and van

Gunsteren■ 3] have determined recently that, whereas energies and structural

averages converge on the order of 10 ps, simulations on the order of 1 ns are

needed to get converged values for < p > or < v > for systems of about 100

particles. Hence the need for fast computations, or a simple model such as ours,

is evident.
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9.

10.

11.

12.

Additivity of functional groups. In the literature, there are numerous as

sumptions of additivity of functional groups in Solvation (e.g., alcohol or OH

groups have a certain contribution, hydrophobic groups have a given contribu

tion per unit surface, etc.) Typically the standard errors in these fits are 20-40%.

A careful study could show structurally why such additivity assumptions may

not be such a good thing.

Non-additivity of Multiple Solutes. So far we have not addressed hy

drophobic interactions. While numerous studies have looked at the potential

of mean force for 2 LJ solutes coming together in water, very few studies (only

Palma's group|4]) have looked at the effects of the presence of a third fixed

solute on the PMF of 2 solutes. Systematic studies should be done to approach

bulk hydrophobic interactions.

Long-range Surface Forces. Several recent studies of solvent induced forces

between apolar planar surfaces have suggested that forces may exist even up

to 70-90 nm (7,8]. (this would suggest that attractive forces are transmitted

over distances corresponding to 300 interfacial water molecules!). Simulational

studies have indicated that structuring away from such walls does not penetrate

far into the medium.[23, 26]. In 3D simulations, however, the walls are never

really all that far apart because of the huge numbers of waters needed in between

(a problem not present with the 2D MB model).

Role of Bifurcated and Stretched H-bonds. Bifurcated H-bonds have been

observed spectroscopically in liquid water[11,12]. Sciortino et al.[33] has argued
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13.

14.

15.

that bifurcated H-bonds are a major cause of hydrophobic effects. In bulk water,

the presence of such bonds cause defects in the tetrahedral arrangements. This

allows quick flipping to alternative structures. The presence of a solute, however,

precludes such bifurcated H-bonds, due to excluded volume effects. Hence, the

shell molecules slow down, and become trapped into fewer configurations. In

our model, we can split the Gaussian width, oh B, into two parameters: one for

the bond stretching term, and one for the H-bond bending term. By adjusting

one or the other, thermodynamic comparisons can be made to systems with

more/less allowed H-bond stretching and bending.

Solvent-geometry Effects. It appears that clathration plays an important

role at low temperature in providing a few, low energy arrangements for the

water around a solute. A comparison of 3-arm and 4-arm water may be inter

esting to show effects of the solvent geometry on the resulting structure and

thermodynamics.

Dielectric constant. Currently our model has no dipole, and hence no dielec

tric constant. If we move to four arms, and allow 2 arms to attract the other

two, then we will have a model of water that has polarity. Then we would be

able to investigate dielectric behavior.

Explicit Electrostatics. Another variant of the model may be made (possibly

necessary for charged ions) which has explicit charges on the arms. One could

use a model similar to the four arm 2D model of Okazaki et al.[30).
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16. Ionic Solvation. Helgeson et al. have suggested that the heat capacity of

ions has a very different, though significant, heat capacity as a function of

temperature[14]. We can try to model ionic solvation with the simple 4-arm

dipolar liquid (no explicit charge). If it fails to look like experiments, then

we can add explicit charges (and even polarization if necessary). Additionally,

many of the studies described above for hydrophobic solutes can be extended

to ionic species.

5.3 Concluding Remarks

The model potentially has a wide range of applications for which it shows promise.

Its simple nature should make it easier to determine the essential ingredients of these

problems. If the model fails to predict a property, it is much easier to test the addition

of new features in a simple model, than it is to conjecture as to what went wrong

in a model that was supposedly a realistic representation of water. Additionally, as

we have seen, simple models often offer some fundamental surprises and insights into

the physical nature of a system. For example, the current study has demonstrated (i)

that one need not invoke long-range electrostatics to describe hydrophobic trends, nor

to model many of water's anomalous properties; (ii) that a clear link of the molecular

hydrogen-bond structuring to the thermodynamics of hydrophobic transfers exists;

and (iii) that this structuring is marked by a strong many-body nature. We look

forward to the future for more insights from the model.
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Appendix A

Test-Particle equations
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The main formula pertaining to the test-particle method for computing the transfer

free energy is:

AGºr = - ln 3 exp(-|38) >N, (A.1)

where 8 is the interaction energy of the ghost particle with the surrounding solvent,

■ } = 1/kBT, where kB is Boltzmann's constant and T is the temperature, and the

average is performed over the pure reference fluid. The transfer enthalpy is

< HN 11 exp(-38) >N
-AHtr =

t < exp(-|38) >N < HN > N, (A.2)

where HN is the enthalpy of the pure solvent and HN 11 = HN +8. The corresponding

entropy of transfer is therefore

< HN 11 exp(-38) >NTASir = —--→- —
- - -

t
#=-& H, -, the exp(-de-, (A.3)

The molar volume of transfer and the heat capacity can be expressed as

< V exp(-38) >N
A Vir = — « V > N,

-

t < exp(-|38) >N < V > N (A.4)

and

< H%. exp(-38) > N < HN exp(-38) > 2 -AC r = N+1
-

+1 N
-

2 2
p,t < exp(-38) > N < exp(-|38) > N < H. > N + 3 HN > V

(A.5)

respectively.
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Appendix B

Derivation of the Ideal-gas Entropy

Term
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We derive here a simple, but rigorous expression for the first term in the entropy

expansion. This is done for the three-dimensional pure molecular fluid, but can

straightforwardly be generalized to mixture in d dimensions. The nomenclature used

is based upon that of Gray and Gubbins [2].

For a fluid of N rigid molecules in a volume V at temperature T, the classical

expression for the canonical partition function is

Z

QN = Fºx (B.1)

ZN = ■ drºpºd,"djº exp(-|3|HN) (B.2)

where h is Planck's constant, v is the number of degrees of freedom (5 for linear

molecules, 6 for nonlinear molecules), o is the symmetry number, 3 = 1/kT is the

inverse temperature with k denoting the Boltzmann constant, HN is the Hamiltonian,

rN represents the Cartesian coordinates of the N molecules, and p", wº, and J"

are the linear momenta, Euler angles, and angular momenta of those N molecules,

respectively.

The probability of observing a given, specific subset of n of the total N particles

in a given arrangement of positions, orientations, and momenta is

1Pº-2 | dr" "dp"—"da," "djº"-" exp(-3H,). (B.3)U

It is often more useful, however, to know the probability of observing any n indistin

guishable particles with the given arrangement in phase space, (r", p", wº, J"). This

is the n-particle distribution function:

n) N! -n,(n
( = [NT." §). (B.4)



The one-particle distribution function is thus, from Eqs. B.3 and B.4:

fº
-
} ■ º apº a.º. al- exp(-|3|HN)

-
(B.5)N J v

Noting that
2 2

-

Pi JíaHx = H, +; + XC 2I + \, , (B.6)
a=X,Y,Z

where m is the molecular mass, Io is the moment of inertia in the O = X, Y, Z dimen

sion, and tº is the potential of interaction between one molecule and the remaining

N – 1 molecules, we can obtain an explicit formula for the one particle distribution

function. After substituting Eq. B.6 into Eq. B.5, separating the integrals, factoring

the momenta integrals into products of like integrals, and dividing out like terms, we

obtain an expression for the one-particle distribution function that is only dependent

on one particle's momenta:

3/2 1/2 2 2
(1) po ( ? £3 _5pí

-

Jí.
N'(p1, J1) = Q (#) | H. (#) exp( 3.) exp *... 2 £2 2■ ., )

(B.7)

where p = N/V is the number density and Q is the total angular volume of integration.

As Lazaridis and Paulaitis have shown [3], the canonical expression for the 1

particle term in the entropy expansion is

kN ()Sº) = -

N pO ■ dpd] ■ º(p.J) in ■ h"f."(p.J). (B.8)

Substituting the expression of Eq. B.7 into this equation, and assigning the con

stants a = 3/2m, ba = 3/21a, c = -Nk(a/T)” II, x,y,z (bo/T)/*, and c2 =
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—c h"po/(NkQ) for mathematical simplicity, we have:

Sº = c ■ uplj {w-wºwe XD baj.) ho — ap" – XD *}
-

u o-X,Y,Z a =X,Y,Z

(B.9)

If the linear and angular momenta are assumed to be factorizable [2], then we obtain,

after separating the integrals, and changing to spherical coordinates:

sº = 4T cl{ln cº ■ ’ dp p' exp(-ap") ■ . d.J exp (- XC º) (B.10)0 —oo a =X,Y,Z

+OO +OO

-

a■ dp p' exp(-ap") ■ d.J exp ( XD º)
0 —oo a =X,Y,Z

-

■ º dppº exp(-apº), X. b. ■ . d.J
º

exp
( XC º) },0 o-X,Y,Z —oo o' =X,Y,Z

which, after evaluating the linear momentum integrals from standard tables, and

regrouping, we are left with

+-Co

S.) - (i)” c{(Inc. – 3/2)/ d.J exp || – bo J. (B.11)
al —OO a .2" "

+OO– X. b. ■ . du Jº exp [- X w.J.)|}.
o-X,Y,Z —co o' =X,Y,Z

The two integrals in Eq. B.11 are evaluated to be

■ , djesp (- XC º)- II (+)" (B.12)o-X,Y,Z o-X,Y,Z

and

+OO º -
3 1/2

X w.■ du ºw (- XD **) -: II (#) , (B.13)o-X,Y,Z -Ox) o' =X,Y,Z a =X,Y,Z Gr

respectively. After substituting these relationships back into Eq. B.11, replacing the

constants C1, C2, a, and ba as defined earlier, and collecting and canceling terms, we
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obtain:

Sº = Nk |. — lin (***)
: (B.14)

where the translational and rotational thermal wavelengths are defined

At = (# y (B.15)2Tm

and

T-1/2 (#)" (#)" (#)" (non-linear)872 Ix 872 Iy 872 Iz
Ar = (B.16)

# (linear)

respectively. Baranyai and Evans [1] have shown that the configurational contribution

to the entropy of the ideal gas in the canonical ensemble is exactly 1. Hence, this

value must be added to sº of Eq. B. 14, to at last obtain the ideal-gas entropy:

s" = 1 + Nk | – lin (º)
-

(B.17)
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Fourier Series Expansion of the

Angular Correlation Function
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In this Appendix, we derive the formulae used in this work to express the water-water

angular correlation function in terms of a Fourier series expansion. Additionally, some

details which simplify the implementation are also discussed. The method by which

the coefficients of this series are accumulated as ensemble averages is similar to that

used by Streett and Tildesley [1] for the analogous case using spherical harmonics in

three dimensions.

C.1 Derivation

We begin by assuming that the water-water angular pair correlation function,

ºw(r. (b1, b2), (which is a smooth, continuous function of Ól and @2 at any given

r) can be expressed as a product of Fourier series of the form:

ºw(r. 9,02)=XXX. c(m, m3, r)e” e”. (C.1)
m1, m2 = –oo

The complex coefficients of this series, c(m1, m2; r) have two integral indices, m1 and

m2, and are themselves functions of r. The angles, p1 and p2 have the range [0, 27)

and correspond' to those in Figure 4.1.

Now we have the task of obtaining usable expressions for the coefficients. We

*Actually, when this work was performed, Öl and d2 were both taken to be the angles relative

to a fixed unit vector from molecule 1 to molecule 2 (i.e., d) was the same, but 0. was related to

Ø2 in Figure 4.1 by: 6. = T – 62). Then, the resulting curves were properly transformed to the

angles of Figure 4.1 which are more intuitive given the model potential. In retrospect, the original,

intuitive angles could have been used in the expansion, yielding the same results with less trouble.

However, we make this note because the coefficients themselves, plotted in Figure 4.4 would have

been different.
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begin by multiplying both sides by the complex conjugate and integrating over all

angular space to obtain:

2T r27■ ... 1 ... r

■ '■ dodo, 9% (ro.o.), "e".” – (C.2)
+OO •XD X.,..., ..."(". Tn 2; r) 0

27■ ... 1
-

27■
-
º

-

dºl e-im, bleimiºi | dº, e "2 2eim202 :()

where mi and m, are any other arbitrary coefficients. Exchanging the right- and

left-hand sides of the equation, and applying the orthogonality property

27■
- x: -■ do (e") e^* = 216, (C.3)0

we are left with

1 27■ r27■ (2) —im 1 q>1 , ,-inn? p.2
c(m1, m2, r) = #|

0 dºidd, glºw (r. 91, Ö2) e 6 (C.4)

after the sums over ml and m2 have been performed, and the dummy prime variables

have been renamed. Though this is indeed a formula for the coefficients, it is not very

practical, since the determination of the coefficients requires the computation of the

angular correlation function itself – the very quantity we are trying to approximate!

To get around this obstacle, we use the definition, following the example of Streett

and Tildesley, for the ensemble average of some quantity, X(r, Ó1, q2), in a given shell

of infinitesimal thickness about r.

#" ■ º do, dó, X(r. 6), dº) fº(r. 91, q2)
A +Ar F 7■ tº ZT C.5(X), A ; ■ º dodo, fº(r, 0, 0).) (C.5)

where

2

f{2}(r, (b1, ©2) E
##,G, Ø1, Ø2) (C.6)
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is the 2-particle distribution function, and p, o, and Q = * dq) = 27■ refer to the

water density, symmetry number (3 for MB water), and total volume of integration,

respectively.

Noting that, from Equation C.4,

1 27■ fºrc(0,0,r)|= º(r)=#| | dodo, ºw(r.o.o.) (C.7)

it follows from Eqs. C.5 and C.6 that

27■ r27■| | døidº X(r, Ó1, 0)ºw(r. Ø1, Ö2) = 41°ºw(r) (X), lar (C.8)

Finally, using Eq. C.4 to interpret the product of Fourier terms as the quantity X,

we obtain a useful equation for the coefficients:

(C.9)c(m1, m2, r) = g■ ºw(r) ( *, *. }.
•

C.2 Simplifications for Implementation

The Fourier series expansion derived in the previous section may be simplified by

exploiting additional properties of the angular correlation function. The first of these

simplifications uses the 27/3 symmetry of the MB molecule to obtain a condition on

the indices m1 and m2 which eliminates 2/3 of the needed coefficients. The second

takes note of the fact that the correlation function is always real, and results in a

further 50% reduction in the number of coefficients that must be accumulated.

Due to the symmetry of the MB water molecule, the following condition holds:

2dºw(r.o.o.) = º(r. 9, 14.0). (C.10)
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This implies that, after expanding the right hand side in the Fourier series of Eq. C.1,

ºw(r. ©1, Ø2) -
XC XX. c(mi, n2: r)emºemºem #

-
(C.11)

mn 1,rn 2 =-oo

Since this expansion must be equivalent to the original expression of Eq. C.1, the

coefficients must be zero whenever the last term is not 1 (i.e., whenever ml is not a

multiple of 3). Hence, the coefficients are only non-zero for mi = 0, ±3, ±6, .... In

an analogous fashion, the condition ºw(r. ©1, Ö2) = g■ ºw(r. Ö1, Ö2 + 27/3) requires

that m2 = 0, H-3, H-6, ... as well.

The requirement that the correlation function be real can be expressed as:

dºw(r. Ö1, Ö2) = gº (r. Ø1, Ö2), (C.12)

where the asterisk denotes the complex conjugate. Substituting the Fourier expansion

for both sides, we have

+OO
- -

+OO + –3 —innoXD X.,..., ..."(". m2; r)ciºem.” -
XC 2-m■ m--> (mi, m2; r)e im, the in 202

(C.13)

After multiplying both sides by the complex conjugate of an arbitrary rank, integrat

ing over all angular space, using the orthogonality property of Eq. C.3, and performing

the sums over ml and m2, we obtain the equality:

c(m1, m2, r) = c'(-mi, -m2; r). (C.14)

This relationship allows us to re-express the series expansion the form:

+
- - - -ºw(r. 01, Öz) = XXX º, |c(m), m; r)e” cº" - c. (m, mºr)e-* e-º-º:

; : * *z –

+ c(mi, -m2; r)e” e * + c (mi, -m2; r), "ºcº . (C.15)
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The advantage of this form, which we use in practice, is that only the positive

positive and positive-negative coefficients need to be determined from simulations.

The remaining coefficients can then simply be obtained by taking the appropriate

complex conjugates, hence reducing the direct computational requirements by half.
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