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ARTICLE

Whole-genome sequencing of African Americans
implicates differential genetic architecture in
inflammatory bowel disease
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Talin Haritunians,5 Claire L. Simpson,6 Ferdouse Begum,7 Lisa W. Datta,7 Antonio J. Quiros,8

Jenifer Seminerio,9 Emebet Mengesha,5 Jonathan S. Alexander,10 Robert N. Baldassano,11

Sharon Dudley-Brown,12 Raymond K. Cross,13 Themistocles Dassopoulos,14 Lee A. Denson,15

Tanvi A. Dhere,16 Heba Iskandar,16 Gerald W. Dryden,17 Jason K. Hou,18

(Author list continued on next page)
Summary
Whether or not populations diverge with respect to the genetic contribution to risk of specific complex diseases is relevant to under-

standing the evolution of susceptibility and origins of health disparities. Here, we describe a large-scale whole-genome sequencing study

of inflammatory bowel disease encompassing 1,774 affected individuals and 1,644 healthy control Americans with African ancestry

(African Americans). Although no new loci for inflammatory bowel disease are discovered at genome-wide significance levels, we iden-

tify numerous instances of differential effect sizes in combination with divergent allele frequencies. For example, the major effect at

PTGER4 finemaps to a single credible interval of 22 SNPs corresponding to one of four independent associations at the locus in European

ancestry individuals but with an elevated odds ratio for Crohn disease in African Americans. A rare variant aggregate analysis implicates

Ca2þ-binding neuro-immunomodulator CALB2 in ulcerative colitis. Highly significant overall overlap of common variant risk for in-

flammatory bowel disease susceptibility between individuals with African and European ancestries was observed, with 41 of 241 previ-

ously known lead variants replicated and overall correlations in effect sizes of 0.68 for combined inflammatory bowel disease. Neverthe-

less, subtle differences influence the performance of polygenic risk scores, and we show that ancestry-appropriate weights significantly

improve polygenic prediction in the highest percentiles of risk. Themedian amount of variance explained per locus remains the same in

African and European cohorts, providing evidence for compensation of effect sizes as allele frequencies diverge, as expected under a

highly polygenic model of disease.
Introduction

The inflammatory bowel diseases (IBDs [MIM: 604519,

266600, 191390]), Crohn disease (CD [MIM: 266600]),

and ulcerative colitis (UC [MIM: 191390]) arise in the

context of inappropriate activation of the intestinal im-

mune system in response to an environmental trigger in

individuals who are genetically predisposed. Genome-
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wide association studies (GWASs) of common and low fre-

quency variants have so far identified 241 loci that confer

significant risk for disease susceptibility.1–3 Although in-

flammatory bowel disease is one of the most successfully

studied polygenic diseases with respect to identifying loci

and risk alleles, four major challenges remain: (1) missing

heritability—only a small fraction of disease liability is ex-

plained by the thus far known genetic risk factors (13% for
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Crohn disease and 8% for ulcerative colitis);2 (2) uncer-

tainty as to the true causal genetic variants underlying

GWAS associations—as most loci span several kb to tens

of kb in length, containing credible sets that usually range

from several to hundreds of variants in tight linkage

disequilibrium (LD) having similar evidence of association;

(3) lack of molecular insights into established genetic sig-

nals—as most association signals map to non-coding re-

gions with their mechanistic effects largely unknown;

and (4) lack of understanding on the different genetic

architectures across populations.

Genetic discoveries of inflammatory bowel disease have

been made primarily in populations of European ancestry

and utilizing genome-wide genotype data.1–3 This predom-

inance, combined with a focus on common alleles, has left

our understanding of the role of rare variants among non-

European populations incomplete. To this end, we have

performed the whole-genome sequencing study of inflam-

matory bowel disease-affected individuals as compared to

non-inflammatory bowel disease control individuals

from over 3,600 Americans with African ancestry.

Although most GWASs are performed with genotyping ar-

rays, whole-genome sequencing offers advantages such as

assessment of rare heterozygous effects—for example, for

type 2 diabetes4 (T2D [MIM: 125853]) and on bloodmetab-

olites5—and comprehensive assessment of non-imputed

common variants (for example, for COPD6 [MIM:

606963]), as well as mapping in the presence of high vari-

ability and short LD blocks in mixed ancestry populations

(for example, plasma lipoproteins7 and serum peptides8).
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Our goals were 4-fold: first, we hypothesized that genetic

analysis of this understudied population would facilitate

new locus discovery of common variants that have not

been previously interrogated, including those that are spe-

cific to African-ancestry populations or shared across diver-

gent populations. Second, given the high genetic diversity

in African populations, we hypothesized that rare and

potentially high-risk inflammatory bowel disease variants,

within or near protein coding genes, have yet to be identi-

fied. Third, we evaluated the potential of our genetically

diverse African American cohort to enhance fine-mapping

of credible intervals. Fourth, we evaluated the degree to

which effect sizes of GWAS variants differ across popula-

tions and assessed the impact on polygenic risk assessment

based on established inflammatory bowel disease loci.
Subjects and methods

Study samples
This was a multi-center collaborative study involving self-identi-

fied African American subjects recruited from five primary sites

and their collaborating centers across the US. These sample recruit-

ment centers include Emory University (recruited as part of the

GENESIS study and Emory African American Inflammatory Bowel

Disease Consortium) and 12 other collaborating centers; Johns

Hopkins/Rutgers (recruited as part of the Multicenter African

American Inflammatory Bowel Disease Study) and 17 other collab-

orating centers; Cedars-Sinai Medical Center; Mount SinaiMedical

Center; and Washington University (recruited as part of the Cen-

ters for CommonDisease Genomics network). Sample breakdown,
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along with the proportion of affected individuals versus control

individuals, per center is shown in Table S1. This study was

approved by the institutional review boards at each of the partici-

pating sites and informed consent was obtained from all the par-

ticipants. Deidentified datasets including genetic data are housed

at Emory University with the approval of the local ethical board.
Library construction and whole-genome sequencing
All DNA samples investigated in this study (a total of 3,610 before

quality control [QC]) were processed and sequenced at the Broad

Institute of Harvard and MIT (Cambridge, MA) following the

same protocol. Briefly, genomic DNA (350 ng in 50 mL) extracted

from the blood of sampled participants was fragmented to a target

size of 385 bp fragments via a Covaris Focused-ultrasonicator. Frag-

mented DNA was subjected to further size selection via a SPRI

cleanup. Libraries were then constructed with kits commercially

available from KAPA Biosystems (KAPA Hyper Prep without ampli-

fication module, product KK8505) and with palindromic forked

adapters with unique 8-base index sequences embedded within

the adaptor (purchased from Roche). Completed libraries were

quantified with quantitative PCR (kit purchased from KAPA Bio-

systems), normalized to 2.2 nM, and were pooled into 24-plexes.

Sample pools were combined with HiSeqX Cluster Amp Reagents

EPX1, EPX2, and EPX3, and cluster generation was performed

with the Illumina cBot according to the manufacturer’s protocol

(Illumina). DNA libraries were sequenced with the HiSeqX

sequencing system utilizing sequencing-by-synthesis kits to pro-

duce 151 bp paired-end reads. Because library amplification by

PCR introduces substantial bias, we sequenced our samples by us-

ing the PCR-free protocol. Output from Illumina software was pro-

cessed by the Picard data-processing pipeline to yield CRAM files

containing demultiplexed, aggregated aligned reads.
Data processing and variant calling
The sequence reads from each sample were aligned to human

reference genome build hg38 (GRCh38 assembly). Each sample

was sequenced to an average depth of 303. Variants were joint

called across 3,610 samples via the Genome Analysis Toolkit

(GATK) Best Practices for germline variants9 and were annotated

via our in-house Bystro10 software. Our initial output, VCF file,

had data for 3,610 samples and about 145 million variants, both

single nucleotide polymorphisms (SNPs) and short insertions

and deletions (INDELs), which was then subjected to both sample

and variant QC as outlined below.

Sample QC and filtering

Using a subset of �1.4 million LD-independent (r2 < 0.1), high

frequency (minor allele frequency [MAF] > 1%) variants, we per-

formed sample QC to identify individuals with discordant sex in-

formation, low call rates (<95%), and unexpected relatedness.

Briefly, we tested for agreement between X/Y genotypes and ascer-

tained sex by using PLINK11 and excluded samples with discor-

dant gender from subsequent analysis. Per-sample missingness

rate was calculated via the –missing option, and individuals with

more than 5%missing genotypes were removed from further anal-

ysis. To identify duplicated or related individuals, by using a subset

of�1.4million LD-independent (r2< 0.1), high frequency (MAF>

1%) variants, we first calculated identity by state (IBS) for each pair

of individuals, and then we estimated the degree of recent shared

ancestry for each pair of individuals (identity by descent [IBD];

whose values range from 0 to 1) again by using PLINK.11 For dupli-

cated samples (IBD > 0.5), we removed one of the samples either
The Ameri
with low quality metrics at any of the QC steps or at random

when both samples were of high quality. For pairs of individuals

that appeared to be genetically related—first-degree relatives

(IBD ¼ 0.5) or second-degree relatives (IBD ¼ 0.25)—one individ-

ual from each pair was removed from subsequent analyses. Simi-

larly, two individuals from parent-offspring trios were dropped.

While removing related samples, preference was given to keep

the affected individual or the sample with high overall quality.

Our final analytical set only included samples where the

maximum relatedness between any pair of individuals is less

than a second-degree relative. Collectively, these QC procedures

resulted in the removal of 35 samples with sex discrepancies, 42

samples with missing variant data, and 122 duplicated samples

or related individuals.

In addition, using the observed genotypes across the entire

genome, we estimated and removed samples with outlying

(defined as 53 standard deviations from the mean) heterozy-

gotic/homozygotic changes (n ¼ 44), theta (n ¼ 12), exonic theta

(n ¼ 13), exonic transition/transversion (n ¼ 1), silent/replace-

ment (n ¼ 1), silent transition/transversion (n ¼ 1), and replace-

ment transition/transversion (n¼ 1) ratios.We also removed three

samples withmissing phenotypes. Collectively, after all these sam-

ple QC procedures, a total of 192 unique samples were excluded

from subsequent analyses.

Variant QC and filtering

After the removal of samples from above, we then filtered out var-

iants genotyped in <95% of the samples (missingness > 5%) and

those that showed a significant deviation from Hardy-Weinberg

equilibrium in control individuals (p < 1 3 10�9). These proced-

ures resulted in a final dataset of 3,418 samples and 93.4 million

variants that include both SNPs and INDELs. In addition, we

applied RepeatMasker12 to mask variants from repetitive and low

complexity regions of the genome. For some common variant as-

sociation analysis, we also included the pre-masked dataset in or-

der to obtain summary statistics for some of the lead variants from

the previously known disease loci (identified via populations of

predominantly European ancestry) that were masked by the Re-

peatMasker program.

Principal-component analysis of sequence data

After excluding samples and variants with low quality, principal-

component analysis of the whole-genome sequencing dataset

was performed with EIGENSTRAT.13 Principal components were

computed on the basis of a pruned version of the dataset consist-

ing of �1.4 million LD-independent (r2 < 0.1), high frequency

(MAF > 1%) variants. The first five principal components (based

on the inspection of the scree plot) were included as covariates

to control for population stratification within the whole-genomes

dataset for all analyses (Figure S1).

Single-variant association testing of sequence data

We used a logistic regression model to test for association at each

individual variant with the first five principal components of the

genotype matrix included as covariates. Variants were tested sepa-

rately for association with Crohn disease, ulcerative colitis, and in-

flammatory bowel disease (Crohn disease and ulcerative colitis

together with inflammatory bowel disease-type unknown

[IBDU]). We defined common variants as those that are present

in at least 1% of the general African population from gnomAD

and have an observed MAF > 1% in this dataset, yielding 14.9

million variants (pre-masked; �7 million variants in the post-

masked dataset). The genomic control (lGC) values for these indi-

vidual analyses of common variants ranged from 1.02 to 1.04,

indicating little or no inflation or deflation due to population
can Journal of Human Genetics 108, 431–445, March 4, 2021 433



stratification. We defined rare variants as those that are either ab-

sent or present at an MAF of < 0.1% in the general African popu-

lation from gnomAD. With these criteria, we observed 64.2

million rare variants in our dataset, and the genomic control

(lGC) values for these individual analyses of rare variants ranged

from 0.61 to 0.84, indicating deflation due to the limited number

of rare alleles in the dataset.

Known association in ADCY7

Adenylate cyclase 7 (ADCY7 [MIM: 600385]) has recently been

implicated in ulcerative colitis in European populations; using a

low-pass whole-genome sequenced case-control cohort in

conjunction with well-imputed newly genotyped and pre-existing

GWAS case-control datasets of European ancestry and affected in-

dividuals and non-inflammatory bowel disease control individuals

from the UK Biobank, Luo et al.14 identified a low-frequency (MAF

¼ 0.006), missense variant, rs78534766, in ADCY7 in association

with an increased risk of ulcerative colitis. In fact, rs78534766 is

the largest effect allele that was identified to date for ulcerative co-

litis (odds ratio [OR] ¼ 2.19; p ¼ 9 3 10�12). However, although

there is no evidence of association for ulcerative colitis in our

study, we noticed an effect trending in the opposite direction

(OR ¼ 0.46; p ¼ 0.47). The effect allele was seen in seven control

individuals (MAF ¼ 0.002) and one affected individual with ulcer-

ative colitis (and four affected individuals with Crohn disease) in

our whole-genome sequencing dataset: this could in part be due

to the limited sample size of our dataset, fueled by the rarity of

this allele, rs78534766, in general African populations (MAF in

gnomAD v3 ¼ 0.00098).

Power analysis

For power calculations, we assumed that disease prevalence

(0.19% for Crohn disease and 0.20% for ulcerative colitis) and ef-

fect sizes are homogeneous across ancestries. We converted popu-

lation frequencies (reported in African populations from gno-

mAD) and odds ratios (reported in the latest meta-analysis of

European descent individuals3) to affected and control individual

frequencies and calculated power of our whole-genomes cohort to

detect previously known disease loci at p< 53 10�8 or p< 0.05 as

a function of the MAF and the genotype relative risk of the variant

under an additive model.

Aggregate rare-variant association testing

Using the optimal sequence kernel association test (SKAT-O),15 we

performed gene-wide aggregation analyses to detect aggregate asso-

ciation of rare, likely deleterious (combined annotation dependent

depletion (CADD)> 15) variants with the three traits. For aggregate

tests, we selected all rare, likely deleterious (CADD > 15) variants

(n¼ 1.5 million) across the genome and assigned them to the near-

est gene. We then assessed the association of each gene with a

collection of rare, likely deleterious variants in a SKAT-O model

implemented in the R package ‘‘SKAT.’’ To interpret statistical signif-

icance, we applied experimental-wide, Bonferroni-corrected signif-

icance threshold of p < 2.2 3 10�6 ¼ 0.05/22,521.
GWAS genotype data, QC, imputation, and association

testing
Sample information, genotype data, and the application of QC

procedures for the two existing GWAS cohorts considered in the

current study were described extensively elsewhere.16 Briefly,

genome-wide genotype data from non-overlapping African Amer-

ican affected individuals and matched control individuals gener-

ated with either the Illumina Omni (398 with Crohn disease,

238 with ulcerative colitis, and 1,551 control individuals) or the
434 The American Journal of Human Genetics 108, 431–445, March
Affymetrix Axiom Genome-Wide AFR 1 World Array (451 with

Crohn disease, 186 with ulcerative colitis, and 3,038 control indi-

viduals) SNP chips were considered for replicative evidence. Sam-

ple and variant QC, determination of principal components, and

removal of outliers was done as described in the original paper.16

Both datasets were lifted from human reference build hg19 to

hg38 via liftOver.17

Imputation

We phased the whole-genome sequences described above (n ¼
3,418; after QC) with Eagle v2.418 to create a reference panel.

These pre-phased whole-genome sequences with MAF > 0.5%

were imputed into each GWAS dataset, separately, via minimac3

software.19 By design, all the sequenced individuals have African

descent and about half of these are inflammatory bowel disease-

affected individuals, thereby enriching the reference panel for Af-

rican-specific alleles that increase or decrease inflammatory bowel

disease risk.

Common variant association testing for replicative evidence

After removing samples that were directly sequenced in the dis-

covery phase, genotyped and imputed variants with INFO score

> 0.6 were tested for association with Crohn disease, ulcerative co-

litis, and inflammatory bowel disease, separately, within each

GWAS case-control dataset via SNPTEST 2.5.2,20 performing an ad-

ditive frequentist association test conditioned on the first ten prin-

cipal components. For sites that were present in both datasets and

passed our QC filters, we performed meta-analysis by using

META.21–23 For a common variant with p< 53 10�8 in the discov-

ery cohort to be inferred to be associated with a trait, it had to have

a directionally consistent effect and demonstrate at least a nomi-

nal evidence of association (p < 0.05) in the meta-analysis of the

two GWAS datasets. At the 5p13.1 locus near Prostaglandin E Re-

ceptor 4 (PTGER4 [MIM: 601586]), the previously defined peak

SNP rs7711427 was initially relegated to a ‘‘sub-PASS’’ tranche dur-

ing GATK’s automated analysis, but closer inspection revealed that

the reason for exclusion was an excess of heterozygotes in affected

individuals. As this is a well-characterized disease-associated

variant and strong disease alleles will give rise to excess heterozy-

gosity in affected individuals, we elected to ‘‘rescue’’ this allele.

Because this site is in complete LD (r2 ¼ 1) with several other sites,

no conclusions are altered, but we retain rs7711427 to facilitate

comparison with published results.
Genetic risk score calculation
Assessment of precision (equivalent to predicted prevalence in a

percentile of risk) is sensitive to the ratio of affected individuals

to control individuals, so it cannot be conducted directly on the

whole-genome sequencing cohort. In order to directly contrast

accuracy in a population with a maximal inflammatory bowel dis-

ease prevalence of �1%, we thus generated 150,000 pseudo-con-

trols given expected genotype frequencies observed in our 1,644

African American whole-genome sequenced control individuals.

Rather than using an external reference database of allele fre-

quencies in African Americans, since these are known to be hetero-

geneous due to varying degrees of admixture, we used the control

estimates from our whole-genome sequencing for internal consis-

tency and simply generated random genotypes according to

Hardy-Weinberg expectations. These were computed for 215 of

the 241 known loci that were present in both the African Amer-

ican pseudo-controls cohort and UK Biobank. In the pseudo-con-

trols, we combined genotypes between loci independently to

minimize LD within the pseudo-control population. Note that
4, 2021



we only use the lead SNPs and, as a result, make no attempt to cap-

ture independent secondary signals at each locus24 or to disen-

tangle the combined effects of multiple interacting sites in high

LD.25 Instead, we simply acknowledge that some of the observed

differential effect sizes may be due to the combined influence of

secondary sites in LD or epistasis. By ignoring neighboring sites

with main effects, we are certainly under-representing the total

amount of variance explained per locus25–28 but eliminating any

influence of these effects on the derivation of pseudo-controls.

In the absence of a very large external dataset of African ancestry

inflammatory bowel disease genotypes, this is currently the least-

biased approach to estimating per-locus effects in polygenic risk

score (PRS) estimation, but it should be recognized that there

may be other systemic biases to the use of pseudo-controls that

contribute to the ancestry-specific assessments. To confirm that

long-range LD is also not biasing the analysis, we computed the

pairwise matrix of LD among all lead SNPs in our whole-genome

sequenced ‘‘real’’ control individuals. Reflecting the fact that the

SNPs are dispersed across the genome, only 6 of 23,005 compari-

sons were significant at the Bonferroni adjusted threshold of

2 3 10�6 in this observed dataset, in each case generating squared

genotype correlations (r2) between 2% and 7%, with an overall

average r2 of just 0.07%. By design, there was no observed signifi-

cant LD among the variants in the pseudo-controls. Conse-

quently, bias introduced by LD among the lead SNPs appears to

be measurably small in the African American pseudo-controls da-

taset, which has 1,774 inflammatory bowel disease affected indi-

viduals and 150,000 pseudo-controls. We similarly generated a

UK Biobank dataset of the same size by down-sampling to the

same case-control ratio; in this case, actual genotypes were used

because UK Biobank is sufficiently large.

Next, to compute the genetic risk score, we divided each of the

five sets of African American pseudo-controls andUK Biobank into

a training set with 70% samples (1,242 affected individuals,

105,000 pseudo-controls) and test sets with the remaining 30%

samples (532 affected individuals, 45,000 pseudo-controls). We

used the 70% training datasets to estimate effect sizes both on

the lnOR scale as well as the liability scale (these data were also

used to estimate proportion of variance explained [PVE]). Using

these estimated effect sizes at the most significant variants in the

215 of the 241 known loci that were present in both the African

American pseudo-controls cohort and UK Biobank, we derived

weighted PRSs in the withheld 30% datasets. Furthermore, for

each PRS, the prevalence of inflammatory bowel disease, with

standard error determined from the five test sets, was computed

at each percentile bin on both the liability scale and lnOR scale.

The proportion of variance explained by PRS was computed by

determining the Negelkerke’s R-square via the ‘‘lrm’’ function

from the ‘‘rms’’ package in R.29
Liability scale modeling
Liability effects were measured by assuming an underlying normal

distribution (mean 0, variance 1) of liability representing disease

status. Affected individuals are assumed to lie above a certain

threshold of this continuous distribution. This threshold (Z score

on x axis) is determined by computing the inverse of the cumula-

tive normal function of the assumed prevalence of the disease.

Assuming an upper limit for the prevalence of all inflammatory

bowel diseases as 1%, odds ratios determined from logistic

regression as the true odds ratios, and using the allele frequencies

in control individuals within the study, we determined the addi-
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tive effects on liability as follows:30,31 the displacement of each

genotype threshold from the overall population threshold as

[2.326-norminv(1-penetrance)] where the penetrance of the geno-

type is the overall prevalence (1%) multiplied by the ratio of the

genotype between affected individuals and overall. The mean

displacement was computed as the sum of the products of the

three genotype displacements weighted by the genotype fre-

quencies in the overall sample, which allows computation of the

central displacement of each genotype by subtraction of the

mean displacement. The liability alpha1 of the larger effect geno-

type is then [p*central displacement_AAþq*central displacemen-

t_Aa] where p is the frequency of theminor allele A and q is the fre-

quency of the major allele a. Similarly, the liability alpha2 of the

alternate allele is [p*central displacement_Aaþq*central displace-

ment_aa]. The total variance explained by the locus on the liability

scale is 2*p*alpha12 þ2*q*alpha22. The polygenic risk score for an

individual is the sum of the liabilities of the relevant genotypes,

namely 2*alpha1, alpha1þalpha2, or 2*alpha2.
Results

Common variant associations in African Americans

After QC (see subjects and methods) and principal-compo-

nent analysis (Figure S1) of our deeply sequenced whole ge-

nomes (median coverage of 303), we present analyses of a

total of 3,418 subjects: 1,774 affected individuals (1,335

with Crohn disease, 407 with ulcerative colitis, and 32

with IBDU) and1,644non-inflammatory bowel disease con-

trol individuals (Table S1) at 93 million variants that

comprise both SNPs and short INDELs. These data include

14.9 million common variants (MAF > 1%), 13.9 million

low-frequency variants (0.1% < MAF < 1%), and 64.2

million rare variants (MAF < 0.1%). First, we used single-

variant analyses to test each variant, regardless of allele fre-

quency, for associationwithCrohndisease,ulcerativecolitis,

and inflammatory bowel disease (Crohn disease and ulcera-

tive colitis together with IBDU), separately, in a logistic

regression framework conditioned on the first five principal

components (see subjects and methods). Following these

‘‘discovery’’ analyses of whole-genome sequence data, we

sought replication of the obtained results at common vari-

ants in an independent cohort of African American affected

individuals and control individuals that were previously

genotyped with Axiom or Omni genome-wide SNP ar-

rays16 (subjects and methods; Table S1). We imputed our

whole-genome sequences into these two (Axiom and

Omni) existing GWAS datasets, thereby enriching the panel

for inflammatory bowel disease risk alleles, and performed

case-control association testing by using a logistic regression

model, separately, within each dataset. Results from the

meta-analysis of these twoGWASdatasets servedasour repli-

cative evidence for common variation.

With a standard GWAS significance threshold of p < 53

10�8 in the discovery cohort and at least nominal (and di-

rectionally consistent) evidence of association (p< 0.05) in

the replication cohort, we identified 22 common variants

at a locus proximal to PTGER4 (260 kb) on chromosome

5p, previously discovered in cohorts of European descent,
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Figure 1. Regional plots of the PTGER4
region in the discovery whole-genome
sequence data
Crohn disease (top); ulcerative colitis
(middle); inflammatory bowel disease
(bottom). Dashed red lines indicate
genome-wide significance (p ¼ 5 3 10�8).
Variants are color coded to show linkage
disequilibrium structure relative to a
variant, rs6896969, that showed the stron-
gest association with Crohn disease in Afri-
can Americans in our previous GWAS.16
associated with a decreased risk of Crohn disease (Figure 1

and Table S2). All 22 variants were in complete LD with

each other (r2 ¼ 1). Following our previous report of sug-

gestive evidence of association at this locus for Crohn dis-

ease in African Americans,16 here we present the first evi-

dence of standard (GWAS) genome-wide significance.
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Consistent with being a Crohn dis-

ease-specific locus, the disease-associ-

ated alleles demonstrated strong

effect sizes for Crohn disease (OR ¼
0.74; p< 53 10�8) but not ulcerative

colitis (OR ¼ 0.91; p ¼ 0.25; Figure 1)

despite being directionally consistent

to both. Further, of all the ancestrally

divergent populations studied thus

far, the strongest effect on Crohn dis-

ease at these variants was observed in

our African American cohort

(Figure S2).

A protective role in Crohn disease

of PTGER4 locus minor alleles was

initially discovered in populations

of European ancestry,32 and 2,819

common variants at the locus had

genome-wide significant association.

Using conditional stepwise regres-

sion to perform fine-mapping, Huang

et al. further refined this region to a

subset of 189 credible variants repre-

senting four independent signals

that are more likely to be causal to

Crohn disease24 (Figure S3). The 22-

variant African American signal pre-

cisely captures the known primary

peak (signal 1) of association in Euro-

pean populations (MAF in African

American Crohn disease-affected in-

dividuals ¼ 0.32 and control individ-

uals ¼ 0.39; MAF in European Crohn

disease-affected individuals ¼ 0.33

and control individuals¼ 0.39); there

is no evidence for an association at

signal 2 but nominal evidence at sig-

nals 3 and 4. The 22 Crohn disease-
associated variants that we detected at this locus in African

Americans were in high LD with the strongest signal

(signal 1) comprising two potentially causal variants—

rs7711427 and rs397897680—from the fine-mapping

analysis of European populations32 (Figure S4). We note

that rs397897680 has since been merged with rs5867512,



Figure 2. QQ plot of rare-variant gene-level association analysis
of ulcerative colitis
Observed negative log p values are from the SKAT-O test.15
while rs7711427 was excluded during our initial QC pro-

cedure (see subjects and methods). Despite a prior

report30 of an expression quantitative trait effect on

PTGER4 expression in lymphoblastoid cells in European

individuals, the African American disease-associated alleles

appear to be located distal to that signal as well as the ma-

jor eQTL interval reported on the Blood eQTL browser.

Experimental manipulation of epithelial cells supports a

role for prostaglandin signaling promoting intestinal

wound healing during inflammatory bowel disease,33 but

it remains to be established whether PTGER4 is the target

of the primary GWAS signal that lies in a gene desert 250

kb from a cluster of candidate genes and whether expres-

sion is affected in diseased epithelial cells.

Rare-variant associations in African Americans

With the sequencing data, we next assessed the contribu-

tion of rare variants (MAF < 0.1%) to inflammatory bowel

disease. Our data was comprised of 64.2 million rare vari-

ants that include many alleles that were not genotyped

or imputed in previous GWASs of inflammatory bowel dis-

eases. Because our single-variant analyses at rare variants

yielded deflated summary statistics (Figure S5), we per-

formed aggregate analyses by selecting all rare, likely dele-

terious (CADD > 15) variants across the genome and as-

signing them to the nearest gene. In total, 1.5 million

such variants were assigned to 22,521 genes with an

average of 68 variants per gene (range ¼ 1–3,593). Using

the SKAT-O approach,15 we then tested whether any of
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these gene sets with a collection of rare, likely deleterious

variants have an aggregate association with inflammatory

bowel disease, Crohn disease, or ulcerative colitis. To inter-

pret statistical significance, we applied a Bonferroni-cor-

rected significance threshold of pSKAT < 2.2 3 10�6 (0.05

corrected for 22,521 tests).

Using this strategy, we implicate variants in the vicinity

of Calbindin 2 (CALB2 [MIM: 114051]) in ulcerative colitis.

We detected an aggregate association of 35 rare, likely dele-

terious, heterozygous variants within or near CALB2 with

ulcerative colitis (pSKAT ¼ 1.61 3 10�6; Figure 2 and Table

S3). Half of these variants were observed more frequently

in affected individuals with ulcerative colitis compared to

control individuals, while the other half were seen less

frequently, representing a typical SKAT type of signal.

Among the 35 variants that collectively contributed to

this aggregate signal, many are absent in European (non-

Finnish) populations in the gnomAD v3 release34 (15 as

opposed to only 4 variants that were never seen before in

African populations) despite a 0.6-fold larger European

effective sample size, including an African-specific intronic

variant, rs200083611, with a nominal evidence of associa-

tion for increased risk of ulcerative colitis, showing anMAF

of 0.009 in affected individuals and 0.0003 in control

individuals (p ¼ 0.001; OR ¼ 30.5 from single variant asso-

ciation analysis). However, given the high-risk but weak

evidence of association at rs200083611, it appears that

the CALB2 gene-wide signal was driven by multiple addi-

tional rare variants.

This CALB2 signal was approximately 3 Mb away

from, and independent of, the nearby common

variant, rs1728785 (intronic region of ZFP90 [MIM:

609451]), that has an established association for ulcerative

colitis,2,14,35 indicating that these rare variant associations

represent unique effects. CALB2 encodes an intracellular

calcium-binding protein, calbindin 2 (also known as calre-

tinin), that plays an important role in neuronal physiology

and the maintenance of Ca2þ intracellular homeostasis.

CALB2 has a common expression pattern in both the cen-

tral and peripheral nervous systems. It has high expression

in brain and intermediate expression in sigmoid and trans-

verse colon. The absence of CALB2 in nerve fibers in colon

is a widely used marker for Hirschsprung disease36,37

(HSCR1 [MIM: 142623]), whereas elevated expression of

CALB2 has been reported as a hallmark of rapidly prolifer-

ating cancerous cell lines, including in colorectal cancer

cell lines.38 Hirschsprung disease shares many of the clin-

ical features with inflammatory bowel disease, where the

latter is more commonly reported in affected individuals

who had surgical treatment for Hirschsprung disease.39

Conversely, long-standing inflammatory bowel disease is

an established risk factor for colorectal cancer.40,41 Given

the intricate relationship of inflammatory bowel disease

with these companion diseases, our implication of Hirsch-

sprung disease- and colorectal cancer-associated CALB2 in

ulcerative colitis makes this signal worthy of experimental

validation.
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Figure 3. Comparison of effect sizes across populations
(A) Statistical power of the discovery whole-genome sequencing dataset to replicate previously known variants at p < 0.05. The known
variants that showed an association (p< 0.05) with Crohn disease, ulcerative colitis, or inflammatory bowel disease in African Americans
are colored to denote their p value of association.
(B–D) Comparison of effect sizes at known variants in African Americans and Europeans. Each variant is colored to denote the p value of
association for Crohn disease (B), ulcerative colitis (C), or inflammatory bowel disease (D) in African Americans from the discovery
whole-genome sequencing cohort. The red line shows the linear regression fit to indicate the general trend. Significance and good-
ness-of-fit are shown. ADCY7 was not included while computing goodness-of-fit in (C) (see subjects and methods).
Genetic landscape at the established disease loci

between African Americans and Europeans

With our whole-genomes data, we next assessed whether

the genetic landscape at established inflammatory bowel

disease risk loci is shared between populations of Euro-

pean and African descent and whether trans-ethnic

comparative analysis can be leveraged to further refine es-

tablished GWAS signals. Of the 241 lead variants from the

thus far established loci from the recent meta-analyses of

cohorts of European descent3 (GWAS catalog), in addition

to replicating the known PTGER4 locus at p < 5 3 10�8,

we replicated 41 lead variants for association with inflam-

matory bowel disease, Crohn disease, or ulcerative colitis

(see Table S4 for all lead variant data). Assuming Crohn

disease and ulcerative colitis prevalence of 0.19% and

0.20%, respectively, and no ascertainment bias, our
438 The American Journal of Human Genetics 108, 431–445, March
whole-genomes cohort was powered to replicate 42 of

the known loci at p < 0.05 (see subjects and methods;

Figure 3), matching the number of associations actually

observed. Despite limited statistical evidence of associa-

tion at many of the known loci as a result of the size of

our African American cohort, we noted a strong concor-

dance in the direction of effects (73%, p ¼ 2.05 3 10�12

for inflammatory bowel disease; 69%, p ¼ 1.26 3 10�8

for Crohn disease; and 64%, p ¼ 2.48 3 10�5 for ulcera-

tive colitis; sign test) and a strikingly positive correlation

in effect sizes between European and African populations

(R ¼ 0.68, p < 2.2 3 10�16 for inflammatory bowel dis-

ease; R ¼ 0.63, p < 2.2 3 10�16 for Crohn disease; and

R ¼ 0.43, p ¼ 3.0 3 10�9 for ulcerative colitis), further

supporting the previous notion that the genetic risk of in-

flammatory bowel diseases conferred by common variants
4, 2021
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A B Figure 4. Median proportion of variance
explained by inflammatory bowel disease
loci in African Americans and Europeans
via effects estimated from the two popula-
tions
(A and B) Median proportion of variance
explained (PVE) by the known loci (n ¼
215 SNPs) assessed via allele frequencies
and effect sizes estimated in African Amer-
ican pseudo-controls and UK Biobank data-
sets measured on lnOR and liability scales
across five discovery sets. PVE is computed
as 2p.q.ln(OR)2 on lnOR scale (A);
2.p.alpha1

2 þ 2.q.alpha2
2, where alpha1

and alpha2 are liability estimates on liabil-
ity scale (B).
is, to a great extent, shared across divergent populations

(Figure 3).

Despite strong effect-size correlations, subtle differences

in allele frequency or the magnitude of effects at the estab-

lished disease loci may reveal differential genetic architec-

tures underlying inflammatory bowel disease between the

two populations. Given that our African American dataset

is at least one order of magnitude smaller than the existing

European datasets, in order to contrast effect estimates

directly between the two populations, and assuming a

maximal underlying inflammatory bowel disease preva-

lence of up to�1%, we generated 150,000 pseudo-controls

from the observed genotypes in our whole-genome

sequenced control individuals (n ¼ 1,644) to contrast

against the 1,774 inflammatory bowel disease-affected in-

dividuals. We refer to this from here on as African Amer-

ican pseudo-controls cohort (with 1,774 affected individ-

uals and 150,000 pseudo-controls). For the European

counterpart, we took advantage of the UK Biobank (all

the observed genotypes were used because the UK Biobank

is sufficiently large, 1,774 individuals with inflammatory

bowel disease and 150,000 non-inflammatory bowel dis-

ease control individuals; see subjects and methods). For

both the African American pseudo-controls cohort and

UK Biobank, we generated five random subsets retaining

70% of the samples (1,242 affected individuals and

105,000 pseudo-controls) as discovery sets for estimating

effect sizes. In a comparative analysis of effects (natural

log transformed odds ratios [lnOR]) at the known loci,

69% of the African American estimates are within the

95% confidence interval of UK Biobank estimates (and

75% vice versa), implying general similarity of odds ratios.

The distributions of the lnOR are significantly biased to-

ward higher absolute values in African Americans (p ¼
0.01, two-tailed paired sample t test, n ¼ 215 SNPs) and

are highly correlated with those generated directly from

thewhole-genome sequencing study and shown in Figure 3

(mean r ¼ 0.88). Scores generated directly from the discov-

ery cohort may also bias the estimation (although note
The Ameri
that we are only considering lead SNP effects previously

identified in predominantly European ancestry studies),

but considered together, the two approaches increase the

robustness of our findings. The correlation between the

odds ratio estimates from the de Lange et al. meta-anal-

ysis3 and the inflammatory bowel disease estimates in

five UK Biobank iterations is just 0.77 on average, which

is greater than those estimated between the African Amer-

ican pseudo-controls and UK Biobank (0.48) or the direct

African American whole-genome sequencing GWAS and

European meta-analysis (0.68). Thus, generation of

pseudo-controls introduces minimal bias.

Since allele frequencies co-vary with odds ratios, ex-

plaining approximately 6.1% (mean R2 across five sets) of

the difference in odds ratio between the populations

(Figure S6), we also computed effect sizes on the liability

scale (see subjects and methods), which is not a function

of allele frequency. These estimates are also biased slightly

upward in African Americans (mean R2 ¼ 3.1%; Figure S6).

The median percent variance explained per locus is very

similar whether on the lnOR or liability scales in the two

populations (Figure 4). Nevertheless, we estimate that

given either the European or African allele frequencies,

typically 40%–50% more variance would be explained

with the observed African American effect sizes. Recipro-

cally, for either distribution of effect sizes, the European

allele frequencies lead to 1.35–1.45 times greater variance

explained. Collectively, these observations suggest that

compensatory differences in both effect sizes and allele fre-

quencies contribute to divergence in inflammatory bowel

disease risk between European and African populations.

The effect size differences may be due to local ancestry ef-

fects of LDwith secondary associations at loci and to global

interactions with the total genetic background.

Variance in disease liability in African Americans and

Europeans

For 215 of the 241 known loci that we had data for in both

the African American pseudo-controls cohort and UK
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A B Figure 5. Comparison of proportion of
variance explained (PVE) per locus in Afri-
can Americans and Europeans at known
loci (n ¼ 215 SNPs) via effects estimated
on the lnOR and liability scales
(A) PVE is computed as 2p.q.ln(OR)2.
(B) PVE is computed as 2.p.alpha12 þ
2.q.alpha22, where alpha1 and alpha2 are li-
ability scale estimates.
Biobank, we estimated the mean PVE by each locus from

five discovery subsets in both lnOR and liability scale,

and this is illustrated in Figure 5. While the two large effect

European Crohn disease-associated alleles at IL23R and

NOD2 explained 4.58% and 1.08% PVE on lnOR scale

(0.59% and 0.15% on liability scale) in the UK Biobank

cohort, they only accounted for 1.02% and 0.24%

(0.13% and 0.03% on liability scale) in the African Amer-

ican pseudo-controls cohort, respectively. Conversely, the

risk allele at rs3764147 (genes in the region include

LACC1 [MIM: 613409] and CCDC122 [MIM: 613408])

that depicted suggestive evidence of association (p ¼
1.2 3 10�7) in our discovery African American cohort ac-

counted for 2.71% PVE in the African American pseudo-

controls cohort, while it only explained 0.40% in Euro-

peans (0.37% and 0.05% on liability scale, respectively;

Figure 5). Similarly, the PTGER4 signal that we detected

at p < 5 3 10�8 in our whole-genome sequencing

analysis explained 3.35% of PVE in African Americans

versus 0.93% in Europeans (0.45% and 0.12% on liability

scale, respectively).

Transferability of polygenic risk scores across

populations

These subtle differences at each individual locus when

combined across a genome-wide feature set, for example

while deriving polygenic risk predictors for a common

complex disease, lead to significant biases in populations

distinct from the discovery samples.42,43 In order to

directly contrast accuracy in a population with inflamma-

tory bowel disease prevalence of up to�1%, we utilized the

effects estimated from our five discovery sets generated

from 70% of 1,774 affected individuals and 150,000

pseudo-controls and used the remaining 30% of the with-

held samples from each of the five sets for computing PRSs

at 215 of the 241 known loci that we had data for in both

the African American pseudo-controls cohort and UK Bio-

bank. Strikingly, after 5-fold cross validation, the African

American-estimated betas gave a 7-fold elevation of the
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top percentile in African Americans

but underestimated risk in the UK

Biobank. Similar results were

observed with liability scale estimates

(Figure 6) and lnOR’s (Figure S7). On

the other hand, the UK Biobank-esti-

mated betas applied to UK Biobank

samples yielded 3-fold elevation in
the top percentile and performed better than the African

American beta estimates applied to the UK Biobank. Specif-

ically, for PRSs computed in African Americans, the preva-

lence in the top percentile was 7.4% (mean PVE by PRS

from five test sets: R2 ¼ 0.026) with African American sum-

mary statistics, 2.5% (mean PVE: R2 ¼ 0.011) with UK Bio-

bank summary statistics, and 2.9% (mean PVE: R2 ¼ 0.010)

with summary statistics obtained from the largest GWAS

meta-analysis of European individuals.3 For PRSs

computed in UK Biobank individuals, the prevalence in

the top percentile was 2.8% (mean PVE: R2 ¼ 0.009) with

African American summary statistics, 3.0% (mean PVE:

R2 ¼ 0.019) with UK Biobank summary statistics, and

3.8% (mean R2 ¼ 0.027) with summary statistics from

GWAS meta-analysis of European individuals (Figure S7).

Although there may be systemic biases in the use of

pseudo-controls (see subjects and methods), these results

confirm and extend recent observations concerning

the propensity for PRS distributions to differ between

Europeans and Africans based on discovery ancestry

group.42,44,45

In order to further validate these conclusions, we also

stress-tested the PRS estimation by a series of perturbations

summarized in Figure S8, all of which retain the core result

that using African American-estimated weights improves

PRS discrimination. Substituting lnOR estimated directly

from the whole-genome sequencing (Figures S8A–S8D),

the overall PVE actually increases to 4.5% in the African

ancestry samples, although the prevalence in the upper

percentile is reduced a percentage point, while there is lit-

tle impact on the European ancestry evaluation. Substitu-

tion of European meta-analysis effect-size estimates for

ones generated from the UK Biobank also improves the

PVE in Europeans (but not Africans), most likely because

the down-sampling procedure—like the pseudo-control

generation—uses a reduced sample size in the estimation.

Furthermore, we removed various large-effect SNPs to eval-

uate whether they may be driving the improved perfor-

mance. Figures S8E and S8F show that removing four
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Figure 6. Polygenic risk scores (PRSs) in
African Americans and Europeans as a
function of different discovery ancestry
groups
PRSs in African Americans andUK Biobank
individuals derived via 215 of the known
disease SNPs and liability scale effects esti-
mated from the African American discov-
ery cohort (AA_liability, red) or the UK
Biobank discovery cohort (UKBB_liability,
green).
(A and B) Prevalence of IBD (%) versus
percentile of PRS in each cohort.
(C and D) Mean proportion of variance ex-
plained (PVE) by each PRS. Standard error
bars are from five test sets.
variants with MAF < 0.02, three with OR > 1.2, has just a

small impact on the prevalence-risk score relationship, as

does removing the five variants with the largest absolute

value of the OR, three of which have protective minor

alleles.

Potential of population diversity to improve fine-

mapping

Analysis of genetic data from divergent populations is

thought to improve fine-mapping resolution of causal var-

iants by leveraging trans-ethnic differences in LD, effect

sizes, and allele frequencies. The fixed-effects meta-anal-

ysis of our African American whole-genome sequence

data with summary statistics from European individuals2

at the previously fine-mapped (to 95% credible sets)

loci31 showed marked improvement in fine-mapping reso-

lution. Of the 3,529 credible variants from 94 loci that we

meta-analyzed, 552 variants (16%) from 40 signals showed

a change in p value of association with the previously as-

signed phenotype (inflammatory bowel disease, Crohn

disease, or ulcerative colitis) by a factor of at least 10 (up

to 100,000; Table S5). Of these, we noted an improvement

in the strength of the association for 320 variants, while

weaker association was observed for 232 variants. For

instance, of the three credible variants that constituted a

95% credible set near Interleukin 23 Receptor (IL23R

[MIM: 607562]; HD 7, signal 1 in Libioulle et al.32), we

noted an improvement in association at the variant with

the highest posterior probability (PP) of being causal (PP

¼ 0.49). Conversely, a weaker association was observed

for one (PP ¼ 0.26) of the three 95% credible set-variants

near SBNO2 (MIM: 615729). Similarly, 98 of the analyzed

120 credible variants near IRGM (MIM: 608212) (HD 67,

signal 1, 95% credible size ¼ 145 variants) and 102

(including a variant with PP ¼ 0.58) of the analyzed 355

credible variants near DOCK3 (MIM: 603123) (HD 50,

signal 1, 95% credible size ¼ 437 variants) demonstrated
The Ameri
weaker evidence of association, supporting the potential

of trans-ethnic meta-analysis as a means to further

improve the resolution of credible sets that had been con-

structed with a homogeneous population.
Discussion

To further resolve the genetic architecture of inflamma-

tory bowel disease and better define the differential ge-

netic structure of the disease across divergent ancestries,

we have performed the whole-genome sequencing ana-

lyses that include many alleles that were not previously

examined in a population that remains very significantly

understudied. Similar to the findings of a whole-genome

sequencing association study of inflammatory bowel dis-

ease in 4,280 European affected individuals,14 we find lit-

tle evidence for large effect rare variants explaining much

of the heritability. We did observe an aggregate associa-

tion of rare, likely deleterious variants at CALB2 with ul-

cerative colitis, and many variants were specific to African

populations (absent in European [non-Finnish] popula-

tions in gnomAD). However, though it exceeded exome-

wide significance, this finding needs to be interpreted

with caution because of the lack of replication in an inde-

pendent cohort or functional validation. Our study as-

sesses rare variant contributions to inflammatory bowel

diseases in African Americans and will need evidence

from future studies to further support the association at

CALB2 with ulcerative colitis. Nevertheless, our study

highlights that multiple rare variants with small to mod-

erate effects exist, and at least, when clustered in a small

number of sets (genes, windows etc.), are likely to account

for some of the missing heritability. However, much

larger-scale, deep-sequencing studies will be needed to

precisely estimate the variance in disease liability ex-

plained by such variants.
can Journal of Human Genetics 108, 431–445, March 4, 2021 441



Besides providing further evidence for the emerging

notion that the overall genetic risk of inflammatory bowel

disease conferred by common alleles is shared across pop-

ulations, our data highlight the impact that subtle differ-

ences in the effect size and/or allele frequency can have

on the phenotype and the likelihood that rare variant con-

tributions exert population-specific effects. Our effect size

estimates were based on univariate associations at lead

SNPs, an approach that most likely under-represents the

variance explained at each locus because it does not cap-

ture the effect of secondary associations that are modeled

by methods such as LD score regression.25 Since the

apparent proportion of the variance explained by a partic-

ular SNP is the sum of the effects of that SNP plus those in

LD (weighted by the extent of LD captured by the squared

genotype correlation), local differences in LD and rare

variant contributions will contribute to observed effect

size differences. However, interactions with the genetic

background as well as environmental/cultural differences,

including access to healthcare and the age distribution of

disease, all may also subtly contribute to variable allelic ef-

fects across populations. From the point of view of using

PRSs in practice, whether the cause of the difference is

due to main effects at the lead SNP or combined effects

of LD at neighboring SNPs is largely immaterial. It remains

to be seen whether such population-specific genetic contri-

butions may provide insights into differences in diseases

incidence and progression across populations.

Our analyses also provide an example of how polygenic

analysis needs to be adjusted for ancestry when consid-

ering ethnic disparities in health care. It is well established

that frequency distributions of PRSs can differ markedly

across populations, mostly because of deviations in allele

frequencies,42–44 although ascertainment biases in discov-

ery of common variant associations are also a concern.45

Fine-scale mapping of diverse clinical, behavioral, and he-

matological traits in large multi-ethnic cohorts such as

PAGE and BioME has been shown to identify new loci,

resolve secondary signals, and quantify divergent allelic ef-

fects46,47 despite high overall levels of repeatability, consis-

tent with our observations. Admixture mapping has also

been used to refine PRS estimation, for example producing

better discrimination in high risk percentiles for African

Americans with multiple myeloma.48 New methods for

incorporating such findings into polygenic prediction al-

gorithms are rapidly emerging, notably those incorpo-

rating both local and global ancestry adjustments.49–51

Our findings similarly illustrate how observed risk distribu-

tions that differ across populations and as a function of the

discovery ancestry group can be used to improve risk

assessment. Optimal risk scores should combine genetic

and clinical features and will require better estimates based

on expanded sample collection within each ethnic back-

ground and in admixed populations.

It is not known to what extent the rank order of risk is

conserved in trans-ethnic risk assessment: if it is, then a

simple rescaling of the PRS distribution may suffice. How-
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ever, we show, similar to a multi-ethnic comparison of

diabetes genetic risk,52 that incorporation of ancestry-spe-

cific weights significantly increases the inferred risk at the

upper tail of the polygenic risk distribution. This occurs

despite overall conservation of the average variance ex-

plained per locus accounting for compensation of

changes in allele frequency and allelic effect size. It is

striking that most of the gains in risk assessment occur

at the extreme tails of the PRS distribution. Our intuition

about this is that for most people, increases in effects at

some loci are offset by decreases at others, since the

magnitude and sign of the effects are generally uncorre-

lated. However, in the top and bottom percentiles, there

is an excess of alleles with the same sign of effect and

necessarily those individuals share more genotypes,

which establishes a large enough correlation of ancestry-

specific estimates to enhance the PRS discrimination in

the correct population and add to the error in the incor-

rect one. Further research into the mechanisms respon-

sible for ancestry-specific effects is warranted, including

evaluation of the influences of linked rare variants, cumu-

lative genetic background modifiers, and genotype-by-

environment interactions.
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Alföldi, J., Wang, Q., Collins, R.L., Laricchia, K.M., Ganna,

A., Birnbaum, D.P., et al.; Genome Aggregation Database

Consortium (2020). The mutational constraint spectrum

quantified from variation in 141,456 humans. Nature 581,

434–443.

35. Barrett, J.C., Lee, J.C., Lees, C.W., Prescott, N.J., Anderson,

C.A., Phillips, A., Wesley, E., Parnell, K., Zhang, H., Drum-

mond, H., et al.; UK IBD Genetics Consortium; andWellcome

Trust Case Control Consortium 2 (2009). Genome-wide
444 The American Journal of Human Genetics 108, 431–445, March
association study of ulcerative colitis identifies three new sus-

ceptibility loci, including the HNF4A region. Nat. Genet. 41,

1330–1334.

36. Rakhshani, N., Araste, M., Imanzade, F., Panahi, M., Safarnez-

had Tameshkel, F., Sohrabi, M.R., Karbalaie Niya, M.H., and

Zamani, F. (2016). Hirschsprung disease diagnosis: Calretinin

marker role in determining the presence or absence of gan-

glion cells. Iran. J. Pathol. 11, 409–415.

37. Anbardar, M.H., Geramizadeh, B., and Foroutan, H.R. (2015).

Evaluation of Calretinin as a new marker in the diagnosis of

Hirschsprung disease. Iran. J. Pediatr. 25, e367.

38. Marilley, D., and Schwaller, B. (2000). Association between the

calcium-binding protein calretinin and cytoskeletal compo-

nents in the human colon adenocarcinoma cell line WiDr.

Exp. Cell Res. 259, 12–22.

39. Nakamura, H., Lim, T., and Puri, P. (2018). Inflammatory

bowel disease in patients with Hirschsprung’s disease: a

systematic review and meta-analysis. Pediatr. Surg. Int. 34,

149–154.

40. Scharl, S., Barthel, C., Rossel, J.B., Biedermann, L., Misselwitz,

B., Schoepfer, A.M., Straumann, A., Vavricka, S.R., Rogler, G.,

Scharl, M., and Greuter, T. (2019). Malignancies in inflamma-

tory bowel disease: frequency, incidence and risk factors-Re-

sults from the Swiss IBD cohort study. Am. J. Gastroenterol.

114, 116–126.

41. Peneau, A., Savoye, G., Turck, D., Dauchet, L., Fumery, M., Sal-

leron, J., Lerebours, E., Ligier, K., Vasseur, F., Dupas, J.L., et al.

(2013). Mortality and cancer in pediatric-onset inflammatory

bowel disease: a population-based study. Am. J. Gastroenterol.

108, 1647–1653.

42. Martin, A.R., Kanai, M., Kamatani, Y., Okada, Y., Neale, B.M.,

and Daly, M.J. (2019). Clinical use of current polygenic risk

scores may exacerbate health disparities. Nat. Genet. 51,

584–591.

43. Khera, A.V., Chaffin, M., Aragam, K.G., Haas, M.E., Roselli, C.,

Choi, S.H., Natarajan, P., Lander, E.S., Lubitz, S.A., Ellinor, P.T.,

and Kathiresan, S. (2018). Genome-wide polygenic scores for

common diseases identify individuals with risk equivalent to

monogenic mutations. Nat. Genet. 50, 1219–1224.

44. Peterson, R.E., Kuchenbaecker, K., Walters, R.K., Chen, C.Y.,

Popejoy, A.B., Periyasamy, S., Lam, M., Iyegbe, C., Straw-

bridge, R.J., Brick, L., et al. (2019). Genome-wide association

studies in ancestrally diverse populations: opportunities,

methods, pitfalls, and recommendations. Cell 179, 589–

603.

45. Kim, M.S., Patel, K.P., Teng, A.K., Berens, A.J., and Lachance, J.

(2018). Genetic disease risks can bemisestimated across global

populations. Genome Biol. 19, 179.

46. Wojcik, G.L., Graff, M., Nishimura, K.K., Tao, R., Haessler, J.,

Gignoux, C.R., Highland, H.M., Patel, Y.M., Sorokin, E.P., Av-

ery, C.L., et al. (2019). Genetic analyses of diverse popula-

tions improves discovery for complex traits. Nature 570,

514–518.

47. Chen, M.H., Raffield, L.M., Mousas, A., Sakaue, S., Huff-

man, J.E., Moscati, A., Trivedi, B., Jiang, T., Akbari, P., Vuck-

ovic, D., et al.; VA Million Veteran Program (2020). Trans-

ethnic and ancestry-specific blood-cell genetics in 746,667

individuals from 5 global populations. Cell 182, 1198–

1213.e14.

48. Du, Z., Weinhold, N., Song, G.C., Rand, K.A., Van Den Berg,

D.J., Hwang, A.E., Sheng, X., Hom, V., Ailawadhi, S., Nooka,

A.K., et al. (2020). Ameta-analysis of genome-wide association
4, 2021

http://refhub.elsevier.com/S0002-9297(21)00043-4/sref23
http://refhub.elsevier.com/S0002-9297(21)00043-4/sref23
http://refhub.elsevier.com/S0002-9297(21)00043-4/sref23
http://refhub.elsevier.com/S0002-9297(21)00043-4/sref24
http://refhub.elsevier.com/S0002-9297(21)00043-4/sref24
http://refhub.elsevier.com/S0002-9297(21)00043-4/sref24
http://refhub.elsevier.com/S0002-9297(21)00043-4/sref24
http://refhub.elsevier.com/S0002-9297(21)00043-4/sref24
http://refhub.elsevier.com/S0002-9297(21)00043-4/sref24
http://refhub.elsevier.com/S0002-9297(21)00043-4/sref24
http://refhub.elsevier.com/S0002-9297(21)00043-4/sref24
http://refhub.elsevier.com/S0002-9297(21)00043-4/sref25
http://refhub.elsevier.com/S0002-9297(21)00043-4/sref25
http://refhub.elsevier.com/S0002-9297(21)00043-4/sref25
http://refhub.elsevier.com/S0002-9297(21)00043-4/sref25
http://refhub.elsevier.com/S0002-9297(21)00043-4/sref25
http://refhub.elsevier.com/S0002-9297(21)00043-4/sref25
http://refhub.elsevier.com/S0002-9297(21)00043-4/sref26
http://refhub.elsevier.com/S0002-9297(21)00043-4/sref26
http://refhub.elsevier.com/S0002-9297(21)00043-4/sref26
http://refhub.elsevier.com/S0002-9297(21)00043-4/sref26
http://refhub.elsevier.com/S0002-9297(21)00043-4/sref26
http://refhub.elsevier.com/S0002-9297(21)00043-4/sref27
http://refhub.elsevier.com/S0002-9297(21)00043-4/sref27
http://refhub.elsevier.com/S0002-9297(21)00043-4/sref27
http://refhub.elsevier.com/S0002-9297(21)00043-4/sref27
http://refhub.elsevier.com/S0002-9297(21)00043-4/sref28
http://refhub.elsevier.com/S0002-9297(21)00043-4/sref28
http://refhub.elsevier.com/S0002-9297(21)00043-4/sref28
http://refhub.elsevier.com/S0002-9297(21)00043-4/sref28
http://refhub.elsevier.com/S0002-9297(21)00043-4/sref28
http://refhub.elsevier.com/S0002-9297(21)00043-4/sref29
http://refhub.elsevier.com/S0002-9297(21)00043-4/sref29
http://refhub.elsevier.com/S0002-9297(21)00043-4/sref30
http://refhub.elsevier.com/S0002-9297(21)00043-4/sref30
http://refhub.elsevier.com/S0002-9297(21)00043-4/sref30
http://refhub.elsevier.com/S0002-9297(21)00043-4/sref30
http://refhub.elsevier.com/S0002-9297(21)00043-4/sref30
http://refhub.elsevier.com/S0002-9297(21)00043-4/sref30
http://refhub.elsevier.com/S0002-9297(21)00043-4/sref31
http://refhub.elsevier.com/S0002-9297(21)00043-4/sref31
http://refhub.elsevier.com/S0002-9297(21)00043-4/sref31
http://refhub.elsevier.com/S0002-9297(21)00043-4/sref31
http://refhub.elsevier.com/S0002-9297(21)00043-4/sref31
http://refhub.elsevier.com/S0002-9297(21)00043-4/sref32
http://refhub.elsevier.com/S0002-9297(21)00043-4/sref32
http://refhub.elsevier.com/S0002-9297(21)00043-4/sref32
http://refhub.elsevier.com/S0002-9297(21)00043-4/sref32
http://refhub.elsevier.com/S0002-9297(21)00043-4/sref32
http://refhub.elsevier.com/S0002-9297(21)00043-4/sref33
http://refhub.elsevier.com/S0002-9297(21)00043-4/sref33
http://refhub.elsevier.com/S0002-9297(21)00043-4/sref33
http://refhub.elsevier.com/S0002-9297(21)00043-4/sref33
http://refhub.elsevier.com/S0002-9297(21)00043-4/sref33
http://refhub.elsevier.com/S0002-9297(21)00043-4/sref34
http://refhub.elsevier.com/S0002-9297(21)00043-4/sref34
http://refhub.elsevier.com/S0002-9297(21)00043-4/sref34
http://refhub.elsevier.com/S0002-9297(21)00043-4/sref34
http://refhub.elsevier.com/S0002-9297(21)00043-4/sref34
http://refhub.elsevier.com/S0002-9297(21)00043-4/sref34
http://refhub.elsevier.com/S0002-9297(21)00043-4/sref35
http://refhub.elsevier.com/S0002-9297(21)00043-4/sref35
http://refhub.elsevier.com/S0002-9297(21)00043-4/sref35
http://refhub.elsevier.com/S0002-9297(21)00043-4/sref35
http://refhub.elsevier.com/S0002-9297(21)00043-4/sref35
http://refhub.elsevier.com/S0002-9297(21)00043-4/sref35
http://refhub.elsevier.com/S0002-9297(21)00043-4/sref35
http://refhub.elsevier.com/S0002-9297(21)00043-4/sref36
http://refhub.elsevier.com/S0002-9297(21)00043-4/sref36
http://refhub.elsevier.com/S0002-9297(21)00043-4/sref36
http://refhub.elsevier.com/S0002-9297(21)00043-4/sref36
http://refhub.elsevier.com/S0002-9297(21)00043-4/sref36
http://refhub.elsevier.com/S0002-9297(21)00043-4/sref37
http://refhub.elsevier.com/S0002-9297(21)00043-4/sref37
http://refhub.elsevier.com/S0002-9297(21)00043-4/sref37
http://refhub.elsevier.com/S0002-9297(21)00043-4/sref38
http://refhub.elsevier.com/S0002-9297(21)00043-4/sref38
http://refhub.elsevier.com/S0002-9297(21)00043-4/sref38
http://refhub.elsevier.com/S0002-9297(21)00043-4/sref38
http://refhub.elsevier.com/S0002-9297(21)00043-4/sref39
http://refhub.elsevier.com/S0002-9297(21)00043-4/sref39
http://refhub.elsevier.com/S0002-9297(21)00043-4/sref39
http://refhub.elsevier.com/S0002-9297(21)00043-4/sref39
http://refhub.elsevier.com/S0002-9297(21)00043-4/sref40
http://refhub.elsevier.com/S0002-9297(21)00043-4/sref40
http://refhub.elsevier.com/S0002-9297(21)00043-4/sref40
http://refhub.elsevier.com/S0002-9297(21)00043-4/sref40
http://refhub.elsevier.com/S0002-9297(21)00043-4/sref40
http://refhub.elsevier.com/S0002-9297(21)00043-4/sref40
http://refhub.elsevier.com/S0002-9297(21)00043-4/sref41
http://refhub.elsevier.com/S0002-9297(21)00043-4/sref41
http://refhub.elsevier.com/S0002-9297(21)00043-4/sref41
http://refhub.elsevier.com/S0002-9297(21)00043-4/sref41
http://refhub.elsevier.com/S0002-9297(21)00043-4/sref41
http://refhub.elsevier.com/S0002-9297(21)00043-4/sref42
http://refhub.elsevier.com/S0002-9297(21)00043-4/sref42
http://refhub.elsevier.com/S0002-9297(21)00043-4/sref42
http://refhub.elsevier.com/S0002-9297(21)00043-4/sref42
http://refhub.elsevier.com/S0002-9297(21)00043-4/sref43
http://refhub.elsevier.com/S0002-9297(21)00043-4/sref43
http://refhub.elsevier.com/S0002-9297(21)00043-4/sref43
http://refhub.elsevier.com/S0002-9297(21)00043-4/sref43
http://refhub.elsevier.com/S0002-9297(21)00043-4/sref43
http://refhub.elsevier.com/S0002-9297(21)00043-4/sref44
http://refhub.elsevier.com/S0002-9297(21)00043-4/sref44
http://refhub.elsevier.com/S0002-9297(21)00043-4/sref44
http://refhub.elsevier.com/S0002-9297(21)00043-4/sref44
http://refhub.elsevier.com/S0002-9297(21)00043-4/sref44
http://refhub.elsevier.com/S0002-9297(21)00043-4/sref44
http://refhub.elsevier.com/S0002-9297(21)00043-4/sref45
http://refhub.elsevier.com/S0002-9297(21)00043-4/sref45
http://refhub.elsevier.com/S0002-9297(21)00043-4/sref45
http://refhub.elsevier.com/S0002-9297(21)00043-4/sref46
http://refhub.elsevier.com/S0002-9297(21)00043-4/sref46
http://refhub.elsevier.com/S0002-9297(21)00043-4/sref46
http://refhub.elsevier.com/S0002-9297(21)00043-4/sref46
http://refhub.elsevier.com/S0002-9297(21)00043-4/sref46
http://refhub.elsevier.com/S0002-9297(21)00043-4/sref47
http://refhub.elsevier.com/S0002-9297(21)00043-4/sref47
http://refhub.elsevier.com/S0002-9297(21)00043-4/sref47
http://refhub.elsevier.com/S0002-9297(21)00043-4/sref47
http://refhub.elsevier.com/S0002-9297(21)00043-4/sref47
http://refhub.elsevier.com/S0002-9297(21)00043-4/sref47
http://refhub.elsevier.com/S0002-9297(21)00043-4/sref48
http://refhub.elsevier.com/S0002-9297(21)00043-4/sref48
http://refhub.elsevier.com/S0002-9297(21)00043-4/sref48


studies of multiple myeloma among men and women of Afri-

can ancestry. Blood Adv. 4, 181–190.

49. Martin, E.R., Tunc, I., Liu, Z., Slifer, S.H., Beecham, A.H., and

Beecham, G.W. (2018). Properties of global- and local-ancestry

adjustments in genetic association tests in admixed popula-

tions. Genet. Epidemiol. 42, 214–229.

50. Zhong, Y., Perera, M.A., and Gamazon, E.R. (2019). On using

local ancestry to characterize the genetic architecture of human

traits: genetic regulation of gene expression in multiethnic or

admixed populations. Am. J. Hum. Genet. 104, 1097–1115.
The Ameri
51. Shi, H., Burch, K.S., Johnson, R., Freund, M.K., Kichaev, G.,

Mancuso, N., Manuel, A.M., Dong, N., and Pasaniuc, B.

(2020). Localizing components of shared transethnic genetic

architecture of complex traits from GWAS summary data.

Am. J. Hum. Genet. 106, 805–817.

52. Márquez-Luna, C., Loh, P.R., Price, A.L.; South Asian Type 2

Diabetes (SAT2D) Consortium; and SIGMA Type 2 Diabetes

Consortium (2017). Multiethnic polygenic risk scores

improve risk prediction in diverse populations. Genet. Epide-

miol. 41, 811–823.
can Journal of Human Genetics 108, 431–445, March 4, 2021 445

http://refhub.elsevier.com/S0002-9297(21)00043-4/sref48
http://refhub.elsevier.com/S0002-9297(21)00043-4/sref48
http://refhub.elsevier.com/S0002-9297(21)00043-4/sref49
http://refhub.elsevier.com/S0002-9297(21)00043-4/sref49
http://refhub.elsevier.com/S0002-9297(21)00043-4/sref49
http://refhub.elsevier.com/S0002-9297(21)00043-4/sref49
http://refhub.elsevier.com/S0002-9297(21)00043-4/sref50
http://refhub.elsevier.com/S0002-9297(21)00043-4/sref50
http://refhub.elsevier.com/S0002-9297(21)00043-4/sref50
http://refhub.elsevier.com/S0002-9297(21)00043-4/sref50
http://refhub.elsevier.com/S0002-9297(21)00043-4/sref51
http://refhub.elsevier.com/S0002-9297(21)00043-4/sref51
http://refhub.elsevier.com/S0002-9297(21)00043-4/sref51
http://refhub.elsevier.com/S0002-9297(21)00043-4/sref51
http://refhub.elsevier.com/S0002-9297(21)00043-4/sref51
http://refhub.elsevier.com/S0002-9297(21)00043-4/sref52
http://refhub.elsevier.com/S0002-9297(21)00043-4/sref52
http://refhub.elsevier.com/S0002-9297(21)00043-4/sref52
http://refhub.elsevier.com/S0002-9297(21)00043-4/sref52
http://refhub.elsevier.com/S0002-9297(21)00043-4/sref52

	Whole-genome sequencing of African Americans implicates differential genetic architecture in inflammatory bowel disease
	Introduction
	Subjects and methods
	Study samples
	Library construction and whole-genome sequencing
	Data processing and variant calling
	Sample QC and filtering
	Variant QC and filtering
	Principal-component analysis of sequence data
	Single-variant association testing of sequence data
	Known association in ADCY7
	Power analysis
	Aggregate rare-variant association testing

	GWAS genotype data, QC, imputation, and association testing
	Imputation
	Common variant association testing for replicative evidence

	Genetic risk score calculation
	Liability scale modeling

	Results
	Common variant associations in African Americans
	Rare-variant associations in African Americans
	Genetic landscape at the established disease loci between African Americans and Europeans
	Variance in disease liability in African Americans and Europeans
	Transferability of polygenic risk scores across populations
	Potential of population diversity to improve fine-mapping

	Discussion
	Data and code availability
	Supplemental information
	Acknowledgments
	Declaration of interests
	Web resources
	References




