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Abstract

We apply Bayesian data analysis to a structured cognitive
model in order to determine the priors that support human
generalizations in a simple concept learning task. We mod-
eled 250,000 ratings in a “number game” experiment where
subjects took examples of a numbers produced by a program
(e.g. 4, 16, 32) and rated how likely other numbers (e.g. 8
vs. 9) would be to be generated. This paper develops a data
analysis technique for a family of compositional “Language of
Thought” (LOT) models which permits discovery of subjects’
prior probability of mental operations (e.g. addition, multi-
plication, etc.) in this domain. Our results reveal high cor-
relations between model mean predictions and subject gener-
alizations, but with some qualitative mismatch for a strongly
compositional prior.
Keywords: Concepts and categories; learning; Bayesian mod-
eling; machine learning

Introduction
Structured “Language of Thought” (LOT) models have re-
cently become popular cognitive theories across a wide va-
riety of domains (Goodman, Tenenbaum, Feldman, & Grif-
fiths, 2008; Katz, Goodman, Kersting, Kemp, & Tenen-
baum, 2008; Kemp, Goodman, & Tenenbaum, 2008; Kemp,
2012; Ullman, Goodman, & Tenenbaum, 2012; S. Pianta-
dosi, Tenenbaum, & Goodman, 2012; S. Piantadosi, Good-
man, & Tenenbaum, under revision). In most of these ac-
counts, learners are assumed to generate compositionally
structured hypotheses in order to explain observed data. For
instance, in Goodman et al. (2008), learners infer compo-
sitions of boolean operations and featural primitives (e.g.
RED ∨ (DOT T ED ∧ SMALL)) to explain observed data, a
model that explains several key phenomena in rule learning
as the consequence of Bayesian rule induction. Other work
models number word learning as the discovery of a counting
algorithm, capturing children’s developmental progression as
a consequence of inferring the correct composition of opera-
tions to perform on sets (S. Piantadosi et al., 2012).

These types of LOT models typically assume fixed priors
on hypotheses, which in turn provide an inductive bias for
learners to prefer “simpler” compositions of primitives, con-
sistent with behavioral tendencies (Feldman, 2000, 2003).

Of course, these priors amount to substantial assumptions
about people’s expectations at the start of rule learning. To
test these assumptions, different particular LOTs have been
tested to compare, for instance, LOT theories with distinct
types of quantification or varying sets of boolean operations
(Kemp, 2009, 2012; S. Piantadosi, 2011; S. T. Piantadosi,
Tenenbaum, & Goodman, under review). Here, we develop a
method for directly inferring the parameters of an LOT prior

from behavioral data, much in the spirit of work recovering
priors from behavioral data in psychophysics (Stocker & Si-
moncelli, 2006; Paninski, 2005). We provide a freely modi-
fiable implementation in Python (S. T. Piantadosi, 2014) for
further use and extension.

We assume that the prior parameters specify a genera-
tive model, namely a Probabilistic Context Free Grammar
(PCFG). For instance, in the context of logic, we might have
separate PCFG parameters corresponding to the production
of a rule with disjunction (∨) versus conjunction (∧). These
parameters determine the relative likelihood of each opera-
tion; by inferring their values, we are able to determine how
strongly subjects believe that each will be used in a novel,
unobserved concept.

Our analysis technique relies on Bayesian tools, allowing
us to infer both the likely parameters and the likely ranges of
parameters from subjects’ data. This allows us to determine
exactly how much behavioral data tells us about the prior;
we might discover that the behavioral data is not informative
about subjects’ priors, resulting in high variance in the pos-
terior on PCFG parameters. Alternatively, we might discover
that the prior probability of some but not all operations can
be recovered from the data. This type of statistical inference
permits inferences that are “just right” from subjects’ data,
indicating what a scientist should believe about otherwise un-
observable cognitive operations.

The structure of this paper is as follows. First, we introduce
the Number Game, an induction task providing a simple do-
main of concept-learning. Then, we discuss the structure and
expressive potential of probabilistic context-free grammars as
a representation for concept hypotheses. After this we present
our method for Bayesian data analysis of grammar parame-
ters and apply it to three complementary LOT formalizations.

The Number Game
We consider concept learning in the Number Game
(Tenenbaum, 1999, 2000), a simple domain of cognitively-
interesting induction. In the number game, concepts corre-
spond to subsets of integers from the domain {1, ...,100}.
Subjects observe some numbers D (data) in an unobserved
concept C and are asked which other numbers are in C. For in-
stance, given observed data D = {16,2,64,8}, subjects might
induce that the concept used to generate these was “powers
of two”. This an interesting domain because this problem
is under-determined, meaning that there are many solutions
(“all numbers” and “even numbers” are both consistent with
the data, for instance). Despite this, subjects often have strong
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intuitions that some concepts are more likely.
Tenenbaum (Tenenbaum, 1999) captures these intuitions

using a Bayesian model which computes P(C | D) according
to Bayes rule, or P(C | D) ∝ P(C)P(D | C). Here, P(C) is
a prior on concepts representing subjects’ beliefs about likely
concepts before D is observed. P(D |C) is a likelihood model
of how likely D would be if C were the true concept. This
work makes a strong sampling assumption that the elements
of D are chosen by sampling uniformly from the set specified
by C. Thus

P(D |C) =

(
1
|C|

)|D|
(1)

This explains why, for instance, D = {16,2,64,8} sug-
gests “powers of two” rather than “even numbers”. If C
is “powers of two”, this D would be chosen out of the set
C = {2,4,8,16,32,64}, giving a likelihood of (1/6)4. If C
were {2,4,6, . . . ,100}, then the likelihood would be much
less, (1/50)4. This critical assumption that the likelihood of
data depends on the cardinality of C is known as the size prin-
ciple and is a natural consequence of the strong sampling as-
sumption (Tenenbaum, 1999).

Given D, inferences about whether a new number x is in the
concept are made by integrating across all possible concepts:

∑
C

P(x |C)P(C | D) = ∑
C

P(x |C)
P(D |C)P(C)

P(D)
(2)

Here, we estimate P(D) by summing over a large number
of concepts, representing the vast majority of posterior proba-
bility mass (see below). In our implementation, both P(x |C)
and P(D | C) also include a noise parameter α = 0.90 that
generates elements of C 90% of the time, and elements from
{1, . . . ,100} uniformly 10% of the time.

The Language of Thought in the Number Game
In a formalization of learning as inductive inference over
a LOT representation language, a probabilistic context-free
grammar (PCFG) can be used to model concepts as com-
positions of simple primitives. For our purposes, each tree
generated by a LOT PCFG represents a concept hypothesis
C. Generation probability for a tree gives the concept’s prior
probability p(C), calculated as p(C) = ∏k λk, where λk is the
probability of the k’th rule used to generate the tree. As in
all PCFGs, this probability is conditioned on the parent of the
generated node. This prior allows us to implicitly specify an
infinite concept space and assign higher probability to more
concise LOT expressions.

The assumed PCFG represents a hypothesis about what
mental representations might be like, as well as what types
of concepts people intuitively find probable. By inferring the
{λk} from data, we are assuming part of the representation
(the structure of the PCFG) and discovering part (the specific
probabilities) from human data. Note that we may find that
some λk are close to zero, meaning that we have assumed
rules which are not psychologically justifiable. Additionally,
we may write down different PCFGs and compare their per-
formance in explaining human behavior. This allows us to

Independent Model Grammar Compositional Model Grammar

Start
λ0−→Math Start −→ Set

Start
1−λ0−→ Interval Set

λ0−→ Set ∪Set

Set
λ1−→ Set ∩Set

Set
λ2−→ Set \Set

Set
λ3−→Math

Set
λ4−→ Interval

Math
λ1−9−→ Powers of n 2≤ n≤ 10 Math−→Map(λx.Expr, Interval) 1

Math
λ10−19−→ Multiples of n 3≤ n≤ 12 Expr

λ5−→ Expr ·Expr

Math
λ20−29−→ Ends with n 0≤ n≤ 9 Expr

λ6−→ Ends with(Expr,Expr)

Math
λ30−39−→ Contains Digit n 0≤ n≤ 9 Expr

λ7−→ Contains Digit (Expr,Expr)

Math
λ40−→ Prime numbers Expr

λ8−→ Prime(Expr)

Math
λ41−→ Even Numbers Expr

λ9−→ ExprExpr

Math
λ42−→ Odd Numbers Expr

λ10−→ Expr+Expr

Math
λ43−→ Squares Expr

λ11−→ x

Math
λ44−→ Cubes Expr

λ12−→ConstE

ConstE
λ13−27−→ n 1≤ n≤ 15

Interval 1.0−→ Range[m,n] : 1≤ m≤ n≤ 100 Interval −→ Range[ConstI ,ConstI ]
ConstI

1.0−→ n 1≤ n≤ 100 2

Table 1: Three PCFG constructions: a Mixture Model (not shown),
a simple model with independent probabilities for each rule (“Inde-
pendent Model”), and a recursive compositional rule model (“Com-
positional Model”). The number above each arrow gives the un-
normalized probability of each rule expansion. The Mixture Model
Grammar is identical to the Independent with all parameters λk are
fixed to 1.0 except λ0.

deduce some further lessons about the structure of the PCFG
over and above fitting probabilities. In particular, we consider
three grammars capable of modeling number game concepts
(see Table 1). Next, we describe these models in more detail.
We will consider as an example the prior associated with the
“odd numbers” concept, for each of the three grammars.

Mixture Model
The Mixture Model implements a very simple PCFG which
combines two types of grammatical productions: those gen-
erating mathematical rules and those generating ranges of
numbers, called interval-based concepts. This setup follows
Tenenbaum (Tenenbaum, 1999, 2000), who constructed a
concept hypothesis space for the range of numbers 1 through
100 according to representative concepts generated by addi-
tive clustering within the domain of numbers 1 through 10
(Tenenbaum, 1996). The only distinctions between this con-
cept hypothesis space and that of our model, are that our
space includes two additional types of rule-based concepts:
“Ends in n” and “Contains Digit n”, and that where Tenen-
baum assigns an Erlang prior across interval concepts, we as-
sign a uniform prior for simplicity.

The Mixture Model grammar has a single parameter λ0
which determines the relative probability of using a rule-
based or a interval-based grammatical production. Once the
type of the production is chosen, the specific production is

1While other λ here refer to parameters, this refers to the abstrac-
tion operator λ.

2In order to narrow the extremely broad hypothesis space of
the compositional model, priors of 5.0 are assigned to constants
1,10,20,30, . . . ,90,100.
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chosen uniformly as in (Tenenbaum, 1999, 2000). For exam-
ple, to generate an “odd numbers” concept, we begin at Start
and traverse to Math with probability λ0. Following the al-
lowed rules in Table 1, we expand Math to “Odd Numbers”
with probability 1/44 , yielding an overall prior of p(C) = λ0

44 .

Independent Probabilities Model
The Independent Probabilities grammar generates the
same set of concepts as the Mixture Model grammar, but
with the key difference that each rule-based concept is pro-
duced by a rule with an independent probability parameter
λk. This grammar also has a mixture parameter λ0 that biases
the grammar towards interval- or rule-based concepts. As in
the Mixture Model, interval concepts are assigned a uniform
prior. The parameter space for the Independent Model allows
a more intricate representation of individuals’ priors, where
relative bias associated a priori with particular concepts can
be inferred. For example, in the Independent Model we might
infer that an individual has a stronger bias associated with the
concept “multiples of 4” over the concept “multiples of 7”.

To generate the “odd numbers” concept, the same rules are
used to generate the concept as in the Mixture Model but with
different associated priors: p(C) = λ42

∑
44
k=1 λk

.

Compositional Model
The Compositional grammar is a recursive LOT model that
expresses concepts by freely composing primitives, based on
the general approach of (Goodman et al., 2008). The Com-
positional Model has a significantly wider concept hypothesis
space, and its parameter space reflects the probability of using
each primitive operation. These primitives include values and
operations that can compose to create a range of numerical
concepts, including all those of the other two models, as well
as set operations between mathematical expressions and in-
tervals. For example, one might infer that humans have a par-
ticularly high bias associated with the “times” operator, and a
very low prior with the “powers of n” operator. Note that by
the assumed statistical structure of a PCFG, every place that
“times” is used, it will have the same probability. Thus, de-
spite having a richer concept space, the Compositional gram-
mar cannot model some of the concept-specific priors of the
Independent Model — e.g. the context free assumptions of
the PCFG mean that 2 in (2 · x) and 2 in (2 + x) both are
equally likely (i.e. irrespective of their use in the context of
addition or multiplication).

This grammar requires a considerably deeper tree to rep-
resent the “odd numbers” concept. From Start we go to Set,
then Math with a probability λ3, which maps an Expr across
the range of integers 1 to 100. This Expr goes to Expr+Expr
with probability λ10; one of the two Expr terminates at 1 with
probability λ13, and the other goes to Expr ·Expr. This final
expression terminates with x and 2, with respective probabil-
ities λ11 & λ14. In plain English, “multiples of 2, plus 1, for
integers one to one-hundred.” While this may seem compli-
cated, an advantage of this model is its capacity to capture a

wide range of complexities with fewer free parameters. For
example, the following three concepts are ordered by increas-
ing complexity when generated by the Compositional gram-
mar: “powers of 2”, “powers of 2 plus 1”, “only primes from
the set of powers of 2 plus 1”

Bayesian Data Analysis
The primary contribution of this paper is to apply data anal-
ysis techniques to an interesting domain of inductive con-
cept learning in cognitive science, assessing parameters of the
prior, {λk}, given subjects’ behavioral data. The prior is the
most psychologically laden aspect of LOT models because it
specifies people’s assumptions without any data, as well as—
in compositional models—their subjective expectations about
how likely each operation is to be used. Similar data analysis
has been used previously to infer the parameters of the prior’s
PCFG (S. Piantadosi, 2011; S. T. Piantadosi et al., under re-
view), although largely with the goal of comparing different
languages. Here, we focus on the complementary question of
inferring in detail the relative expectations among different
primitives, or different classes of primitives.

To do this, we present a method of Bayesian data analysis
(Kruschke, 2010) to infer a posterior distribution on each rule
probability, given the human responses. We’ll use yi to repre-
sent the number of “yes” counts for whether a query xi (e.g.
xi = 16) is in the concept, given data Di (e.g. Di = {2,4,8}).
We’ll use Ni to denote the total number of human responses
for query xi, fixed by experimental design. Let G = {λk} be
the set of rule production probabilities. For a given G, we
implicitly define a space of concept hypotheses that may be
generated by this grammar. We wish to find

P(G | y,D,N,x) ∝ P(G)P(y, | G,D,N,x)

= P(G)∏
i

P(yi, | G,Di,Ni,xi).
(3)

Where the product comes from assumed independence of
responses, conditioned on Di and xi. In this equation, P(G)
is a prior on parameters. We assign a Gamma(2,1) prior to
each λk, representing its unnormalized probability. Human
responses are then assumed to come from a binomial likeli-
hood P(yi, | G,Di,Ni,xi),(

Ni

yi

)
[P(yi, | G,Di,Ni,xi)]

yi [1−P(yi, | G,Di,Ni,xi)]
Ni−yi (4)

Together, these equations specify a data analysis model
over grammar probabilities that can take human inferences
(e.g. 9 out of 10 people believe 16 is in the concept {4,8}
came from), and work backwards to discover the relative
probability of compositional PCFG components behind these.

For the Compositional Model, we use a Markov Chain
Monte Carlo sampling technique, the Metropolis-Hastings
(MH) algorithm, to generate a representative subset of the in-
finite concept hypothesis space when computing the marginal
(integral) (2). In computing the marginal, we ran 255 inde-
pendent MH chains at 300,000 steps each, with each chain
conditioned according to a unique concept example D from
our data. All chains were initialized with the same uniform
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(a) 15 in concept?
〈3 yes,3 no〉

(b) 15 in concept?
〈3 yes,30 no〉

(c) 15 in concept?
〈30 yes,3 no〉

(d) 64 in concept?
〈3 yes,3 no〉

(e) 64 in concept?
〈3 yes,30 no〉

(f) 64 in concept?
〈30 yes,3 no〉

Figure 1: Posterior distribution of parameter space for the Mixture
Model grammar p(λ0 | D,x,y,N). D = {16} for each example here,
and x,y,N are each single-item sets, for either x = {15} (top row) or
x = {64} (bottom row).

prior G0 (approximately uniform, with higher probability as-
signed to terminal rules). The 1000 hypotheses with highest
posterior scores for each chain (thus containing nearly all pos-
terior probability mass) were all joined by union, yielding a
total set size of 9,946. This formed a finite hypothesis space
that well-approximated each posterior (P(C | D)).

MH was also used to infer the grammar parameters G in
3 for all models. Ten chains each were run for the Com-
positional and Independent Models, each for 50,000 steps,
with 50,000 steps of burn-in; convergence was usually ob-
served for these after less than 20,000 steps. Convergence in
the Mixture Model (which has only one parameter) was usu-
ally reached after less than 500 samples were drawn, so four
chains for this model were each run for 10,000 steps.

An example statistical inference
To demonstrate our approach, we first apply this data analysis
to a simple toy example. Imagine you see a single example
from a concept: {16} and are asked whether 15 or 64 are part
of the same concept. 15 is close to 16 in magnitude, the metric
of “similarity” considered by Tenenbaum. On the other hand,
64 can be grouped with 16 according to numerical rules—for
example, “even numbers”, “powers of two”, “powers of 4”,
or ”perfect squares” are all candidate concepts.

We ran this simulated data set on the Mixture Model,
shown in Table 1. We then used our data analysis to infer
this model’s single λ0 parameter from a few data sets with
intuitive answers, serving as a proof of principle for our data
analysis methods. For instance, if subjects assume 15 is in
the concept (given only that they know 16 is), we should in-
fer that λ0 is low, meaning that similarity (distance) based
concepts are the most psychologically salient ones. On the
other hand, if our simulated data has that subjects believe 64
is likely instead, we should see a high λ0, indicating that the
psychologically highest prior concepts are rule-like.

Figure 1 shows the posterior distribution on the λ0 for six
artificial datasets. Figure 1a shows the distribution on λ0 if we

find 3 subjects saying “yes” and 3 saying “no” to 15, condi-
tioned on {16} being in the concept. In this case, λ0 is biased
towards 0, representing a preference for interval-based con-
cepts. A bias emerges here because mathematical concepts
have trouble explaining this data, so little is gained by assign-
ing them a high prior. However, if most subjects say “no”
to 15 (Figure 1b), the model correctly implies that λ0 must
be higher: rejecting 15 means that people likely down-weight
the prior probability of ranges, many of which include 15.

Therefore, more “yes”es than “no”s will indicate that
interval-based concepts probably have a high prior bias. We
see the posterior distribution in Figure 1c reflects this expec-
tation, since the distribution over mixture ratios is greatly
skewed towards interval-based concepts (low λ0). We also
see this skew towards interval-based concepts in Figure 1a,
but with a more uniform distribution. With very few data
points, it is unclear whether these responses are truly reflec-
tive of the prior, or simply result from noise. With a more
proportional mixture ratio, we should see fewer “yes”es than
“no”s due to an initial preference towards rule-based con-
cepts, as reflected in the distribution of Figure 1b.

Imagine you are instead asked whether 64 is in the target
concept given D = {16}. Maybe the pattern is “square num-
bers” or “powers of 2” - each of these has a small set size in
the domain of 1 to 100, so it is likely that 16 would be output
if one of these was the concept. Since “rule-based” concepts
have such small set sizes, these are normally preferred over
interval concepts given very little data (Tenenbaum, 1999).
We therefore expect that with a proportional bias between in-
terval and rule concepts, a majority of observers should as-
sume 64 is in the target concept given D = {16}, as seen in
Figure 1f. This will not be the case only when interval con-
cepts are given a strong bias over rule concepts (Figure 1e).

Analysis of a large-scale Number Game experiment
We analyzed a large dataset of human responses for our ex-
periment, comprised of 606 participants with demograph-
ics typical of Amazon Mechanical Turk workers (Bigelow
& Piantadosi, 2016). Subjects were tested on input sets D
that were generated by using a small set of “primordial”
sets (all integers, evens, odds, squares, cubes, and primes)
and then mapping a variety of functions (e.g. f (n) = n+ 1,
f (n) = n+ 2, f (n) = n− 1, f (n) = 2 · n, etc.) across each.
Data sets D were generated by randomly sampling sets of
length 2, 3, and 4 from each resulting concept. On each trial,
participants were told a set D was generated by a specific pro-
gram, then indicated whether it was likely the program would
generate each target from a random sequence of 30 numbers
in the range {1, . . . ,100}. No feedback was given as to the
correctness of responses. Responses were trimmed for the 31
subjects with the lowest total typicality values - measured as
log(p) for “yes” responses and log(1− p) for “no”, where p
is the fraction of positive responses - yielding a total 258,750
generalizations across 255 unique concepts.

Figure 2 shows an overall model summary of our results,
giving the relationship between the model’s predictive distri-
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(a) Independent Probabilities Grammar

bution (x-axis) and humans’ probability of responding “yes”
(y-axis), to each of the generalizations in the data. The left
column shows the initial grammar parameters — i.e., before
{λk} has been fit to human data; the right column shows the
MAP grammars. This plot makes clear several aspects of our
data. First, the correlations are high in the left column, mean-
ing that the default model fits the human data relatively well.
However, the model fit does improve in the right column, in-
dicating that there is some variance to be gained by adjusting
these parameters. Note that in all subplots the reported R2 val-
ued are on the box plot means, meaning that they do not rep-
resent the full variance in the data. The box plot also shows
that there is considerable variance in responses for each bin,
meaning that there is a substantial variability over and above
the means that the model does not capture.
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(b) Mixture Model MAP
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(c) Independent Model Init.
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(d) Independent Model MAP
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(e) Compositional Model Init.
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(f) Compositional Model MAP

Figure 2: Box plots showing the distribution of human responses
(y) binned by model predictions (x). Model predictions are shown
for initial (a,c,e) and MAP (b,d,f) grammar priors. Red diamonds
show mean values; box plots show 25th, 50th, & 75th percentiles,
and whiskers show 5th and 95th. Correlations were computed on
mean values; box plots show high variance over and above these.

(b) Compositional Grammar

0.0

2.5

5.0

7.5

10.0

1 2 3 4 5 6 7 8 9

1
0

C
o

n
s
ta

n
t

E
n

d
s
 i
n

C
o

n
ta

in
s
 D

ig
it

P
o
w

e
r

P
ri

m
e

P
lu

s

T
im

e
s

P
ro

b
a

b
ili

ty
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Figure 3: Posterior distribution of unnormalized grammar produc-
tion probabilities λk. Bar width in this graph represents sample den-
sity relative to a specific parameter λk. Note that in the Independent
Model, all rules shown are normalized relative to each other. In the
Compositional Model, constant primitives (1-10) are weighted rel-
ative to other constants, and operators (“Ends in”, “Times”, “Con-
stant”) are weighted relative to other operators (see Table 1).

The overall shape of these plots tells us whether the model
makes qualitatively correct predictions. The Mixture Model
does well in this respect, as does the Independent Model, al-
though the Independent Model must be interpreted with care
since it freely fits the prior on a large number of concepts.
The initially good fits of the Mixture and Independent Mod-
els indicate that an approximately uniform prior across these
models’ hypothesis spaces fits the data well; clearly, inferring
MAP G will improve fit for some models more than others.

The Compositional Model seems to miss the qualitative
match, which means falling far from the line y = x even
though the general increasing trend yields a respectable cor-
relation. The qualitative mismatch is particularly salient for
model predictions < 0.5, meaning the Compositional Model
seems to systematically mischaracterize people’s likely “no”
responses. This may be because the form of the prior is highly
constrained in the Compositional Model to follow the PCFG.
For example, assigning a high prior to the concept “odd num-
bers” (2n + 1) requires high priors on its four components
“times”, “plus”, “2”, and “1”. But high priors on these would
also assign high prior to 1n+2 (“numbers greater than two”)
due to the independence assumptions of a PCFG. It is pos-
sible that our Compositional Model performs poorly because
we have included the wrong primitives or wrong structure in
our particular PCFG. Fits such as these may in principle be
used to quantitatively compare hypothesized LOTs.
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These results highlight the impact of grammar design on
determining the hypothesis space for models, and we expect
this to be an area of future work. Another area of future work
may be to explore the limitations of PCFGs. It may be that
using a context-sensitive grammar will be necessary to fully
capture human data, or models of another family entirely.

The most interesting aspect of our analysis is the posterior
distribution on grammar productions for each model, giving
what we should believe about people’s relative probability of
each kind of operation. Figure 3 shows these posterior dis-
tributions. The independent probabilities model shows that
human data is best fit when the highest priors are associated
with “Even Numbers”, “Multiples of 11” (numbers with re-
peated digits), “Multiples of 5”, “Odd numbers.” Interest-
ingly, nonzero weight is also assigned to “Primes”, “Multi-
ples of 12”, and “Multiples of 4”.

In the Compositional Model, human data is best fit by high
priors associated with the “Ends In”, “Prime”, and “Multi-
ples” (a · b) operations. The highest prior among operations
is associated with “Constant”, which is to be expected as this
allows for smaller hypothesis trees. Among the constants,
the highest prior is associated with 2, followed by a general
decreasing trend for large numbers that is reminiscent of the
frequency distribution of numbers in language (Dehaene &
Mehler, 1992; S. T. Piantadosi, in press).

Figure 3c shows that λ0 is much higher for the Composi-
tional Model than the others, as to be expected since many
of its hypotheses are redundant with interval concepts (e.g.
n+2 corresponds to “numbers greater than 2”, equivalent to
the interval [3,100]). The Independent Model’s λ0 is higher
than the Mixture Model’s, which is also expected as λk for
each rule-based concept was conditioned on the same data.

Conclusion
Our work has shown how a structured inductive LOT model
may be combined with a Bayesian data analysis to infer likely
parameters of human subject’s priors. Our analysis has re-
vealed both an ability to freely infer priors on concepts (the
Independent Model) as well as those that use the PCFG more
productively, decomposing a concept’s prior into a product of
the priors of its parts (the Compositional Model). In these
cases, Figure 3 represents our inference of these values from
subject data. While the mean predictions of the Composi-
tional Model are highly correlated with human means, the
qualitative fit is worse. However, the method developed here
of analyzing large-scale experiments with Bayesian data anal-
ysis provides a way forward for fitting, refining, and compar-
ing LOT models of human cognition.

References
Bigelow, E., & Piantadosi, S. (2016). A large dataset of gen-

eralization patterns in the number game. Journal of Open
Psychology Data, 4(1).

Dehaene, S., & Mehler, J. (1992). Cross-linguistic regular-
ities in the frequency of number words. Cognition, 43(1),
1–29.

Feldman, J. (2000). Minimization of boolean complexity in
human concept learning. Nature, 407(6804), 630–633.

Feldman, J. (2003). The simplicity principle in human con-
cept learning. Current Directions in Psychological Science,
12(6), 227.

Goodman, N., Tenenbaum, J., Feldman, J., & Griffiths, T.
(2008). A Rational Analysis of Rule-Based Concept Learn-
ing. Cognitive Science, 32(1), 108–154.

Katz, Y., Goodman, N., Kersting, K., Kemp, C., & Tenen-
baum, J. (2008). Modeling semantic cognition as logical
dimensionality reduction. In Proceedings of Thirtieth An-
nual Meeting of the Cognitive Science Society.

Kemp, C. (2009). Quantification and the language of thought.
Advances in neural information processing systems, 22.

Kemp, C. (2012). Exploring the conceptual universe. Psy-
chological Review, 119, 685–722.

Kemp, C., Goodman, N., & Tenenbaum, J. (2008). Learning
and using relational theories. Advances in neural informa-
tion processing systems, 20, 753–760.

Kruschke, J. (2010). Doing bayesian data analysis: A tutorial
introduction with r. Academic Press.

Paninski, L. (2005). Nonparametric inference of prior proba-
bilities from bayes-optimal behavior. In Advances in neural
information processing systems (pp. 1067–1074).

Piantadosi, S. (2011). Learning and the language of thought.
Unpublished doctoral dissertation, MIT.

Piantadosi, S., Goodman, N., & Tenenbaum, J. (under revi-
sion). Modeling the acquisition of quantifier semantics: a
case study in function word learnability.

Piantadosi, S., Tenenbaum, J., & Goodman, N. (2012). Boot-
strapping in a language of thought: a formal model of nu-
merical concept learning. Cognition, 123, 199–217.

Piantadosi, S. T. (2014). LOTlib: Learning and in-
ference in the language of thought. available from
https://github.com/piantado/LOTlib.

Piantadosi, S. T. (in press). A rational analysis of the approx-
imate number system. Psychonomic Bulletin and Review.

Piantadosi, S. T., Tenenbaum, J., & Goodman, N. (under re-
view). The logical primitives of thought: Empirical foun-
dations for compositional cognitive models.

Stocker, A. A., & Simoncelli, E. P. (2006). Noise character-
istics and prior expectations in human visual speed percep-
tion. Nature neuroscience, 9(4), 578–585.

Tenenbaum, J. B. (1996). Learning the structure of similarity.
Advances in neural information processing systems, 3–9.

Tenenbaum, J. B. (1999). A bayesian framework for concept
learning. Doctoral dissertation, Massachusetts Institute of
Technology.

Tenenbaum, J. B. (2000). Rules and similarity in concept
learning. Advances in neural information processing sys-
tems, 12, 59–65.

Ullman, T., Goodman, N., & Tenenbaum, J. (2012). Theory
learning as stochastic search in the language of thought.
Cognitive Development.

2602




