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Check for
updatesPathway-based Approach Reveals Differential

Sensitivity to E2F1 Inhibition in Glioblastoma
Alvaro G. Alvarado1, Kaleab Tessema1, Sree Deepthi Muthukrishnan1, Mackenzie Sober1,
Riki Kawaguchi1, Dan R. Laks2, Aparna Bhaduri3, Vivek Swarup4, David A. Nathanson5,
Daniel H. Geschwind1,6, Steven A. Goldman7,8, and Harley I. Kornblum1,9,10

ABSTRACT

Analysis of tumor gene expression is an important approach for the classifi-
cation and identification of therapeutic vulnerabilities. However, targeting
glioblastoma (GBM) based on molecular subtyping has not yet translated
into successful therapies. Here, we present an integrative approach based on
molecular pathways to expose new potentially actionable targets. We used
gene set enrichment analysis to conduct an unsupervised clustering anal-
ysis to condense the gene expression data from bulk patient samples and
patient-derived gliomasphere lines into new gene signatures. We identified
key targets that are predicted to be differentially activated between tumors
and were functionally validated in a library of gliomasphere cultures. Re-
sultant cluster-specific gene signatures associated not only with hallmarks
of cell cycle and stemness gene expression, but also with cell type–specific
markers and different cellular states of GBM. Several upstream regulators,
such as PIK3R1 and EBF1 were differentially enriched in cells bearing stem

cell like signatures and bear further investigation. We identified the tran-
scription factor E2F1 as a key regulator of tumor cell proliferation and
self-renewal in only a subset of gliomasphere cultures predicted to be E2F1
signaling dependent. Our in vivo work also validated the functional signif-
icance of E2F1 in tumor formation capacity in the predicted samples. E2F1
inhibition also differentially sensitized E2F1-dependent gliomasphere cul-
tures to radiation treatment. Our findings indicate that this novel approach
exploring cancer pathways highlights key therapeutic vulnerabilities for
targeting GBM.

Significance: Molecular classification of GBM has not yet resulted in
the development of effective therapies. We have developed an integrative
approach to identify molecular targets differentially utilized by individ-
ual tumors. This approach could lead to patient- and tumor-specific
therapeutics.

Introduction
Glioblastoma (GBM) is incurable, with an overall median survival of approxi-
mately 14 months (1) despite standard-of-care treatment (2). The past decade
has seen a revolution in the understanding of GBM, and studies of patient
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samples based on gene expression and oncogenic mutations have revealed
that GBM can be parsed into distinct molecular categories—namely classical,
mesenchymal, and proneural—and subsequently IDH-mutated tumors (3–8).
While these classification schemes have shown some relationship to prognosis,
they have largely failed to provide new therapeutic approaches.

The driver mutations of GBM result in the activation of many well-known
oncogenic pathways (9). However, the use of pathway-specific inhibitors has
not yet resulted in effective therapies. One potential explanation for this lack
of efficacy is that tumors are comprised of multiple cell types with different
pathway dependencies. Another is that inhibition of one pathway results in
compensatory activation of other pathways (10). It is also likely that the identifi-
cation of critical pathways andmolecular targets driving GBM progression and
recurrence is not yet complete. The prioritization of key pathways falls short
of what would be required for tumor eradication because the combinatorial
outcome of existing mutations, and resultant dominant pathways, cannot be
conclusively inferred. Finally, novel therapeutic approaches will need to be put
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into the context of recent findings of intratumoral heterogeneity spurred by ad-
vances in single-cell technology. For example, we now appreciate thatmolecular
subtypes previously used in the classification of GBM (5) can be linked to cell
type–specific markers with the description of cellular states (11). Similarly, a
subpopulation of tumor cells can express markers of outer radial glia and turn
on developmental programs to promote invasion (12). Although these findings
have advanced the field and opened new avenues of investigation, molecular
and pathway vulnerabilities are still unknown in the different cell populations.

Here, we have developed a comprehensive approach to group samples based
on their pathway utilization to uncover therapeutic targets. We hypothesized
that, rather than examining GBM for individually expressed genes, analyzing
targetable pathways in an unbiased manner could allow for the development
of patient-specific or tumor class–specific therapeutics and combination thera-
pies that go beyond traditional inhibitors. We have developed a bioinformatics
strategy that leverages gene set enrichment analysis (GSEA) to disambiguate
intertumoral heterogeneity in GBM. Using bulk RNA samples databases, we
found that gene expression can be synthesized into gene signatures based on
their enrichment for gene sets in the canonical and oncogenic collections. Fur-
thermore, resultant gene signatures can be translated into potentially actionable
molecular targets that signify functional and predictable differences between
GBM tumors that can be used to identify potential therapeutic vulnerabilities
in different cellular compartments. Finally, we utilized gliomasphere (GS) cul-
tures and dependence on the pro-proliferative transcription factor E2F1 as an
example to demonstrate the functional significance of our approach.

Materials and Methods
Patient and Tumor Datasets
GBM samples analyzed were composed of The Cancer Genome Atlas (TCGA)
dataset (5), GS microarray dataset (13), and single-cell RNA sequencing
(scRNA-seq) dataset (ref. 14; GSE57872).

Patient-derived GS Cultures
Established patient-derivedGS lineswere cultured andmaintained as described
previously (15). Experiments were performed only with lines that were cultured
for less than 20 passages since their initial establishment and short tandem
repeat authentication was performed after passage 4 for each line. Cell lines
were tested on initial culturing and every 2–3 months for Mycoplasma using
the MycoAlert PLUS Detection Kit (Lonza).

In Vivo Tumor Xenografts and Imaging
For tumor formation assessment, 8 to 12 weeks old NOD-SCID null (NSG,
JAXID: 005557) mice were used in equal numbers of female and male and ran-
domly assigned to experimental groups. A total of 5 × 104 tumor cells infected
with a firefly-luciferase-GFP lentiviral construct and either a scrambled or E2F1
short hairpin RNA (shRNA) vector were transplanted per mouse (n = 5), in
accordance with University of California, Los Angeles–approved Institutional
Animal Care and Use Committee protocols. Five mice were housed per cage,
with a 12-hour light/dark cycle, and were provided food and water ad libitum.
Tumor growth was monitored every 2 weeks after transplantation by measur-
ing luciferase activity using IVIS Lumina II bioluminescence imaging. Regions
of interest were selected to include the tumor area, and radiance was used as
a measure of tumor burden. Mice were monitored and sacrificed upon the de-
velopment of neurologic symptoms such as lethargy, ataxia, and seizures, along

withweight loss and reduction in grip strength. Animalswere sacrificed byCO2
asphyxiation and secondary cervical dislocation.

GSEA, Gene List Generation, and Target Prediction
For TCGA and GS datasets, each sample was compared with the average of the
whole dataset using the canonical (C2CP) and oncogenic (C6) gene set col-
lections from the GSEA website (http://www.gsea-msigdb.org, SCR_003199).
Enrichment profiles were then used to generate principal component analysis
(PCA) plots, and the contribution of each gene set to a particular direction was
extracted using R-package “FactorMineR.” The top 20 contributing gene sets
in a particular direction were compared with one another and common ele-
ments (present in at least five gene sets) were employed in each gene signature.
The signature names are an acronym derived from each dataset (TCGA or GS),
the GSEA collection (2 = canonical, 6 = oncogenic), a dash followed by the
component number (PC1 or PC2), and direction of the correlation (positive
or negative). For example, T2-1N represents TCGA, canonical, PC1, negative
correlation (see Supplementary Table S1). Datasets were clustered with these
gene signatures for downstream analyses. Gene signatures were interrogated
via Ingenuity Pathway Analysis (IPA; ref. 16; SCR_008653) using the upstream
regulator tool to predict targets (molecules or drugs) as either activated or
inhibited.

Single-cell Signature Score Analysis
Single-cell expression data (n = 430) from five primary human GBM speci-
mens were imported from GSE57872. For each gene set of interest, single-cell
enrichment scores were generated as described previously (14). Briefly, the en-
richment score of a gene set was computed in each cell by taking the average
expression of genes within the gene set and subtracting the average expression
of all detected genes. Single-cell enrichment scores were generated for (i) the
six TCGA/GS gene lists discussed above (ii), the cell-cycle meta-signature de-
scribed in ref. 14), and (iii) the stemness signature described in ref. 17. These
scores were used to visualize pairwise gene set correlations across cells, specif-
ically between each of the six TCGA/GS gene lists and cell cycle or stemness.
Single-cell enrichment scores were then generated for two additional groups of
gene sets: developing (18) and adult (19) brain cell type markers and GBM cel-
lular state markers (11). Correlation plots were generated using the “corrplot”
package in R. Displayed are the correlation coefficients for each pair and circles
whose color and size reflect the coefficient value and magnitude, respectively.
For pairs with nonsignificant correlation, the coefficients are displayed without
circles. Significance was evaluated using α = 0.05 for both raw (below diag-
onal) and FDR-adjusted (above diagonal) P values. Correlation patterns were
used to group the gene signatures through hierarchical clustering, with black
boxes marking the resultant clusters.

In Vitro Functional Analysis: Sphere Formation and
Cell Proliferation
Cell proliferation experiments were conducted by plating cells at a density of
2,000 cells/well in a 96-well plate in quadruplicate. Cell number was measured
after 3 and 7 days and normalized to the initial reading at day 0 using the
CellTiter Glo Luminescent Cell Viability Assay (Promega). The experiments
shown represent fold change at day 7 relative to day 0. For sphere formation
assays, cells were plated at a low density (100, 50, 25, and 12 cells per well) in
96-well plates (24 wells per density). Cells were maintained for 10 days be-
fore sphere formation was evaluated. Spheres larger than 10 cells in diameter
were considered for analysis. The numbers shown represent the number of cells
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per well or the stem cell frequency as calculated using the Walter and Eliza
Hall Institute Bioinformatics Division ELDA analyzer (http://bioinf.wehi.edu.
au/software/elda/; ref. 20). All sphere formation and proliferation experiments
were repeated at least three times.

Lentivirus Transduction in GS Lines
Lentiviral vector particles containing E2F1 and scrambled shRNAs were pur-
chased from Abmgood (catalog no. 188270910496). Cells were transduced with
the corresponding viruses for 48 hours and selected with puromycin (Sigma).
Knockdown of E2F1 was confirmed using immunoblotting in treated sam-
ples. In addition, we also tested CRISPR constructs targeting E2F1 (Abmgood,
188271110595) using the same lentivirus technology.

Immunofluorescence Analysis
Cells were plated on 24-well plates pretreated with laminin overnight. After
2 days of culture, cells were fixed in 4% paraformaldehyde for 15 minutes at
room temperature, followed by blocking and overnight incubation at 4°C with
γH2AX primary antibody (Cell Signaling Technology, AB_10860771). Cells
were then incubated with species-specific goat secondary antibody coupled to
AlexaFluor dye (568, Invitrogen) and Hoechst dye for nuclear staining for 2
hours at room temperature. Plates were imaged using EVOS microscope, and
quantification of positively stained cells was performed manually using ImageJ
(SCR_003070).

Irradiation of GSs
Cellswere irradiated at room temperature usingX-ray irradiator (GulmayMed-
ical Inc.) at a dose rate of 5.519 Gy/minute for the time required to apply an 8Gy
dose. The X-ray beamwas operated at 300 kV and hardened using a 4mmBe, a
3mmAl, and a 1.5mmCufilter, and calibrated usingNIST-traceable dosimetry.

Statistical Analysis
Reported data are mean values± SEM for experiments conducted at least three
times. Unless stated otherwise, one-way ANOVA was used to calculate statisti-
cal significance, with P values detailed in the text and figure legends. P values
less than 0.05 were considered significant. Correlation analyses were performed
using Pearson coefficient. Log-rank analysis was used to determine the statisti-
cal significance of Kaplan–Meier survival curves. Data analysis was done using
R v 3.6.3 (21).

Data Availability Statement
The data analyzed in this study were obtained from Gene Expression Omnibus
at GSE57872. The data generated in this study are available within the article
and its Supplementary Data.

Results
GBM Clustering is Clinically Significant and Only
Modestly Overlaps with Prior Molecular Classification
To characterize heterogenous pathways activated in GBM, we analyzed GBM
patient samples in TCGA (5) using gene sets in the canonical (C2CP) and
oncogenic (C6) pathway collections from GSEA (22, 23). These gene sets were
selected to analyze known pathways (canonical) and those that have been
described as prevalent in cancer that could be targeted pharmacologically
(oncogenic). The mRNA expression of each TCGA sample was compared with

the average expression of all the samples (n= 538), and normalized enrichment
scores were obtained for all the gene sets comprising the two pathway collec-
tions. We observed heterogeneity when either canonical (Fig. 1A) or oncogenic
(Fig. 1B) gene sets were analyzed.We determined that three clusters represented
the data when using oncogenic and canonical pathways via non-matrix factor-
ization and consensus clustering; the robustness of the clusters was also tested
and validated using the random forest approach (Supplementary Figs. S1A–
S1F). We then applied PCA for dimensionality reduction and to better visualize
the sample clusters (Fig. 1C and D, respectively). Notably, when the clustered
samples were colored by their known TCGA molecular subtype, we found
there was one cluster that contained approximately 75% of the mesenchymal
samples, while the classical and proneural subtypes were present in all clus-
ters (Supplementary Fig. S1G). Because of the lack of precise correspondence
between TCGA subtype and our pathway-based classification, we hypothe-
size that TCGA classification may not represent true functional differences
between tumors and that a pathway-based approach would reveal heterogene-
ity that would be more susceptible to therapeutic intervention as described
below.

To determine whether our pathway-based classification was of prognos-
tic value, we examined patient survival using the pathway-based clustering
methodology. Prior studies using TCGA groupings have found only limited
association with survival, with proneural tumors having longer survival—an
observation largely driven by the subset of IDH-mutant tumors. As shown in
Fig. 1E, our own analysis of TCGA categories found significant differences only
between the proneural and other two groups, as reported previously (5). How-
ever, when we utilized our new pathway-based clustering approach, we found
statistically significant differences inmedian survival between the patients from
clusters 1 comparedwith 3 (canonical) and cluster 1 comparedwith cluster 2 and
3 (oncogenic; Fig. 1F and G). For both collections of gene sets, canonical and
oncogenic, the cluster with the lowest median survival was the one primarily
composed of mesenchymal samples. However, approximately 30% of the sam-
ples within this cluster were characterized as classical and proneural. Similarly,
using the canonical pathways collection, the cluster with the highest median
survival included equal abundances of classical and proneural samples (47%
each). These data challenge the idea that samples obtained frompatients should
be treated according to their TCGA-defined molecular phenotype and, in con-
trast, support the notion that tumors from different molecular backgrounds
might have common signaling pathways.

GSEA Gene Signatures From a Patient-derived GS
Database Delineate Potentially Actionable Targets
We recognized that GSEA is an imperfect approach to assess functional path-
way utilization and that individual genes or sets of genes would contribute to
enrichment of multiple gene sets. Therefore, to more pragmatically develop
potential interventions based on our analysis, we further distilled our pathway-
based clustering of the whole TCGA dataset by extracting the top contributing
gene sets to each principal component (PC) and direction and synthesizing
their common elements into gene signatures. We hypothesized that target-
ing the most highly represented elements would allow us to engage several
key pathways simultaneously, even though we might be limiting our scope to
shared targets and ignoring underrepresented pathways. To validate this ap-
proach, we performed a similar analysis on a microarray-derived database of
patient-derived GS lines so that we could functionally test downstream targets
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FIGURE 1 Pathway-based analysis generates three distinct clusters based on enrichment profiles with clinical significance. Samples from TCGA were
analyzed using either canonical pathways (A) or oncogenic pathways (B) from the GSEA to generate heatmaps based on the enrichment profile of
each sample (column) with respect to each gene set (row) in both collections. C and D, Profiles from A and B, respectively, were used to generate PCA
plots labeled by color and shape for each cluster. Circle lines represent the normal distribution of the samples in each cluster. E, TCGA samples were
clustered on the basis of the original molecular subtypes described, and Kaplan–Meier curves were obtained. F and G, Samples clustered on the basis
of enrichment profiles for canonical and oncogenic gene sets, respectively, were analyzed for survival using Kaplan–Meier curves. Tables at the bottom
describe the distribution of the molecular subtypes for each cluster. Dotted lines represent median survival for each curve (also described in top
tables). Time shown is in months. P values after post hoc analyses using Bonferroni–Hochberg correction.
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(13). The enrichment patterns again showed heterogeneity between samples, yet
they grouped into twomajor clusters when either canonical and oncogenic gene
set collections were used (Supplementary Figs. S2A and S2B). Gene signatures
were also generated for the GS dataset based on the common elements shared
among the top contributing gene sets for each PC and direction, as described
above for TCGA dataset (Supplementary Table S1). The TCGA- and GS-based
gene lists were then used to obtain enrichment scores in the GS lines (Fig. 2A).
This dataset again separated into two main clusters in accordance with the
pattern of enrichment scores generated when the oncogenic and canonical
pathways were used (Supplementary Fig. S2C). To convert gene signatures into
actionable targets, we further analyzed them through IPA. Cluster 1 (right side
of heatmap in Fig. 2A) showed higher enrichment of the G2-1N gene signa-
ture and core analysis from IPA showed an increase in the expression of the
E2F family of transcription factors and its downstream targets (Fig. 2B). The
contribution of each gene signature can be appreciated in reference to both
clusters (Fig. 2C). Activation of E2F1, together with inhibition of Let7, which
has been reported to have a role in differentiation and tumor suppression (24,
25), had the most significant P value for this gene signature. Because E2F1 has
a known role in cell-cycle progression, we examined the enrichment scores for
cell cycle–related and E2F1-target gene sets in the canonical pathways collection
(C2CP). Indeed, samples that fell in the cluster with high enrichment of G2-
1N (and hence predicted to have activation of EF) had concomitant higher
enrichment scores for cell cycle and EF activation (Fig. 2D). E2F1 has also
been shown to be induced in response to radiation and chemotherapy (26, 27).
Analysis of DNA damage response gene sets also revealed an enrichment in
the samples predicted to have EF activation (Fig. 2D). These findings suggest
that there are two clusters of GS samples based on their enrichment of specific
gene signatures that can be further analyzed to elucidate upstream regulators.
Among the most meaningful differences between the samples was the fact
that one cluster revealed an EF-activated expression exhibiting a high degree
of enrichment for cell cycle and DNA damage response signaling expression.
Moreover, the two clusters had clinical significance with the EF-activated
group showing better median survival compared with the other cluster (Sup-
plementary Fig. S2D). As was the case with TCGA dataset, stratifying patients
using molecular subtypes did not show differences in survival (Supplementary
Fig. S2E).

We next reclustered TCGA samples based on their enrichment for the gene
signatures described above and found three clusters, comparable with the orig-
inal pathway analyses described (Supplementary Fig. S3A). The EF-activated
signatures (T2-1N and G2-1N) characterized one of the clusters, whereas the
EGFR signature (T2-2P and G2-2P) pointed in between two of the clusters. In
addition, we analyzed raw data from the available TCGA samples (n = 160)
from Broad Firehose. Differential expression analysis was performed on sam-
ples using the cluster identity from the gene signatures. These data were then
used to highlight the most enriched gene ontology terms for each cluster. We
found each of the three clusters had a defined set of Gene Ontology terms:
cell cycle–related (cluster 2), extracellular membrane and inflammation (clus-
ter 3), or synapse and neurotransmitter signaling (cluster 1; Supplementary Fig.
S3B). These results suggest the existence of distinct clusters that can be parsed
through their potential pathway utilization, highlighted by upstream regulator
enrichment. Similarly, we found a greater complexity in TCGA dataset com-
pared with the GS dataset, as would be expected when analyzing primary and
patient-derived lines, respectively, as patient-derived lines do not encompass

nontumor cells present in the original TCGA samples and likely represent a
less complex mixture of cells than found in the tumor.

Weighted Gene Coexpression Network Analysis Reveals
Distinct Regulatory Modules in Each Cluster
To further determine possible coregulated subsets of genes, we performed
weighted gene coexpression analysis (WGCNA) on differentially expressed
genes. This analysis has been used to identify gene networks with central hub
genes that are of critical functional importance (28). We identified six modules
correlated with cluster 1 and 20 modules correlated with cluster 2 (Fig. 2E and
F).We took the top three enrichedmodules for each cluster and performed gene
ontology enrichment analysis. The topmodules associated with E2F1 activation
(blue, brown, and light cyan) showed enrichment of cell cycle, cell division, and
DNA replication, in addition to processes associatedwith neurogenesis, neuron
differentiation, and gliogenesis (Supplementary Table S2). Moreover, two of the
three modules also showed enrichment in their promoter region for EF and
other members of the E2F family.

In contrast to the E2F1 module, the topmodules associated with the non–E2F1-
enriched cluster (black, green, and magenta modules) showed enrichment
for inflammatory response, cell migration, and chemotaxis, as well as im-
mune response, angiogenesis, and regulation of apoptotic processes. In these
E2F1-independent modules, we found genes with enrichment for transcription
factors involved in inflammatory responses, such as CEBPB and the interferon
regulatory transcription factor family, as well as C2H2 zinc finger family mem-
bers, including EGR1 and SP/KLF, which regulate proliferation, differentiation,
and apoptosis cellular processes. We then identified hub genes in each module,
determined by how associated they are to the other members of their module
(28), and colored them by module name in Fig. 2E. Like the modules, the hub
genes had different characteristics for modules associated with the EF acti-
vated as compared with the EF-independent clusters. Namely, the enriched
EF-related modules include hub genes of known stem cell markers SOX
and OLIG, associated with self-renewal and persistent proliferation, as well as
markers of cell division, like PLK4. The hub genes of the EF independent–
related modules include IL, IL, other inflammatory cytokines, and CD,
which has been associated with a more invasive phenotype.

From a clinical perspective, we wanted to knowwhether hub genes would be vi-
able as therapeutic targets. To this end, we examined the data from a prior study
comparing gene expression in the cellular fraction containing tumor initiating
cells, termed glioma-derived progenitors cells (GPC) and normal, nontrans-
formed glial progenitor cells (nGPC; ref. 29). For the E2F1-related modules,
several hub genes (DTL, CASC, CDCA, ASPM, CENPF, BUBB; bluemodule)
had expression at least 4-fold higher in GPCs as compared with nGPCs. Sim-
ilarly, another hub gene in an EF-related module, MYC (light cyan module)
was 12-fold more highly expressed in GPCs relative to nGPCs. Evaluation of
the EF-independent associated hub genes uncovered thatCD and COLA,
both associated with invasion, were highly expressed in GPCS (over 22-fold
change higher related to nGPCs). Two other genes associated with migration
and invasion, FN and SERPINE, were also at least 4-fold higher in GPCs
in the E2F1-independent cultures. This analysis indicates that targeting the
modules and hub genes identified for each cluster would likely have fewer off
target effects based on their expression restricted to GPC as opposed to normal
progenitor cells.
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FIGURE 2 Gene lists predict E2F1 as a main target in one of the clusters found in the GS dataset. A, Enrichment profiles using gene lists were
generated for GS samples. B, Each gene list was evaluated using IPA and top predicted activated (green arrows) and inhibited (red arrows) upstream
regulators are shown. C, PCA plot from enrichment scores generated in A showing how each gene list contributes to a particular direction. D, Samples
from both clusters were evaluated for their enrichment of cell cycle–related, downstream E2F1 target, and DNA damage repair gene sets from the
canonical pathway collection. E, WGCNA generated 26 modules when samples were analyzed on the basis of their enrichment profiles for the gene
lists. F, Modules are ranked on the basis of their abundance in both clusters. Modules at the top are highly enriched in the E2F1-activated cluster
(cluster 1).
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Gene Signatures Differentially Associate with Cell Cycle
and Stemness Programs, GBM Cellular States, and Cell
Type–specific Programs
One main focus of GBM research in the last decade has been the existence of
a subset of cancer cells with activated stemness programs, namely glioma stem
cells, that contribute to the malignancy of the tumor (30–33) and are refractory
to therapy (34, 35). Together with TCGAmolecular subtypes, this paradigmhas
resulted in the development of specific therapies aimed at targeting molecules
believed to be key regulators of tumor growth and invasion. As we routinely
work with patient-derived cell lines that behave differently than tumor cells in
their intact tumor microenvironment in patients, we need to establish whether
critical pathways such as stem-like programs, differentiation pathways, or cell
cycle–related signatures are predominantly active in these cells. To that end, we
evaluated the association of our pathway-based gene signatures with cell-cycle
and stemness scores in the single-cell RNA-seq dataset (14). Consistent with
our GS analyses, we found that both of our signatures predicted to have EF
activation (G2-1N and T2-1N) strongly correlated with cell-cycle scores (Sup-
plementary Fig. S4A), while other signatures showed weak or no association.
Interestingly, we found two signatures (T2-1N and T2-2P) that had strong nega-
tive correlations with stemness score and onewith a positive correlation (T2-1P;
Supplementary Fig. S4B).

The negative correlation between activation ofEF (T2-1N) and stemness score
is not surprising given the fact that tumor cells are believed to be in either a
proliferative or a stemness state (34). However, EGFR activation (T2-2P) has
not been linked to a decrease in stemness and compels further investigation.
The gene list with positive correlation to stemness (T2-1P) has three main tar-
gets per IPA analysis. First, phosphatidylinositol 3-kinase (PIK3R1) has been
associated with GBM malignancy, and there are several inhibitors developed
for molecules in this signaling pathway (36). GNA12 encodes for the G12 alpha
subunit of G proteins and is of critical importance in regulating actin cytoskele-
tal remodeling in cells during migration, which is critical for tumor invasion.
Finally, early B-cell factor 1 (EBF1) has been identified as a TET2 interaction
partner in IDH-mutant cancers (37). These analyses establish a novel approach
for uncovering new molecular targets based on a pathway-based approach that
can be leveraged for the development of new therapies.

Next, we sought to determine the relationships of our gene signatures to other
published gene signatures. These associations will allow us to get a better un-
derstanding of upstream regulators targets and cellular states and identities.We
used the same scRNA-seq dataset (14) and compared our gene signatures to
previously reported transcriptional signatures of cell types in adult cortex (19),
developing human brain (18), and to cellular states in GBM (11). As expected,
our E2F1-activated gene lists both significantly correlated with G1–S andG2–M
signatures (Fig. 3A). In addition, T2-1P (PIK3R1 and EBF1 activated) signifi-
cantly associated with adult astrocyticmarkers and the AC-likemolecular state,
and T2-2N (ICMT activated) significantly associated with adult oligodendro-
cyte progenitor cell (OPC) markers and both OPC-like and neural progenitor
cell (NPC1)-like molecular states. Notably, ICMT is a methyl transferase nec-
essary for the localization of CaaX proteins (which include the Ras family) to
the cell membrane (38, 39). Ras/ERK signaling has been associated with the
proneural subtype (40) and NRAS is expressed at higher levels in proneural
subtype comparedwithmesenchymal and classical (https://gliovis.bioinfo.cnio.
es/). TCGA samples classified as proneural also showed higher enrichment for
genes in the NPC-like and OPC-like molecular states (11). These data suggest
a targetable mechanism (trafficking to the cell membrane via ICMT) required

for a specific protein (Ras) upregulated in a TCGA subtype (proneural) that
has correlates in GBMmolecular states (OPC-like, NPC1-like). Finally, we also
found a significant correlation between G2-1P (IFNγ andNFκB activated) with
bothMES1-like andMES2-like states as well as adult endothelial andmural cell
markers. The latter include blood vessel–associated cell types such as pericytes
and vascular smooth muscle cells. This association relates to the extraordinary
plasticity of glioma cells in response to their microenvironment. These data
suggest IFNγ and NFκB pathways are activated in cells in the mesenchymal
states that undergo vascular mimicry and express markers related to endothe-
lial cells and pericytes that have been associated with tumor progression and
recurrence (41–43). Of note, IL is also predicted to be inhibited in this gene
list; given IL10 is an anti-inflammatory cytokine, this suggests an inflammatory
microenvironment would promote this particular molecular state. All these
associations are summarized in Supplementary Table S3.

Differential Effects of E2F1 Silencing and Candidate
Therapeutics Support the Functional Significance of
Pathway-based Heterogeneity
Our findings of potentially differential dependence on E2F1 and its downstream
targets in two groups of GS cultures, both of which were actively prolifer-
ative was somewhat surprising, as this transcription factor is often thought
to be primarily involved in proliferation and cell-cycle regulation. To inves-
tigate this further and to validate our general approach, we used silencing
technology to evaluate the cellular effects of E2F1 suppression in samples from
EF-activated and EF-independent clusters. HK217 and HK301, members of
the E2F1-activated cluster, showed amarked decrease in stem (sphere-forming)
cell frequency in a limiting dilution assay (LDA) in cells with E2F1 knockdown
compared with control (Fig. 4A). These effects were not observed in HK357 or
HK408, lines that were not enriched for an E2F1 signaling pathway signature
(Fig. 4A), even though both cultures expressed E2F1. To confirm the effects of
the knockdown, we used CRISPR/Cas9 to delete E2F1 in activated and non-
activated cultures and performed LDA, with a similar outcome: That genetic
disruption of EF in activated cultures showed diminished sphere-forming
capacity and had little effect in the non–EF-activated cells (Supplementary
Fig. S5).

In addition to our genetic approach, we utilized a pharmaceutical approach to
highlight the importance of the gene list identified. In addition to EF acti-
vation (Fig. 2B), IPA also predicted calcitriol and fulvestrant would have an
inhibitory effect upon the genes enriched in the EF-activated cluster. We
tested this hypothesis by performing LDA in cells from both E2F1-activated
and -nonactivated clusters (Fig. 4B). Both EF-activated GS lines, HK217 and
HK336, showed a decrease in sphere formation capacity when treated with
calcitriol (10 nM) while fulvestrant (10 μM) showed a dramatic decrease in
HK217 and a modest, yet not significant, inhibition in HK336 (Fig. 4B). Both
GS lines in the nonactivated cluster, HK229 and HK408, did not show differ-
enceswhen treatedwith either drug comparedwith the control group. Likewise,
knockdown of E2F1 resulted in compromised overall cell proliferation in EF-
enriched samples when E2F1 expression was suppressed (Fig. 4C), compared
with EF-independent cells where E2F1 knockdown did not significantly alter
proliferation.

To validate our approach and our fundamental findings of differential sensitiv-
ity to E2F1 knockdown, we analyzed an independent RNA-seq dataset derived
from 22 GSs and generated enrichment scores for the gene lists identified
previously (Supplementary Table S4).
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A

FIGURE 3 Gene lists differentially correlate with cellular states and cell-specific markers. A, Scores generated for each cell in Supplementary Fig. S3
using gene lists were correlated with scores for cellular states and specific cell-type markers in development and adult brain. The presence of a circle
represents significant correlation, and the size and color depict the intensity of the correlation. Boxes mark groups of gene lists strongly correlated
(based on hierarchical clustering).

As we previously observed in our larger set of GSs, there was heterogeneity
in the E2F1-related enrichment scores (Supplementary Fig. S6A). On the ba-
sis of the resulting scores, we treated GS024 (EF enriched) and GS102 (EF
nonenriched) with control or E2F1 knockdown lentivirus and, as expected, we
observed a significant decrease in sphere formation capacity after E2F1 knock-
down in GS024 but not GS102 (Supplementary Fig. S6B). These data tested the
predictive capacity of our approach in an independent dataset and showed we
were able to target a predicted protein of interest with functional implications.

To determine the in vivo relevance of our findings, we assessed tumor forma-
tion capacity in HK301 (EF-dependent) and HK408 (EF-independent) cell
cultures transduced with shE2F1 or shControl (scrambled) lentivirus mediated
gene expression targeting. Kaplan–Meier survival curves showed an increase
in median survival in cells treated with shE2F1 (22.7 weeks) compared with
shControl (19.1 weeks) for line HK301 (Fig. 4D), while in HK408 genetic per-
turbation of E2F1 did not affect in vivo growth (median survival was 7 and 7.2
weeks for control and E2F1 groups, respectively). In vivo bioluminescent im-
ages showed tumor growth in all mice intracranially transplanted with HK408
in both control and knockdown (KD) groups (Fig. 4E). Conversely, HK301 E2F1
KD cells showed limited tumor formation in vivo while animals injected with
HK301 control cells showed tumors in four out of five mice. We quantified the

luminescence at several timepoints and found significant differences in HK301,
and not in HK408, where cells treated with shE2F1 showed a marked decrease
in luminescence (Fig 4F). These data demonstrate that the targets uncovered
by this pipeline have functional implications in patient-derived GSs.

E2F1 has been demonstrated to have a role in the suppression of senescence
in prostate cancer cells and proposed to be a key factor for the progression of
tumors in the presence or absence of p53 or retinoblastoma (44). Similarly,
we found a high enrichment in DNA repair–related genesets in the E2F1-
dependent cluster (Fig. 2D). We tested this functionally by treating cells with
irradiation and measuring their capacity to resolve DNA damage as measured
by γH2AX staining. HK217 (E2F1-dependent) and HK408 (E2F1-independent)
control and E2F1 KD cells were irradiated with a single dose of 8 Gy, and
cells were stained 12 hours later (Fig. 5A). HK408 showed comparable levels of
H2AX-positive cells under both conditions (control = 80%, KD = 78%, n.s.),
whereas E2F1 KD significantly impacted the capacity of HK217 cells to resolve
DNA damage (control = 45%, KD = 68%, P = 0.01; Fig. 5B). These data fur-
ther confirm that the pathway-based approach we have implemented in these
studies has identified a specificmolecular target for a cluster of samples that has
both biological significance and possible combinatorial therapeutic potential to
advance treatment for pathway stratified patients with GBM.
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FIGURE 4 E2F1 silencing compromises self-renewal and proliferation in vitro and tumor formation in vivo. Samples from both clusters were treated
with control (scrambled) or E2F1 siRNA (A) or were plated in regular media or media containing fulvestrant or calcitriol (B) under limiting dilution in a
96-well plate. Graphs depict the number of wells that did not form spheres after 10 days versus the number of cells plated (a vertical line implies all
wells formed spheres). C, Cells treated with scrambled or E2F1 siRNA were plated at a density of 2,000 cells (Continued on the following page.)
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(Continued) per well in a 96-well plate in quadruplicate, and their growth was evaluated using luminescence. Relative growth is the fold change
compared with basal measurement. D–F, Cells treated with scrambled or E2F1 shRNA were intracranially injected in NSG mice. Kaplan–Meier survival
curves for each group was calculated; dashed lines represent median survival and time shown is in weeks (D). Luminescence was assessed 2 weeks
after transplantation (E). Quantification for each group is shown at 2, 5, and 8 weeks (F). Mice in both groups for HK408 did not reach the 8-week
timepoint. Experiments in A–C were performed at least three times. Data are represented as mean ± SEM. **, P < 0.01 and ***, P < 0.001 as assessed
by one-way ANOVA.

Discussion
In this study, rather than focusing on drivermutations themselves, our goal was
to focus on their impact on gene expression and to use the latter in an unbi-
ased manner to assay molecular pathways that will influence the biology of the
tumor.We surmise thatwhile individualmutationsmay influence one of several
different processes, ranging from protein phosphorylation to chromatin modi-
fications,mutations will ultimately result in altered gene expression, which then
results in modified cellular function. Although our strategy does result in a
reclustering of tumors, the main goal of the analyses described in this work
was to present a pathway-based approach to uncover biologically relevant, po-
tentially actionable targets derived from the heterogenous biology inherent to
GBM.

Using our approach, gene signatures were established from both bulk tumor
samples and patient-derived GS datasets. One of the clearest relationships, we
observed was the strong correlation of signatures associated with EF activa-
tion to that of cell-cycle signatures. One potential explanation of such a finding
would be that different tumors have different numbers of proliferating cells
and thus differential gene expression based on their abundance. However, our
findings in GSs suggest that there are more complex processes at play, as both
E2F1-dependent and independent cultures were highly proliferative at the time
of study, indicating that the expression differences observed represented true
differences in the biology of the cells. One might assume that another closely
related member of the E2F family would serve the same function as E2F1 in the
nonenriched population. However, such factors would result in similar down-
stream effectors and therefore would not have appeared to be enriched in our
studies. Similarly, the single-cell data found EF enrichment are inversely re-
lated to stem cell signatures in vivo, yet knockdown or genetic disruption of
E2F1 in activated cultures diminished the sphere-forming capacity by limiting
dilution assay. Whether this indicates that E2F1 is important for glioma stem

cells (GSC) residing within tumors or whether this is because stem cell pop-
ulations are artificially driven by exogenous growth factors in the GS culture
system is unknown. Indeed, the two are not mutually exclusive, as E2F1 may
play a role in GSCs in tumors only when they are activated to divide, a different
state from what the single-cell gene signatures may be capturing.

While previous research has implicated E2F1 in the maintenance of GBM ma-
lignancy (45), our studies bring to light the fact that E2F1 may only drive
proliferation in a subset of GBM cells and tumors, which we can predict using
GSEA, and thus targeting E2F1 would only be relevant in these. In addition,
we demonstrated the relevance of this set of genes by using fulvestrant and
calcitriol that were predicted to affect only cells in the EF-dependent clus-
ter. Fulvestrant is an estrogen receptor antagonist mainly used in breast cancer
but has not been studied previously in the context of GBM. Calcitriol is an ac-
tive form of vitamin D that can be used to regulate the cell cycle and induce
apoptosis. It has also been associated with promoting differentiation of glioma
stem-like cells and increasing susceptibility to temozolomide (46). While pre-
liminary, these studies support our approach to identifying targetable pathways
and the repurpose of FDA-approved drugs.

In addition to its role in proliferation, recent studies tie E2F1 function to other
processes, including DNA repair. Our studies confirmed inhibition of E2F1
reduced the capacity to resolve irradiation-induced DNA damage in E2F1-
activated GS cultures. Our analysis also identified drugs that could selectively
target this pathway and be considered for development of therapeutics in sub-
classes of cells. Furthermore, we observed clusters that were not EF driven
and that appeared to be more heavily reliant on other pathways. For example,
cluster 2 in Fig. 2A showed diverse enrichment for gene lists whosemain targets
are more classical dysregulated pathways in GBM, such as PIK3R1 and PDGF
receptor (9). This cluster also had a strong enrichment in most of its samples
for an IFNγ- andNFκB-activated signature. This inflammatory and/or damage
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FIGURE 5 E2F1 silencing compromises DNA damage response induced after irradiation. A, Cells were treated with either C (control) or E (E2F1)
shRNA, were subjected to irradiation (8 Gy) and fixed after 12 hours for γH2AX staining (red). Nuclei were counterstained using DAPI. B, Quantification
for each group in A is shown. Experiment was performed at least two times. Data are represented as mean ± SEM. **, P < 0.01 as assessed by one-way
ANOVA.
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responsewas also observed in TCGAdataset as one of themain components for
one the clusters described in our first analysis (Supplementary Fig. S2E). Finally,
samples predicted to have EGFR activation were equally distributed in both
clusters, suggesting EGFR expression levels are not particularly informative in
terms of functional diversity in GBM samples.

Our use of cell signature scores rather than arbitrary values for cell type iden-
tities, allowed us to determine some of the characteristics of individual cells
within tumors. This analysis confirmed that an EF-driven signature corre-
lated with genes that were related to mitosis, but inversely correlated with
putative markers of stemness. It is unclear whether this is because “true” cancer
stem cells are slowly dividing, or whether other factors are involved. We were
able to further our correlational analysis to include cellular states described
in GBM (11) and cell types from normal brain development. The rationale to
do these analyses was based on a recent report using scRNA-seq that uncov-
ered a subset of GBM cells with outer radial-glia signatures that were able to
activate an embryonic pathway to promote invasion (12). Our studies link cel-
lular states to cell type–specific signatures and potential targets from our gene
lists. For example, predicted ICMT activation was negatively associated with
stemness and positively associated with NPC-like and OPC-like states, as well
as adult OPC signatures. Similarly, IFNγ and NFκB activation were positively
correlatedwithMES-like1 andMES-like2, as well as endothelial andmural (vas-
culature, pericyte) signatures. This last interaction is particularly interesting
because it suggests an inflammatory environment as a driver for the expression
of tumor vasculature markers. This is consistent with the capacity of glioma
cells to undergo transdifferentiation into endothelial cells and pericytes to pro-
mote invasion (41–43). These analyses provide new potential avenues for the
development of innovative treatments.

Recent reports have delineated the complexity of tumor cell expression signa-
tures, and now the emphasis has been on providing a more holistic view of the
cells within each tumor, such as cellular states (11), a single axis of variation
between proneural and mesenchymal subtypes (47), and a recent report us-
ing a similar approach to ours that introduces another layer of complexity to
GBM heterogeneity by uncovering a mitochondrial subtype with unique vul-
nerabilities (48). Our study adds to this trend by providing a novel approach to
condense tumoral heterogeneity to critical gene lists that can be used to iden-
tify upstream regulators. In conclusion, we propose a combinatorial approach
where precision medicine will be composed of sample-specific drugs that also
provide specific vulnerabilities to be exploited with metabolic and/or immune-
activating approaches. The integration of different aspects of a cell or sample is
paramount for the development of new therapeutics.
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