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Abstract: People differ in their cognitive functioning. This variability has been exhaustively examined
at the behavioral, neural and genetic level to uncover the mechanisms by which some individuals are
more cognitively efficient than others. Studies investigating the neural underpinnings of interindivid-
ual differences in cognition aim to establish a reliable nexus between functional/structural properties
of a given brain network and higher order cognitive performance. However, these studies have pro-
duced inconsistent results, which might be partly attributed to methodological variations. In the cur-
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rent study, 82 healthy young participants underwent MRI scanning and completed a comprehensive
cognitive battery including measurements of fluid, crystallized, and spatial intelligence, along with
working memory capacity/executive updating, controlled attention, and processing speed. The cogni-
tive scores were obtained by confirmatory factor analyses. T1-weighted images were processed using
three different surface-based morphometry (SBM) pipelines, varying in their degree of user interven-
tion, for obtaining measures of cortical thickness (CT) across the brain surface. Distribution and vari-
ability of CT and CT-cognition relationships were systematically compared across pipelines and
between two cognitively/demographically matched samples to overcome potential sources of variabili-
ty affecting the reproducibility of findings. We demonstrated that estimation of CT was not consistent
across methods. In addition, among SBM methods, there was considerable variation in the spatial pat-
tern of CT-cognition relationships. Finally, within each SBM method, results did not replicate in
matched subsamples. Hum Brain Mapp 36:3227–3245, 2015. VC 2015 Wiley Periodicals, Inc.

Key words: surface-based methods; cortical thickness; higher order cognition
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INTRODUCTION

Individual differences exist in proficiency for reasoning,
problem solving, and learning from formal and informal
experience. These are crucial facets of human intelligence
(Deary, 2012, Nisbett et al., 2012). Neuroimaging techniques
are useful for analyzing the link between brain features and
high-order cognitive performance. In 2007, the parieto-frontal
integration theory (P-FIT, Jung and Haier) was published.
The scientific community embraced this model, because it
sought to harmonize the available findings from different
neuroimaging approaches at that time. Since then, new data
have often been interpreted in the context of the P-FIT
model, which has helped to organize the field.

Whereas the P-FIT stressed commonalities among stud-
ies, Colom (2007) noted the great variability among the
evidence summarized by Jung and Haier (2007). A very
small number of discrete brain areas converged in only
about half of the published studies using the same neuroi-
maging strategy. In structural studies assessing gray mat-
ter (GM) properties, only Brodmann areas (BAs) 39–40 and
10 reached 50% of convergence across studies. Subsequent
studies suggested that results are roughly consistent with
the P-FIT model. Indeed, if we overlap all reported regions
from previous studies almost the entire brain would be
relevant for supporting intelligent behavior. Perhaps, due
in part to the extent of methodological variation in the lit-
erature, even the most consistently identified brain regions
show low levels of convergence.

Several variables could explain these disparate findings
across studies. Potential sources of variability are: (a) var-
iations in the way intelligence is defined (e.g., IQ vs. g fac-
tor, and specific domains) and measured; (b) variations in
the methods for processing MR images (for a review see
Colom and Thompson, 2011; Colom et al., 2010aa), (c) var-
iations in the quantified brain feature (structure or func-
tion), tissue (e.g., white matter [WM], gray matter [GM])
or property (e.g., volume, thickness, folding pattern,
responsiveness to stimulation, WM microstructure, connec-

tivity); and (d) variations in the tested samples (e.g., sex,
age, size, lesion vs. healthy subjects or even intellectual
performance).

How Intelligence in Defined and Measured

Brain imaging studies of human intelligence and related
cognitive factors have used disparate measures, some of
which have not taken advantage of important theoretical
distinctions and empirical facts derived from the psycho-
metric approach.

Generally speaking, human intelligence can be defined as a
higher-order mental ability. Nevertheless, the intelligence con-
struct comprises a broad set of lower-level cognitive abilities
and skills, meaning that interindividual variation in perform-
ance may be due to specific combinations of lower level men-
tal processes or cognitive tasks. Psychometric models of
intelligence assume that variations in cognitive performance
across different situations can be summarized by a number
of basic cognitive dimensions. To characterize these dimen-
sions, scores are obtained from diverse measures, tapping
several content domains (e.g., abstract, verbal, numerical, and
spatial) and processing requirements, and then analyzed
through factor analysis (Abad et al., 2011). The obtained
latent factors are considered as common traits underlying
performance in apparently disparate tests.

The cumulative empirical evidence derived from this
framework supports the view that intelligence has a hier-
archical structure, with more general dimensions comprised
of several cognitive abilities, which are in turn defined by
specific skills (Hunt, 2011). Several models describe this
structure, such as, the CHC taxonomy (McGrew, 2009) or
the VPR (Verbal, Perceptual, and Image Rotation) model
(Johnson and Bouchard, 2005). Overall, these models con-
verge onto the general factor of intelligence (g) in addition
to several cognitive abilities and specific skills. Fluid–
abstract, crystallized-verbal, and spatial abilities are among
the most frequently considered factors of intelligence (Car-
roll, 1993, 2003; Hunt, 2011).
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Recently, Rom�an et al. (2014) showed that there is a sub-
stantial variability in the GM correlates along the intelli-
gence hierarchy, stressing the importance of properly
measuring the diverse ability domains. In contrast, how-
ever, most studies rely on standardized IQ indices or single
measures. The very small number of studies considering
psychometric g and specific ability domains has used one
or two tests for defining latent factors (e.g., Cole et al., 2012;
Haier et al., 2009; Karama et al., 2011; Langer et al., 2012).
But, as pointed out by Haier et al. (2009) “without a stand-
ard test battery selected for a known and theoretically
meaningful psychometric structure, comparisons of the
neuro-correlates of intelligence tests are bound to be incon-
sistent and difficult to interpret.”

As such, the same score in a given intelligence dimension
might be the result of different cognitive profiles where the
specific skills involved are contributing to the observed per-
formance in a different extend. Consequentially, the involve-
ment of different brain regions is expected to be slightly
different, depending on which lower level mental processes
are contributing more to the general dimension score (for
instance, “Spatial Intelligence” or “Crystallized Intelligen-
ce”).Conversely, we can approach the problem from the per-
spective that complex traits, such as general intelligence,
might be decomposed in simpler components or basic cogni-
tive processes presumably relying on the structural and func-
tional properties of the brain. Each of these components may
be differentially recruited by different tasks, and some com-
ponents may be critical for explaining variability in psycho-
metric intelligence. Systematic comparisons of brain imaging
studies reveal that cognitive functions, such as attention,
working memory capacity, and processing speed, involve
overlapping brain regions (Cabeza and Nyberg 2000; Colom
et al., 2013; Naghavi and Nyberg 2005). Some discrete brain
areas underlying these processes are also common to intelli-
gence (Colom et al., 2007; Jonides et al., 2008). The overlap in
brain regions can be interpreted as explaining, at least in
part, the relationship between intelligence and cognition
(e.g., working memory) at the behavioral level.

Variations in the Neuroimaging Methods and the

Brain Property Studied

There is another important potential source of variability
that may affect reproducibility of findings: the neuroimaging
processing approach used to obtain the brain properties of
interest. In the intelligence field, two main approaches have
been applied to study variations in macroscopic cortical anat-
omy using high-resolution T1-weighted data: Voxel-based
morphometry (VBM) and Surface-based morphometry (SBM).
An advantage of VBM is that it requires minimal manual
intervention and can be completed relatively quickly by fol-
lowing the well-documented, publicly available protocols.
When considering the inconsistency of results for the neural
correlates of cognitive measures, the answer may lie in the
details of the various processing techniques. In the case of

VBM, the complexity and intersubject variability across corti-
cal anatomy can be problematic for most standard linear and
nonlinear volumetric registration algorithms used by VBM
pipelines (Frost and Goebel, 2012). Not accounting for this
intersubject macro-anatomical variability may weaken statisti-
cal power on group statistics, because nonidentical cortical
regions are compared across subjects. This may worsen the
replicability of findings in independent but comparable sam-
ples. To alleviate this loss of power due to data macro-
anatomical misregistration across subjects, surface-based
approaches create geometrical models of the cortex using
parametric surfaces and build deformation maps on the geo-
metric models explicitly associating corresponding cortical
regions across subjects (Thompson et al., 2004). Furthermore,
SBM allows us to compute several GM tissue features at the
local level. These features include surface complexity, GM
thickness, surface area, volume, or density. Several SBM
approaches exist and each protocol differs in algorithms,
parameters, and required user-intervention.

Finally, another source of variation is the type of GM prop-
erty studied. Most studies have focused on the relationship
between cognition and voxel-based volumetric measures
using VBM algorithms. Other GM characteristics, such as
cortical thickness (CT) or surface area have also been related
to cognition. These different GM properties tap different
cytoarchitectural aspects, which may have different underly-
ing genetic etiology and cellular mechanisms (Panizzon et al.,
2009; Winkler et al., 2010). For these reasons, findings based
on disparate measures might not be directly comparable.

The current research sought to address potential sources
of between-study variability by (1) using three well-known
SBM protocols for estimating CT; (2) a psychometric
approach for defining several psychological constructs; and
(3) selecting two cognitively matched but independent sam-
ples of participants. The surface-based protocols varied in
their degree of human intervention and in processing fea-
tures. The cognitive dimensions of interest were: fluid intelli-
gence, crystallized intelligence, spatial intelligence, working
memory capacity, executive updating, attention, and process-
ing speed. The samples were matched for sex, age, and cog-
nitive performance. We assessed (1) the consistency of the
three SBM methods in the estimation of thickness throughout
the cortical surface; and (2) the reproducibility of the brain
correlates for the measured psychological factors using the
three SBM methods and the two cognitively matched sam-
ples of participants. This analytic strategy was aimed to pro-
vide tentative solutions regarding the main topic addressed
here: To what extent brain-cognition relationships are robust
or replicable across methods and samples?

MATERIALS AND METHODS

Participants

Four hundred and five undergraduate students com-
pleted a set of intelligence tests and cognitive tasks.
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Afterward, 120 participants (60 males and 60 females), rep-
resentative of the full range of test scores, were invited for
MRI scanning. They completed a comprehensive question-
naire including medical, neurological, psychiatric illness,
and substance abuse or conditions as exclusion criteria for
MRI scanning. Written informed consent following the
Helsinki guidelines was obtained from all participants.
One hundred and four individuals were included in the
MRI study (59 females and 45 males, mean age 5 19.9,
SD 5 1.6, age range 5 18–27; 93.3% right-handed). They
received a payment of e20 for their participation.

Twenty-two participants were excluded from the SBM
analyses because they failed to pass quality control in one
or more of the protocols used. Therefore, the final sample
for this study was comprised of 82 subjects (48 females
and 34 males) with a mean age of 19.9 (SD 5 1.5; mini-
mum 5 18; maximum 5 27). Six were left-handed.

Image Acquisition

All images were acquired on a General Electric Signa 3T
magnetic resonance (MR) scanner, using a whole-body
radiofrequency coil for signal excitation, and a quadrature
8-channel coil for reception. Three-dimensional (3D) T1-
weighted anatomical brain MRI scans were acquired with
a spoiled gradient echo (SPGR) sequence with the follow-
ing parameters: TR (repetition time) 5 6.8 ms, TE (echo
time) 5 3.1 ms, Preparation Time 5 750 ms; flip angle 5 128;
1 mm slice thickness, 288 3 288 acquisition matrix (0.8 3

0.8 3 1 mm voxel size), 512 3 512 display matrix (0.47 3

0.47 3 1 mm voxel size), 240 mm field of view and 196
images (slices) in acquisition.

Psychological Measures

Twenty-one cognitive tests and tasks were administered
to measure three core intelligence domains (fluid intelli-
gence, crystallized intelligence, spatial intelligence) and
four relevant cognitive processes at different levels of com-
plexity (from more to less complex: working memory
capacity, executive updating, controlled attention, and
processing speed). Following the guidelines proposed by
Haier et al. (2009), all psychological constructs were esti-
mated by three different measures that varied in process-
ing requirements and contents.

Abstract–fluid intelligence (Gf) refers to reasoning and
novel problem-solving ability, assessing the level of com-
plexity that subjects can handle in situations where prior
knowledge is not relevant. Gf was measured with the
advanced progressive matrices test (Raven et al., 2004), the
abstract reasoning subtests from the differential aptitude
test (DAT-AR) battery (Bennett et al., 1990), and the induc-
tive reasoning subtests from the primary mental abilities
(PMA-R) battery (Thurstone, 1938).

Verbal-crystallized intelligence (Gc) relies on the ability
to cope with academic skills and knowledge, such as read-

ing or arithmetic. Gc was measured by DAT-VR (verbal
reasoning), DAT-NR (numerical reasoning), and PMA-V
(vocabulary).

Spatial intelligence (Gv) involves the construction, tempo-
rary retention, and manipulation of mental images. Gv was
measured by DAT-SR (spatial relations), PMA-S (mental
rotation), and the Rotation of Solid Figures test (Yela, 1969).

Working memory capacity (WMC) is defined as the abil-
ity to simultaneously store and process information. As
such, dual memory span tasks are used to measure WMC
and these were the Reading Span, Computation Span, and
Dot Matrix tasks (Colom et al., 2010ab).

Updating, an executive function, is based on the online
addition or subtraction of information from the working
memory system. Updating was measured by the 2-Back,
Keep Track, and Letter Memory tasks (Colom et al., 2008).

Controlled attention (CA) is a broad cognitive function
allowing the maintenance of highly active mental representa-
tions in the presence of interference. CA was measured with
verbal and numerical versions of the Flanker task, along with a
spatial variant of the Simon task (Colom et al., 2010ab).

Finally, processing speed (PS) estimates the amount of infor-
mation that can be processed per unit of time, often measured
by reaction time, and presumably taps into the efficiency of
information transfer in the brain. PS was measured with sim-
ple recognition Verbal, Numerical, and Spatial tasks (Colom
et al., 2008).

The measures were administered in the same order
across four sessions: intelligence tests were administered
in Sessions 1 and 2, and cognitive tasks were administered
in Sessions 3 and 4.

Finally, confirmatory factor analyses (CFA) were com-
puted using AMOS 16.0.1 (Arbuckle, 2007) for testing the
likelihood of the postulated measurement models: (1) three
primary intelligence factors (Gf, Gc, and Gv) defined by
their three tests, and a higher-order factor representing
general intelligence (g); and (2) four primary correlated
cognitive factors defined by their three tasks. Afterward,
intelligence and cognitive latent factors were related in a
structural equation modeling analysis. Maximum-
Likelihood was used as method of estimation. The fit of
these models was assessed by the following indices:

� Chi Square/Degrees of Freedom (CMIN/DF) ratio is
considered first, as is standard, because it provides a
good rule of thumb for the model fit (J€oreskog, 1993).
Values of approximately 2.0 or lower show a good fit.
� Root Mean Square Error of Approximation index is

sensitive to misspecification of the model. Values
between 0 and 0.05 indicate a very good fit, values
between 0.05 and 0.08 indicate a reasonable fit, and
values greater than 0.10 indicate a poor fit (Ackerman
et al., 2002; Byrne, 1998).
� Comparative fit index [CFI] (Bentler, 1990), is one of

the measures least affected by sample size (Fan et al.,
1999). This statistic ranges between 0.0 and 1.0 with
values closer to 1.0 indicating a good fit. A cut-off
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criterion of CFI� 0.95 is recognized as indicative of a
good fit (Hu and Bentler, 1999).

Second, scores for the intelligence and cognitive factors
were computed to capture reliable shared variance among
the specific measures of each construct. This was done
using the regression imputation function of the AMOS
program (Arbuckle, 2007). The latent scores obtained from
the model assessing the simultaneous relationships among
latent factors, as well as, the scores for the raw tests and
tasks, were used in the imaging analyses.

MRI Data Processing: Surface-Based Protocols

Three different processing protocols were used to quan-
tify CT. These protocols can be organized by the degree of
user interaction and the degree to which parameters can
be adjusted to optimize algorithm performance. For SBM
approaches, the main difference likely lies in the registra-
tion that aligns cortical features. Landmark-based registra-
tion methods typically involve some degree of user
intervention to define the sulcal and gyral landmarks,
while the shape-based methods can be completely auto-
mated. The main processing steps computed by each
selected protocol are described below. Note that they are
organized from greater to less required user intervention.

Table I shows a comparative overview of the procedures
and tools used by each protocol considered here. This table
allows a rapid inspection of the methodological commonal-
ities involved in each processing step. We choose to use the
same smoothing kernel size in all pipelines. Although prior
research suggests that the optimal size of smoothing filters
is not the same for different morphometric measures (as it
depends on the scale of the effect of interest), there is not a
consensus regarding which values are most appropriate for
a given application (Zhao et al., 2012). Therefore, one typi-
cal kernel size (10 mm) was used for filtering the CT esti-
mated thought the three pipelines. To achieve this, the
function “SurfStatSmooth,” implemented in SurfStat, was
used [http://www.math.mcgill.ca/keith/surfstat/].

Also note that CT measurements are computed using the
subjects’ volumetric images without rescaling. The tools
and procedures used in the remaining steps are sometimes
shared by two pipelines, such as MINC tools for volumetric
spatial normalization and intensity normalization; algo-
rithms included in BrainSuite software to perform brain
extraction and tissue classification; and tlink metric to com-
pute CT. However, pipelines fully differ in the algorithms
used to reconstruct and align the cortical surfaces.

Cortical pattern matching pipeline

3D T1-weighted MR images from each individual were
analyzed with several manual, semiautomatic, and auto-
matic procedures. These are detailed bellow:

1. Creation and manual editing of whole-brain and
hemispheric masks for native space brain volumes.
These masks were created using Brain Surface
Extractor (http://brainsuite.org/processing/surfa-
ceextraction/bse/; Shattuck et al., 2001) which is
part of the BrainSuite software. Two independent
expert-raters manually edited the brain masks,
achieving a high inter-rater reliability (>0.95).

2. Adjustment for head position and linear transforma-
tion of brain volumes and masks into a common
MNI standardized coordinate space based on the
ICBM 53 dataset (Mazziotta et al., 2001) with six (no
scaling) and nine parameters using MINC tools
(http://www.bic.mni.mcgill.ca/software).

3. Removal of nonbrain tissue (i.e., scalp, orbits) and
cerebellum, and separation of left and right hemi-
spheres. In this step, the manually edited masks
were applied to the brain volumes using MINC
tools.

4. Correction for intensity nonuniformity artifacts
using N3 (Sled et al., 1998).

5. Automated classification of the volumetric images in
MNI space, without rescaling into GM, white matter,
and cerebrospinal fluid (CSF) using partial volume
classifier (PVC) (http://brainsuite.org/processing/
surfaceextraction/pvc/) included in the BrainSuite
software.

6. Extraction of the cortical surface based on the multi-
ple surface deformation algorithm (MacDonald et al.,
1994). This step creates deformable surface models of
the cortex using as input the brain masked volumes
registered to the ICBM53 template with nine parame-
ters. The resulting cortical surfaces are represented as
a high-resolution mesh of 131,072 triangulated ele-
ments spanning 65,536 surface points.

7. Manual tracing of 32 major sulcal and gyral land-
marks on the lateral and medial surfaces of each
hemisphere using an interactive software (MNI Dis-
play; MINC tools) and a standardized sulcal labeling
protocol [http://resource.loni.usc.edu/resources/
downloads/research-protocols/sulcal-anatomy/].
Two trained experts independently traced each of
the 14 sulci on the lateral brain surface [Sylvian fis-
sure; central, precentral, postcentral, superior tempo-
ral sulcus (STS) main body; STS ascending branch;
inferior temporal; superior frontal; inferior frontal;
intraparietal; transverse occipital; olfactory; occipito-
temporal; and collateral sulci] in each hemisphere
on the surface rendering of each subject’s brain. An
additional set of 11 sulci was outlined on each
medial surface (callosal sulcus, inferior callosal out-
line, superior rostral sulcus, inferior rostral sulcus,
paracentral sulcus, anterior and posterior segments
of the cingulate sulcus, parieto-occipital sulcus, ante-
rior and posterior segments of the calcarine sulcus,
and the subparietal sulcus). In addition to
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contouring the major sulci, a set of seven midline
landmark curves bordering the longitudinal fissure
was outlined in each hemisphere to establish the
hemispheric gyral limits. The spatially registered
gray-scale image volumes in coronal, axial, and sag-
ittal planes were available simultaneously to help
disambiguate brain anatomy. The detailed criteria
for delineating the cortical lines and for starting and
stopping points for each sulcus are provided in the
protocol. The tracer reliability was measured using

the 3D root mean square difference (in millimeters)
between sulci in a set of six test brains and those of
a gold standard set. Disparities between the test and
gold standard brains were computed to be <2 mm
for all landmarks (Sowell et al., 2002).

8. Nonlinear elastic warping between meshes using a dif-
feomorphic sulcal shape atlas computed on the tested
sample (Joshi et al., 2012c). This step is run separately
for left and right sulcal landmarks, and distorts the
anatomy of one subject into another, matching sulcal

TABLE I. Main surface-based processing steps and tools used in each protocol considered

CIVET BrainSuite CPM

Processing steps Procedure/Software Procedure/Software Procedure/Software

Volumetric spatial
normalization

Linear registration to ICBM 152
with nine parameters using
MINC tools

Linear registration to Colin27
with six parameters using FSL
tools

Linear registration to ICBM 53
with nine parameters using
MINC tools

Intensity
normalization

Nonparametric Nonuniform
Intensity Normalization (N3;
Grayscale level-based meth-
ods) using MINC tools

Bias Field Corrector (BFC; Gray-
scale level-based methods)
implemented in BrainSuite
software

Nonparametric Nonuniform
Intensity Normalization (N3;
Grayscale level-based meth-
ods) using MINC tools

Brain extraction Brain Extraction Tool (BET)
(edge-based method) using
FSL tools

Brain Surface Extractor (BSE;
Region-based method) imple-
mented in BrainSuite software.
Manual editing of the brain
mask to improve the brain
extraction

Brain Surface Extractor (BSE;
Region-based method) imple-
mented in BrainSuite software.
Manual editing of the brain
mask to improve the brain
extraction

Tissue classification Intensity Normalized Stereotaxic
Environment for Classification
of Tissues (INSECT; intensity-
based method) implemented
in CIVET pipeline

Partial Volume Classifier (PVC;
intensity-based method)
implemented in BrainSuite
software

Partial Volume Classifier (PVC;
intensity-based method)
implemented in BrainSuite
software

Cortical surface
reconstruction

Constrained Laplacian-based
ASP (CLASP) implemented in
CIVET pipeline. The resulting
hemispheric mesh has 81924
triangles and 40962 vertices
for all subjects

Cortical Surface Extraction algo-
rithm implemented in Brain-
Suite software. The resulting
whole brain mesh has approx-
imately 500,000 vertices
depending on the subject’s
brain

Multiple Surface Deformation
(MSD). The resulting hemi-
spheric mesh has 131072 trian-
gles and 65536 vertices for all
subjects

Cortical surface
registration

Nonlinear hierarchical deforma-
ble registration to a high-
resolution average template
based on depth potential func-
tion (automatic shape-based
method) implemented in
CIVET pipeline.

Nonlinear registration to a high-
resolution template based on
curvature (automatic shape-
based method) implemented
as SVREG toolbox in Brain-
Suite software. Includes an
iterative refinement step to
improve feature correspon-
dence based on landmarks
(ROIs and sulci) transferred
from the template to the sub-
jects’ surfaces during
registration.

Diffeomorphic sulcal shape
matching across subjects (land-
mark-based method based in
manually delineated major
cortical sulci)

Cortical thickness
measurement

tlink metric tlink metric 3D Eikonal equation

Smoothing kernel
size

FWHM 5 10 mm (for all mor-
phometric measures)

FWHM 5 10 mm (for all mor-
phometric measures)

FWHM 5 10 mm (for cortical
thickness)
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features. The final outputs are resampled meshes with
vertices in anatomical homology.

9. Gray matter thickness was calculated using the
Eikonal Fire equation (Sapiro, 2001). Although the
brain image volumes acquired for this study had
voxel dimensions of 0.47 3 0.47 3 1 mm, the image
data from step 5 (i.e. the segmented volume image
in MNI coordinates without rescaling) were super-
sampled to create voxel dimensions of 0.33 mm
cubed; thus the 3D Eikonal equation was applied
only to subsampled voxels segmented as GM
(Sowell et al., 2004). Next, to map GM thickness
onto the surface rendering of each subject, the coor-
dinate for each brain surface point (anatomically
matched across individuals) was mapped to the
same anatomical location in their thickness volume
and a smoothing kernel was used to average GM
thickness within a 10 mm sphere at each cortical
surface point.

10. Blurring of each subject’s CT map using a 10-mm
full width at half maximum (FWHM) surface-based
diffusion smoothing kernel.

BrainSuite pipeline

3D T1-weighted MR images were mainly processed by
BrainSuite13’s surface extraction and registration tools
[http://neuroimage.usc.edu/neuro/BrainSuite]. Some
independent preprocessing tools were also used, as
detailed below:

1. Whole-brain masks were created and manual edited
for native space brain volumes using the procedures
and tools described for CPM pipeline (1).

2. Removal of nonbrain tissue (i.e., scalp, orbits) and
cerebellum. In this step, the manually edited masks
were applied to brain volumes in native space using
FSL tools [http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/Fslu-
tils#Tools/].

3. Adjustment for head position and linear transforma-
tion of brain volumes and masks into a common
MNI standardized coordinate space based on the
Colin 27 template (Holmes et al., 1998) with six
parameters (no scaling) using FSL tools.

4. Correction for intensity nonuniformity artifacts using
the Bias Field Corrector from BrainSuite.

5. Automated classification of volumetric images in
MNI space without rescaling into GM, WM, and CSF
using the PVC included in the BrainSuite software.

6. Extraction of the cortical surfaces. To achieve this,
classified images containing only the cerebrum were
submitted to the surface extraction steps included in
BrainSuite. Before the inner surface generation, a
cleaned and corrected mask of the inner cortical
boundary must be obtained by running four tools:

inner cortex mask selection and scrubbing, topologi-
cal correction, and wisp removal. Then, a mesh
model representing the boundary between WM and
cortical GM is generated. Next, the pial surface is
generated by an iterative process, which dilates the
inner surface until the GM-CSF boundary is reached.
The result is a one-to-one map between the points on
the inner cortical surface model and the pial surface
model, both containing approximately 500,000 verti-
ces depending on the subject. Finally, the surfaces are
split into left and right hemispheres.

7. Nonlinear registration of the cortical surfaces for each
hemisphere to a high-resolution labeled surface tem-
plate using the SVREG tool (Joshi et al., 2012b) from
the BrainSuite package. This spatial alignment step is
performed on a medial cortical surface mesh, which
is computed based on the inner and outer boundaries
for the atlas and the subjects. In the atlas used as tar-
get, 35 cortical regions of interest and 26 sulci are
delineated and transferred to each subject’s surface
during the registration procedure. First, the subjects’
surfaces are aligned to the atlas by matching a
“flattened” version of mean curvature maps com-
puted for the atlas and the subjects, where the sulci
fundi are represented with negative values and gyral
crowns with positive values. After performing the
atlas-to-subject registration, the sulcal curves and
cortical labels from the atlas are applied to the sub-
jects’ cortical surfaces. Next, a refinement of the
labels and sulcal curves is performed to improve the
spatial accuracy of imposed landmarks from atlas to
subjects’ surfaces. The meshes resulting from these
transformations are expected to ensure the one-to-one
correspondence of anatomical features across subjects
at each cortical point, having each surface model
312,132 triangulated elements (156,188 vertices) for
the left hemisphere and 314,276 triangles (157,260
cortical points) for the right hemisphere.

8. Computation of CT at each cortical point using the
tlink metric (Lerch and Evans, 2005).

9. Blurring of each subject’s CT map using a 10-mm
FWHM surface-based diffusion smoothing kernel.

CIVET pipeline

3D T1-weighted MR images were submitted to the CIVET
image-processing environment (version 1.1.9) developed at
the MNI, a fully automated pipeline to extract and co-
register the cortical surfaces for each subject (Ad-Dab’bagh
et al., 2006). The main pipeline processing steps include:

1. Correction for intensity nonuniformity artifacts using
N3 (Sled et al., 1998).

2. Linearly registration of native (i.e., original) MR
images to standardized MNI-Talairach space, based
on the ICBM152 data set (Collins et al., 1994; Maz-
ziotta et al., 1995; Talairach and Tournoux, 1980)
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using nine parameters (three rotations, three transla-
tions, three scales) and using MINC tools.

3. Brain masking using an improved version of BET
from FSL (Smith, 2002).

4. Tissue classification into GM, WM, CSF, and back-
ground using a neural net classifier [INSECT] (Zij-
denbos et al., 2002). Then, partial volume fractions of
these tissue types were computed for each brain
voxel (Kim et al., 2005; Tohka et al., 2004).

5. Image fitting with a deformable mesh model to
extract inner (WM/GM interface) and outer (pial)
cortical surfaces for each hemisphere with the third
edition of CLASP. This produces high-resolution
hemispheric inner and outer surfaces (having one-to-
one correspondence) with 81,924 polygons each
(40,962 vertices or cortical points per hemisphere)
(Kim et al., 2005; MacDonald, 1998; MacDonald et al.,
1994, 2000).

6. Nonlinear registration of left and right hemisphere
cortical surfaces to a high-resolution average surface
template iteratively generated from the ICBM152 data
set using a depth-potential function (Boucher et al.,
2009; Lyttelton et al., 2007) to establish intersubject
correspondence of the cortical features.

7. Rescaling of the aligned cortical surfaces back to
native space dimension using the inverse of the scal-
ing parameters of the corresponding linear volumet-
ric transformation matrix (obtained in step 2). Thus,
CT measurement was made in native space. This
avoids having GM morphometric measurement
biased by the scaling factor introduced by the linear
transformations applied to each subject’s brain in
step 2.

8. Computation of CT at each cortical point using the
tlink metric (Lerch and Evans, 2005).

9. Blurring of each subject’s CT map using a 10-mm
FWHM surface-based diffusion smoothing kernel.

Statistical Analysis

Statistical analyses were implemented using SurfStat, a
statistical toolbox (Worsley et al., 2004) created for MAT-
LAB 7 (The MathWorks) [http://www.math.mcgill.ca/
keith/surfstat/] at the MNI.

First, the distribution and variability of CT across the
cortex was analyzed by computing the mean and standard
deviation at each cortical point (vertex) in the complete
sample (n 5 82). The analysis was repeated using two sub-
samples (n 5 41) matched for sex, age and all the cognitive
factors considered. Also, we generated 100 additional pairs
of matched subsamples to assess whether the observed
patterns in the two original matched subsamples could be
replicated. The process for generating these subsamples
was based on computing the Euclidean distance among
subjects’ cognitive and age scores while ensuring the same

size and similar characteristics as the original matched
subsamples. The imposed characteristics were: (1) equal
proportion of males and females; (2) nonsignificant differ-
ences between subsamples in age, and in the general esti-
mates of cognition (represented by the latent factors) at
a 5 0.05. Supporting Information Figure S1 shows the dis-
tribution of each cognitive factor in the 100 pairs of
matched subsamples.

Next, Student’s t, Pearson’s r and P-values maps were
obtained and visualized in MATLAB for the main effect of
each first order latent factor/psychological measure over CT
after controlling for sex, age, and handedness. Pearson’s r-val-
ues were obtained by transforming the Student’s t values
according to the following formula: r 5 t/sqrt (t2 1 df); where
sqrt 5 square root and df 5 degree of freedom.

The uncorrected statistical maps allowed us to visually
inspect the spatial patterns of brain-behavior relationship
across morphometry protocols, cognitive constructs, and
samples. Nevertheless, the resulting t-maps were corrected
for multiple comparisons (a =0.05) via the false discovery
rate (FDR) method (Benjamini and Hochberg, 1995; Geno-
vese et al., 2002).

We followed Cohen (1988) for interpreting the magnitude
of the observed effect sizes (Pearson’s r-values): correlations
greater than 0.5 were considered large, 0.5–0.3 moderate, and
0.3–0.1 small. We used G*Power software to perform an a
priori and post hoc power analysis. This helped us to inter-
pret the relationship between sample size, effect size, and
threshold for significance. Although there are no formal
standards for power, 0.80 was used as cutoff for adequacy.

RESULTS

Psychological Measures and Constructs of

Interest

Raw data derived from the intelligence tests and cog-
nitive tasks

The raw correlations and descriptive statistics (Mean
and Standard Deviation [SD]) for the intelligence tests and
cognitive tasks computed for the complete (n 5 104) and
final (n 5 82) samples are reported in Table SI (Supporting
Information). This correlation matrix was submitted to a
CFA to test the postulated measurement models.

Confirmatory Factor Analysis

Intelligence tests. First, the following confirmatory model
was tested: (1) fluid-abstract intelligence (Gf) was defined
by the Raven advanced progressive matrices test, the
inductive reasoning subtest from the PMA (PMA-R), and
the abstract reasoning subtest from the DAT (DAT-AR).
(2) Crystallized-verbal intelligence (Gc) was defined by the
vocabulary subtests from the PMA (PMA-V), the verbal
reasoning subtest from the DAT (DAT-VR), and the
numerical reasoning subtest from the DAT (DAT-NR). (3)
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Spatial intelligence (Gv) was defined by the rotation of
solid figures test, the mental rotation subtest from the
PMA (PMA-S), and the spatial relations subtest from the
DAT (DAT-SR). Further, a higher-order factor representing
general intelligence (g) was also defined. The fit for this
model and the structural weights are depicted in Figure S2
(Supporting Information). Note that fluid intelligence (Gf)
was the primary factor best predicted by the higher-order
factor (g). Indeed, the measurement model shows that Gf
is perfectly predicted by g (factor loading 5 0.99). Then, a
model where three intercorrelated latent factors (Gf, Gc,
and Gv) were defined by their respective measures (Sup-
porting Information Fig. S3) was tested. It must be noted
that both models were equivalent in terms of model fit,
but the model without the g-factor is more parsimonious
because it includes a lower number of latent factors.

Cognitive tasks. Next, the measurement model for the
cognitive constructs was tested. WMC was defined by the
Reading span, Computation span, and Dot Matrix tasks;
executive updating (UPD) was defined by the 2 Back, Let-
ter Memory, and Keep Track tasks; PS was defined by
verbal, numerical, and spatial short-term recognition speed
tasks; and controlled attention was defined by the verbal
and numerical flanker tasks, along with the Simon task
(See Supporting Information Fig. S4). Results showed that
the latent factors for WMC and UPD were perfectly corre-
lated, so they were collapsed into the same factor, namely
WMC. Indices in Fig. S5 (Supporting Information) show
that this last model has excellent fit.

Simultaneous relationship among the assessed psychologi-
cal constructs. Figure 1 depicts the final model showing
correlations among the resulting six latent factors—fluid
intelligence (Gf), crystallized intelligence (Gc), spatial
intelligence (Gv), WMC, PS, and controlled attention
(CA)—along with the regression weights for the specific
measures attached to each factor. Note that this model
has appropriate and very similar fit indices, when com-
puted using both the original sample (n 5 104) and the
final sample (n 5 82, blue numbers in Fig. 1). Results sug-
gest that, considering the simultaneous relationships
among all intelligence and cognitive factors, at a 5 0.01,
CA and PS were unrelated to the three intelligence fac-
tors, whereas WMC was related to all of them in both
samples. However, at a 5 0.05, Gf, Gc, and Gv were corre-
lated with PS (orange lines) and Gc was correlated with
CA in the larger sample only. In the final sample (n 5 82),
only the relationship between Gf and PS remained signifi-
cant at a 5 0.05.

Obtaining intelligence and cognitive scores. Finally, gen-
eral scores for the intelligence and cognitive factors (from
model in Fig. 1) were computed for capturing reliable
shared variance among the specific measures of each con-
struct, taking into account the simultaneous relationship
among all the variables within the model. Correlations
among the resulting imputed latent scores are also shown

in Table SII (Supporting Information). As can be observed,
correlations among the resulting imputed latent scores are
higher, because the imputation method used to estimate
latent scores takes into account the simultaneous relation-
ships among all the variables included within the model.

Afterward, statistical analyses assessed the relationship
between CT and the six latent intelligence and cognitive
factor scores.

Neuro-Anatomical Networks for Intelligence and

Cognition: Consistency Across Surface-Based

Methods and Samples

The results are divided into two main sections. The aim
of the first section is to provide tentative answers regard-
ing the impact of neuroimaging processing protocols on
the observed findings. To accomplish this, three surface-
based protocols (Cortical Pattern Matching [CPM], Brain-
Suite and CIVET pipelines) were used to obtain CT
throughout the cortex for all subjects. Thereafter, we
obtained, using the outputs from these protocols, (1) the
distribution and variability of CT across the cortex; and (2)
the brain correlates for each psychological latent factor.
Finally, the results from these analyses were compared in
terms of commonalities.

The second section deals with the heterogeneity promoted
by the sample tested. First, the entire sample was divided
into two matched subsamples in terms of sociodemographic
variables, cognitive performance, and size. Then, the same
statistical analyses computed for the whole sample were per-
formed for both subsamples using the CT measurement
derived from the three surface-based protocols. Results are
discussed in terms of (a) convergence between the samples in
the distribution and variability of CT computed across the
cortex and (b) the commonalities across matched samples in
their CT-cognition correlates. Finally, these analyses are
repeated in 100 additional pairs of matched subsamples for
testing whether the patterns found in the two original
matched subsamples could be replicated.

Pearson r-maps were computed for testing the main
effects of the psychological constructs on the CT after con-
trolling for age, sex, and handedness and were color-
coded on an average surface template generated for each
SBM protocol used. In the figures representing brain surfa-
ces in this manuscript, we will use the convention that
sagittal views of right hemisphere (frontal pole pointing to
the readers’ right) and left hemisphere (frontal pole point-
ing to the readers’ left).

The reported results are uncorrected, as we failed to find
significant brain-behavior associations after correcting for
multiple comparisons via FDR. Thus, we will present signif-
icant findings at three standard uncorrected thresholds
(0.005, 0.001, and 0.0001). We did not report vertex coordi-
nates in any standard space (e.g., MNI or Talairach) for
peak values, because the extracted surfaces from the three
SBM protocols are different and, therefore, do not have
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exact correspondence. The standard coordinate systems are
based on volumetric data. Mapping vertices in mismatched
meshes to voxels does not guarantee that a given vertex
will fall in the same coordinate, but may be close depend-
ing on the difference between meshes’ resolution. So, we
decided to visually inspect the major anatomical boundaries
in each mesh and report patterns of overlap.

Validation of Findings Using Different Surface-Based
Protocols

Convergence in the distribution and variability of cortical
thickness estimated using different protocols. As shown

in Figure 2, the distribution (mean) and variability (SD) of
CT throughout the cortex for the whole sample changed
depending on the surface-based protocol used to compute
this morphometric measure.

Regarding the distribution of CT (Fig. 2, Top), using the
CIVET protocol, the highest values were found in the insu-
lar cortex, the medial temporal pole/entorhinal, and the
posterior portion of the medial orbitofrontal gyrus. Using
BrainSuite, the highest values were found mainly in the
anterior cingulate, medial superior frontal gyrus, and ante-
rior portion of lateral superior temporal gyrus, medial tem-
poral pole/enthorinal/anterior parahippocampal gyrus, and
insular cortex. In both methods, the thinnest areas were

Figure 1.

Final confirmatory factor model for the intelligence and cogni-

tive measures. Blue weights and correlations (in parenthesis)

correspond to those computed for the final sample (n 5 82).

Green and orange lines represent significant correlations for

both sample sizes at a 5 0.01 and a 5 0.05, respectively. Orange

dash lines represents correlations that are significant at a 5 0.05

for the larger sample but not for the final one (n 5 82). Red

lines denote nonsignificant correlations. [Color figure can be

viewed in the online issue, which is available at wileyonlineli-

brary.com.]
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observed in lateral and medial occipital, and in the lateral
superior and medial portions of the precentral and postcen-
tral gyri. Finally, the distribution of CT calculated by the
CPM pipeline differed from both CIVET and BrainSuite,
except in some occipital regions, insular cortex, and the
medial temporal pole, where all methods converge.

Standard deviation maps shown in Figure 2 (Bottom)
suggested that each surface-based protocol influences the
observed pattern of variability. Note that values obtained
from the CIVET pipeline were more homogeneous and
closer to zero as compared to the other two protocols.

Overlaps between protocols in those brain correlates com-
puted for each psychological latent factor. As shown in
Supporting Information Figures S6 and S7, there was a
poor convergence among methods in the pattern of associ-
ations between morphological measures and cognitive fac-
tors across the cortex: significant results did not overlap
for any latent factor.

An example of this pattern is displayed in Figure 3, where
significant results at three commonly used uncorrected statis-
tical thresholds for three psychological latent factors at differ-
ent levels of cognitive complexity are noted. Higher r-values
for the relationship between each of the represented con-
structs and CT were widespread in the surfaces depending
on the protocol used. Furthermore, in some cases, equivalent

brain regions appear to exhibit opposite patterns in their
relationship with the psychological factors. For instance, ver-
tices located in the right superior parietal cortex correlated
with Gv using the BrainSuite and CPM protocols, but in
opposite directions (see Supporting Information Fig. S5).

Validation of Findings Considering Cognitively

Matched Samples

Assessment of the equivalency between samples in age,
sex, and cognitive performance. Descriptive results (Mean
and SD) for the psychological latent constructs and raw
measures (intelligence tests and cognitive tasks) after divid-
ing the complete sample into two matched groups of sub-
jects are shown in the Supporting Information (Table SIII).
Each of these subsamples comprises 41 individuals matched
by sex (24 females and 17 males each) and age (subsample
A: mean 5 19.8 and SD 5 1.76; subsample B: mean 5 19.9
and SD 5 1.31; t-test for equality of means 5 20.43; P 5 0.67,
equality of variance assumed). t and P values for Independ-
ent Samples Tests and effect sizes (Cohen’s d) are also
reported. For all instances, the Levene’s Tests allowed to
assume equality of variances between subsamples (P< 0.05).
There were not significant differences between subsamples
in the general estimates of cognition (represented by the
latent factors) at a 5 0.05.

Figure 2.

Distribution and variability of CT computed through different surface-based protocols: CIVET,

BrainSuite (BS) and CPM. Figure shows mean values (Top) and standard deviation values (Bot-

tom) at each vertex. [Color figure can be viewed in the online issue, which is available at

wileyonlinelibrary.com.]
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Convergence in the distribution and variability of cortical
thickness in two cognitively matched samples using differ-
ent Surface-based protocols. Average CT (Supporting
Information Fig. S8) did not differ between subsamples at
any cortical point within the three surface-based protocols
(Independent Samples t-test, a 5 0.05 FDR corrected), which
corresponds to the same pattern and disparity between
neuroimaging methods observed for the whole sample (see
an example of this pattern in Fig. 4, Top). Moreover, corre-

lations between mean values in subsample A and subsam-
ple B were very high (close to one) for the three pipelines
(CIVET: r 5 0.99; BrainSuite: r 5 0.97; CPM: r 5 0.99).

This trend is also applicable to standard deviation maps
(Supporting Information Fig. S9), as almost for all vertices
the equality of variances between subsamples is assumed
(Levene’s Test, a 5 0.05 FDR corrected). In a few regions,
one subsample had less variability in CT than the other
subsample (proportion over the total number of vertices:

Figure 3.

r-maps for the complete group (n 5 82) representing the magnitude

of the relationship between CTobtained by three different surface-

based protocols and three psychological latent factors at different

levels of cognitive complexity. r-values for three commonly used

uncorrected statistical thresholds and their corresponding t-values

are displayed on the left. Circles, squares and rhombus indicate

r-values significant at p< 0.005, p< 0.001, and p< 0.0001, respec-

tively. Gf, fluid intelligence; WMC, working memory capacity; PS,

processing speed. [Color figure can be viewed in the online issue,

which is available at wileyonlinelibrary.com.]
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CIVET 5 0.005; BrainSuite 5 0.014; CPM 5 0). Notably,
the specific spatial location of these results was highly
dependent on the surface-based method used to process
the 3D MR images (see an example of this pattern in
Fig. 4, Middle). Finally, correlations between standard
deviation values in both subsamples were slightly lower
compared with those obtained for the distribution of CT,
but were still high (CIVET: r 5 0.88; BrainSuite: r 5 0.74;
CPM 5 0.90).

These results were replicated when assessing the 100
pairs of matched subsamples as illustrated in Supporting
Information Tables SIV and SV.

Overlap between samples in those brain correlates com-
puted for each psychological latent factor using different
surface-based protocols. As shown in Figures S10 and
S11 (Supporting Information) convergence between the
subsamples was poor across SMB methods. Significant
associations between CT and psychological factors across
the cortex did not overlap. r-values were close to zero for
correlations between t-maps resulting from each subsam-
ple, protocol, and psychological measure (see Supporting
Information Tables SVI and SVII). A lack of convergence
was also found in the 100 pairs of matched subsamples
(see Supporting Information Fig. S12 and Table SVIII). For

Figure 4.

Mean and standard deviation maps for CT (Top and Middle

rows, respectively) computed using different surface-based pro-

tocols (CIVET, BrainSuite, and CPM) in two cognitively matched

subsamples (A and B). r-maps representing the magnitude of the

relationship between CT and three psychological latent factors

at different levels of cognitive complexity are displayed for both

subsamples and the pipelines used (Bottom row). Results shown

are for the lateral left hemisphere. Circles, squares, and rhom-

bus indicate r-values significant at p< 0.005, p< 0.001, and

p< 0.0001, respectively. Gf, fluid intelligence; WMC, working

memory capacity; PS, processing speed. [Color figure can be

viewed in the online issue, which is available at wileyonlineli-

brary.com.]
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instance, there was a clear disparity between subsamples
A and B for the brain correlates of fluid intelligence (Gf),
WMC and PS, shown in the lateral view of the left hemi-
sphere in Figure 4, Bottom.

The most prominent findings observed for the complete
sample were a combination of those obtained for both sub-
samples, regardless of the method used. Figure 5 shows
an example of this pattern, when spatial intelligence (Gv)
and CT computed by the CPM processing pipeline are
closely inspected. Significant findings for the whole sample
were almost exclusively driven by those found for subsam-
ple B. Furthermore, when specific regions, such as those
highlighted by green arrows, were related in the same
direction for the subsamples, they tend to appear as rele-
vant or became significant for the complete sample (e.g.,
left insular, inferior portion of right precentral gyrus).

Nevertheless, there were several cortical points where
the relationship between Gv and CT was significant for
both subsamples, but in opposite directions (yellow
circles). In those instances, as highlighted by yellow
arrows in the r-maps for the whole sample, the relation-
ship between this psychological factor and CT became
unsubstantial or null in the larger sample. These tenden-
cies extended to other psychological factors.

A basic a priori power analysis demonstrated that with
a sample size close to 140 the minimum detectable effect
size at a 5 0.005 with a 0.8 1-b is 0.3 (moderate effect). To
detect effect sizes of 0.5 or larger only 45 subjects are
required. In our data, a post hoc power calculation
revealed that the probability of detecting a significant
moderate effect (0.3) in the whole sample (n 5 82) at an
alpha threshold of 0.005 was 49%, whereas this probability
was reduced until 19% for the subsamples (n 5 41). Large
effects (0.5) were detectable in 98% of cases for the whole
sample and 71% for the smaller sample. Thus, only large
effect sizes are expected to be consistently detectable with
our current sample sizes (n 5 82 and n 5 41). In our data,
the Type II error increases considerably for moderate and
small effects.

Our results showed that the peak correlation values for
significant findings at a certain a level and spatial location
were very different for both sample sizes. Compared with
the larger sample, the smaller samples showed higher effect
sizes. As shown in Figure 5, the positive findings in the left
middle frontal and right superior parietal region for the
whole sample (n 5 82) are moderate (equal or less than 0.35).
For subsample B (n 5 41) these values were higher than 0.50.
Post hoc power calculation directly relies on sample size, but
also on the effect size and the threshold for significance. The
statistical power of findings in these regions at a 5 0.005 for
the smaller subsample B is close to 0.71, while when the
sample is enlarged, the effect size is reduced and the statisti-
cal power decreases to approximately 0.5.

In our study, an increase in sample size while keeping
the probability of Type I error constant, did not guarantee
improved post hoc power, presumably due to the fact that
adding cases to the sample decreased some of the large

effect sizes. As mentioned previously, significant findings
for the complete sample were a composite of those
obtained from both subsamples. In the case of Gv and CT
computed by the CPM pipeline, findings for the whole
sample were almost exclusively driven by those discov-
ered for subsample B, the t-values being close to zero in
subsample A or even correlating in the opposite direction
for certain cortical regions.

DISCUSSION

Here, we have systematically analyzed the structural
brain correlates of a representative set of intelligence and
cognitive factors (fluid intelligence, crystallized intelli-
gence, spatial intelligence, WMC/executive updating, CA,
and PS). Our goal was to overcome potential sources of
variability: surface-based structural neuroimaging proto-
cols, cortical morphological measurement, the nature of
the cognitive measurements, and sample characteristics.
Our main interest was focused on revealing tentative
explanations about why we still do not have reliable and
reproducible brain networks supporting different facets of
cognition.

How Surface-Based Protocols May Influence

Convergence Across Studies?

We failed to find consistency among results derived
from the different surface-based imaging protocols used.

First, and especially important, the CT estimation and
its variability at each cortical point were quite different
across surface-based protocols.

Second, there was only a small convergence among
methods in the pattern of associations observed between
CT and cognitive factors across the cortex: the vertices
with peak values were located in nonequivalent anatom-
ical regions. This observation is consistent with the low
convergence observed in the Jung and Haier’s (2007)
review, as well as, in the research reports published
afterward (Colom et al. 2009). The explanation for this
small convergence may have a number of different sour-
ces and we sought to identify some of them in the cur-
rent study.

There were important differences in the CT maps
obtained from the three SBM pipelines: neither the distri-
bution nor intersubject variability was the same. This pre-
cludes finding substantial overlapping across pipelines in
the analyzed brain-cognition relationships, as CT cannot
be seen as a reliable measure in the current study.
Unfortunately, there is still no available ground truth data
for CT at high resolution, making it difficult to assess the
biological plausibility of the outputs. We used the von
Economo’s postmortem histological maps as external crite-
ria for validation. Figure 6 displays the distribution of
thickness along the cortex, as well as, the variability across
subjects, proposed by von Economo (1929). Visual
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Figure 5.

r-maps for the whole sample (Top) and two cognitively matched

subsamples (n 5 41; Bottom) where is tested the main effect of

spatial intelligence (Gv) on CT for CPM pipeline. Circles and

squares highlight brain correlates significant at a = 0.005 and

a 5 0.001, respectively. Yellow circles indicate brains regions

where CT and Gv are related but in opposite directions, disap-

pearing when the whole sample is considered (yellow arrows).

Green arrows indicate broad brain regions where the relation-

ship has the same directionality in both subsamples but without

reaching significance unless the whole sample is considered.

[Color figure can be viewed in the online issue, which is avail-

able at wileyonlinelibrary.com.]
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inspection suggests that, of the three pipelines, the data
derived from the CPM pipeline might be most comparable
to the von Economo’s map. Further, consistent with previ-
ous histological findings (Kabani et al., 2001; Lerch, 2001),
thickness data obtained by the CPM processing protocol
showed more variability between individual brains in het-
erotypical than in homotypical regions. Nevertheless, note
that recent high resolution 3D maps based on combined
neuroimaging and histological data (such as the BigBrain
project, Amunts et al., 2013), will be useful for obtaining a
new “gold standard” for cross-validation studies.

Are Cognitively Matched Samples Equivalent in

Their Brain Anatomical Configurations?

The straight answer is “no, they are not.”
We applied an analytic strategy presumably appropriate

for assessing inconsistencies related to the variability

among samples. The complete group was divided into two
subsamples carefully matched with respect to all cognitive
domains, sex, age, and handedness. This was intended to
maximize the likelihood of replication. Even when each
SBM pipeline was consistent in estimating CT across cog-
nitively matched subsamples (the patterns of distribution
and variability were the same for the assessed subsamples
for a given pipeline—see an example in Fig. 4), the brain
correlates for psychologically matched samples failed to
converge. These patterns were replicated on 100 additional
pairs of matched subsamples.

Admittedly, we may lack statistical power. As suggested
by Yarkoni (2009), an unpowered correlational analysis
will consistently produce spatially circumscribed and
numerically inflated effects. Thus, as the sample size
grows, it is common to find progressively reduced correla-
tion values. With the samples sizes used in the current
study, only large effect sizes may be detected at an accept-
able level of power. We would then expect that only a

Figure 6.

CT distribution (Top) and variability (Bottom) maps derived from postmortem data (von Economo,

1929; Left) and neuroimaging data (outputs from the processing pipelines considered; Right).

[Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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fraction of the true effects in the population will be identi-
fied. Nonetheless, we might expect some level of replica-
tion for the fraction of effects that are identified.

An interesting finding is that most of the prominent
results for the complete group were a combination of
those obtained in both subsamples, irrespective of the
SBM method. Thus, some effects become significant by
increasing the sample size, whereas others become non-
significant. The latter phenomenon occurs when the dis-
covered effect in the complete group is mainly driven by
one of the subsamples, or when the relationship between
the psychological factor and CT is substantial for both sub-
samples, but in opposite directions. This let us to suggest
that, with respect to the brain, intelligence, and other cog-
nitive factors might be moving targets. The human brain is
highly complex and there are huge individual differences
(Mueller et al., 2013). Brains are general-purpose devices
that may achieve equivalent cognitive goals using quite
different neural networks. First, complex psychological
outcomes are a composite of several simpler processes.
Thus, an equivalent cognitive domain score (for instance
in fluid intelligence) may be the result of specific cognitive
configurations, varying across individuals in the efficiency
with which each process involved is performed. The inter-
subjects variability in these specific configurations may
have different neurobiological substrates.

Conversely, an alternative possibility is that there is no
single neuroanatomical structure underlying a given higher
order cognitive domain. This implies that there are different
brain designs supporting the same function. Averaging large
datasets of anatomical data (or functional signals) may help
to hide the revealed inconsistencies, but this latter analytic
strategy may also mask relevant information for a proper
understanding of the complex brain-cognition relationship.

Concluding Remarks: What Is Next?

Here, we have emphasized the inhomogeneities across
findings derived from surface-based structural neuroimag-
ing studies. Our focus was on cognitive performance.
Nevertheless, the lack of replicability found in the litera-
ture could be extended to other relevant psychological var-
iables, particularly when complex behaviors are
considered. Improved localization of “true” brain regions
supporting a given function might be achieved by, for
example, enlarging sample size, reporting results after cor-
recting for multiple comparisons, or using enhanced neu-
roimaging techniques. These are methodological
improvements, but the assumption that it is possible to
locate unambiguous brain regions for a certain psychologi-
cal outcome might still be flawed.

Meta-analyses demonstrated that there are no reliable
function/structure-behavior associations (Yarkoni et al.,
2010, 2011). Because many brain regions participate in
apparently disparate functions, a selective correspondence
is difficult to establish. Moreover, cognitive profiles are

heterogeneous: people might display the same perform-
ance, but the way in which different underlying mental
processes are involved may vary between them. Thus, we
may expect to find a similar heterogeneity in the associa-
tion between cognitive performance and brain morphol-
ogy. A direct implication of this lack of consistency for
structural brain properties—psychological functions rela-
tionships is the impossibility of assessing which processing
protocol fits better with the expected results.

We acknowledge that large samples are needed. Pooling
is becoming a popular strategy (e.g., Human Connectome
Project; ADNI; ENIGMA), and our results suggest caution
when applying this procedure. Statistical brute force might
be insufficient and it can divert our attention from the
main research goal, for instance, to find the brain substrate
of individual differences in cognitive performance. Because
of the dynamic nature of the human brain and the complex-
ities of human cognition, replication needs carefully
matched samples and strictly comparable psychological
scores, neuroimaging methods, and brain properties. But
even then replication of findings is not guaranteed, as sug-
gested by the data presented and discussed here.

Imaging processing methods for functional and structural
MR data are always under development to improve the bio-
logical plausibility of the findings. The present report was
focused on past attempts, but new developments will be
available soon. Thus, for instance, the new version of CIVET
(2.0) is based on the fine-grained inputs provided by Big-
Brain, an ultrahigh-resolution 3D human brain model
(Amunts et al., 2013). Similar improvements are observed in
BrainSuite (v14a1; http://brainsuite.org/2014/06/brainsuite-
14a-released/). It can be expected that the advances will help
us to resolve the observed inconsistencies addressed in the cur-
rent report. Therefore, we strongly recommend studies specifi-
cally addressing potential explanations of the instability
between SBM pipelines outputs from a technical point of view.
The pipelines used here comprise numerous image processing
steps before running group analyses. All these steps vary
widely across pipelines. Analyzing how each of these steps
may influence the observed results requires specific methodo-
logical designs changing one step at a time and this challenge
is far from the scope of the present study. Furthermore, exter-
nal data obtained by other techniques are required for assess-
ing the convergent validity of these morphological protocols.

Additionally, we encourage researchers to replicate their
findings using different protocols in the same dataset, while
clarifying each processing step and procedures used. As
pointed out by Button et al. (2013), if the intended analyses
produce null findings, they should be reported; if researchers
decide to move on to explore the data in other ways to get
significant findings, they must explicitly acknowledge this.

In summary, this study reveals a potential vulnerability
in studies assessing the relationship between CT and
behavior, which is in part attributable to methodological
sources of instability. Solutions for the observed problems
involve improvements in the algorithms needed for proc-
essing neuroimaging data from a surface-based approach
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taking into account the information from other modalities
for cross-validation.

One of our main challenges may be to rethink the way
in which we are studying complex psychological factors at
the biological level. Statistical analyses for identifying dif-
ferentiable “brain profiles” may be useful for a better
understanding of those brain networks properties support-
ing inter subject variability in cognitive performance.
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