
UC San Diego
UC San Diego Electronic Theses and Dissertations

Title
A Prototype for Text Input in Virtual Reality with a Swype-like Process Using a Hand-tracking
Device

Permalink
https://escholarship.org/uc/item/43r3t7m8

Author
Jimenez, Janis Gisel

Publication Date
2017

Supplemental Material
https://escholarship.org/uc/item/43r3t7m8#supplemental

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/43r3t7m8
https://escholarship.org/uc/item/43r3t7m8#supplemental
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA, SAN DIEGO

A Prototype for Text Input in Virtual Reality with a Swype-like Process Using a
Hand-tracking Device

A thesis submitted in partial satisfaction of the
requirements for the degree

Master of Science

in

Computer Science

by

Janis Gisel Jimenez

Committee in charge:

Jurgen Schulze, Chair
Ravi Ramamoorthi
Nadir Weibel

2017

Copyright

Janis Gisel Jimenez, 2017

All rights reserved.

The thesis of Janis Gisel Jimenez is approved, and it is ac-

ceptable in quality and form for publication on microfilm and

electronically:

Chair

University of California, San Diego

2017

iii

TABLE OF CONTENTS

Signature Page . iii

Table of Contents . iv

List of Images . v

List of Supplementary Files . vi

Abstract of the Thesis . vii

Chapter 1 Introduction to Virtual Reality 1

Chapter 2 Related Work in VR Text Input 5

Chapter 3 Backend . 10

Chapter 4 User Interface . 16

Chapter 5 Issues . 21

Chapter 6 Conclusion and Future Work . 25

Bibliography . 26

iv

LIST OF IMAGES

Image 1.1: A picture of the Sword of Damocles head mounted display. 2
Image 1.2: A picture of Nintendo‘s Virtual Boy console. 4
Image 1.3: A picture of the Oculus Rift headset and optional Touch controllers. 4

Image 2.1: A VR demo using a physical keyboard with the LEAP Motion Con-
troller. 7

Image 2.2: A VR demo with a 3D keyboard and hand motion tracking where the
user must press down each key. 7

Image 2.3: A VR demo with an upright 3D keyboard and hand motion tracking,
which tracks key hovering rather than key pressing. 9

Image 2.4: A non-VR demo with Swype and hand motion tracking on an Android
keyboard. 9

Image 3.1: The Oculus Rift DK2 headset with the LEAP Motion Controller
attached. 11

Image 3.2: An example of a BK-tree sorted by the Levenshtein Distance between
the words. 13

Image 3.3: Two matrices showing the Levenshtein Distances between the sub-
strings of “kitten” and “sitting” on the left, and “Saturday” and
“Sunday” on the right. 15

Image 4.1: A screenshot of “gaze” mode showing the letters keyboard. The user
is typing out, “This is my thesis project!” 18

Image 4.2: A screenshot of “gaze” mode showing the symbols keyboard. 18
Image 4.3: A screenshot of “pointer” mode. 20

v

LIST OF SUPPLEMENTARY FILES

File 3.1: oculus leap keyboard.zip . 15

vi

ABSTRACT OF THE THESIS

A Prototype for Text Input in Virtual Reality with a Swype-like Process Using a
Hand-tracking Device

by

Janis Gisel Jimenez

Master of Science in Computer Science

University of California, San Diego, 2017

Jurgen Schulze, Chair

Text input in virtual reality (VR) is a problem that does not currently have a

widely accepted standard method. As VR headsets have become more commonplace,

text input has also become more of a need. Using a physical keyboard is not possible

with a head-mounted display that blocks the user’s visual field. The two most popular

solutions for text input in VR today are a virtual keyboard interfacing with VR controllers

and voice recognition. However, they either require a handheld controller or a quiet

environment. 3D-tracked controllers with a virtual keyboard can simulate a real keyboard

to an extent, but they suffer from a lack of tactile feedback that makes typing slow and

vii

unintuitive. A more intuitive solution is a Swype or SwiftKey-like algorithm, where the

path that the user‘s finger travels is used as input, as opposed to individually pressing

each key. I have implemented a prototype with the Oculus Rift and the LEAP Motion

Controller that combines a novel Swype-like backend with hand gestures to demonstrate

an all-purpose, intuitive method of text input. To compare it to state-of-the-art VR

keyboard input, I implemented the virtual keyboard approach for hand-directed typing

and head gaze typing.

viii

Chapter 1

Introduction to Virtual Reality

Virtual reality is still a relatively new technology, but it organically grew from

advancements in other fields. Even back in the 19th and early 20th centuries, the visual

trickery that would eventually make VR a reality was already gaining traction in the

early 1800s, as stereoscopy became popular [Unk96]. Stereoscopes, which resembled

binoculars, worked by inserting two pictures (taken from slightly different angles) in

such a way that each eye could only see one of the pictures. This created the illusion of

3D.

However, there was no way to gauge user input. Virtual reality‘s inspiration for

user input came from a variety of fields, including the creation of flight simulators like the

Link Trainers first constructed in the late 1920s [Low15]. These systems were utilized

by the army to train pilots, using eye tracking and “force-feedback joysticks” to immerse

them in the scenes painted in front of their test cockpit (which in later years, eventually

incorporated film). The push to make better, more accurate simulators also catapulted

computer graphics research forward. The two fields finally met in 1968 with the creation

of the Sword of Damocles [Axw16]. This was the first headset to hook up to a computer,

though it had to hang down from the ceiling in order to support its weight. It only showed

1

2

wireframes of basic shapes, but it was a step towards the virtual reality we know today at

a time when the phrase “virtual reality” had not been popularized. It wasn‘t until 1987

that the phrase was coined in order to describe the controllers the Visual Programming

lab was creating, such as their VR goggles and gloves [Cra16]. Still, the tech was very

expensive and largely remained exclusive to research labs and enthusiasts until the 1990s.

Image 1.1: A picture of the Sword of Damocles head mounted display.

In the 1990s, video game companies attempted to introduce VR to the consumer

market, but their results were less than stellar. In 1993, SEGA revealed that they were

developing a VR headset made for the Sega Genesis game console, but they had a number

of critical production difficulties never prevented them from ever releasing the device.

Nintendo was able to release the Virtual Boy in 1995, but it was a fairly uncomfortable

system to play. It had to be placed on a stable chest-high surface [Kol08], and it could

only display red and black, leading to eye strain if played for an extended amount of time.

The headset was discontinued after only one year.

Skipping forward to 2011, there were still no major competitors in virtual reality.

But the following year, Palmer Luckey launched a wildly successful Kickstarter to create

the Oculus Rift [Luc12]. What started as a practical plan to make a few headsets for VR

enthusiasts became the founding of a new company, which was later bought by Facebook.

A consumer version of the Rift came out in March 2016, and by then, competitors had

already made their own headsets to compete with it head-on.

3

Currently, VR is finally gaining traction in the consumer market as more com-

panies release their own custom headsets, like the HTC Vive, Playstation VR, and the

Gear VR, to name a few. Many consumers are barely buying their first headset, and

more companies are rushing to beat out the market for the cheapest, lightest, or most

user-friendly headset. Now that we have the hardware to work with, the next step will

be to refine the software used for VR so that users can incorporate their headset in their

daily lives.

4

Image 1.2: A picture of Nintendo‘s Virtual Boy console. [Edw15]

Image 1.3: A picture of the Oculus Rift headset and optional Touch controllers. [Ocu17]

Chapter 2

Related Work in VR Text Input

The main barrier to finding a comfortable and reliable way of taking in text input

is the fact that virtual reality headsets block the user‘s vision. Some headsets are add-ons

to existing hardware, so they have limited to no options for text input when they are being

used in VR mode. This means they might not even come with a controller, choosing

instead to rely on gaze selection (looking at a specific spot long enough to select it) along

with any buttons that are already on the headset itself. A good example of this would be

the Gear VR, which has circumvented the need for a controller with its voice recognition

feature (currently in beta) [Alv15].

Those who do have a pre-existing controller follow the Playstation VR‘s example.

Their solution is to use either the controllers that are already being used for the Playstation

4 or their Playstation Move motion controllers. Their system for typing messages is

therefore the same as it is has been for most consoles: with a controller, the user uses

the thumbstick (or touchpad) to slide over to the letter they want. With motion controls,

the controller itself becomes a cursor in 2D space that the user moves over to the desired

letter. Each letter must be individually confirmed with the push of a button [Shu16].

Since these headsets are mainly for playing video games, there is no pressing

5

6

demand to accommodate for text input, especially when the user has ways to input text

on the existing system with their headset off. However, there is a growing demand when

it comes to staying connected to one‘s phone while in VR. Some headsets allow the user

to connect their phone through Bluetooth (or the headset display is their phone). The

HTC Vive, for example, allows the user to see text messages sent by their contacts and

call them with the built-in mic. If it‘s Vive for Android, the user can also send “Quick

Replies“, which are pre-made messages [Rob16]. Generally, the user is expected to take

off their VR headset to type a custom message.

For headsets hooked up to a computer, the straightforward solution is to use the

keyboard. But again, these headsets completely block the user‘s vision. The Oculus Rift,

HTC Vive, and Playstation VR all prefer to use their own controllers because they will

always be in the user‘s hand. This mostly removes the issue of having to grope around

in the dark for the right button once the user becomes familiar with the controller‘s

button layout, and allows them to move around instead of having to sit at their desk.

However, there are some independent projects that accepted this constraint and have

made prototypes involving a physical keyboard. One project created a 3D replica of their

keyboard and used the LEAP Motion controller to track where their hands are, so the

user can see both their hands and the keyboard through their VR headset [Sle14]. It is an

ideal solution when sitting in one‘s office and it is easy to learn, which will result in a

fairly high word-per-minute performance compared to the one-letter-at-a-time input of

most controllers, but not for general use.

In lieu of having to use a physical keyboard, some have opted to use a digital

one. A big hurdle that this option has to overcome is the lack of tactile feedback, because

there is no tangible controller to assure the user that their input was received. If there

is no physical surface to press against, how can the user intuitively know when they are

pressing something? For some, the solution is to create hardware that can simulate that

7

Image 2.1: A demo using a physical keyboard and hand motion tracking. [Sle14]

Image 2.2: A demo with a 3D keyboard and hand motion tracking where the user must
press down each key. [Cor16]

feedback. A group of engineering students from Rice University created special gloves

that use “bladders” that expand and contract to simulate the sensation of touch in VR

[Wil15]. However, it is still in the prototype phase, so how well it performs with a 3D

keyboard remains to be seen.

Some have made prototypes that provide ample visual and audio feedback to try

to make up for the lack of tactile feedback. Students and VR enthusiasts have created

8

a variety of virtual keyboard designs that can interact with hand-tracking sensors (such

as the LEAP Motion Controller or the Kinect): One has the appearance of a regular

QWERTY keyboard on a mostly flat surface, with keys that move down as the user‘s

fingers press them [Cor16]. Another has the keyboard directly facing the user, with

keys lighting up and making a clicking sound when the user‘s finger is near enough to

them [Wre14]. Some may also add in a “hover” check, where the user keeps their finger

pressed on a key for a short amount of time to confirm that it is the desired key [Kin15].

These projects do free up the user‘s hands by not requiring a controller, but the lack of

tactile feedback and the imperfect tracking mechanisms of the sensors make typing slow

and error-prone.

There are other ways to type on a virtual keyboard, however. The difficulty in

selecting keys partially stems from a depth-sensing issue, so a good way to circumvent

this is to not rely on depth at all. Some keyboards rely exclusively on the aforementioned

“hover” check. This is how the Myo armband, a motion control device, allows the user to

search the web [Myo16]. But there is still a more efficient way that does not force the

user to wait for every letter they want to type.

The Swype method of typing also does not need depth to work [Swy17]. On a

phone, typing with Swype works as follows: the user places their finger on the first letter

of the word, then drags their finger to each required letter without stopping. They only

lift up their finger once the word is finished. Swype will then guess what word they were

typing. If it guesses wrong, multiple auto-complete options would be available to choose

from. A phone knows when to start and stop tracking input by sensing when the user‘s

finger is touching the screen, but in VR, it could be controlled by a button on the headset

or a hand gesture. There have been tests using the LEAP Motion with a Swype keyboard

[Zug13], and there have been rumors of Swype looking into virtual reality [Seg11], but

no big competitor has implemented this yet. So for my prototype, I chose to make a VR

9

Image 2.3: A VR demo with an upright 3D keyboard and hand motion tracking, which
tracks key hovering rather than key pressing. [Kin15]

Image 2.4: A non-VR demo with Swype and hand motion tracking on an Android
keyboard. [Zug13]

demo with hand tracking and a 3D keyboard like the examples mentioned above, but

I combined it with a Swype-like method of text input to demonstrate how this method

works in virtual reality.

Chapter 3

Backend

The prototype was created in Unity version 5.5.1f3 and written in C#. When

deciding between Unity or Unreal Engine, two of the most popular game development

platforms with VR compatibility, I chose Unity for a number of reasons. A large majority

of developers use Unity instead of Unreal because of how quickly they can create a

prototype [Jag16]. Many of the projects mentioned in the Related Work section used

Unity to develop their prototypes. It was also the most convenient for me because I

already have a few years of experience creating video game prototypes with Unity, so it

was easy to pick up.

While there are many commercially available headsets, I focused on choosing a

headset that is widely used and compatible with game-developing programs. I used a

fairly high-end desktop, so I went with a PC-based headset. The Oculus Rift and HTC

Vive are two of the most popular PC-based headsets, and are compatible with a variety of

devices. Unity is mainly compatible with the Oculus Rift, Gear VR, the HTC Vive, and

the HoloLens, though it continues to add support for more types of headsets [Uni17]. A

DK2 headset was readily available, so I went with Oculus, though Unity should have the

appropriate settings for this prototype work with the HTC Vive as well.

10

11

As for a hand-tracking device, the two main competitors in use are the LEAP

Motion Controller and the second-generation Kinect (because the first-generation Kinect

can’t keep track of individual fingers). Both are compatible with the Oculus Rift, but the

library that the LEAP Motion Controller comes with is much easier to work with when it

comes to tracking individual fingers, while the Kinect V2 requires finding a third-party

library or algorithm [Pte16]. The camera placement is also more convenient since it is

placed directly onto the headset, so I ultimately chose the LEAP Motion Controller. The

LEAP Motion SDK version for this project is 2.3.1.

I developed this on a Windows 10 operating system (OS). Besides the fact

that it was readily available, it is the recommended OS by Oculus because they have

stopped development on OS X and Linux for the time being [Bin15]. The LEAP Motion

Controller SDK is also only available for Windows and Android [Mot17a].

Image 3.1: The Oculus Rift DK2 headset with the LEAP Motion Controller attached.
[Mot17b]

For the “Swype-like” algorithm, Swype, Swiftkey, and Google Keyboard have

no publicly available source code online, though Android phones automatically have a

Swype keyboard. However, the Android keyboard has a limited API to work with that is

12

targeted towards touchscreens, and is quite difficult to interact with through scripting, so

I decided against directly using this keyboard and instead made my own keyboard with

Unity UI. There are many alternative open source projects available online, but I felt it

was prudent to make my own. Most if not all lack the complexity that the commercial

apps have under the hood, and my own backend would be easier to debug and build

upon. For my prototype, I focused on creating an intuitive, responsive keyboard and

determining effective criteria for filtering user input in the front-end and a fast, accurate

way to compare a given word to a dictionary and auto-correct it on the back-end.

First, I needed a way to store words into a data structure that could be built and

traversed in polynomial time. A hash table has quick O(1) access, but searching for

the right word could lead to O(n) search time, which would be ill-advised for a large

dictionary. Instead, I mainly looked at a ternary trie and a BK tree. Both essentually have

O(logn) search time, so I looked at how the words were organized in each structure. A

ternary trie has a structure similar to both Binary Search Trees and Tries. Like a trie, it

would store words character-by-character, requiring w nodes for a word of length w. A

trie, however, would have all 26 letters as its children at every letter, so it would be very

space-inefficient with a large dictionary. Instead, a ternary trie is more like a binary tree,

but with up to three children at every level instead of two. The left child has a value less

than the current node, and the right child has a value greater than it. The middle child is

for a node with a value that lies between the two other children.

The main issue with this structure was that it was suited more for spell-checking

and auto-complete, not auto-correct. The first two rely on a sequential procedure, while

auto-correct has to cover many more cases. When a user types a word, they could

accidentally transpose two letters, or forget a letter in the middle of the word. They could

even do this multiple times within the same word. A ternary trie orders the letters of

words sequentially, though it can store a “distance” that would allow it to compare just

13

how different two words are from each other. With some tolerance to check against, it

could still traverse the data structure and find all words that fit with in the tolerance, but

this means that it would have to compare every substring it finds in its path, not just every

word.

I ultimately went with creating a BK-tree [Joh07] [Xen13], a tree structure

proposed by Burkhard and Keller that relies on sorting words by the distance between

them. This means that each node is a word, not a letter. First, it picks an arbitrary node as

its root. Then, to add a node, it finds the distance between new node and the root of the

tree. It then traverses its children until it finds another node that has the same distance. If

it does, then it traverses that node‘s children, and continues doing so recursively until

it cannot find a node with the same distance. When it reaches this point, the new node

is added as a child to the node it stopped on. Building the tree takes about O(nlogn): it

takes O(logn) to place a single node into the tree, and it places O(n) nodes.

Image 3.2: An example of a BK-tree sorted by the Levenshtein Distance between the
words. [Xen13]

The distance used by the BK-tree is the “Levenshtein Distance,” [Wik17b] a

number representing how many changes need to be done to a word (deletions, insertions,

or mismatched letters) in order to turn it into another word. I relied on this metric because

it is a simple, discrete way to keep track of differences between strings that is commonly

utilized for a BK-tree (and is sometimes used in ternary tries as well). For example, to

14

change the word “cat” to “gate”, the ‘c’ must be changed to a ‘g’ and an ‘e’ must be

added to the end. Two changes must be made, so the distance between “cat” and “gate”

is 2. The Levenshtein Distance code works by maintaining a matrix of integers holding

the distance between substrings of the two words. It iterates through both words, letter

by letter, and adds 1 to the count in the current index. Once it finishes iterating, it returns

the value at the last index.

The original Levenshtein Distance equation does not take transpositions into

account (“cat” and “chat” would have a distance of 3 without transpositions, and 1 with

transpositions), so I coded in the transposition check made by the Damerau-Levenshtein

Distance version [Wik17a]. In addition to this, I added an extra check: a “keyboard

neighbors” check. When typing, it is not uncommon for the user to accidentally choose a

letter neighboring the letter they actually wanted. To account for this, I have a dictionary

storing the surrounding neighbors for every letter and symbol on the keyboard. Each

time it makes a comparison between the two words, it will check if the two letters are

neighbors of each other. If so, it will add 1 to the distance; otherwise, it will add 2. To

balance this change, every increment that is not between two neighboring letters will be

doubled. This means that each deletion, insertion, and non-neighbor mismatch will add 2

to the distance instead of 1.

The next step is using the tree to come up with auto-correct candidates. Once the

user has finished typing a word, it traverses the tree to find candidates within a certain

tolerance threshold. This O(logn) search process is as follows: it starts with a queue

containing the root of the tree and finds the distance between the new word and the root

word. If it falls within the tolerance threshold, it is added to a list of possible auto-correct

candidates. Then it looks through its children and adds them to the queue if they fall

between the range of the previously calculated distance plus or minus the tolerance. The

current node is then dequeued and the process loops until nothing is left in the queue.

15

Image 3.3: Two matrices showing the Levenshtein Distances between the substrings of
“kitten” and “sitting” on the left, and “Saturday” and “Sunday” on the right. [Wik17b]

The list of candidates is sorted by lowest to highest distance to the new word. The first

three words in the list are then displayed in the scene as possible candidates that the

user can select to correct the word they just typed. The results are then passed on to the

front-end logic, which will then display the results to the user.

File 3.1: The Unity prototype is available on ProQuest as a supplementary zip file.

Chapter 4

User Interface

After looking through some demos online, I decided to build off of the “Unitys

UI System in VR” demo and tutorial provided online from the Oculus site [Bor15]. The

main component that was crucial to this prototype was their gaze pointing code, which

has a cursor directly in the middle of the screen that follows the user‘s head motions.

It provided a reliable backend for interacting with Unity‘s user interface (UI) with a

cursor. I combined this with the LEAP Motion Controller in two different ways: camera

“gaze” mode and finger “pointer” mode. In “gaze” mode, the cursor is still tied to head

movement, while in “pointer” mode, the cursor is controlled by the pointer finger of

the right hand. Both modes are augmented by hand gestures, which control keyboard

interactions. There is also a third mode called “one-letter”, which will turn off the Swype

aspect of either mode and only take in one letter at a time. Note that here, when a button

is “pressed”, it means the user made the appropriate gesture while the cursor is above

that button.

The LEAP Motion Controller SDK provides multiple default hand models. I

chose the wire hand models because the colors make it easy to know which hand the

computer considers “left” or “right” at any point. The wire model also blocks less of the

16

17

user’s view, which makes it easier to see the rest of the scene.

The scene is a flat 2D keyboard panel in world space made with Unity‘s UI that

has the same basic layout as a typical phone keyboard, mainly so that most users will

already be familiar with the layout. It has the default ABC mode, and a SYM mode with

some basic symbols. To the left of the keyboard is the text box panel where the user‘s

text is displayed. The backspace key will delete the rightmost letter that has been typed

into the text box if pressed. Note that if the shift key is pressed, then all subsequent words

typed by the user (if not in “one-letter” mode) will be capitalized until it is pressed again.

If the user is in “one-letter” mode, then every subsequent letter typed by the user will

be capitalized until it is pressed again. Above these two panels is the auto-correct panel,

which will update with the recommended auto-correct candidates. It also has buttons that

the user can press to switch between the different modes, and a “Clear” button that will

erase all the text in the text box panel when pressed.

I put the keyboard in World Space mainly due to the resulting size of my keyboard

and text box. If I shrank the keyboard more, it became difficult to see the individual

keys, and putting it in Screen Space would have forced it to this size so that the whole UI

component would be visible. Although the text box panel would technically be on top of

the keyboard in a typical Android keyboard layout, I placed it to the side of the keyboard

to give the keyboard center stage in the scene, rather than push it towards the bottom.

The spacing between the keys also imitates the Android Samsung S7 phone layout I was

using as a reference, but it was also so that it would be harder for the user to swipe over a

letter they didn’t intend to include, due to the large size of the cursor.

The cursor itself was taken from the Oculus demo and repainted to match the

colors of the scene. The size of the cursor is different depending on the mode the user

is in. In gaze mode, the cursor is the same size as what the demo provided because it

doesn’t get in the way of the background but is also big enough to see. The circle shape

18

Image 4.1: A screenshot of “gaze” mode showing the letters keyboard. The user is
typing out “This is my thesis project!”

Image 4.2: A screenshot of “gaze” mode showing the symbols keyboard.

with a hole in the center is also useful because the letter will be visible in the center

when the user is hovering over it instead of blocking it. Pointer mode, however, slightly

increases the size of the cursor, as seen in image 4.3. This is because pointer mode is

harder to control and jitters a bit, so the larger cursor size helps to stabilize it.

The Oculus demo handles the logic behind how the cursor knows what button it

is hovering over. Originally I had tried using 2D collisions between the colliders of the

cursor and the keyboard buttons, but there was a peculiar invisible offset that the collider

boundaries would not show, which skewed the input the keyboard received. The demo‘s

19

logic instead relies on casting a ray away from the camera towards the scene and keeping

track of what it collides with.

Below the keyboard is some text kept for the purpose of debugging. The top

left text states whether it correctly knows that the user is pinching or not. If the user is

pinching, it will say “Debug: pinching!”, otherwise it will say “Debug: not pinching”.

The text on the right keeps track of the user‘s speed. The threshold for what is considered

fast or slow is currently determined by a hard-coded number in the code, so it will say

“Speed: SLOW” if at or below that speed, and “Speed: FAST” otherwise. The bottom

left text object states what the current mode is. At startup, the default mode is gaze, so

the text will say “Current Mode: GAZE”.

The main gesture used in this project is the “pinch” gesture. This gesture was

chosen because most of the other gestures were removed by the Orion update to LEAP

Motion to be reworked. The “pinch” gesture is actually a short method that checks if each

finger is bent or not. If all five fingers are bent, then the hand is “pinching,” otherwise it

is not. When the left hand does a pinch gesture, the cursor will start reading in the letters

it is directly hovering over. It will keep doing this until the left hand stops pinching. At

that point, it will add the word to the text box, then calculate and display the possible

auto-correct candidates. If it is in “one-letter” mode for either of these options, then

instead the user will type one letter at a time. They can go to the desired letter, make the

pinching gesture with their left hand, then stop pinching and it will add that letter to the

text box panel.

As for the amount of auto-correct candidates, the Android phone also has three

candidates. I attempted adding more, but that meant shrinking the buttons. Sometimes the

length of the word would extend past the button, and shrinking the font made it difficult

to read the word. It would be possible to comfortably add more if the UI panels were

stretched out more to the sides, but I kept it at three to maintain the current layout style.

20

If the cursor just took in every letter that the user hovered over, it would be

difficult to make out any comprehensible word, so there had to be a restriction on what

letters were included in the final word. I had at first tried to weight the letters using a

combination of velocity checking and the change in direction. Basically, as the cursor is

moving, it would constantly update the current velocity of the cursor. Every few frames,

it would create a vector in the direction it‘s currently facing. When it reached a letter,

if the velocity was below a certain number, it would compare the current vector to the

previous vector it calculated to find the change in angle. This angle would be used to

give the letter a ‘weight,’ and only letters above a certain weight would be included in

the final word. The rest would be handled by the auto-correct.

Image 4.3: A screenshot of “pointer” mode.

In practice, however, the change in angle did not seem to follow the desired

behavior, and I instead decided to simplify so it would only do a velocity check. When

the user is going across the letters, all of them are added to the word, but they have a

negative weight. If the user slows down on a letter below some threshold, the letter‘s

weight is updated to a positive value. Once the user stops making a pinching gesture, all

the letters that have a non-negative weight are added to the final word and returned.

Chapter 5

Issues

Since this is a simpler prototype, there are several areas where it could benefit

from further improvements. Hardware-wise, using a CV1 Oculus Rift headset for this

project would be better than the DK2 headset I used. The DK2 was the best choice at the

time, but at this point it is no longer supported, so any more recent updates made to the

Oculus have resulted in strange intermittent problems. The DK2 must be able to connect

to “Unknown Sources” to work with Unity, and has the habit of going dark without

warning during play. Sometimes it even reverses the left and right screens, making it

unusable until the demo is stopped and restarted. Concerning my own prototype, one

major issue is how unstable and shaky the cursor is when in the second mode (using the

right hand). This is due to the cursor‘s dependency on the movement of the head, and

the shorter distance between the pointer finger and cursor (compared to the camera and

cursor). Smoothing out the movement would likely improve the speed and accuracy of

this mode.

Concerning the code, the most troublesome part would have to be the auto-correct.

While it does contain the desired word most of the time, my UI only displays the first

three results, weighted by distance. If there are more than three words that have the

21

22

same distance, there‘s a chance the desired word will not be displayed as one of the

three options. For earlier tests, I used a small dictionary of a few hundred words to

catch any larger-scale bugs that could appear. Then I switched over to a much larger

dictionary, which is directly from Linux 14.04‘s dictionary file. Suddenly, the auto-

correct‘s accuracy dropped significantly because there were many more words that fell

into the same Levenshtein Distance tolerance. I attempted to fix this using two different

approaches, and neither one passed what I called a “hello” test. This simply means that

the user types out the word “hello” using the Swype-like method and looks at the three

candidates that show up.

I chose the word “hello” because it is a fairly common word that has double letters

in it. duplicate letters cannot currently be typed out with this prototype. I considered

adding in a gesture that would indicate that a letter would be counted twice, but the

more natural solution is that the autocorrect should be smart enough to account for it. So

instead, I have a test for local repeats that decreases the overall distance by one for every

immediate double found in the word (i.e. the two t‘s in “potted” count, but not the ones

in “potato”). This could have unintended consequences on the calculated Levenshtein

distances, however.

The first approach I wrote was to sort the candidates by their levenshtein distance

to the user’s typed word. Those with the lowest Levenshtein distance would be at the

front of the list. However, other words like “hell,” “well,” and “bell” would show up first

simply because they were found as candidates before “hello” was found, and they have

the same Levenshtein distance. Then I instead used a 5,000 word frequency dictionary

from a word frequency site [Fre17] and sorted the words by frequency. Even then, words

like “well”, “tell”, and “help” would come first because they were considered more

frequent than “hello”. Even sorting by both methods combined would not be enough.

Note that in both of these cases, “hello” is correctly found as a candidate, but it does not

23

reach the criteria to make it to the front of the list. The ideal solution would be to train it

on user input so that it would learn what words are more commonly typed and offer more

accurate suggestions, but I did not have the time to implement this.

In the back-end chapter, I mentioned that when calculating the Levenshtein

Distance, it would check if the two compared letters were neighbors on the keybord. This

“keyboard neighbors” dictionary stores the neighbors of letters as they appear in a typical

Android keyboard, but any other keyboard would have to manually change this because

the entries are all hard-coded strings of characters.

It is also missing some symbols that usually come with phone keyboards (curly

braces and the tilde, to name a few). My current dictionary was filtered to leave out any

umlauts, accent marks, and so on for the sake of simplicity. It also uses case-insensitive

matching when calculating Levenshtein distance.

Concerning speed, the prototype would rarely experience low framerates except

when I would purposely cause it to slow down and print out debug output. The one

exception is when I used the Linux dictionary file, which contains around 99,000 rows of

words. It would take around 6 seconds at start-up to build the dictionary, freezing the

program until it finished. Perhaps multithreading this in some way, along with having a

smaller dictionary of the most common words so the user can start typing immediately,

could alleviate this drop in performance. After startup, however, searches were still fast

and there were no significant framerate drops.

Other than the somewhat unreliable auto-correct performance, another issue that

keeps it from truly imitating Swype is the fact that it weights letters by speed. If a user

does not slow down for a few milliseconds at each letter, the program might not include

that letter in the final word. At that point, it starts to resemble a “hover” technique more

than Swype. It is still more efficient, because the waiting times for most hover-based

programs is still much longer, but the user cannot simply remain at the same fast speed

24

the entire time and still obtain their desired word, so balancing the speed check with

other factors would be critical.

Chapter 6

Conclusion and Future Work

For this project, I was able to create a prototype utilizing a Swype-like algorithm

in virtual reality using a hand-tracking device to simulate typing on a 3D keyboard. I

implemented both a gaze-based and a finger-based cursor control, and included a single-

letter mode to compare with the Swype-like mode. A useful next step for this project

would be to hook up the UI from thie project to the official Swype or Swiftkey backend

and then test its performance. This project has several shortcomings that cannot quite

measure up to a polished, widely-used back-end that has been optimized through several

iterations, so having access to something more stable would be ideal.

If the current prototype back-end code was kept, the auto-correct would have to be

greatly improved. As mentioned in the Issues chapter, training it on user input would be a

great way to teach it to display more accurate suggestions. As for the hand-tracking, one

way to enhance it would be to combine it with a controller with built-in haptic feedback,

like the Hands Omni gloves from Rice University that inflate “bladders” [Wil15], or the

GloveOne gloves that use vibrations [Glo15]. While my approach sidesteps the need for

haptic feedback, it would be useful to test the Swype approach in VR with an experience

that better resembles the sensation of using Swype on one’s phone.

25

Bibliography

[Alv15] Edgar Alvarez. Samsung made a web browser for the gear vr. https://www.
engadget.com/2015/12/01/samsung-internet-for-gear-vr/, 2015.
Engadget, Accessed: 2017-02-20.

[Axw16] Jon Axworthy. The origins of virtual reality. https://www.wareable.com/
wearable-tech/origins-of-virtual-reality-2535, 2016. Wareable,
Accessed: 2017-02-22.

[Bin15] Atman Binstock. Powering the rift. https://www3.oculus.com/en-us/
blog/powering-the-rift/, 2015. Oculus Blog, Accessed: 2017-03-15.

[Bor15] Andy Borrell. Unity‘s ui system in vr. https://developer3.oculus.com/
blog/unitys-ui-system-in-vr/, 2015. Oculus VR, Accessed: 2016-08-
15.

[Cor16] Joshua Corvinus. Vr hex keyboard using leap motion. https://www.
youtube.com/watch?v=ZERwYJVZOgk, 2016. Youtube, Accessed: 2017-
02-20.

[Cra16] CrashCourse. The future of virtual reality: Crash course games. https:
//www.youtube.com/watch?v=BfcBjJ3c9lg, 2016. PBS Digital Studios,
Accessed: 2017-02-15.

[Edw15] Benj Edwards. Unraveling the enigma of nintendo‘s virtual
boy, 20 years later. https://www.fastcompany.com/3050016/
unraveling-the-enigma-of-nintendos-virtual-boy-20-years-later,
2015. Fast Company, Accessed: 2017-03-1.

[Fre17] Word Frequency. Corpus of contemporary american english. http://www.
wordfrequency.info, 2017. Word Frequency data, Accessed: 2017-03-07.

[Glo15] GloveOne. Gloveone: Feel virtual reality. https://www.kickstarter.com/
projects/gloveone/gloveone-feel-virtual-reality, 2015. Kick-
starter, Accessed: 2017-03-15.

26

https://www.engadget.com/2015/12/01/samsung-internet-for-gear-vr/
https://www.engadget.com/2015/12/01/samsung-internet-for-gear-vr/
https://www.wareable.com/wearable-tech/origins-of-virtual-reality-2535
https://www.wareable.com/wearable-tech/origins-of-virtual-reality-2535
https://www3.oculus.com/en-us/blog/powering-the-rift/
https://www3.oculus.com/en-us/blog/powering-the-rift/
https://developer3.oculus.com/blog/unitys-ui-system-in-vr/
https://developer3.oculus.com/blog/unitys-ui-system-in-vr/
https://www.youtube.com/watch?v=ZERwYJVZOgk
https://www.youtube.com/watch?v=ZERwYJVZOgk
https://www.youtube.com/watch?v=BfcBjJ3c9lg
https://www.youtube.com/watch?v=BfcBjJ3c9lg
https://www.fastcompany.com/3050016/unraveling-the-enigma-of-nintendos-virtual-boy-20-years-later
https://www.fastcompany.com/3050016/unraveling-the-enigma-of-nintendos-virtual-boy-20-years-later
http://www.wordfrequency.info
http://www.wordfrequency.info
https://www.kickstarter.com/projects/gloveone/gloveone-feel-virtual-reality
https://www.kickstarter.com/projects/gloveone/gloveone-feel-virtual-reality

27

[Jag16] David Jagneaux. Why epic‘s tim sweeney is fine
with more devs using unity. https://uploadvr.com/
tim-sweeney-on-unreal-vs-unity-priority-on-shipping/
-first-and-foremost-with-ease-of-use-accessibility-being-second/,
2016. Upload (remove / after ‘shipping’ to use URL correctly), Accessed:
2017-03-15.

[Joh07] Nick Johnson. Damn cool algorithms, part 1: Bk-trees. http://blog.
notdot.net/2007/4/Damn-Cool-Algorithms-Part-1-BK-Trees, 2007.
Nick’s Blog, Accessed: 2016-08-15.

[Kin15] Zach Kinstner. Hoverboard vr interface. https://www.youtube.com/
watch?v=hFpdHjA9uR8, 2015. Youtube, Accessed: 2017-02-20.

[Kol08] Patrick Kolan. Ign retro: Virtual boy revisited. http://www.ign.com/
articles/2008/01/14/ign-retro-virtual-boy-revisited, 2008.
IGN, Accessed: 2017-02-22.

[Low15] Henry E. Lowood. virtual reality (vr). https://www.britannica.com/
technology/virtual-reality, 2015. Encyclopaedia Britannica, Accessed:
2017-02-26.

[Luc12] Palmer Luckey. Oculus rift: Step into the game. https://www.kickstarter.
com/projects/1523379957/oculus-rift-step-into-the-game, 2012.
Kickstarter, Accessed: 2017-02-22.

[Mot17a] LEAP Motion. Leap motion developer. https://developer.leapmotion.
com/#101, 2017. LEAP Motion, Accessed: 2017-03-15.

[Mot17b] LEAP Motion. Oculus rift dk2 setup. https://developer.leapmotion.
com/vr-setup/dk2, 2017. LEAP Motion, Accessed: 2017-03-15.

[Myo16] Myo. Connect with myo. https://www.myo.com/connect, 2016. Myo,
Accessed: 2017-03-15.

[Ocu17] Oculus. Oculus. https://www.oculus.com/, 2017. Oculus, Accessed:
2017-03-15.

[Pte16] Vangos Pterneas. Finger tracking using kinect v2. http://pterneas.com/
2016/01/24/kinect-finger-tracking/, 2016. Vangos Pterneas Blog,
Accessed: 2017-03-15.

[Rob16] Adi Robertson. Htc‘s hands-free vr phone tool is as clever and frustrat-
ing as the vive itself. http://www.theverge.com/2016/4/6/11377740/
htc-vive-vr-bluetooth-phone-notifications-hands-on, 2016. The
Verge, Accessed: 2017-02-20.

https://uploadvr.com/tim-sweeney-on-unreal-vs-unity-priority-on-shipping/-first-and-foremost-with-ease-of-use-accessibility-being-second/
https://uploadvr.com/tim-sweeney-on-unreal-vs-unity-priority-on-shipping/-first-and-foremost-with-ease-of-use-accessibility-being-second/
https://uploadvr.com/tim-sweeney-on-unreal-vs-unity-priority-on-shipping/-first-and-foremost-with-ease-of-use-accessibility-being-second/
http://blog.notdot.net/2007/4/Damn-Cool-Algorithms-Part-1-BK-Trees
http://blog.notdot.net/2007/4/Damn-Cool-Algorithms-Part-1-BK-Trees
https://www.youtube.com/watch?v=hFpdHjA9uR8
https://www.youtube.com/watch?v=hFpdHjA9uR8
http://www.ign.com/articles/2008/01/14/ign-retro-virtual-boy-revisited
http://www.ign.com/articles/2008/01/14/ign-retro-virtual-boy-revisited
https://www.britannica.com/technology/virtual-reality
https://www.britannica.com/technology/virtual-reality
https://www.kickstarter.com/projects/1523379957/oculus-rift-step-into-the-game
https://www.kickstarter.com/projects/1523379957/oculus-rift-step-into-the-game
https://developer.leapmotion.com/#101
https://developer.leapmotion.com/#101
https://developer.leapmotion.com/vr-setup/dk2
https://developer.leapmotion.com/vr-setup/dk2
https://www.myo.com/connect
https://www.oculus.com/
http://pterneas.com/2016/01/24/kinect-finger-tracking/
http://pterneas.com/2016/01/24/kinect-finger-tracking/
http://www.theverge.com/2016/4/6/11377740/htc-vive-vr-bluetooth-phone-notifications-hands-on
http://www.theverge.com/2016/4/6/11377740/htc-vive-vr-bluetooth-phone-notifications-hands-on

28

[Seg11] Sascha Segan. Swype working on typing by waving hands in
the air. http://www.pcmag.com/article2/0,2817,2380227,00.asp#
fbid=bidQg4EBxv7, 2011. PC Mag, Accessed: 2017-01-25.

[Shu16] Sid Shuman. Playstation vr: The ultimate faq. http://blog.us.
playstation.com/2016/10/03/playstation-vr-the-ultimate-faq/,
2016. Playstation, Accessed: 2017-02-20.

[Sle14] Lachlan Sleight. Leap keyboard demo. https://www.youtube.com/watch?
v=ckAGpmf21a8, 2014. Youtube, Accessed: 2017-02-20.

[Swy17] Swype. Swype home. http://www.swype.com/, 2017. Swype, Accessed:
2017-02-20.

[Uni17] Unity. Vr devices. https://docs.unity3d.com/Manual/VRDevices.
html, 2017. Unity Documentation, Accessed: 2017-03-15.

[Unk96] Unknown. The history of stereo photography. http://www.arts.rpi.edu/
˜ruiz/stereo_history/text/historystereog.html, 1996. Rensselaer
Polytechnic Institute, Accessed: 2017-02-28.

[Wik17a] Wikipedia. Dameraulevenshtein distance. https://en.wikipedia.org/
wiki/Damerau%E2%80%93Levenshtein_distance, 2017. Wikipedia, Ac-
cessed: 2016-08-15.

[Wik17b] Wikipedia. Levenshtein distance. https://en.wikipedia.org/wiki/
Levenshtein_distance, 2017. Wikipedia, Accessed: 2016-08-15.

[Wil15] Mike Williams. Gamers feel the glove from rice
engineers. http://news.rice.edu/2015/04/22/
gamers-feel-the-glove-from-rice-engineers-2/, 2015. Rice
University News and Media, Accessed: 2017-03-15.

[Wre14] Chris Wren. www.wrenar.com vr keyboard w/oculus rift and leap motion.
https://www.youtube.com/watch?v=67Hyb2w1xFs, 2014. Youtube, Ac-
cessed: 2017-02-20.

[Xen13] Xenopax. The bk-tree - a data structure for spell check-
ing. https://nullwords.wordpress.com/2013/03/13/
the-bk-tree-a-data-structure-for-spell-checking/, 2013.
Xenopax, Accessed: 2016-08-15.

[Zug13] Adrian Zugaj. Test: Using leap motion with swype keyboard. https://www.
youtube.com/watch?v=_-4k0PnU46o, 2013. Youtube, Accessed: 2017-02-
20.

http://www.pcmag.com/article2/0,2817,2380227,00.asp#fbid=bidQg4EBxv7
http://www.pcmag.com/article2/0,2817,2380227,00.asp#fbid=bidQg4EBxv7
http://blog.us.playstation.com/2016/10/03/playstation-vr-the-ultimate-faq/
http://blog.us.playstation.com/2016/10/03/playstation-vr-the-ultimate-faq/
https://www.youtube.com/watch?v=ckAGpmf21a8
https://www.youtube.com/watch?v=ckAGpmf21a8
http://www.swype.com/
https://docs.unity3d.com/Manual/VRDevices.html
https://docs.unity3d.com/Manual/VRDevices.html
http://www.arts.rpi.edu/~ruiz/stereo_history/text/historystereog.html
http://www.arts.rpi.edu/~ruiz/stereo_history/text/historystereog.html
https://en.wikipedia.org/wiki/Damerau%E2%80%93Levenshtein_distance
https://en.wikipedia.org/wiki/Damerau%E2%80%93Levenshtein_distance
https://en.wikipedia.org/wiki/Levenshtein_distance
https://en.wikipedia.org/wiki/Levenshtein_distance
http://news.rice.edu/2015/04/22/gamers-feel-the-glove-from-rice-engineers-2/
http://news.rice.edu/2015/04/22/gamers-feel-the-glove-from-rice-engineers-2/
https://www.youtube.com/watch?v=67Hyb2w1xFs
https://nullwords.wordpress.com/2013/03/13/the-bk-tree-a-data-structure-for-spell-checking/
https://nullwords.wordpress.com/2013/03/13/the-bk-tree-a-data-structure-for-spell-checking/
https://www.youtube.com/watch?v=_-4k0PnU46o
https://www.youtube.com/watch?v=_-4k0PnU46o

	Signature Page
	Table of Contents
	List of Images
	List of Supplementary Files
	Abstract of the Thesis
	Introduction to Virtual Reality
	Related Work in VR Text Input
	Backend
	User Interface
	Issues
	Conclusion and Future Work
	Bibliography

