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Implicit data crimes: Machine learning bias arising from misuse
of public data
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Although open databases are an important resource in the current deep learning (DL)
era, they are sometimes used “off label”: Data published for one task are used to train
algorithms for a different one. This work aims to highlight that this common practice
may lead to biased, overly optimistic results. We demonstrate this phenomenon for
inverse problem solvers and show how their biased performance stems from hidden
data-processing pipelines. We describe two processing pipelines typical of open-access
databases and study their effects on three well-established algorithms developed for
MRI reconstruction: compressed sensing, dictionary learning, and DL. Our results
demonstrate that all these algorithms yield systematically biased results when they are
naively trained on seemingly appropriate data: The normalized rms error improves
consistently with the extent of data processing, showing an artificial improvement of
25 to 48% in some cases. Because this phenomenon is not widely known, biased results
sometimes are published as state of the art; we refer to that as implicit “data crimes.”
This work hence aims to raise awareness regarding naive off-label usage of big data and
reveal the vulnerability of modern inverse problem solvers to the resulting bias.

data crimes | inverse problem | big data | MRI | bias

Public databases are an important driving force in the current deep learning (DL) revolu-
tion; ImageNet (1) is a well-known example. However, due to the growing availability
of open-access data and the general hype around artificial intelligence, databases are
sometimes used in an “off-label” manner: Data published for one task are used for different
ones. Here we aim to show that such naive and seemingly appropriate usage of open-access
data could lead to biased, overly optimistic results.

Biased performance of machine-learning models due to faulty construction of data
cohorts or research pipelines recently has been identified for various tasks, including
gender classification (2), COVID-19 prediction (3), and natural language processing (4).
However, to the best of our knowledge, it has not been studied for inverse problem solvers.
We address this gap by highlighting scenarios that lead to biased performance of algorithms
developed for image reconstruction from undersampled MRI measurements; the latter is
a real-world example of an inverse problem and a current frontier of DL research (5–13).

The MRI measurements are fundamentally acquired in the Fourier domain, which is
known as k-space. Sub-Nyquist sampling is commonly applied to shorten the traditionally
lengthy MRI scan time, and image reconstruction algorithms are used to recover images
from the undersampled data (14–17). Therefore, the development of such algorithms
ideally should be done using raw k-space data. However, the development of DL methods
requires thousands of examples, and databases containing raw k-space data are scarce.
To date, only a few databases offer such data (for example, refs. 18–22), whereas many
more offer reconstructed and processed magnetic resonance (MR) images (for example,
refs. 23–30). The latter offer images for postreconstruction tasks, such as segmentation and
biomarker discovery. Nevertheless, due to their availability, they often are downloaded and
used to synthesize “raw” k-space data using the forward Fourier transform; the synthesized
data are then used for the development of reconstruction algorithms. We identified that
this common approach could lead to undesirable consequences; the underlying cause
is that the nonraw MR images are commonly processed using hidden pipelines. These
pipelines, which are implemented by commercial scanner software or during database
storage, include a full set or a subset of the following steps: image reconstruction, filtering,
storage of magnitude data only (i.e., loss of the MRI complex values), lossy compression,
and conversion to Digital Imaging and Communications in Medicine (DICOM) or
Neuroimaging Informatics Technology Initative (NIFTI) formats. These reduce the data
entropy. We aim to highlight that when modern algorithms are trained and evaluated
using such data, they benefit from the data processing and, hence, tend to exhibit
overly optimistic results compared to performance on raw, unprocessed data. Because this
phenomenon is largely unknown, such biased results are sometimes published as state
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of the art without reporting the processing pipelines or addressing
their effects. To raise community awareness of this growing prob-
lem, we coin the term “data crimes” to describe such publications,
in reference to the more obvious “inverse crime” scenario (31)
described next.

Bias stemming from the underlying data has been recognized
previously in a few scenarios related to inverse problems. The
term inverse crime describes a scenario in which an algorithm is
tested using simulated data, and the simulation resonates with
the algorithm such that it leads to improved results (31–35).
Specifically, the authors of ref. 34 described an inverse crime as a
situation where the same discrete model is used for simulating k-
space measurements and reconstructing an MR image from them.
They showed that compared with reconstruction from raw or
analytically computed measurements, this leads to reduced ringing
artifacts. A second example is evaluation of MRI reconstruction
algorithms on real-valued magnitude images. In this case, k-space
exhibits conjugate symmetry; hence, it is sufficient to use only
about half of it for full image recovery. This symmetry often is
leveraged in partial Fourier methods such as Homodyne (15)
and projection onto convex sets (36), where additional steps are
applied for recovery of the full complex data. However, neglecting
the fact that the data are complex valued results in better condi-
tioning due to the lower dimensionality of the inverse problem.
This may lead to an obvious advantage when evaluating algorithms
on such data as opposed to raw k-space data. However, to the best
of our knowledge, inverse crimes have not been studied yet in the
context of machine learning or public data usage.

Here we report on two subtle forms of algorithmic bias that
have not been described in the literature yet and that are relevant to
the current DL era. We show how they arise from two hidden data-
processing pipelines that affect many open-access MRI databases:
a commercial scanner pipeline and a JPEG data storage pipeline.
To demonstrate these scenarios, we took raw MRI data and
“spoiled” them with carefully controlled processing steps. We
then used the processed datasets for training and evaluation of
algorithms from three well-established MRI reconstruction frame-
works: compressed sensing (CS) with a wavelet transform (37),
dictionary learning (DictL) (38), and DL (39). Our experiments
demonstrate that these algorithms yield overly optimistic results
when trained and evaluated on processed data.

The main contributions of this work are fivefold. First, we
reveal scenarios in which algorithmic bias of inverse problem
solvers may arise from off-label usage of open-access databases
and analyze them through large-scale statistics. Second, we find
that CS, DictL, and DL algorithms are all prone to this form of
subtle bias. While recent studies identified stability issues of MRI
reconstruction algorithms (5, 40), here we identify a common
vulnerability of canonical algorithms to data-related bias. Third,
we demonstrate the potentially harmful impact of data crimes by
showing that methods trained on processed data but applied to
unprocessed data yield lower-quality image reconstruction in real-
world scenarios. Fourth, our experiments reveal limited general-
ization ability of the studied algorithms. Finally, by introducing
the concept of data crimes, we hope to raise community awareness
of the growing problem of bias stemming from off-label usage of
open-access data.

Data Crimes

In this section, we lay out the framework for our experiments.
Data Crime I: Zero-Padded k-Space Data. We first consider a
data-processing pipeline that is implemented inside many com-
mercial MRI scanners for reconstructing the scanner output (i.e.,

the MR image). The k-space data are typically acquired using
a multicoil array, and the pipeline includes the following steps
(Fig. 1A): 1) image interpolation, implemented by zero padding
the raw multicoil k-space data; 2) application of the inverse
discrete Fourier transform; and 3) multicoil image combination
via a square root sum of squares (RSS) step. Notice that although
the acquired data are complex valued, the RSS step produces a
magnitude image. The scanner output, therefore, is an interpo-
lated real-valued nonnegative image; this is the type of image most
prevalent in online MRI databases.

Let us assume that the scanner image is later downloaded and
used to synthesize new k-space data, with the aim of using those
data to train a reconstruction algorithm. The synthesized k-space
has two interesting features not originally present: It is larger than
the original raw k-space (due to the zero padding), and it has
nonzero values everywhere (due to the nonlinear RSS step). In
other words, the true data now lie in the k-space center, whereas
artificial data appear in its periphery (Fig. 1A, yellow arrows).
However, because this k-space looks fully sampled, it is considered
to be “ground truth” and used for algorithm development.

A research pipeline commonly used in the development of MRI
reconstruction algorithms is based on retrospective subsampling,
in which sub-Nyquist sampling is simulated using a binary sam-
pling mask and applied to a fully sampled k-space (Fig. 1C ). In
the studied data crime scenario, such retrospective subsampling
is applied to the synthesized k-space, which includes artificial
data. Common subsampling masks typically are based on variable
density (VD) sampling schemes, which sample the center of
k-space more densely than its periphery. These VD schemes are
used because they produce incoherent aliasing artifacts that can
be removed by sparsity-promoting, optimization-based recon-
struction algorithms (37). Importantly, because k-space was zero-
padded earlier in the pipeline, application of a VD mask to the
entire area of the synthesized k-space results in higher effective
sampling density of the true k-space data.

To demonstrate this, we performed the following experiment:
We generated subsampling masks for combinations of three zero-
padding factors and three subsampling schemes (Fig. 2A). All the
masks included a global sampling rate of 17%, which corresponds
to an acceleration factor of R = 6; this rate is measured for the
full k-space area. Then we measured the effective sampling rate,
which we defined as the sampling rate in the nonpadded areas only
(yellow boxes in Fig. 2A), and plotted it against the zero-padding
rate (Fig. 2B). The results indicate that for VD subsampling (both
weak VD and strong VD), the effective sampling rate is much
higher than the global rate. In the case of 2× zero padding, which
is often applied by default in commercial scanners, the measured
effective rates are 24% (R = 4.1) and 38% (R = 2.6) for weak
and strong VD sampling, respectively. These are much larger than
the global rate of 17% (R = 6). Nevertheless, because researchers
often miss this subtle effect, only the global rate is reported. It is
then claimed that algorithms are suitable for reconstruction for a
subsampling rate that is much larger than the one used in practice.

In summary, our experiment demonstrates that when processed
data are retrospectively subsampled with a VD scheme, there is
increased sampling density of “true” data. In the experiments
described in Results, we demonstrate that this gives rise to overly
optimistic algorithm performance.

Data Crime II: JPEG-Compressed Data. The second studied
pipeline involves JPEG compression of the scanner image
(Fig. 1B). Such compression is commonly used to reduce storage
footprint, and it is sometimes applied as part of the DICOM
data-saving pipeline, which is highly prevalent for storage of
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Fig. 1. Data crimes: how retrospective subsampling of processed data leads to biased results. (A) A common data processing pipeline often implemented
inside commercial MRI scanners includes k-space zero padding, application of the inverse Fourier transform, and coil combination via an RSS step. The output
image, which is interpolated and nonnegative, is stored in a database. In data crime I, this image is later used for synthesizing new k-space data; this yields
artificial data in previously zero-padded areas. (B) A common data storage pipeline includes JPEG compression. In data crime II, the compressed image is later
used for retrospective experiments. (C) Standard research pipelines commonly involve retrospective subsampling of fully sampled k-space data. In the data
crimes scenarios, the fully sampled data are based on processed data; hence, image reconstruction algorithms benefit from the early processing. Moreover,
because the gold standard image is based on the same processed data as the reconstructed one, error metrics become blind to the processing and, therefore,
also are prone to bias.

medical images. To demonstrate the JPEG effect, here we neglect
the zero-padding scenario, although the two effects are sometimes
combined. In the scenario of data crime II, the JPEG-compressed
image is stored in an online database and later downloaded and
used to synthesize a new k-space, which is used for algorithm
development (Fig. 1C ). However, because JPEG compression
reduces the data entropy, using JPEG data in retrospective
subsampling experiments leads to improved reconstruction
fidelity. We aim to show that this leads to an artificial improvement
of image reconstruction algorithms.

Results

We studied the effects of the hidden data-processing pipelines by
simulating those pipelines using carefully controlled processed
data. Implementation details are provided in Materials and
Methods. Preliminary results of this work were presented at the
Annual Meeting of International Society of Magnetic Resonance
in Medicine (ISMRM) (41).
Data Crime I. The first experiment examined the effect of the
commercial scanner processing pipeline (Fig. 1A) on the CS algo-
rithm. The results show that this algorithm produces increasingly
sharper reconstructions as the k-space zero-padding factor grows,
for both weak and strong VD sampling schemes (Fig. 3). This
effect was reflected by an artificial reduction of the normalized
rms error (NRMSE) as a function of the zero padding.

In the second experiment, we implemented the three algo-
rithms and applied them to two versions of the same knee MRI
dataset: one prepared without zero padding and the other prepared
with 2× zero padding. The algorithms were trained on each
dataset separately and then tested with the corresponding version
of a test image that included fine details and a knee pathology
(Fig. 4). As can be seen, all the algorithms produced sharper

images in the data crime II scenario, where the data were zero
padded: The fine details and the pathology became more visible
than in the nonpadded case.

These results were further confirmed in a large set of ex-
periments in which the algorithms were trained and tested on
five versions of the underlying knee dataset representing five
processing scenarios; each dataset contained 2,971 images. The
hyperparameter calibration, training, and testing were performed
for each dataset separately to optimize the algorithmic results for
each processing scenario. We then computed the statistics of two
image quality metrics, the NRMSE and structural similarity index
(SSIM) (42), and plotted them against the zero-padding rate.
Markedly, the results of the three algorithms exhibit the same be-
havior: Their NRMSE and SSIM values improve consistently with
the zero-padding extent (Fig. 5). This improvement is completely
artificial and stems only from data processing. Strikingly, for the
2× zero-padding case, which is often the default in commercial
scanners, the NRMSE exhibits a large improvement of 26 to 42%
(Table 1).

Data Crime II. To demonstrate the JPEG compression effect,
we performed experiments in which the algorithms were trained
and tested on different versions of the same underlying dataset.
The JPEG compression level is determined by a quality factor
(QF), where QF = 75 is the default that yields lossy compression
and values such as QF = 50 and QF = 20 yield increasing lossy
compression (43). For reference, our experiments also include
the case of image reconstruction from noncompressed data. In
all cases, the hyperparameter calibration, algorithm training, and
inference were made on the same type of data (i.e., with no
compression or a specific QF).

In the first experiment, the DL algorithm was trained on the
different datasets. Fig. 6 displays an example from the test set that
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Fig. 2. An experiment demonstrating how retrospective subsampling of k-space synthesized from processed data leads to increased effective sampling density
of the true k-space data. (A) Subsampling masks were generated for different combinations of zero-padding factors (Left to Right) and subsampling schemes (Top
to Bottom). The masks were generated from symmetric 2D PDFs (profiles displayed) with 17% sampling in all cases. The regions covering the original nonpadded
k-space data are marked with yellow boxes. Notice that the zero padding squashes the original data to the center, so when a VD scheme is used, those data are
sampled with an increased rate. (B) The effective sampling rate, which is the subsampling rate inside the original k-space area (i.e., inside the yellow boxes in A),
versus the zero-padding rate. Notice that for the variable-density schemes, the effective rate is much higher than the global rate (17%) and may rise above 55%.
(C) Real-world examples for k-space data generated from MR images found in public open-access databases (23, 24) show evidence of zero padding (the yellow
box is our estimation). These experiments and examples indicate that training algorithms using data from public databases could lead to increased effective
sampling.

shows the gold standard image and the DL reconstructions for
data undersampled with R = 4. Generally, the visual quality of
all the images (gold standard and reconstructed) reduces when
the JPEG compression level increases (left to right in Fig. 6); this
is expected from compressed data. However, the NRMSE metric
shows an unexpected effect: It improves with the compression
(i.e., the reconstruction error reduces, although the image’s visual
quality degrades). The reason for this phenomenon is that in
retrospective experiments, the reconstruction quality is measured
with respect to a gold standard image that is based on the same
underlying processed data. The error metrics, therefore, are blind
to the data processing. Strikingly, the NRMSE could show a
misleadingly large improvement even when the human eye cannot
see any difference, as demonstrated in the left two columns of
Fig. 6. Although the reconstructions from noncompressed and
QF = 75 data are visually similar, the NRMSE of the latter is 30%
lower. This reflects the bias induced by data crime II.

The JPEG compression effect was further observed in a statisti-
cal analysis of an experiment in which the algorithms were trained
and tested on the four types of data (noncompressed, QF = 75,
QF = 50, and QF = 20) (Fig. 7). As illustrated, the error metrics
exhibit a consistent improvement with the compression. Notably,
this effect is systematically observed for all the studied algorithms
and reduction factors (Table 2).
Data Crimes Impact. We now turn to experiments that aim to
demonstrate a different phenomenon related to data crimes: poor
generalization to unprocessed data when training on processed
data.

In clinical translation research, algorithms trained using pro-
cessed data eventually will be prospectively applied to unprocessed
data. To demonstrate the negative consequence of this method-
ology, we conducted experiments in which networks trained on
processed data were separately tested using processed and unpro-
cessed versions of the underlying test set. We then compared their
performance for those two cases. Fig. 8A shows three examples
from knee MR images with zoom-in on the clinically important
meniscus area. As can be seen, the images reconstructed from
unprocessed data (Fig. 8 A, Right) are more blurred than are those
reconstructed from the processed data (Fig. 8 A, Left), and some
fine details are barely visible (arrows). This reduced performance is
further illustrated in the statistical analysis shown in Fig. 8 B and
C, where every pair of adjacent columns displays the performance
of a single trained network. Clearly, when trained networks are
applied to unprocessed data, their performance drops. This effect
grows with the training data processing extent (left to right).
Notice that in data crime I, where the network is trained on data
processed with the default 2× zero padding but then applied
to nonpadded data, its performance drops by 47% (Fig. 8B,
rightmost pair of bars).

Discussion

This study reveals that naive usage of open-access data in the
development of MRI reconstruction algorithms could give rise to
overly optimistic results. The underlying cause is that open-access
data are commonly prepared with hidden processing pipelines
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Fig. 3. Example for data crime I: CS reconstructions from retrospectively subsampled k-space of processed images. Notice how the reconstruction quality
improves, both visually and in terms of NRMSE, with the zero-padding (processing) extent. This improvement is completely artificial; it stems from the coupling
of early data processing and retrospective subsampling, which leads to increased sampling of true nonpadded data (as illustrated in Fig. 2). The artificial
improvement is more significant when the sampling is stronger around the k-space center (Bottom; strong VD).

that implicitly affect the data properties. Our study demonstrates
that CS, DictL, and DL algorithms exhibit biased results for data
prepared with common processing pipelines. Because this form
of bias is largely unknown, it is frequently not addressed in the
research literature. We coin the term data crimes to facilitate
research in this field.

Our main observation is that bias stems from the unintentional
coupling of hidden data-processing pipelines with later retro-
spective subsampling experiments. The data processing implicitly

improves the inverse problem conditioning, and the retrospective
subsampling enables the algorithms to benefit from that. This
process may appear in different forms. In data crime I, the zero
padding concentrates the true k-space data to the center. When
VD sampling is later applied, those data are densely sampled.
The increased amount of true data that become available to the
algorithm makes the inverse problem easier to solve; hence, algo-
rithms tend to exhibit misleadingly good results. In data crime II,
the JPEG compression reduces the data entropy (i.e., it increases

Fig. 4. Data crime I. The CS, DictL, and DL algorithms were trained and tested using two versions of the same knee MRI dataset, one processed without
zero padding and one with 2× zero padding. In the latter case, which represents the scenario of data crime I, the reconstructions exhibit sharper images with
improved visibility of small, clinically relevant details. This illustrates that training inverse problem solvers using processed data may lead to overly optimistic
results.
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Fig. 5. Data crime I statistics. The CS, DictL, and DL algorithms were trained and evaluated using data with various processing extents. The data-processing
pipeline typically implemented inside commercial scanners includes k-space zero padding (Fig. 1A). Retrospective subsampling experiments were performed
with VD subsampling with R = 4. The curves display the mean and SD of the NRMSE and SSIM error metrics for the test set. Notice that both metrics show an
artificial improvement that is correlated with the data-processing extent. This demonstrates that algorithms evaluated on retrospectively subsampled processed
data tend to yield overly optimistic evaluation.

their sparsity and yields a more compact representation in a spar-
sifying transform domain). Modern reconstruction algorithms
leverage sparsity priors or learn the compact representation from
training data (6, 37, 44, 45); therefore, they benefit from the
compression and yield biased results.

Another main insight from this study is that the error metrics
might show a misleading evaluation in retrospective subsampling
experiments. That occurs because they measure the difference
between two images (the gold standard and reconstructed image)
that are based on the same processed data. Ideally, the error metrics
should measure the difference between the reconstructed image
and the original unprocessed one. However, because the latter
is unavailable (because it was not stored in the database), the
metrics become blind to the data processing. As a result, they
cannot reflect the true reconstruction quality and might produce
misleading results.

Another phenomenon shown in our study is that networks
trained on processed data do not generalize well to unprocessed
data: They exhibit a significant performance drop (Fig. 8). Issues
related to limited generalization of MRI reconstruction algorithms
have been previously studied mainly in the context of distribution
shifts (40, 46, 47). Here we show how limited generalization arises
from unconscious off-label data usage. More importantly, in light
of the large performance drop for real-world unprocessed data
(Fig. 8), our experiments demonstrate the potentially harmful
impact of data misuse in the development of clinically oriented
algorithms.

In summary, this study reveals two types of algorithmic sen-
sitivity related to misuse of publicly available processed data, in
the context of MRI reconstruction: overly optimistic performance
due to bias and limited generalization to unprocessed data. At
present, there is growing interest in identifying sensitivities of

Table 1. Data crime I statistical results: The mean NRMSE and SSIM values measured for the test set
NRMSE SSIM

No padding 2× padding data crime Artificial change No padding 2× padding data crime Artificial change
CS: weak VD 0.0131 0.0098 −26% 0.91 0.93 3%
CS: strong VD 0.0119 0.0079 −34% 0.92 0.95 4%
DictL: weak VD 0.0167 0.0106 −37% 0.88 0.93 6%
DictL: strong VD 0.0138 0.008 −42% 0.91 0.96 5%
DL: weak VD 0.0131 0.0081 −38% 0.89 0.95 6%
DL: strong VD 0.0114 0.0068 −41% 0.92 0.96 5%

All three algorithms yield overly optimistic results when trained and evaluated on zero-padded (processed) MRI data.
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Fig. 6. Example for data crime II. A DL algorithm was separately trained and tested on noncompressed data and different levels of JPEG-compressed data.
Although the compression reduces the visual image quality, the NRMSE surprisingly reduces with increased compression, reflecting a seemingly better image
quality. The reason is that in the retrospective experiments, both the gold standard and reconstructed images are based on processed data; hence, the error
metric is blind to the processing and prone to bias. Strikingly, although the reconstructions from noncompressed and default-compressed data are visually
similar, the NRMSE of the latter is lower by 30%. This demonstrates the implicit bias induced by training and evaluating algorithms on JPEG-compressed data.

such algorithms (5, 40, 48–51). However, recent studies focused
mainly on investigating sensitivities with respect to adversarial
attacks. Although these attacks are an important research tool,
they are not observed in practice because MRI scanners are closed
systems. Here, however, we focused on sensitivity related to a more
common cause: off-label usage of public databases. While review-
ing papers, we noticed that such usage is becoming increasingly
more common due to the growing availability of public databases
that offer various types of MRI data. Data crime I may be common
because MR images found in public databases often are based

on images produced by commercial scanners, in which the data-
processing pipeline described in Fig. 1A is often applied by default.
Additionally, data crime II may be common because JPEG images
are highly prevalent: 73.3% of Internet websites contain JPEG-
format data (52). These factors suggest that data crimes might be
more common than intuitively expected.

While our research highlights two sources of bias related to
data use, many other sources may exist and affect algorithmic
results in published literature. As mentioned above, neglecting the
complex-valued nature of MRI data and evaluating reconstruction

Fig. 7. Statistical results demonstrating data crime II. The CS, DictL, and DL algorithms were applied to datasets with no compression and increasing JPEG
compression levels. The graphs depict the mean and SD computed for the test set. Notice that all the curves show the same trend: The error metrics improve
consistently with increased JPEG compression. This improvement is artificial and stems only from the data processing, which reduces the data entropy. The
results, therefore, demonstrate the subtle bias caused by training inverse problem solvers on JPEG-compressed data.
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Table 2. Data crime II statistics: The mean NRMSE and SSIM values measured for the test set
NRMSE SSIM

No JPEG JPEG QF Artificial No JPEG JPEG QF Artificial
compression 20 data crimes change compression 20 data crimes change

CS: R = 2 0.0091 0.0030 −67% 0.95 0.99 +4%
CS: R = 3 0.0127 0.0065 −48% 0.92 0.98 +7%
CS: R = 4 0.0149 0.0091 −39% 0.89 0.96 +8%
DictL: R = 2 0.0114 0.0073 −36% 0.93 0.97 +4%
DictL: R = 3 0.0155 0.0117 −25% 0.89 0.94 +5%
DictL: R = 4 0.0195 0.0166 −15% 0.85 0.90 +6%
DL: R = 2 0.0064 0.0036 −44% 0.97 0.99 +2%
DL: R = 3 0.0095 0.0058 −39% 0.95 0.98 +4%
DL: R = 4 0.0111 0.0071 −36% 0.93 0.97 +5%

All three algorithms yield overly optimistic results when trained and evaluated using JPEG-compressed data.

algorithms on magnitude-only data improves the inverse problem
conditioning and leads to overly optimistic results. Bias also
may arise when some physical and physiological effects, such
as contrast changes along echo trains, motion, or spatial phase
variations, are not modeled in simulated data. Additionally, bias
could arise from the choice of method used for computing ground
truth images. For example, in parallel MRI, different methods for
coil combination could lead to different results (53, 54). These
issues are not limited to MRI. Bias also could arise from the
usage of simulated or processed data in other applications that
solve inverse problems, such as X-ray computed tomography (55),
electrocardiography (56), bioluminescence tomography (57), mi-
crowave tomography (58), acoustic wave propagation inversion
(59), and light curve inversion (60). These issues remain open for
further research.

We suggest several guidelines that could help reduce data
crimes. First, we strongly recommend that data curators provide a
consolidated and comprehensive description of all data-processing
steps. Second, for studies in which raw MRI data are not available
and usage of processed data is necessary, we suggest the following:
1) Examine k-space and search for evidence of zero padding (see,
for example, Fig. 2C ). If such evidence is found, k-space can
be cropped to remove these areas. 2) Report the data-processing
steps in detail. By reporting them, studies based on processed data
could be evaluated in the appropriate context. 3) Try to identify
and estimate any bias that could stem from data processing by,
for example, simulations (as in Figs. 5 and 7). Moreover, it is
important to try to estimate any performance gap that could arise
between implementation to processed and unprocessed data (see,
for example, Fig. 8). Such estimations would further provide a
more appropriate context for evaluating published results.

One argument often raised is that it is valid to compare several
algorithms using processed data because we often are interested
only in the relative performance of different techniques rather
than an absolute measure. This is sometimes useful. However, if
the limitations of the study are not reported correctly, then the
results could negatively affect progress in the field because certain
measures, such as the scan acceleration factor, are absolute and are
compared across papers. For example, by using data subject to data
crimes, one could claim good reconstruction quality from 10×
acceleration, even if the effective acceleration without the crime
was (for example) only 2×. The harm is that careful researchers
may not be able to replicate such high accelerations on real
data and, therefore, would find it more difficult to publish their
work because it may not look competitive enough. Therefore,
we suggest that any study comparing algorithms using synthetic
or processed data include full disclosure of the data preparation
pipelines.

It is worth mentioning that this work did not aim to benchmark
the studied algorithms; instead, it aimed to show they all are
affected similarly by the data crimes. However, as a side benefit, we
did obtain benchmark comparisons. To ensure a fair comparison,
we dedicated significant efforts to calibrating the hyperparameters
of each algorithm for each processed version of the underlying
dataset separately (Materials and Methods). Moreover, we ensured
that the algorithms were calibrated, trained, and tested using iden-
tical datasets. We empirically observed that the studied algorithms
perform overall at par, with an advantage of CS over DictL and a
slight advantage of DL over both. However, due to the pipelines of
the data crimes, all our computations were performed with single-
coil magnitude, nonnegative images. The benchmarking of the
algorithms for multicoil, complex-valued MRI data is beyond the
scope of this work and remains for future research.

In summary, this research aims to raise a red flag regarding
naive off-label usage of open-access data in the development of
machine-learning algorithms. We showed that such usage may
lead to biased results of inverse problem solvers. Furthermore, we
demonstrated that training MRI reconstruction algorithms using
such data could yield an overly optimistic evaluation of their abil-
ity to reconstruct small, clinically relevant details and pathology.
This increases the risk of translation of biased algorithms into
clinical practice. Therefore, we call for attention of researchers and
reviewers: Data usage and pipeline adequacy should be consid-
ered carefully, reproducible research should be encouraged, and
research transparency should be required. Through this work, we
hope to raise community awareness, stimulate discussions, and set
the ground for future studies of data usage.

Materials and Methods

Raw Data. To demonstrate the effects of the hidden processing pipelines, we
took raw MRI data and spoiled them with carefully controlled processing steps.
The raw data were obtained from the training and validation sets of the FastMRI
database (18), in which fully sampled ground truth data are available (the FastMRI
test set was not used because it contains only undersampled data). This section
describes the raw datasets; the processing steps were described in the main part
of the paper for each data crime separately.

1. We first used brain data. In the experiment presented in Fig. 3, we used a
single 320 × 320 brain image.

2. Next, we used knee fat-saturated proton density (FSPD) data. In the knee
pathology experiments (Figs. 4 and 8A), we used data from multicoil FSPD
scans because knee pathology is usually observed in this type of MRI scan. The
training set consisted of 2,849 randomly chosen slices obtained from 300 sub-
jects, and the test cases were taken from two images that contain pathological
details (found in FastMRI files named file1000425.h5 and file1002455.h5).
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Fig. 8. The potentially harmful impact of data crimes. In real-world applica-
tions, networks trained on processed data could be applied to unprocessed
data. To show the negative effect, we took networks trained on processed
data and tested them on both processed and unprocessed versions of the
same test set. (A) Examples for knee MR images zoomed in on the clinically
important meniscus area. Notice that in the real-world application (Right), the
images are more blurred, and some details are missing (arrows). (B) Impact
of data crime I. Notice that when networks trained on zero-padded data are
applied to nonpadded data, their performance drops significantly, by up to
47%. (C) Impact of data crime II. Similarly, when networks trained using JPEG
data are applied to non-JPEG data, their performance reduces.

3. Finally, we used knee proton density (PD) data. In the experiments that
were used for demonstration and statistical analysis of the two data crimes
(Figs. 5–8), we used 640 × 372 slices obtained from multicoil PD scans.

Specifically, we used 1,427 slices obtained from 80 subjects for training and
122 slices obtained from seven subjects as the test set. All the slices were
chosen randomly.

When constructing the knee PD and FSPD datasets, we used only slices
from central anatomical regions (i.e., edge slices that contain mostly noise were
removed). Additionally, for each dataset, we chose 10 random slices obtained
from 10 different subjects and reserved them for tuning the hyperparameters of
the studied algorithms; these slices were not included in the training or test sets.
It is worth mentioning that the limited number of slices used for hyperparameter
calibration was dictated by the need to perform vast computations over a huge
search space, especially for the DictL algorithm, as described in DictL Algorithm.

Experimental Overview. We designed our research framework to enable iso-
lating the bias related to the data crimes in a controlled setup. Additionally,
because a side result of this study was the benchmarking of the studied algo-
rithms, we also dedicated significant efforts to ensuring their fair comparison.
Here we detail the steps that were taken for these two aims.

First, to mimic a scenario in which users download a dataset from an online
resource and then optimize the parameters of their algorithm for that specific
dataset, we prepared separate processed datasets for each instance of the data-
processing parameters (i.e., for each zero-padding factor or JPEG QF) and ensured
there was no mixture between the datasets. We then calibrated, trained, and
tested the algorithms on each processed dataset separately. This ensured that
each algorithm was evaluated using instance-optimal parameters; therefore, it
mitigated bias related to hyperparameter tuning. Second, we applied the three
algorithms to identical datasets; their results, therefore, are comparable. Finally,
we generated sampling masks on the fly (i.e., a different random mask was
generated for each k-space example during the training and test sessions). This
technique enables generating a large number of sampling masks while main-
taining their statistics; hence, it prevents overfitting to any particular sampling
mask.

Intensity Scaling. The intensity of the processed images was normalized by
dividing the values of each image by their 98th percentile. This is a practical data
normalization technique often used in DL studies because neural networks are
highly suited for input values in the range of [0, 1].

Sampling. In the retrospective subsampling experiments, we generated ran-
dom two-dimensional (2D) subsampling masks from predefined probability den-
sity functions (PDFs) using Monte Carlo experiments. We implemented three
subsampling schemes: 1) random uniform, in which the PDF was constant and
equal to 1/R (R is the acceleration factor); 2) weak VD, in which the PDF was
constructed by the function f(r) = (1 − r)p, where r is the distance from the
k-space center and p is the power (37), which was set to p = 7 in this case;
and 3) strong VD, in which the PDF also was constructed by f(r) = (1 − r)p

and the power was set to p = 1, p = 2, and p = 3 for reduction factors of
R = 2, R = 3, and R = 4 correspondingly. All the sampling masks included
a small, fully sampled area in the center of the k-space. In parallel imaging, this
area is often known as the calibration region (16). In single-coil MRI experiments,
this region ensures sampling of the low-frequency data and helps stabilize the
computational results. The calibration region size was 12 × 7 pixels for the
640 × 372 knee images and 6 × 6 pixels for the 320 × 320 brain image.
In the zero-padding experiments, where the image size varied, the calibration
region size scaled with the image size.

Algorithms. The CS, DictL, and DL algorithms recover an MR image from sub-
sampled k-space measurements by solving an inverse problem that has the
following general form:

x̂ = arg min
x

1
2
‖Ex − y‖2

2 + λR(x), [1]

where x is the image to be reconstructed, y are the k-space measurements, E is an
encoding operator that describes the imaging system, R(x) is a regularization
term, and λ is a trainable parameter that controls the tradeoff between the data
consistency (DC) term (the first term in Eq. 1) and the regularization term. In
MRI, the encoding operator E is typically described as E = UF, where F is the
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Fourier transform and U is an operator that describes the k-space subsampling.
The studied algorithms differ in their regularization terms and optimization
techniques, as described next.
CS algorithm. This algorithm formulates Eq. 1 as a convex optimization problem
with an �1 prior that promotes the sparsity of x in a sparsifying transform domain
(37). A common choice for the prior is an �1-wavelet one; the optimization
problem is then

x̂ = arg min
x

1
2
‖Ex − y‖2

2 + λ‖Ψx‖1, [2]

where Ψ is the wavelet transform. Eq. 2 can be solved using different optimiza-
tion techniques; here it was solved using the fast iterative shrinkage-thresholding
algorithm (61). Our implementation was based on the SigPy python toolbox (62).

The CS algorithm has one tunable parameter, λ. We calibrated it through a
grid search, in which the grid included values in λ ∈ [1e − 9, 1e − 1]. We
ran the grid search over 10 images from a subset of the data that were reserved
for hyperparameter tuning. We then computed the mean NRMSE over those 10
images, and the value of λ that corresponded to the lowest mean NRMSE was
chosen. Because in the experiments of data crime I the image size varied with
the zero padding, we repeated this procedure for each image size separately.
However, we empirically observed that the same λ value was chosen for all
image sizes. The chosen values were λ= 0.005 for the brain data (Fig. 3) and
λ= 0.001 for the knee data (Figs. 4–8).
DictL algorithm. The DictL algorithm reconstructs the image x by jointly learn-
ing an image domain patch dictionary D and a sparse code A. The dictionary,
which is used for reconstruction of patches, is a sparsifying transform that is
learned directly from the subsampled k-space data. In this method, the image
is reconstructed by representing it as a sparse linear combination of dictionary
atoms, x = DA. The DictL algorithm jointly solves for the image x, the dictionary
D, and the sparse code A (38). The algorithm adaptively learns the dictionary
from the subsampled k-space while reconstructing the image; that is, it is trained
without any other examples or access to the fully sampled k-space data. The
learning is done over image patches.

The optimization problem is formulated as follows:

min
x,A,D

1
2
||Ex − y||22 +

λD

2
||x − R(DA)||22

subject to ||al|| ≤ K, l = 1, . . . , L

||dp||2 ≤ 1, p = 1, . . . , P,
[3]

where R is a reshaping operator that reshapes patches into an image; al are
the columns of A, where each column is a vectorized patch from the image; K is
the sparsity level; L is the number of patches that are used as training examples
during one iteration of the algorithm; dp are the columns of the dictionary D,
where each column is a vectorized atom; and P is the number of dictionary atoms.

We implemented the DictL algorithm in Python using our open-source code
(63). The algorithm solves Eq. 3 through alternating minimization, with K-SVD
(64) for the dictionary update and orthogonal matching pursuit (65) for the
sparse code update.

We dedicated vast computations for calibrating the five tunable hyperparam-
eters of the DictL algorithm, which are P, K, λD, block size b (the blocks are
symmetric, i.e., if b = 8, then the block size is 8 × 8), and the number of outer
iterations of the alternating minimization algorithm, Niter . Due to the varying
image size in the zero-padding experiments, we repeated the calibration process
for each image size separately; this added another dimension. Furthermore, we
repeated the search for a set of five images that were reserved for hyperparameter
tuning (the number of images was dictated by the need for vast computations).
Altogether, we trained the DictL algorithm five times for each combination of
the six parameters; this resulted in the evaluation of 77,686 DictL instances.
For each combination, we computed the mean NRMSE over the five images
and chose the hyperparameter values that produced the lowest NRMSE. This set
of computations was highly time consuming; it was conducted on 200 central
processing units (CPUs) in parallel for over 4 wk. The tested grid search values
were P ∈ [100, 200, 300], K ∈ [5, 13] where the step size was 2, λD ∈
[1e − 5, 1e − 4, 1e − 3, 1e − 2, 1e − 2], b ∈ [4, 32] where the step

size was 4, and Niter ∈ [5, 13] where the step size was 2. The chosen hyper-
parameter values are detailed in SI Appendix.
DL algorithm. We studied the model-based reconstruction using deep learned
priors (MoDL) algorithm, which gives state-of-the-art performance in MRI recon-
struction (39). The MoDL algorithm solves the following optimization problem:

x̂ = arg min
x

1
2
‖Ex − y‖2

2 + λ ‖x − Dw(x)‖2 , [4]

where Dw(x) is the output of a convolutional neural network (CNN). This
optimization problem is solved using an unrolled deep neural network that
includes interleaved CNNs and DC blocks. The DC blocks ensure consistency of
the solution with the k-space measurements; the back-propagation through them
is implemented using the conjugate gradient (CG) algorithm (66). The MoDL
unrolled network is trained in an end-to-end supervised manner where the input
is an aliased image obtained from the zero-filled subsampled k-space data, and
the target is a “gold standard” image obtained from the fully sampled k-space.

In our implementation, the network architecture included six unrolls, CNNs
with a U-net structure (67), weight sharing, and eight CG steps in the DC blocks.
The training was performed using an l1-loss and the Adam optimizer (68) with
gradient accumulation such that the effective batch size was 20. The number of
epochs was 70. We implemented MoDL using PyTorch (69).

Data Crime I Experiments. In this section, we provide implementation details
regarding the experiments performed to demonstrate the effects of data crime I.
In the first experiment, which demonstrates the difference between global and
effective sampling (Fig. 2), a set of 15 random masks was generated for each
combination of a subsampling scheme and zero-padding factor. The curves in
Fig. 2 depict the mean effective rates measured over those sets.

In the next experiments, which demonstrate the zero-padding effect (Figs.
3–5), we implemented VD sampling with an acceleration factor of R = 4. In
these experiments, the MoDL network could not be trained on full-size images
because the zero padding enlarges the image size to an extent that poses a
computational challenge even with modern graphics processing units (GPUs).
However, a major advantage of MoDL is that it is convolutional and at inference
can be implemented to any image size (39). Therefore, we trained MoDL on
patches extracted from training images. The patch size was 0.25 of the image size
in each dimension, and a single patch was extracted randomly from each image.
We also computed the k-space of the patch and used it in the MoDL DC blocks.
In contrast, the network was applied to the full-size test images during inference;
therefore, the results shown in Fig. 5 represent the reconstruction error for full
images.

Data Crime II Experiments. In the second set of experiments, we studied how
JPEG compression of the underlying data influences the performance of recon-
struction algorithms. We prepared the processed datasets using the standard
JPEG implementation found in the Pillow library (70). In the JPEG experiments,
the reduction factor ranged from R = 2 to R = 4 (Table 2).

Data Crimes Impact Experiments. To show the negative impact of applying
networks trained on processed data to unprocessed data, we used networks that
were trained in the experiments described in Results. Then we performed infer-
ence using the unprocessed versions of each dataset, which also were described
in Raw Data. Specifically, for Fig. 8A, we used networks trained on FSPD data as
described for Fig. 4. Additionally, for Fig. 8 B and C, we used networks trained for
the statistical experiments shown in Figs. 5 and 7, respectively.

Image Quality Metrics. We quantified the data crimes’ effects by studying
how the data-processing pipelines influence two highly common image quality
metrics: the NRMSE and the SSIM (42); the latter was implemented using the
SSIM-python imaging library (PIL) library (71).

Computational Overview. This research involved extensive computations due
to the need to optimize, train, and test each algorithm on each processed version
of the underlying dataset. The hyperparameter tuning required about 1 mo of
computations, and the experiments required another month. Altogether, the
compute time was about 2 mo using 200 CPUs and 12 GPUs. All our experiments
were performed on 12GB Nvidia Titan Xp GPUs and Interl(R) Xeon(R) Silver 4116
CPUs.
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Reproducibility and Data Availability. All the original code for this study
and the weights of the pretrained networks have been deposited in Zenodo,
https://zenodo.org/record/6015698#.YiJDNBPMJqs (72). The raw magnetic res-
onance imaging data used for this study is available in the fastMRI database,
https://fastmri.org/ (18).
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