
Lawrence Berkeley National Laboratory
LBL Publications

Title

Simulating the Impact of Dynamic Rerouting on Metropolitan-scale
Traffic Systems

Permalink

https://escholarship.org/uc/item/43r1046c

Journal

ACM Transactions on Modeling and Computer Simulation, 33(1-2)

ISSN

1049-3301

Authors

Chan, Cy
Kuncheria, Anu
Macfarlane, Jane

Publication Date

2023-04-30

DOI

10.1145/3579842

Copyright Information

This work is made available under the terms of a Creative Commons
Attribution License, available at
https://creativecommons.org/licenses/by/4.0/

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/43r1046c
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/

7

Simulating the Impact of Dynamic Rerouting on

Metropolitan-scale Traffic Systems

CY CHAN, Lawrence Berkeley National Laboratory

ANU KUNCHERIA and JANE MACFARLANE, University of California, Berkeley

The rapid introduction of mobile navigation aides that use real-time road network information to suggest

alternate routes to drivers is making it more difficult for researchers and government transportation agencies

to understand and predict the dynamics of congested transportation systems. Computer simulation is a key

capability for these organizations to analyze hypothetical scenarios; however, the complexity of transporta-

tion systems makes it challenging for them to simulate very large geographical regions, such as multi-city

metropolitan areas. In this article, we describe enhancements to the Mobiliti parallel traffic simulator to model

dynamic rerouting behavior with the addition of vehicle controller actors and vehicle-to-controller reroute

requests. The simulator is designed to support distributed-memory parallel execution using discrete event

simulation and be scalable on high-performance computing platforms. We demonstrate the potential of the

simulator by analyzing the impact of varying the population penetration rate of dynamic rerouting on the

San Francisco Bay Area road network. Using high-performance parallel computing, we can simulate a day in

the San Francisco Bay Area with 19 million vehicle trips with 50 percent dynamic rerouting penetration over

a road network with 0.5 million nodes and 1 million links in less than three minutes. We present a sensitivity

study on the dynamic rerouting parameters, discuss the simulator’s parallel scalability, and analyze system-

level impacts of changing the dynamic rerouting penetration. Furthermore, we examine the varying effects

on different functional classes and geographical regions and present a validation of the simulation results

compared to real-world data.

CCS Concepts: • Computing methodologies → Discrete-event simulation; Massively parallel and

high-performance simulations; Agent/discrete models;

Additional Key Words and Phrases: Large-scale transportation simulation, dynamic vehicle rerouting, high-

performance computing, parallel discrete event simulation, actor-based modeling

ACM Reference format:

Cy Chan, Anu Kuncheria, and Jane Macfarlane. 2023. Simulating the Impact of Dynamic Rerouting on

Metropolitan-scale Traffic Systems. ACM Trans. Model. Comput. Simul. 33, 1-2, Article 7 (February 2023),

29 pages.

https://doi.org/10.1145/3579842

This report and the work described were sponsored by the U.S. Department of Energy (DOE) Vehicle Technologies

Office (VTO) under the Big Data Solutions for Mobility Program, an initiative of the Energy Efficient Mobility Systems

(EEMS) Program. The following DOE Office of Energy Efficiency and Renewable Energy (EERE) managers played

important roles in establishing the project concept, advancing implementation, and providing ongoing guidance: David

Anderson and Prasad Gupta. This research used resources of the National Energy Research Scientific Computing Center,

a DOE Office of Science User Facility supported by the Office of Science of the U.S. Department of Energy under Contract

No. DE-AC02-05CH11231.

Authors’ addresses: C. Chan, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd., Berkeley, California 94122; email:

cychan@lbl.gov; A. Kuncheria and J. Macfarlane, University of California, Berkeley, 109 McLaughlin Hall, Berkeley, Cali-

fornia 94122; emails: {anu_kuncheria, janemacfarlane}@berkeley.edu.
Publication rights licensed to ACM. ACM acknowledges that this contribution was authored or co-authored by an employee,

contractor or affiliate of the United States government. As such, the Government retains a nonexclusive, royalty-free right

to publish or reproduce this article, or to allow others to do so, for Government purposes only.

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.

1049-3301/2023/02-ART7 $15.00

https://doi.org/10.1145/3579842

ACM Transactions on Modeling and Computer Simulation, Vol. 33, No. 1-2, Article 7. Publication date: February 2023.

https://orcid.org/0000-0001-6881-827X
https://orcid.org/0000-0003-4975-2425
https://orcid.org/0000-0002-4683-5447
https://doi.org/10.1145/3579842
https://doi.org/10.1145/3579842
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3579842&domain=pdf&date_stamp=2023-02-28

7:2 C. Chan et al.

1 INTRODUCTION

Active traffic management strategies using changeable message signs or broadcast media are reg-
ularly used by traffic management centers to present alternate routes to drivers when abnormal
events occur on the roadways. Shifting traffic onto alternate routes maximizes the efficiency and
capacity of the network and increases safety by reducing secondary vehicle accidents due to un-
expected congestion. With highways, parallel corridors that handle the rerouted traffic must be
available with adequate capacity for rerouting to be successful. This requires traffic centers, with
humans in the loop, to assess the situation, have knowledge of the parallel routes via predefined
control strategies, and implement an active control plan. In the past five years, smartphone navi-
gation apps have gained popularity and serve a similar role. These applications use their current
understanding of congestion to compute new routes in which the travel time is shorter for the
user of the device. The congestion information is generated by aggregating the speeds and loca-
tions of all of the devices that the app is monitoring. A road congestion estimate is created using
road network information and other traffic information, such as historical traffic information, and
combined with the current user’s destination. If the projected congestion of the user’s current
route significantly impacts their expected travel time, the app may suggest a new route to the user
with a shorter travel time. As such, these navigation applications are also serving as active traffic
managers.

The introduction of these new active traffic managers makes it more difficult for researchers
and government transportation agencies to understand and predict the dynamics of congested
transportation systems. Traffic simulation is a key capability for these organizations to analyze
different scenarios and predict the potential impacts of different infrastructure changes, policies,
or control strategies. However, the complexity of transportation systems makes them extremely
difficult to simulate at the urban scale. As such, little is known about how to control and actively
manage large-scale road networks in the presence of significant congestion, particularly with the
active management now being implemented by different agents, such as smartphone apps and traf-
fic centers. We do know that providing information about congested states and having a variety of
sources provide new travel routes will likely create unpredictable patterns and dynamic variation.
Control strategies implemented through traffic management can include infrastructure modifica-
tions such as signal-phase-timing adjustments of signals to redirect traffic and expedite congestion
mitigation. These control decisions are determined by estimating the impact of the rerouting ac-
tion. To-date, these do not include rerouting that occurs as a result of drivers following an app’s
routing information. This was made evident when during an evacuation event, drivers were ven-
turing into dangerous situations with routes that were not informed by road closures associated
with the event [11].

In the last two decades, transportation network simulation has increased in popularity for emu-
lating driving behaviors, predicting traffic dynamics, and predicting impacts of control strategies.
Applied models can broadly be categorized into both equilibrium models, often referred to as traf-

fic assignment models, and non-equilibrium models, often referred to as simulation models

[9, 43]. The simulation models complement traffic assignment, which is one of the essential tools
that planners use for estimating congestion. With a reliable origin-destination demand matrix, an
accurate traffic assignment generates optimized traffic-state predictions [43]. While equilibrium
models have been very popular in the past due to mathematical clarity, their main drawback is the
inability to capture the congestion-dependent evolution of a driver’s route [30]. This limitation
is overcome with non-equilibrium models that allow for modeling route guidance dynamics and
unexpected events such as incidents or evacuation strategies [9, 22].

In order to predict the emergent traffic dynamics that result from congestion-dependent rerout-
ing and unexpected events, we have extended our parallel discrete event simulation of large-scale

ACM Transactions on Modeling and Computer Simulation, Vol. 33, No. 1-2, Article 7. Publication date: February 2023.

Simulating the Impact of Dynamic Rerouting on Metropolitan-scale Traffic Systems 7:3

Fig. 1. Four traffic models for large-scale network modeling that can be employed for a wide array of trans-

portation planning projects. While the first two employ non-equilibrium traffic assignment modeling, the

last two use equilibrium based traffic assignment for route choice decisions.

traffic dynamics [14] with new dynamic vehicle rerouting capabilities. To understand the context
of this article, Figure 1 describes four different traffic models we have developed for large-scale net-
work modeling, each with a different set of algorithms. Details of the baseline model can be found
in our previous article [14] and the quasi-dynamic traffic assignment model will be described in
a forthcoming publication [15]. In this article, we focus on the second model with dynamic rout-
ing which we believe best captures realistic emergent traffic dynamics. Note that we acknowledge
that there are a percentage of routes that are neither shortest free speed routes nor dynamically
routed in the real-world. We denote them as knowledge-based routes, representing routes that are
arbitrarily chosen by a user, such as a route chosen to include a café stop en route to work. At this
time, we do not model these types of routes; thus, all 19 M routes are either shortest free speed
routes or dynamically routed.

The ultimate goal of active traffic management is to drive the system towards an optimized
state, which is the focus of most traffic assignment algorithms. But in reality, reaching equilibrium
is highly unlikely regardless of the attempted active management strategies. As such, a mechanism
for simulating and analyzing hypothetical scenarios that will reveal emergent dynamics with pre-
scribed dynamic routing algorithms would be extremely valuable for those designing active traffic
management systems. With increased urbanization in cities today, understanding how to actively
manage the dynamics on the road network is becoming increasingly urgent, not only from a loss
in productivity perspective but from a fuel consumption perspective. Our research focus is to
breakdown the computational barriers of simulating large-scale road network dynamics in order
to investigate the impacts of active traffic management strategies and reduce the multifaceted cost
of the increasing congestion in our cities.

This article presents a methodology for representing the transportation system with dynamic
rerouting capabilities in a scalable parallel discrete event simulation (PDES) formalism. We
include a description of the core link actor model and its constituent components that calculate
vehicle traversal times, timing constraints, and storage capacity constraints. We also introduce
vehicle controller actors that monitor congestion within the traffic system and handle dynamic
reroute requests from simulated vehicles. We demonstrate that the resulting mesoscopic model
achieves scalable computational performance for a large system (19 million vehicles over a net-
work with 1 million links representing the San Francisco Bay Area), simulating a day of traffic

ACM Transactions on Modeling and Computer Simulation, Vol. 33, No. 1-2, Article 7. Publication date: February 2023.

7:4 C. Chan et al.

with 50 percent dynamic rerouting penetration in three minutes on 256 cores of the NERSC Cori
computer at Lawrence Berkeley National Laboratory [39]. We provide a parallel performance and
scalability analysis, a rerouting parameter sensitivity analysis, a discussion of the simulated im-
pacts of varying the dynamic rerouting penetration rate on various transportation system metrics,
and finally, present a validation of the simulation results compared to real-world data sources.

2 RELATED WORK

There has been much previous work in the area of transportation system modeling and simulation.
Previous simulators can be broadly classified as macroscopic, mesoscopic, and microscopic based
on the level of detail of the behavior of individual agents simulated. The level of behavior detail in
the model typically also correlates to the size of the area under simulation—larger area simulations
tend to use macroscopic models, while simulations focusing on small areas use more detailed mi-
croscopic models. Dynamic traffic assignment (DTA) solvers and dynamic simulators such as
MATSim [38], POLARIS [3], DTALite [58], DynaMIT [10], DynaSmart [35], Aimsun [13], SUMO
[34], INTEGRATION [42], BEAM [46], Ugirumurera et al. [51], MANTA [56], and many others fall
along the spectrum of different modeling approaches, target problem scales, modeling fidelities,
and output (e.g., traffic assignment versus simulation). The level of fidelity targeted by our Mobil-
iti simulator is mesoscopic since it does not resolve lane-changing or vehicle following behavior,
although it does resolve individual vehicle movements and rerouting decisions.

There is a large body of previous work in the area of parallel discrete event simulation

(PDES, see [23] for an overview). In particular, seminal work by Chandy and Misra [16], Bryant
[1], and Jefferson [28] laid the groundwork for parallel discrete event simulation, which was shown
to run efficiently on supercomputers [7, 8]. Previous traffic simulators that utilize PDES include
those by Perumalla [40] and Yoginath [57], who used optimistic PDES for modeling traffic grids,
though they evaluated their system on smaller-scale synthetic grid networks and used a differ-
ent mechanism to mediate congestion among vehicles. Thulasidasan et al. [48] also modeled road
networks using queue-based parallel discrete event simulation, but they did not include adaptive
vehicle rerouting behavior in their model, where vehicles can respond to congestion by rerouting
in the middle of (rather than just at the beginning of) their trip. Furthermore, our article includes a
description of the design and implementation of a dynamic vehicle rerouting system with a param-
eter sensitivity analysis for vehicles and controllers at a large-scale.

In the area of dynamic re-routing, research by Liang and Wakahara [33] showed how proac-
tive dynamic re-routing could reduce average travel time for congested road networks using the
SUMO micro simulator on a medium-sized area of London (3,002 links and 332 nodes with 954
vehicles). Zhao et al. [58] gave a theoretical analysis of the dynamics and stability of equilibrium
with travelers that reroute depending on cost difference, and demonstrated their results on some
small networks (up to 31 nodes and 40 links with three OD pairs). Similarly, [52] provides a theoret-
ical treatment of distributed multi-agent route selection problem with incentives, with numerical
examples of their approach on the Sioux Falls road network (24 nodes). In [49], the authors utilize
SUMO and OMNeT++ to model an area of Brooklyn with 380 nodes and 474 links, with a traffic
demand of 2,500 vehicles. Their approach is similar to ours (albeit on a smaller network) in that
they utilize a distributed cloud-based vehicle control system, where sensors detect congestion, and
routes are suggested to avoid the congestion. In [31], the authors utilize a combination of SUMO,
Veins, and OMNeT++ tools to analyze the impact of rerouting on a 2× 2 grid map (9 nodes, 24 links).
In [41], the authors describe a vanpool scheduler architecture for dynamic rerouting. They evalu-
ate their approach on a network of the Munich city center, where the focus is more on responding
to stochastic vanpool requests rather than dynamic congestion effects. In [32], they investigate the
information comply model to simulate how drivers can react to information about an event and

ACM Transactions on Modeling and Computer Simulation, Vol. 33, No. 1-2, Article 7. Publication date: February 2023.

Simulating the Impact of Dynamic Rerouting on Metropolitan-scale Traffic Systems 7:5

evaluated their approach on a network with approximately 1,000 links. There has also been related
work in the area of route selection in the context of dynamic traffic assignment (e.g., [4]). Dynamic
traffic assignment approaches typically model converged dynamic driver behavior adapted to daily
congestion patterns, rather than more reactive dynamic rerouting scenarios that explore how traf-
fic can respond to unexpected events. Our approach differs from these previous works in that we
leverage high-performance computing techniques to simulate the effect of dynamic rerouting on
much larger road networks (on the order of hundreds of thousands to millions of links) with tens
of millions of vehicle trips per day to resolve system-wide impacts on large urban regions.

Other prior work in utilizing HPC for simulating traffic systems have focused on various as-
pects of parallelization and performance optimization. In one early article on this subject [12],
they describe two parallel implementations for microscopic simulation on a data-parallel (vector)
architecture and a message passing architecture, simulating a road network with up to 20,000 miles
and 200,000 vehicles up to 2.7× real-time speeds. An improved geographic recursive bisection algo-
rithm was presented in [53] for computing the parallel domain decomposition so that the workload
is better balanced across processors. They evaluated their approach on a small network with 232
roads and 670 connections between roads, and observed a parallel speedup of up to 4.1× using
336 CPUs. In [54], they focus on evaluating the impact of a dynamic load balancing strategy for
reducing computational load imbalance and improving parallel scalability, showing that parallel
speedup improved from 3.1× to 4.2× for a network with 80,000 links and 1.2 million trips using
32 compute cores. Following that work, they introduced a method for reducing the overheads of
conservative synchronization in a nanoscopic simulation to improve performance by relaxing the
causality of simulated events [55]. In that article, they used a similar sized network of 80,000 links
on a compute cluster consisting of three compute nodes, each with 16 cores, and evaluated the
impact of relaxing causality on the accuracy of the simulation.

In Reference [24], a parallel simulation with a dynamic route solution module is presented for a
test network of 62 links, showing scaling performance up to 6 processors with a parallel speedup of
up to 2.3× versus serial. Their parallel dynamic rerouting methodology, where vehicle routes are
iteratively updated in a synchronous fashion, does not simulate the individual request/response
communication mechanism that occurs between the vehicles (or smart navigation devices) and the
vehicle controller actors, which serves to aggregate network congestion data and handle rerout-
ing requests. Since the routes are solved iteratively and synchronously, their methodology is more
appropriate for solving the traffic assignment problem, rather than studying the sensitivities in a
dynamic rerouting mechanism (e.g., frequency of reroute checks, thresholds for rerouting). Fur-
thermore, they evaluated their method on a network with 62 links for up to one hour of simulated
time, which they reported takes over 15 minutes of computational time and reaches its maximum
parallel speedup with 4 single-core processors (the execution time actually increases when more
than 4 processors are used). This is quite different in scale compared to the simulated San Francisco
Bay Area system we examine in this article, which contains over one million links with 19 million
vehicles (each with its own specific origin and destination nodes), and scales to much higher core
counts, achieving a 146× parallel speedup on 256 compute cores.

In Reference [6], the authors study the impact of dynamic rerouting (re-planning) in the con-
text of VANets using SUMO and evaluate the impacts of dynamic rerouting on both mobility and
ad-hoc network connectivity. In contrast to our work, their analysis did not formulate the dy-
namic rerouting mechanism as a distributed process that involves coordination between link and
controller actors on different compute nodes in a parallel computing environment. SUMO uses a
serial simulation engine, so all data is generated and available to the one thread executing at all
times, whereas in a distributed memory platform, messages must be sent between compute nodes
to share their simulation state. Moreover, that work did not investigate the sensitivity of additional

ACM Transactions on Modeling and Computer Simulation, Vol. 33, No. 1-2, Article 7. Publication date: February 2023.

7:6 C. Chan et al.

parameters such as setting a minimum time savings threshold on the new route before taking a
reroute action.

Our article goes beyond these prior works by (1) focusing on the design, implementation, and
evaluation of dynamic vehicle rerouting in the context of a distributed-memory traffic simulation
(which requires passing messages to share state between compute nodes), and (2) evaluation, per-
formance analysis, and parameter sensitivity study of a large-scale HPC simulation with millions of
road network links and tens of millions of vehicle trips. The problem of modeling dynamic vehicle
rerouting behavior adds considerable computational load and model complexity to the simulation
to coordinate link cost updates and compute new vehicle routes. Traffic simulation systems use a
variety of models and algorithms based on the problem that is being addressed. Geographical scale,
modeling fidelity, time horizon, and desired output data all lead to a varied landscape of simulation
tools. However, to the best of our knowledge, this article presents the first simulation framework
to model the impact of dynamically rerouting vehicles in a large urban region at scale with millions
of nodes and links and millions of vehicles in short execution times, as well as present a rerouting
parameter sensitivity discussion and detailed model validation analysis.

3 MOBILITI SIMULATION

Mobiliti is a distributed-memory, parallel simulation framework that runs on high-performance
computing platforms. It uses optimistic PDES based on the Time Warp [28] protocol to model the
traffic congestion in the network and the rerouting behavior of vehicles in the system. The op-
timistic nature of the simulator allows events to be speculatively executed and then rolled back
if needed to maintain causality in the simulation. In order to avoid excessive synchronization
overheads and enable a high degree of parallelism, our optimistic PDES simulator utilizes a com-
putational design similar to the actor model of concurrent computation [2, 5]. In the actor model,
the system is composed of a set of actors, which are entities that can execute concurrently with
respect to one another and can only obtain information from each other through message passing.
Moreover, with the arrival of each message, an actor may do computation that modifies its local

state and may send new messages to other actors. There is no shared global state, thus avoiding
the need for expensive locks, mutexes, or atomics and enabling distributed-memory parallelism.

In our optimistic PDES simulator, the entire state of the simulated system is divided among en-
tities (called logical processes in the PDES literature [23]), which correspond to the actors in the
actor model. The logical processes send events to one another, which correspond to the messages
in the actor model. As with the actor model, each logical process may only do computation that
updates its local partition of the system state (again, no shared global state) and send new events
to other logical processes. A key distinguishing feature is that our simulator also utilizes a syn-
chronization protocol (Time Warp) to enforce the correct execution ordering of events, even if the
events arrive out of order over the network. For the remainder of this article, we will refer to the
logical process entities as actors since that term is more familiar to researchers outside the PDES
community.

The overall workflow of the simulator is presented in Figure 2, which shows a concise subset of
the inputs, stages of initialization and simulation, and outputs produced by the simulator. During
the simulation phase, the links are modeled as actors, and the vehicles are represented as events
that are passed from link to link as they travel through the road network. Figure 3 illustrates the
representation of network links as actors passing vehicle events between them.

For background on the simulator’s implementation, please see our previous article [14]. This
section describes relevant updates to the simulation that improve the accuracy of the link model
and enable vehicle dynamic rerouting capabilities. Specifically, we have added mechanisms inside
the link actor to enforce more accurate link timing constraints and storage capacity constraints,

ACM Transactions on Modeling and Computer Simulation, Vol. 33, No. 1-2, Article 7. Publication date: February 2023.

Simulating the Impact of Dynamic Rerouting on Metropolitan-scale Traffic Systems 7:7

Fig. 2. The Mobiliti simulator workflow. A subset of the inputs and outputs are shown along with a subset

of the software stages and modules contained within Mobiliti.

Fig. 3. The Mobiliti simulator represents the road network as a collection of link actors that send events

to each other representing individual vehicles traversing the network. Vehicles are initialized at their origin

nodes and propagated from link to link until they reach their destination. Links are responsible for computing

the vehicles’ traversal times based on the link’s congestion model.

and we have added a new set of vehicle controller actors that can be queried by vehicles to compute
better routes using the current congested state of the network.

3.1 Computational Link Model and Representation

When a vehicle event arrives at a link actor at timeT0, the link actor is responsible for determining
the simulated time that the vehicle transitions to the next link on its route. As shown in Figure 4,
the link actor utilizes three sub-models to determine the vehicle’s transition time: a flow-based con-
gestion delay model, a link timing model, and a storage constraint model that limits the occupancy
on each link based on physical dimensions.

The flow-based congestion delay model (Figure 5) uses characteristics of the link (such as the
designated flow capacity) and the current activity on the link to estimate the time ΔT1 it takes for
vehicles to traverse from the beginning to the end of the link. The resulting time T1 = T0 + ΔT1

represents when the vehicle reaches the end of the link; however, the vehicle may be delayed
further before actually transitioning to the next link in its route due to additional timing and
storage capacity constraints.

The link timing model computes the times at which vehicles may legally traverse from the
current link to the next. Separate internal queues are maintained for each maneuver through the
intersection (i.e., each downstream link sequence) so that vehicles utilizing different signal phases

ACM Transactions on Modeling and Computer Simulation, Vol. 33, No. 1-2, Article 7. Publication date: February 2023.

7:8 C. Chan et al.

Fig. 4. Each link in the simulation is modeled with a Link Actor object that utilizes three sub-models to

resolve the various dynamics of the road network.

Fig. 5. The Congestion Delay Model consists of a vehicle delay function (VDF) that uses link characteris-

tics (such as designated flow capacity) and current activity (such as flow rate) to compute estimated traversal

times ΔT1.

Fig. 6. The Link Timing Model assigns transition request times based on minimum vehicle spacing require-

ments and signal phase timing information.

can be handled independently. Figure 6 shows a diagram of the internal queue data structures
each link actor utilizes to track the vehicles currently occupying it. The timing model for each link
is fully parameterized so that different, coordinated signal timing plans can be used at multiple
intersections in the simulation.

The link timing model actually ensures two things: (1) that vehicles do not transition from link
to link at a rate that is faster than physically allowable (determined by the product of vehicle
speed, density, and a number of lanes), and (2) that vehicles obey the traffic signals (if there is
one at this link). For each queue within the link actor, it keeps track of the previous vehicle’s
transition time so that the next vehicle traversal maintains a minimum time spacing between
transitions to the downstream link. Furthermore, if the intersection has a traffic signal, vehicles
may only transition to the downstream link when the corresponding signal phase is green. When
combined with the minimum spacing requirement, each green phase is modeled as a time interval
with a fixed number of consecutive vehicle slots during which no more than that fixed number of
vehicles may transition to the downstream link. For each vehicle, the timing model assigns a time

ACM Transactions on Modeling and Computer Simulation, Vol. 33, No. 1-2, Article 7. Publication date: February 2023.

Simulating the Impact of Dynamic Rerouting on Metropolitan-scale Traffic Systems 7:9

Fig. 7. The Storage Capacity Constraint Model ensures that vehicles only transition from the upstream link

to a downstream link if the downstream link has sufficient physical storage capacity to accept the vehicle.

Table 1. Tunable Dynamic Rerouting Parameters

Parameter Description Nominal Value

tlsu Absolute link status update threshold 60 s

rlsu Relative link status update threshold 1.0

tcheck Reroute check interval 300 s

tdelay Absolute reroute threshold 120 s

rdelay Relative reroute threshold 0.2

T2 = T1+ΔT2 that obeys the above constraints. For our current experiments, we utilized the timing
model only to enforce the maximum rate for vehicle arrivals at each link since we do not currently
have comprehensive signal timing and phase information for the San Francisco Bay Area network.
However, the link capacity parameters used in the vehicle delay functions in the simulator should
reflect the lower capacity constraints for links that contain signals.

Finally, the storage capacity constraint ensures that links do not allow more vehicles to occupy
the link than there is physical space. The storage capacity constraint is mediated by a system of
EnqueueRequest and ArrivedNotice events between the upstream and downstream links. After
a vehicle’s preliminary link traversal time T2 is calculated using the congestion delay and timing
models, the link actor sends a vehicle enqueue request event to the corresponding downstream
link actor at its requested transition time T2. However, the vehicle remains in the upstream link’s
storage queues until a response is received. Only when there is sufficient capacity on the down-
stream link to accept the incoming vehicle does the downstream link send an ArrivedNotice
event to the upstream link (at time T3 = T2 + ΔT3) to notify the upstream link that the vehicle
has made the transition. At that time, the upstream link may remove the vehicle from its storage
queues, potentially freeing up space to send another ArrivedNotice event further upstream.
Figure 7 illustrates the described protocol that coordinates the transition of vehicles between
connected link actors. The final traversal time for the vehicle over the link is ΔT = ΔT1+ΔT2+ΔT3.

3.2 Dynamic Rerouting Design

This section details the simulation mechanism that controls how vehicles dynamically reroute in
response to system congestion. The subset of vehicles that have dynamic rerouting enabled (e.g.,
those with navigation devices) is specified at program initialization, determining the population
rerouting penetration rate. In order to simulate dynamic rerouting behavior in the system, we
implemented an additional set of actors and events that are responsible for coordinating when
and how vehicles reroute. These include VehicleController actors, LinkStatusUpdate events,
and vehicle RerouteCheck events. These new actors and events are described in the following
sections, and relevant parameters are summarized in Table 1.

ACM Transactions on Modeling and Computer Simulation, Vol. 33, No. 1-2, Article 7. Publication date: February 2023.

7:10 C. Chan et al.

Fig. 8. An example partitioning of the SF Bay Area road network into sixteen subgraphs. Mobiliti partitions

the road network into subgraphs and assign one to each computational rank in the simulator. The partitions

are load balanced to enable parallel scalability, and each partition is assigned its own VehicleController
actor to service rerouting requests from vehicles currently in the partition.

3.2.1 VehicleController Actors. VehicleControllers are a new class of actors that can be
queried by vehicles to check whether the vehicle should change its route based on current conges-
tion conditions to get to its destination more quickly. There are multiple controllers instantiated
throughout the road network, and since we already partition the road network across simulator
ranks (threads) for parallel execution, we use the same partitioning for the VehicleControllers
in our experiments. The network partitioning is computed using the METIS graph partitioner [29]
by constructing a line graph (or edge graph) [26] representation of the road network, where the
nodes of the graph are the road links, and the edges of the graph are link-to-link connections. The
weights of the nodes are based on the corresponding link actor’s compute load (i.e., the number
of events the actor must compute), and the weights of the edges are based on the communication
load between the corresponding link actors (i.e., the number of events sent between the actors).
The METIS partitioner uses heuristic techniques to simultaneously balance the total node weight
(i.e., compute load) assigned to each partition and minimize the total weight of the edges cut by
the partition boundaries (i.e., communication load).

While each individual controller is only responsible for servicing requests originating from ve-
hicles within its partition, it maintains current congestion data across the entire network, so newly
computed routes take the state of the whole system into account. Figure 8 shows an example of
how the San Francisco Bay Area road network could be partitioned into sub-networks. A distinct
VehicleController actor is assigned to each sub-network shown in different colors. When ve-
hicles check whether to reroute, they contact the VehicleController assigned to the vehicle’s
current road partition. This method preserves geospatial locality within the model and also has
good computational behavior since the VehicleControllers responsible for routing calculations
are parallelized across compute resources in a similar manner that link actors are parallelized.

3.2.2 LinkStatusUpdate Events. In order for the VehicleControllers to have an up-to-date
picture of current congestion conditions to make rerouting decisions, each link has a new sub-

ACM Transactions on Modeling and Computer Simulation, Vol. 33, No. 1-2, Article 7. Publication date: February 2023.

Simulating the Impact of Dynamic Rerouting on Metropolitan-scale Traffic Systems 7:11

Fig. 9. In (a), the VehicleController actor’s knowledge of the congestion on the links is up to date. When

the congestion on a link changes during simulation, the link actor sends LinkStatusUpdate events to the

VehicleController actors to notify them of its current condition. Figure (b) illustrates an example where

two links experience increased congestion and send updates to the VehicleController actor. The controller

then updates its knowledge of the graph (c) and uses this updated information to calculate routes for rerout-

ing vehicles.

component that sends updates about its current congestion status to the VehicleControllers.
Figure 9 illustrates an example where two link actors send status updates to a VehicleController,
which then updates its knowledge of the road network’s congested link traversal times.

Every time a vehicle departs a link l , the link actor broadcasts an update to all

VehicleControllers with its new congested traversal time if it differs from the previously sent
traversal time by at least min(tlsu, rlsu · tf (l)), where tlsu is an absolute threshold, rlsu is a relative
threshold ratio and tf (l) is the link’s freespeed traversal time. By allowing some deviation, the
thresholds prevent links from sending excessive status updates while ensuring that the values
used by the VehicleControllers for rerouting are still close to the current value experienced on
the link. By making the thresholds tighter, we can increase the frequency that LinkStatusUpdate
events are sent to the VehicleControllers, potentially improving rerouting accuracy at the cost
of processing more update events. The sensitivity to these threshold parameters is explored in Sec-
tion 3.3. Finally, each link actor that has active traffic periodically sends a heartbeat update to
the vehicle controllers to indicate that it is still servicing traffic at a given speed. When a vehicle
controller has not heard from a link in more than the heartbeat period, it knows the link has not
had any traffic, and thus it can purge stale congestion data about the link from its database.

3.2.3 RerouteCheck Events. When a vehicle arrives at a link, a vehicle can query the local
VehicleController with a message that contains the vehicle’s current path p (sequence of links)
from its present location to its destination (see Figure 10). The controller estimates the total con-
gested time tc (p) on the vehicle’s path to its destination using its knowledge of current network
congestion. If the delay on its path d (p) = tc (p)−tf (p) exceeds a threshold max(tdelay, rdelay ·tf (p)),
where tdelay is an absolute threshold, rdelay is a relative threshold ratio, and tf (p) is the freespeed
traversal time on path p, then the controller calculates a new shortest path p ′ from the vehicle’s
current location to its destination. If the new path time tc (p ′) improves the vehicle’s expected
arrival time by more than max(tdelay, rdelay · tc (p), then the vehicle accepts the new path p ′; other-
wise, it continues on its existing path p. We assume a 100 percent compliance rate with the route
suggestion given by the VehicleController (with no delay) since our simulator does not include
human behavior models at this time. A lower compliance rate may be approximated by adjust-
ing the population rerouting penetration rate accordingly. Finally, in order to prevent excessive
reroute queries, the vehicle only sends a RerouteCheck event if it has been more than tcheck sec-
onds since its last check. For our experiments, the VehicleController actors are homogeneous,

ACM Transactions on Modeling and Computer Simulation, Vol. 33, No. 1-2, Article 7. Publication date: February 2023.

7:12 C. Chan et al.

Fig. 10. Example RerouteCheck event for dynamic rerouting a vehicle based on current congestion con-

ditions. Since the vehicle’s original route is congested, the controller sends an alternate route around the

congestion, which the vehicle then takes.

simulating a unified network control agency. They could also be configured heterogeneously to
simulate the impact of having multiple companies with different (imperfect) network information
servicing vehicle reroute requests. This is a subject for future investigation.

3.3 Model Parameter Selection and Sensitivity

The various parameters described above and summarized in Table 1 control various aspects of the
system’s rerouting behavior and can be tuned to explore how the system would hypothetically
behave with different parameterizations. The parameters can be grouped into three categories:
(1) tlsu and rlsu control the frequency of link status updates, where lower values result in more
update messages and provide the controllers with more accurate information; (2) tcheck controls
the frequency that vehicles contact the controllers to see if they should reroute, where lower val-
ues result in more requests; and (3) tdelay and rdelay control how aggressive the controllers are at
rerouting vehicles, where lower values result in additional reroutes in situations with smaller time
saving benefits.

In order to understand the sensitivity to these parameters, we conducted parameter sweeps
for each of these three groups, where we simultaneously varied the values of the parameters in
each group, while keeping the other parameters constant to isolate the impact of each group of
parameters. Table 1 shows the baseline parameter values. In the first parameter sweep shown in
Figure 11, we varied the link status update thresholds: tlsu (on the x-axis) from 30 seconds to 150
seconds in increments of 30, and set rlsu = tlsu/60. As expected, the number of link status updates
sent (a) decreases significantly as the thresholds increase; however, the impact on the number of
trip leg reroutes (b) and on the total system delay (c) is relatively small, indicating that there is
little benefit from sending very frequent updates, and that the vehicle controllers do a satisfactory
job even with coarse information.

In the second parameter sweep shown in Figure 11, we varied the minimum time interval be-
tween a vehicle’s reroute check queries: tcheck (on the x-axis) from 60 seconds to 300 seconds in
increments of 60. As tcheck increases, vehicles check whether they should reroute less frequently,
but we observe that the total number of trip reroutes (b) declines only modestly. This is because
the vast majority of vehicles that reroute only have to check and switch to a better route once, and
then it typically sticks to the new route (e.g., with 60% rerouting penetration, 98.2% of rerouted
trips only reroute once during its journey). Thus, increasing the time interval between checks
mostly results in a small delay in the timing of a switch to a better route. As a result, the impacts
on the number of link status updates (a) and total system delay (c) are also relatively minor.

In the third parameter sweep shown in Figure 11, we varied the reroute delay thresholds for
when a vehicle should reroute: tdelay (on the x-axis) from 60 seconds to 300 seconds in increments

ACM Transactions on Modeling and Computer Simulation, Vol. 33, No. 1-2, Article 7. Publication date: February 2023.

Simulating the Impact of Dynamic Rerouting on Metropolitan-scale Traffic Systems 7:13

Fig. 11. Parameter sensitivity sweeps for link status update thresholds, rerouting check frequency, and

rerouting delay thresholds. The X -axis is the value (in seconds) of the parameter being varied: link status

update threshold (tlsu), reroute check interval (tcheck), and reroute threshold (tdelay). The Y -axes shows the

impact of varying the parameters on three system metrics: (a) link status updates sent, (b) trip leg reroutes,

and (c) total (system) vehicle delay.

of 60, and set rdelay = tdelay/600. As tdelay increases, the vehicle controllers are less aggressively
rerouting vehicles, keeping them on their original paths until their current path congestion is
higher and their best alternative route saves them more time. This is directly seen in (b) as the to-
tal number of trip reroute requests decreases significantly as the thresholds increase. The number
of link status updates (a) increases due to more dynamic variation in congestion, as the controllers
are less effective at balancing traffic among available alternatives. The total system delay (c) in-
creases since more vehicles are staying on less optimal routes, thus increasing their delay. While
the smallest threshold resulted in the best system efficiency, it is debatable whether using a very
low delay threshold in the real-world with human drivers is desirable because of the cognitive cost
in asking a driver to alter their route.

For the experiments in the next section, we used the parameter values in Table 1, which provide
a good balance between reality and improvement in system congestion. The parameters with the
largest effect on total system delay were the reroute threshold parameters (tdelay and rdelay). For
these, we selected tdelay equal to 2 minutes and rdelay equal to 0.2 as a compromise between system
efficiency and excessive rerouting.

4 EXPERIMENTS

4.1 Experimental Methodology Description

In order to demonstrate and evaluate our Mobiliti simulator, we followed the following steps to
model and analyze road network traffic in the San Francisco Bay Area (the steps would be similar

ACM Transactions on Modeling and Computer Simulation, Vol. 33, No. 1-2, Article 7. Publication date: February 2023.

7:14 C. Chan et al.

for other areas). First, we obtained the necessary network, trip demand, and vehicle data inputs
shown in Figure 2, left. After obtaining the inputs, we run the Mobiliti simulator (Figure 2, center)
for a variety of parameter configurations, including sweeping the dynamic rerouting penetration
rate, the link status update threshold, the reroute check interval, and the reroute threshold. The
simulator outputs include link-level metrics such as vehicle counts, average speeds, and congestion
delay series; leg-level metrics such as trip times and delays; and rerouting information such as
when and where rerouting occurs. We then process the simulator logs and outputs (Figure 2, right)
using a combination of software tools (such as Python) to conduct the various analyses presented
in the following subsections.

The road network model was derived from a HERE Technologies [27] map consisting of 454,651
nodes and 1,008,959 links spanning from Santa Rosa, Napa, and Vacaville to the north, San Jose
to the south, and Oakland, Hayward, Fremont, and Livermore to the east (see Figure 8). While
the link actor model currently supports the signal timing mechanism described in Section 3.1, the
following experiments were run without detailed signal behavior due to a lack of comprehensive,
accurate location and timing data for all of the signals in the Bay Area. However, the link capacity
properties in the input road network already take into account the presence of signals and are used
in each link actor’s Congestion Delay Model (see Section 3.1) to compute vehicle traversal times,
thus the simulator slows vehicles according to those flow capacity values compared to having no
signals.

The trip demand is initialized from an input file with 19 million trip legs (origin/destination
pairs) based on disaggregate simulated trip records from the San Francisco County Transporta-

tion Authority (SFCTA) SF CHAMP 6.1 model [45]. Each trip leg is specified with origin and
destination travel analysis zones (chosen from 40,000 micro-analysis zones) and a start time. Since
our simulator models each individual vehicle traversing from link to link at discrete times, we
chose specific origin and destination nodes within the given Traffic Analysis Zones (TAZs). We
weighted each node by its nearby population density derived from the Global Human Settle-

ment (GHS) database [21] to avoid choosing nodes that are in very sparsely populated regions
of the map, which would unrealistically send traffic to remote areas. We also avoided selecting
freeway or ramp nodes as origins or destinations. Figure 12 shows the population density map we
used for initializing our simulated trip legs. Note that the coarse granularity of the heat map is a
result of the resolution of the provided dataset (250 meters).

Figure 13(a) shows the temporal profile of the SFCTA demand model’s trip legs during the sim-
ulated model day. Our simulation runs a single model day, and the figure shows on the y-axis the
number of trips that start in each hour of the day. The number of trip legs per hour varies from
very low in the early morning hours to very high during the late afternoon rush hour. Since trip
lengths can vary considerably, by weighing each trip by its length, Figure 13(b) shows the total
vehicle miles traveled (VMT) by start time, which is defined as the sum of the total trip distance
over all trips that start in each hour of the day. This figure illustrates the time-varying magnitude
of the total load on the road network.

4.2 Computational Performance

This section details the design and analysis of the computational performance of the Mobiliti sim-
ulator. As mentioned in Section 3, Mobiliti utilizes an optimistic parallel discrete event simulation
protocol that allows for speculative event execution and rollback to maintain causality (see [23]
for details). For our experiments, we ran Mobiliti on the Cori supercomputer [39]. Adding dynamic
rerouting adds significant computational cost to the simulation compared to the original statically
routed case. This is mainly due to the addition of shortest path route calculations by VehicleCon-
troller actors during RerouteCheck events. We mitigate the added cost by using an efficient routing

ACM Transactions on Modeling and Computer Simulation, Vol. 33, No. 1-2, Article 7. Publication date: February 2023.

Simulating the Impact of Dynamic Rerouting on Metropolitan-scale Traffic Systems 7:15

Fig. 12. GHS density map [21] showing where people live as a function of geographical location. Mobiliti

uses this information coupled with a traffic analysis zone-based demand model to compute specific node

origins and node destinations for each trip leg. The raster resolution of the GHS data is 250 meters by 250

meters. Red shows high population density, followed by a dark blue with medium density and lighter blues

with low density.

Fig. 13. These figures give a temporal profile of how demand evolves through the simulated day. Figure (a)

shows the total number of trip legs starting at different times of the day. Figure (b) shows the total VMT

summed over trips that start at different times of day.

algorithm (Customizable Contraction Hierarchies [17, 25]) via the RoutingKit [44] library. Rout-
ingKit’s Customizable Contraction Hierarchies library employs relatively costly preprocessing
steps (i.e., customizations) to enable very efficient subsequent routing queries. This strategy is ideal
for computing many routes in a network with static weights, since the cost of the preprocessing
step can be amortized across all of the subsequent queries. However, in a dynamic rerouting sim-
ulation the link weights are constantly changing due to congestion varying over the course of the
simulated day. In order to support dynamically changing link weights, we designed the VehicleCon-
troller to keep track of which links have updated their travel time since the previous customization,
and then only re-customize the contraction hierarchy when a RerouteCheck query is received. This
method of batching LinkStatusUpdates avoids excessive re-customizations every time an update

ACM Transactions on Modeling and Computer Simulation, Vol. 33, No. 1-2, Article 7. Publication date: February 2023.

7:16 C. Chan et al.

Fig. 14. Parallel Scaling Performance. (a) Breakdown of Mobiliti simulation times (excluding program ini-

tialization) by category as we vary the core count from 1 to 256 cores of the Cori-Haswell computer at

NERSC [39]. All times shown are for simulating 19 million trip legs with 50 percent dynamic rerouting pene-

tration on the whole San Francisco Bay Area road network with 0.5 million nodes and 1 million links. When

simulating a normal model day, execution time is decreased from over seven hours on one core to less than

three minutes on 256 cores running in parallel. (b) Breakdown of execution by category as a percent of total

execution time as the core count is varied from 1 to 256 cores. See the text for a description of categories.

is received. Furthermore, if no congestion update is received during a sequence of RerouteCheck
queries, they can all use the same customization and thus be serviced very efficiently.

Figure 14(a) shows the execution time of Mobiliti when simulating a full normal model day with
19 million trip legs over the San Francisco Bay 0.5 million nodes and 1 million links with 50 per-
cent dynamic rerouting penetration. As we increase the core count from 1 to 256, the simulation
execution time (excluding program initialization) is reduced from more than seven hours (25,000
seconds) to less than three minutes (171 seconds), corresponding to a 146× parallel speed up. For
the shared memory runs (16 cores or fewer), we use a single process, multi-threaded configura-
tion (utilizing one thread per core). Using shared memory avoids the overheads of inter-process
communication, but limits execution to a single node. For the distributed memory runs (32 cores
or more), we use a multi-process, multi-threaded configuration with hyper-threading (two threads
per core), which enables executing on multiple nodes, better data locality in the memory subsystem
due to non-uniform memory access [36], and higher core utilization. Furthermore, strong scaling
(increasing core count for a fixed problem size) yields the benefit of reducing the active working
set sizes for each core, enabling better data re-use and on-chip cache utilization.

Figure 14(b) shows the percent of total time spent doing various tasks, including customization
of the Contraction Hierarchy router (blue), running Contraction Hierarchy routing queries (or-
ange), executing events (green and red), rolling back events (purple), committing/logging events
(brown), runtime messaging overhead (pink), and global virtual time (GVT) overheads (grey and
yellow). Note that Execute time (green) refers to the execution time for events that are eventu-
ally committed, while Execute (RB) time (red) refers to the forward execution time for events
that are speculatively executed and eventually rolled back. Furthermore, Rollback time (purple)
refers to the time to roll back (reverse) the events that were mis-speculated. For the single core
run, there is no misspeculation because events are trivially executed in increasing timestamp or-
der, so no time is spent rolling back events. As the number of cores increases, the percentage of
total time spent doing router customization (blue) and executing and rolling back mis-speculated

ACM Transactions on Modeling and Computer Simulation, Vol. 33, No. 1-2, Article 7. Publication date: February 2023.

Simulating the Impact of Dynamic Rerouting on Metropolitan-scale Traffic Systems 7:17

Fig. 15. Time spent in Contraction Hierarchy router customization across threads for the 64 thread (32 core)

and 512 thread (256 core) cases. Note that the maximum customization load remains roughly the same

between the two cases, indicating that the customization load imbalance becomes a scalability bottleneck

for higher core counts.

events (red and purple) increases, which reduces the effective parallel speedup. The reason that
the router customization percentage increases is that as the simulation is scaled onto more cores,
we correspondingly increase the number of vehicle controllers so that each road partition has a
local vehicle controller to service its vehicles’ reroute queries, thus parallelizing the reroute query

workload across cores and avoiding core-to-core round trip message overheads to service each
rerouting request. However, since each of the controllers must still do router customization com-
putations, the per-core customization cost makes up an increasing percentage of total execution
time (as the other parts of the simulation scale more effectively).

There are two main reasons for the increasing mis-speculation and rollback (red and purple)
costs. First, as core count increases, the number of discrete events that cross core boundaries in-
creases, leading to an increase in the number of events that trigger a rollback at the destination.
This would occur due to core-to-core messaging latencies even if the simulation were perfectly
load balanced across cores. Second, when the simulation compute load is not balanced, the load
imbalance manifests as mis-speculation and rollback in our metrics since the underloaded cores
mis-speculate as they simulate faster than the overloaded cores. We observed that while the nor-
mal vehicle transition events stay load balanced with higher parallelism, the router customization
load imbalance increases with core count since reroute requests can be highly localized to where
congestion occurs in the network, making it more difficult to compute an effective parallel parti-
tioning compared to when there is no dynamic rerouting. Figure 15 shows the distribution of time
spent in customization computations across all threads in the 32 core and 256 core simulations. We
observe that the most overloaded thread spends over 70 seconds in customization computations (in
both cases), which is quite significant compared to the 171 second total simulation time in the 256
core experiment. We suspect the scalability could be further improved for even higher core counts
by tuning the parallel distribution of the dynamic re-routing workload to refine the computational
load balance thereby reducing time spent mis-speculating. A more in-depth parallel performance
and load balancing study of the simulator will be explored in future work.

4.3 Impact of Dynamic Rerouting on System Metrics

To understand the effect of rerouting penetration, we enabled dynamic rerouting for varying per-
centages of vehicle trip legs for the entire Bay Area. We chose to study a range of penetration rates
from 0% to 100% at 10% increments. Figure 16 illustrates the impact of enabling dynamic rerouting

ACM Transactions on Modeling and Computer Simulation, Vol. 33, No. 1-2, Article 7. Publication date: February 2023.

7:18 C. Chan et al.

Table 2. Share of Rerouted Trip Legs

Penetration rate Trip legs reroutable Trip legs rerouted Percentage rerouted

(%) (in thousands) (in thousands) (%)

10 1,900 130 7

20 3,800 221 6

30 5,700 274 5

40 7,600 291 4

50 9,500 301 3

60 11,400 317 3

70 13,300 329 2

80 15,200 340 2

90 17,100 355 2

100 19,000 374 2

for 100% of vehicle trips for the entire metropolitan-scale system simulated. The difference
between baseline and 100% rerouting case is that the former uses static shortest path routes based
on free speed traversal times, whereas the latter uses dynamic routes computed by the vehicle
controllers based on their knowledge of the current traffic congestion patterns. In Figure 16, blue
links handle a lesser number of vehicle traversals when 100% dynamic rerouting is enabled, while
the red links handle a greater number. The figure shows how the traffic is rerouted away from
certain links to reduce congestion (blue), while other links end up handling higher traffic (red).

Figure 17 shows how the reroutes are temporally distributed throughout the simulation day,
illustrating that almost 80% of the rerouting occurs during the morning and evening rush hours
when the demand is the highest. The distribution of reroutes is heavily influenced by the temporal
distribution of trip legs in the demand model input (Figure 13). As can be seen in Figure 13(b), there
is a peak in the total VMT in the morning (7 am to 10 am) and the evening rush hours (3:30 pm to
6:30 pm). Because the level of demand during rush hours is the highest, we see corresponding peaks
in the number of reroutes. Further, it must be noted that penetration rate indicates the number of
trip legs allowed to reroute, but not all reroutable trip legs actually reroute. Table 2 indicates the
percentage of trip legs rerouted as a percentage of allowed reroutable legs. At higher penetration
rates, the percentage decreases even though the actual number of reroutes is higher, since not
many trip legs engage in any relevant congestion and hence do not reroute. Furthermore, among
the trips that do reroute, the number of reroutes per trip remains small, with 99.9% of trips rerouting
three times or fewer in the 100% penetration scenario.

Using the delay and fuel model described in our previous work [14], we can make impact esti-
mates for dynamic rerouting penetration rates. Figure 18 exhibits the system level vehicle hours

of delay (VHD) and the number of reroutes for different penetration levels, and Table 3 shows the
system level VMT and fuel consumption resulting from the dynamic rerouting. As the penetration
rate increases, the delay reduces without any significant change in VMT. The minimum system de-
lay is incurred with 100% penetration rate. However, if we look at the “knee of the curve” for VHD,
the return starts diminishing after 70% penetration. On average, a rerouted trip saves 16 minutes
in travel time with no additional trip distance with 100% penetration rate compared to baseline as
shown in Figure 19(a).

We observe that dynamic rerouting effectively rearranges the vehicle flows from high-utilized
highways and arterials to low-utilized neighborhood links to reduce the overall system delay. We
analyze these effects by investigating the rearrangement of the traffic flow by functional classifica-
tion of links. We maintain the definitions of functional class roads as defined by HERE Technolo-
gies [27]. Specifically, functional classes are hierarchical classifications of roads according to speed,
importance, and connectivity. A road can be one of five functional classes defined in Table 4.

ACM Transactions on Modeling and Computer Simulation, Vol. 33, No. 1-2, Article 7. Publication date: February 2023.

Simulating the Impact of Dynamic Rerouting on Metropolitan-scale Traffic Systems 7:19

Fig. 16. The figures show the system-wide impact on the number of vehicle link traversals from enabling

dynamic rerouting (baseline versus 100% penetration) for Bay Area (left) and San Jose city (right). Red or

blue represents an increase or decrease in vehicle traversal count for a day.

Fig. 17. The figure gives a temporal profile of the rate of dynamic vehicle reroutes for a day. Sharp increases

in reroutes can be seen in the morning and evening peak hours.

By examining the traffic flow by functional class (FC) with 100% dynamic rerouting penetra-
tion, we observe that traffic shifts from FC 2 and 3 to FC 4 and 5. This significantly reduces highway
delays while increasing traffic on FC 5 in the morning and evening peaks. It is also interesting to
note that the increased traffic volume on FC 5 does not always cause congestion in those links,
as many links do not reach congested levels with the increased flow. Specifically, 7000 kilometers

ACM Transactions on Modeling and Computer Simulation, Vol. 33, No. 1-2, Article 7. Publication date: February 2023.

7:20 C. Chan et al.

Fig. 18. The figure shows the system wide VHD and the number of trip legs rerouted from varying dynamic

rerouting penetration rates. As the penetration rate increases, the overall system delay reduces. If we look

at the elbow of the VHD curve, after 70% penetration rate the returns start diminishing.

Table 3. VMT and Fuel Consumption

Penetration rate Vehicle Miles Traveled Fuel

(in thousand miles) (in thousand gallons)

0% 146,847 5,906

10% 146,783 5,903

20% 146,707 5,899

30% 146,652 5,894

40% 146,605 5,891

50% 146,572 5,888

60% 146,546 5,886

70% 146,537 5,884

80% 146,517 5,883

90% 146,505 5,882

100% 146,490 5,882

Table 4. Functional Road Classes

Functional class Definition

1 Allows high volume, maximum speed traffic movement
2 Allows high volume, high speed traffic movement
3 Provides high volume of traffic movement
4 Provides high volume of traffic movement at moderate speeds between neighborhoods
5 Local roads with volume and traffic movement below the level of any functional class

of FC 5 links received additional traffic flow with 100% dynamic rerouting, of which 75% received
fewer than six additional vehicles during the morning peak.

Of the FC 5 links with increased traffic volume, 440 kilometers are congested with a volume-
over-capacity ratio higher than 0.75. Spatial analysis of the congestion shows that the cities of San
Francisco, San Jose, Berkeley, Oakland, and Fremont are the most affected by the increased traffic
on the local roads (Figure 19(b)). The local roads (FC 5) in these cities have a mean increase of 70
vehicles during the morning peak. Finally, of the 440 kilometers of congested road network in the
morning peak, 110 kilometers reflects new congestion created due to dynamic rerouting on the

ACM Transactions on Modeling and Computer Simulation, Vol. 33, No. 1-2, Article 7. Publication date: February 2023.

Simulating the Impact of Dynamic Rerouting on Metropolitan-scale Traffic Systems 7:21

Fig. 19. These figures illustrate the distributions of trip travel times and spatial congestion.

Table 5. User Equilibrium Traffic Assignment: System Metrics

Vehicle Miles Traveled Vehicle Hours of Delay Fuel

(in thousand miles) (in thousand hours) (in thousand gallons)

User Equilibrium 146,051 90 5,915

local roads. These roads would arguably be some of the most negatively impacted areas by high
dynamic rerouting penetrations.

Finally, we present the results of user equilibrium (UE) traffic assignment in Table 5 for com-
parison using the methods we describe in [15]. Comparing with the system metrics for dynamic
rerouting with 100% penetration rate, we can see that VHD is nearly half, fuel consumption is
slightly higher, and VMT slightly lower in user equilibrium. Since the user equilibrium is a steady-
state solution computed through iterative optimization, it results in routes with lower delays than
the more reactive dynamic rerouting approach. However, in reality, the user equilibrium state is
never actually achieved, and hence congestion is underestimated in the user equilibrium traffic
assignment.

4.4 Validation

Validation was performed for the simulation runs with different penetration rates to test the effec-
tiveness of representing the real-world traffic environment. We conducted a three-stage validation
procedure using multiple data sources. Our results show that the simulation with 60% dynamic
rerouting is the closest to representing real-world traffic. We have only included the validation for

ACM Transactions on Modeling and Computer Simulation, Vol. 33, No. 1-2, Article 7. Publication date: February 2023.

7:22 C. Chan et al.

Fig. 20. The figure shows the validation of traffic counts in 15-minute increments for links in different func-

tional classes. All links have satisfactory R2 of greater than 0.7.

this penetration rate here for brevity. Our results are consistent with multiple surveys stating that
the percentage of Americans having smartphones who uses online maps or navigation services
daily ranges from 55% to 65% [20, 37, 47].

Stage 1 of the validation procedure involves comparing the traffic flows or counts between the
simulation and real-world data. This includes checking (a) traffic counts for eight corridor links
in San Jose city, (b) average daily traffic (ADT) counts for four main bridges in the Bay Area,
and (c) traffic flows for all major highways in the Bay area. The traffic count for each link was
compared against the field data for the entire day in 15 minutes increments. The field data for
city roads and highways were collected from the city of San Jose, and the Caltrans Performance

Measurement System (PeMS) website [18] respectively for the year 2019. Each corridor provided
information regarding traffic volumes by time of the day and direction. Since PeMS data is prone
to measurement error, data from multiple weekdays in April and May 2019 were averaged to get a
typical day value. A coefficient of determination R-squared (R2) of 0.7, which is typically used as
a satisfactory criterion for link count checks, is used as the threshold. Figure 20 shows R2 values
for the eight corridors under consideration. The modeled corridors are closely matched with the
field data, with the lowest R2 value observed being 0.76 for Zanker road.

Additionally, ADT for four main bridges in the Bay Area in both directions is shown in Table 6.
The field data were obtained from the Caltrans website [18] for the year 2019. The target error was
±25%, and seven of the eight links met this criterion. We believe that the high relative error for
the Golden Gate Bridge northbound (NB) count is due to the Caltrans field count not accurately
representing the actual bridge count. The discrepancy is due to the sensor placement after a major
exit, which results in a significant percentage of bridge traffic not being counted by the sensor.

ACM Transactions on Modeling and Computer Simulation, Vol. 33, No. 1-2, Article 7. Publication date: February 2023.

Simulating the Impact of Dynamic Rerouting on Metropolitan-scale Traffic Systems 7:23

Table 6. Average Daily Traffic (ADT) Comparison

Sl No Bridge Field Count Simulation Count Relative Error (%)

1 I-580 Richmond San Rafael Bridge EB 56,182 51,551 −8%

2 I-580 Richmond San Rafael Bridge WB 41,597 52,131 25%

3 I-80 Bay Bridge EB 132,000 148,105 12%

4 I-80 Bay Bridge WB 131,861 139,993 6%

5 US-101 Golden Gate Bridge NB 32,212∗ 63,730 98%

6 US-101 Golden Gate Bridge SB 74,526 70,020 −6%

7 CA-92 San Mateo Bridge EB 56,510 53,684 −5%

8 CA-92 San Mateo Bridge WB 62,597 50,199 −20%
∗ Golden Gate Bridge northbound (NB) link’s closest PeMS sensor is located after an off ramp and hence the field

count does not reflect the full bridge traffic count.

Fig. 21. Validation metrics for highway link flows compared to PeMS sensors are shown.

Next, we evaluated R2 for all links with a corresponding PeMS sensor in Bay Area. We were
able to match 2061 links with mainline sensors and the resulting R2 distribution is shown in
Figure 21(a). Of the total matched links, 72% have R2 greater than 0.7, and 5% have lower than 0.4
(Figure 21(b)).

ACM Transactions on Modeling and Computer Simulation, Vol. 33, No. 1-2, Article 7. Publication date: February 2023.

7:24 C. Chan et al.

Fig. 22. Average Uber (left) and Mobiliti (right) speeds across all speed limits from 8 am to 9 am in shown in

the first row. The second row shows the kernel density plots comparing both speed distributions at 60 mph

(left) and 70 mph (right).

Stage 2 in the validation procedure compares simulation speed with (a) Uber Movement data for
San Francisco city streets and (b) PeMS speed data for Bay Area highways. For Uber Movement,
speed data for the San Francisco region for quarter four, 2019 is obtained from the website [50].
Links from Uber network were matched to Mobiliti links for a total of 139,495 links (20% of total).
The speeds were compared from 8 am to 9 am for different speed limits. Figure 22 shows the
average speeds from Mobiliti and Uber across all speed limits. The speed distributions from both
links with 60 mph and 70 mph speed limit are shown in the second row.

Next, we compared highway links with PeMS speed profiles for the 2,061 matched links.
Figure 23 shows the difference in speeds between simulation and PeMS at 9 am and 3 pm for a
weekday. Most links are within ±20 mph difference. Further, R2 values were evaluated for all links
to understand the time series trends. Figure 24 shows a time series comparison for six highway
links. Of the total, 55% of highway links have R2 greater than 0.4. We plan to improve the speed
models to reflect time series trends closer to real-world data in the future.

Stage 3 is system-level comparisons, network validation, and error checking. Model visualiza-
tion is used to check for unusual activities in traffic flows and odd roadway network attributes.
Error checking and model verification consist of smaller tasks such as checks for link geometry
and connectivity, link speeds, and ramp and intersection geometry. Since our travel demand data
was obtained from SFCTA, which conducts its validation, we did not conduct additional behavior
checks. We conducted system metric checks for VMT and total demand and validated them against
the 2017 Environmental Impact Report for the Bay Area [19] in Table 7.

ACM Transactions on Modeling and Computer Simulation, Vol. 33, No. 1-2, Article 7. Publication date: February 2023.

Simulating the Impact of Dynamic Rerouting on Metropolitan-scale Traffic Systems 7:25

Fig. 23. The figure shows the histogram of the speed difference between simulation and PeMS at 9 am and

3 pm for highways in the Bay Area.

Fig. 24. The figures show the simulation and PeMS speed profile for highways. The yellow line represents

the average weekday values from PeMS. The first and second standard deviation bands are also shown. The

green line represents the simulation speed for a typical day.

ACM Transactions on Modeling and Computer Simulation, Vol. 33, No. 1-2, Article 7. Publication date: February 2023.

7:26 C. Chan et al.

Table 7. System Level Metrics

Metric Simulation Field Data Relative Error (%)

VMT 146,546,360 158,406,800 –7

Daily Trips 19,167,301 21,227,800 –10

5 CONCLUSION

Vehicles are rapidly gaining the ability to utilize up-to-date road congestion information to re-route
their paths during their trips through smartphone navigation apps. In this article, we presented a
computational methodology to model varying degrees of dynamic rerouting in a large-scale trans-
portation system using the Mobiliti high-performance parallel discrete event simulator. We de-
scribed updates to our link actor model to capture the effects of link congestion, timing constraints,
and storage capacity constraints. We have detailed the implementation of new VehicleController
actors and the events required to update their knowledge of the system state and service dynamic
rerouting requests. Because we have designed our simulator to scale over distributed memory par-
allel computing platforms, we can simulate one model day of the San Francisco Bay Area with
19 million vehicle trips and 50 percent dynamic rerouting penetration over a road network with
0.5 million nodes and 1 million links in three minutes of simulation time. We conducted an analysis
of system-level impacts when varying the dynamic rerouting penetration rate at 10% increments
and examined the varying effects on different functional classes and geographical regions. Finally,
we presented a validation of the simulation results compared to real-world data sources.

REFERENCES

[1] M. Abrams. 1989. A common programming structure for Bryant-Chandy-Misra, time-warp, and sequential simulators.

In Proceedings of the 21st Conference on Winter Simulation. Association for Computing Machinery, New York, NY, 661–

670. DOI:https://doi.org/10.1145/76738.76823

[2] Gul Agha and Carl Hewitt. 1987. Actors: A conceptual foundation for concurrent object-oriented programming. In

Proceedings of the Research Directions in Object-oriented Programming. 49–74.

[3] Joshua Auld, Michael Hope, Hubert Ley, Vadim Sokolov, Bo Xu, and Kuilin Zhang. 2016. POLARIS: Agent-based

modeling framework development and implementation for integrated travel demand and network and operations

simulations. Transportation Research Part C: Emerging Technologies 64, 0968-090X (2016), 101–116.

[4] Joshua Auld, Omer Verbas, and Monique Stinson. 2019. Agent-based dynamic traffic assignment with information

mixing. Procedia Computer Science 151, 1877-0509 (2019), 864–869.

[5] Henry Baker and Carl Hewitt. 1977. Laws for communicating parallel processes. Technical Report WP-134A. MIT

Artificial Intelligence Laboratory.

[6] Pablo Barbecho Bautista, Luis Urquiza-Aguiar, and Mónica Aguilar Igartua. 2020. Evaluation of dynamic route plan-

ning impact on vehicular communications with SUMO. In Proceedings of the 23rd International ACM Conference on

Modeling, Analysis and Simulation of Wireless and Mobile Systems. 27–35.

[7] Peter D. Barnes, Jr., Christopher D. Carothers, David R. Jefferson, and Justin M. LaPre. 2013. Warp speed: Execut-

ing time warp on 1,966,080 Cores. In Proceedings of the Conference on Principles of Advanced Discrete Simulation

(Montr©al, Québec, Canada). 327–336. DOI:https://doi.org/10.1145/2486092.2486134

[8] David W. Bauer Jr., Christopher D. Carothers, and Akintayo Holder. 2009. Scalable time warp on blue gene super-

computers. In Proceedings of the Workshop on Principles of Advanced and Distributed Simulation. 35–44. DOI:https:

//doi.org/10.1109/PADS.2009.21

[9] Michael Behrisch, Daniel Krajzewicz, and Yun-Pang Wang. 2008. Comparing performance and quality of traffic as-

signment techniques for microscopic road traffic simulations. Proceedings of DTA2008 (2008).

[10] Moshe Ben-Akiva, Michel Bierlaire, Haris N. Koutsopoulos, and Rabi Mishalani. 2002. Real time simulation of traf-

fic demand-supply interactions within DynaMIT. In Proceedings of the Transportation and Network Analysis: Current

Trends. Springer, 19–36.

[11] CAL. 2017. California Fires: Navigation Apps Like Waze Sent Commuters into Flames, Drivers Say. Retrieved from

https://www.usatoday.com/story/tech/news/2017/12/07/california-fires-navigation-apps-like-waze-sent-commuters-

into-flames-drivers/930904001/. Accessed 1 November 2022.

ACM Transactions on Modeling and Computer Simulation, Vol. 33, No. 1-2, Article 7. Publication date: February 2023.

https://doi.org/10.1145/76738.76823
https://doi.org/10.1145/2486092.2486134
https://doi.org/10.1109/PADS.2009.21
https://www.usatoday.com/story/tech/news/2017/12/07/california-fires-navigation-apps-like-waze-sent-commuters-into-flames-drivers/930904001/

Simulating the Impact of Dynamic Rerouting on Metropolitan-scale Traffic Systems 7:27

[12] Gordon D. B. Cameron and Gordon I. D. Duncan. 1996. PARAMICS–Parallel microscopic simulation of road traffic.

The Journal of Supercomputing 10, 1 (1996), 25–53.

[13] Jordi Casas, Jaime L. Ferrer, David Garcia, Josep Perarnau, and Alex Torday. 2010. Traffic simulation with aimsun. Fun-

damentals of Traffic Simulation, J. Barceló (Ed.). International Series in Operations Research & Management Science,

Vol. 145, Springer, New York, NY, 173–232.

[14] Cy Chan, Bin Wang, John Bachan, and Jane Macfarlane. 2018. Mobiliti: Scalable transportation simulation using high-

performance parallel computing. In Proceedings of the 2018 21st International Conference on Intelligent Transportation

Systems. IEEE, Maui, HI, 634–641. DOI:https://doi.org/10.1109/ITSC.2018.8569397

[15] Cy P. Chan, Anu Kuncheria, Bingyu Zhao, Theophile Cabannes, Alexander Keimer, Bin Wang, Alexandre M. Bayen,

and Jane MacFarlane. 2021. Quasi-dynamic traffic assignment using high performance computing. arXiv:2104.12911.

Retrieved from https://arxiv.org/abs/2104.12911.

[16] K. M. Chandy and J. Misra. 1979. Distributed simulation: A case study in design and verification of distributed

programs. IEEE Transactions on Software Engineering SE-5, 5 (1979), 440–452. DOI:https://doi.org/10.1109/TSE.1979.

230182

[17] Julian Dibbelt, Ben Strasser, and Dorothea Wagner. 2014. Customizable contraction hierarchies. In Proceedings of the

Experimental Algorithms. Joachim Gudmundsson and Jyrki Katajainen (Eds.), Springer International Publishing, Cham,

271–282.

[18] C. A. DOT. 2021. Traffic Volumes | Caltrans. Retrieved from https://dot.ca.gov/programs/traffic-operations/census/

traffic-volumes. Accessed 1 November 2022.

[19] EIRPBA. 2021. Environmental Impact Report Plan Bay Area. Retrieved from https://www.planbayarea.org/2040-plan/

environmental-impact-report. Accessed 1 November 2022.

[20] EMarketer. 2021. Maps and Navigation Apps are Still Essential to Smartphone Experience, and User Penetration Continues

to Grow. Retrieved from https://www.emarketer.com/content/people-continue-to-rely-on-maps-and-navigational-

apps-emarketer-forecasts-show. Accessed 1 November 2022.

[21] European Commission, Joint Research Centre (JRC); Columbia University, Center for International Earth Science

Information Network - CIESIN. 2015. GHS Population Grid, Derived from GPW4, Multitemporal (2015). Retrieved

from http://data.europa.eu/89h/jrc-ghsl-ghs_pop_gpw4_globe_r2015a. European Commission, Joint Research Centre

(JRC) [Dataset]. Accessed 1 November 2022.

[22] FHWA. 2021. Traffic Analysis Toolbox Volume XIV: Guidebook on the Utilization of Dynamic Traffic Assignment

in Modeling - Section 2. Retrieved from https://ops.fhwa.dot.gov/publications/fhwahop13015/sec2.htm. Accessed 1

November 2022.

[23] Richard M. Fujimoto. 1990. Parallel discrete event simulation. Communications of the ACM 33, 10 (1990), 30–53.

DOI:https://doi.org/10.1145/84537.84545

[24] Linjie Gao, Zhicai Juan, and Peng Jing. 2008. The design and implement of parallel simulation algorithm of dynamic

route solution for traffic network. In Proceedings of the 2008 Asia Simulation Conference-7th International Conference

on System Simulation and Scientific Computing. IEEE, 230–234.

[25] Robert Geisberger, Peter Sanders, Dominik Schultes, and Christian Vetter. 2012. Exact routing in large road networks

using contraction hierarchies. Transportation Science 46, 3 (2012), 388–404. DOI:https://doi.org/10.1287/trsc.1110.0401

[26] Frank Harary and Robert Z. Norman. 1960. Some properties of line digraphs. Rendiconti del circolo matematico di

palermo 9, 2 (1960), 161–168.

[27] HERE Technologies. 2019. Retrieved February 06, 2019 from https://www.here.com/.

[28] David R. Jefferson. 1985. Virtual time. ACM Transactions on Programming Languages and Systems 7, 3 (1985), 404–425.

DOI:https://doi.org/10.1145/3916.3988

[29] George Karypis and Vipin Kumar. 1998. Multilevelk-way partitioning scheme for irregular graphs. Journal of Parallel

and Distributed computing 48, 1 (1998), 96–129.

[30] Hyunmyung Kim, Jun-Seok Oh, and R. Jayakrishnan. 2009. Effects of user equilibrium assumptions on network traffic

pattern. KSCE Journal of Civil Engineering 13, 2 (2009), 117–127.

[31] Kyungtae Kim, Seokjoo Koo, and Ji-Woong Choi. 2020. Analysis on path rerouting algorithm based on V2X commu-

nication for traffic flow improvement. In Proceedings of the 2020 International Conference on Information and Commu-

nication Technology Convergence. IEEE, 251–254.

[32] Rafał Kucharski and Guido Gentile. 2019. Simulation of rerouting phenomena in dynamic traffic assignment

with the information comply model. Transportation Research Part B: Methodological 126, 0191-2615 (2019), 414–

441.

[33] Zilu Liang and Yasushi Wakahara. 2014. Real-time urban traffic amount prediction models for dynamic route guidance

systems. EURASIP Journal on Wireless Communications and Networking 2014, 1 (2014), 85. DOI:https://doi.org/10.1186/

1687-1499-2014-85

ACM Transactions on Modeling and Computer Simulation, Vol. 33, No. 1-2, Article 7. Publication date: February 2023.

https://doi.org/10.1109/ITSC.2018.8569397
http://arxiv.org/abs/2104.12911.
https://arxiv.org/abs/2104.12911
https://doi.org/10.1109/TSE.1979.230182
https://dot.ca.gov/programs/traffic-operations/census/traffic-volumes
https://www.planbayarea.org/2040-plan/environmental-impact-report
https://www.emarketer.com/content/people-continue-to-rely-on-maps-and-navigational-apps-emarketer-forecasts-show
http://data.europa.eu/89h/jrc-ghsl-ghs_pop_gpw4_globe_r2015a
https://ops.fhwa.dot.gov/publications/fhwahop13015/sec2.htm
https://doi.org/10.1145/84537.84545
https://doi.org/10.1287/trsc.1110.0401
https://www.here.com/
https://doi.org/10.1145/3916.3988
https://doi.org/10.1186/1687-1499-2014-85

7:28 C. Chan et al.

[34] Pablo Alvarez Lopez, Michael Behrisch, Laura Bieker-Walz, Jakob Erdmann, Yun-Pang Flötteröd, Robert Hilbrich,

Leonhard Lücken, Johannes Rummel, Peter Wagner, and Evamarie Wießner. 2018. Microscopic traffic simulation us-

ing sumo. In Proceedings of the 2018 21st International Conference on Intelligent Transportation Systems. IEEE, 2575–

2582.

[35] H. S. Mahmassani 1998. Dynamic traffic simulation and assignment: models, algorithms and application to ATIS/ATMS

evaluation and operation. Operations Research and Decision Aid Methodologies in Traffic and Transportation Manage-

ment. M. Labbé, G. Laporte, K. Tanczos, and P. Toint (Eds.). NATO ASI Series, Vol. 166, Springer, Berlin and Heidelberg,

104–135.

[36] Zoltan Majo and Thomas R. Gross. 2011. Memory system performance in a NUMA multicore multiprocessor. In Pro-

ceedings of the 4th Annual International Conference on Systems and Storage. 1–10.

[37] The Manifest. 2021. The Popularity of Google Maps: Trends in Navigation Apps in 2018 | The Manifest. Retrieved from

https://themanifest.com/mobile-apps/popularity-google-maps-trends-navigation-apps-2018. Accessed 1 November

2022.

[38] MATSIM. 2020. MATSim.org. Retrieved from https://www.matsim.org/. Accessed 1 November 2022.

[39] NERSC. 2018. Cori Configuration. Retrieved April 27, 2018 from http://www.nersc.gov/users/computational-systems/

cori/configuration/.

[40] Kalyan S. Perumalla. 2006. A systems approach to scalable transportation network modeling. In Proceedings of the

2006 Winter Simulation Conference. 1500–1507. DOI:https://doi.org/10.1109/WSC.2006.322919 ISSN: 1558-4305.

[41] Moeid Qurashi, Hai Jiang, and Constantinos Antoniou. 2020. Modeling autonomous dynamic vanpooling services in

sumo by integrating the dynamic routing scheduler. In Proceedings of the SUMO User Conference.

[42] Hesham A. Rakha, Kyoungho Ahn, and Kevin Moran. 2012. INTEGRATION framework for modeling eco-routing

strategies: Logic and preliminary results. International Journal of Transportation Science and Technology 1, 3 (2012),

259–274. DOI:https://doi.org/10.1260/2046-0430.1.3.259

[43] Marta Rojo. 2020. Evaluation of traffic assignment models through simulation. Sustainability 12, 14 (2020), 5536.

[44] RoutingKit. 2019. Retrieved January 28, 2019 from https://github.com/RoutingKit/RoutingKit.

[45] SFCTA. 2019. SF-CHAMP 6.1: ConnectSF Needs Assessment 2015 Base Year Model Run. Technical Report. San Francisco

County Transportation Authority.

[46] Colin Sheppard, Rashid Waraich, Andrew Campbell, Alexei Pozdnukov, and Anand R. Gopal. 2017. Modeling Plug-

in Electric Vehicle Charging Demand with BEAM: The Framework for Behavior Energy Autonomy Mobility. Technical

Report 1398472. 1398472 pages. DOI:https://doi.org/10.2172/1398472

[47] Statista. 2021. People who use their Cell Phone for maps/GPS Navigation in the U.S. 2018, by age. Retrieved from https:

//www.statista.com/statistics/231615/people-who-use-their-cell-phone-for-maps-gps-navigation-usa/. Accessed 1

November 2022.

[48] Sunil Thulasidasan and Stephan Eidenbenz. 2009. Accelerating traffic microsimulations: A parallel discrete-event

queue-based approach for speed and scale. In Proceedings of the 2009 Winter Simulation Conference. IEEE, 2457–

2466.

[49] Ying-Tsu Tseng and Huei-Wen Ferng. 2021. An improved traffic rerouting strategy using real-time traffic information

and decisive weights. IEEE Transactions on Vehicular Technology 70, 10 (2021), 9741–9751.

[50] Uber. 2021. Uber Movement: Let’s Find Smarter Ways Forward, Together. Retrieved from https://movement.uber.com/

cities/san_francisco/downloads/speeds. Accessed 1 November 2022.

[51] Juliette Ugirumurera, Gabriel Gomes, Emily Porter, Xiaoye S. Li, and Alexandre M. Bayen. 2018. A unified software

framework to enable solution of traffic assignment problems at extreme scale. In Proceeding of the 21st International

Conference on Intelligent Transportation Systems (ITSC’18). 3917–3922.

[52] Chaojie Wang, Srinivas Peeta, and Jian Wang. 2021. Incentive-based decentralized routing for connected and au-

tonomous vehicles using information propagation. Transportation Research Part B: Methodological 149, 0191-2615

(2021), 138–161.

[53] Dali Wei, Feng Chen, and Xinxin Sun. 2010. An improved road network partition algorithm for parallel microscopic

traffic simulation. In Proceedings of the 2010 International Conference on Mechanic Automation and Control Engineering.

IEEE, 2777–2782.

[54] Yadong Xu, Wentong Cai, Heiko Aydt, and Michael Lees. 2014. Efficient graph-based dynamic load-balancing for

parallel large-scale agent-based traffic simulation. In Proceedings of the Winter Simulation Conference 2014. IEEE, 3483–

3494.

[55] Yadong Xu, Wentong Cai, Heiko Aydt, Michael Lees, and Daniel Zehe. 2017. Relaxing synchronization in parallel

agent-based road traffic simulation. ACM Transactions on Modeling and Computer Simulation 27, 2 (2017), 1–24.

[56] Pavan Yedavalli, Krishna Kumar, and Paul Waddell. 2021. Microsimulation analysis for network traffic assignment

(MANTA) at metropolitan-scale for agile transportation planning. Transportmetrica A: Transport Science 18, 3 (2022),

1278–1299.

ACM Transactions on Modeling and Computer Simulation, Vol. 33, No. 1-2, Article 7. Publication date: February 2023.

https://themanifest.com/mobile-apps/popularity-google-maps-trends-navigation-apps-2018
https://www.matsim.org/
http://www.nersc.gov/users/computational-systems/cori/configuration/
https://doi.org/10.1109/WSC.2006.322919
https://doi.org/10.1260/2046-0430.1.3.259
https://github.com/RoutingKit/RoutingKit
https://doi.org/10.2172/1398472
https://www.statista.com/statistics/231615/people-who-use-their-cell-phone-for-maps-gps-navigation-usa/
https://movement.uber.com/cities/san_francisco/downloads/speeds

Simulating the Impact of Dynamic Rerouting on Metropolitan-scale Traffic Systems 7:29

[57] Srikanth B. Yoginath and Kalyan S. Perumalla. 2009. Reversible discrete event formulation and optimistic paral-

lel execution of vehicular traffic models. International Journal of Simulation and Process Modelling 5, 2 (2009), 104.

DOI:https://doi.org/10.1504/IJSPM.2009.028624

[58] Xiaomei Zhao, Chunhua Wan, Huijun Sun, Dongfan Xie, and Ziyou Gao. 2017. Dynamic rerouting behavior and its

impact on dynamic traffic patterns. IEEE Transactions on Intelligent Transportation Systems 18, 10 (2017), 2763–2779.

DOI:https://doi.org/10.1109/TITS.2017.2655550

Received 4 May 2022; revised 28 November 2022; accepted 2 January 2023

ACM Transactions on Modeling and Computer Simulation, Vol. 33, No. 1-2, Article 7. Publication date: February 2023.

https://doi.org/10.1504/IJSPM.2009.028624
https://doi.org/10.1109/TITS.2017.2655550

