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A Nearly Linear-Time PTAS for Explicit

Fractional Packing and Covering Linear Programs

Christos Koufogiannakis · Neal E. Young

Abstract We give an approximation algorithm for fractional packing and covering linear programs (linear
programs with non-negative coefficients). Given a constraint matrix with n non-zeros, r rows, and c columns,
the algorithm (with high probability) computes feasible primal and dual solutions whose costs are within
a factor of 1 + ε of opt (the optimal cost) in time O((r + c) log(n)/ε2 + n).1

1 Introduction

A packing problem is a linear program of the form max{a · x : Mx ≤ b, x ∈ P}, where the entries of the
constraint matrix M are non-negative and P is a convex polytope admitting some form of optimization
oracle. A covering problem is of the form min{a · x̂ : Mx̂ ≥ b, x̂ ∈ P}.

This paper focuses on explicitly given packing and covering problems, that is, max{a · x : Mx ≤ b, x ≥ 0}
and min{a·x̂ : Mx̂ ≥ b, x̂ ≥ 0}, where the polytope P is just the positive orthant. Explicitly given packing and
covering are important special cases of linear programming, including, for example, fractional set cover,
multicommodity flow problems with given paths, two-player zero-sum matrix games with non-negative
payoffs, and variants of these problems.

The paper gives a (1+ ε)-approximation algorithm — that is, an algorithm that returns feasible primal
and dual solutions whose costs are within a given factor 1 + ε of opt. With high probability, it runs in
time O((r+ c) log(n)/ε2 +n), where n – the input size – is the number of non-zero entries in the constraint
matrix and r + c is the number of rows plus columns (i.e., constraints plus variables).

For dense instances, r + c can be as small as O(
√
n). For moderately dense instances – as long as

r + c = o(n/ logn) – the 1/ε2 factor multiplies a sub-linear term. Generally, the time is linear in the input
size n as long as ε ≥ Ω(

√

(r+ c) log(n)/n).

1.1 Related work

The algorithm is a Lagrangian-relaxation (a.k.a. price-directed decomposition, multiplicative weights) algo-
rithm. Broadly, these algorithms work by replacing a set of hard constraints by a sum of smooth penalties,
one per constraint, and then iteratively augmenting a solution while trading off the increase in the objective
against the increase in the sum of penalties. Here the penalties are exponential in the constraint violation,
and, in each iteration, only the first-order (linear) approximation is used to estimate the change in the sum
of penalties.

Such algorithms, which can provide useful alternatives to interior-point and Simplex methods, have a
long history and a large literature. Bienstock gives an implementation-oriented, operations-research per-
spective [2]. Arora et al. discuss them from a computer-science perspective, highlighting connections to
other fields such as learning theory [1]. An overview by Todd places them in the context of general linear
programming [18].
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0626912, 0729071, and 1117954.
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covering linear programs” [13].
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The running times of algorithms of this type increase as the approximation parameter ε gets small. For
algorithms that rely on linear approximation of the penalty changes in each iteration, the running times
grow at least quadratically in 1/ε (times a polynomial in the other parameters). For explicitly given packing
and covering, the fastest previous such algorithm that we know of runs in time O((r+ c)c̄ log(n)/ε2), where
c̄ is the maximum number of columns in which any variable appears [21]. That algorithm applies to mixed

packing and covering — a more general problem. Using some of the techniques in this paper, one can
improve that algorithm to run in time O(n log(n)/ε2) (an unpublished result), which is slower than the
algorithm here for dense problems.

Technically, the starting point for the work here is a remarkable algorithm by Grigoriadis and Khachiyan
for the following special case of packing and covering [9]. The input is a two-player zero-sum matrix game
with payoffs in [−1,1]. The output is a pair of mixed strategies that guarantee an expected payoff within an
additive ε of optimal. (Note that achieving additive error ε is, however, easier than achieving multiplicative
error 1 + ε.) The algorithm computes the desired output in O((r + c) log(n)/ε2) time. This is remarkable
in that, for dense matrices, it is sub-linear in the input size n = Θ(rc).2 (For a machine-learning algorithm
closely related to Grigoriadis and Khachiyan’s result, see [5,6].)

We also use the idea of non-uniform increments from algorithms by Garg and Könemann [8,12,7].

Dependence on ε. Building on work by Nesterov (e.g., [16,17]), recent algorithms for packing and cov-
ering problems have reduced the dependence on 1/ε from quadratic to linear, at the expense of increased
dependence on other parameters. Roughly, these algorithms better approximate the change in the penalty
function in each iteration, leading to fewer iterations but more time per iteration (although not to the same
extent as interior-point algorithms). For example, Bienstock and Iyengar give an algorithm for concurrent
multicommodity flow that solves O∗(ε−1k1.5|V |0.5) shortest-path problems, where k is the number of com-
modities and |V | is the number of vertices [3]. Chudak and Eleuterio continue this direction — for example,
they give an algorithm for fractional set cover running in worst-case time O∗(c1.5(r+ c)/ε+ c2r) [4].

Comparison to Simplex and Interior-Point methods. Currently, the most commonly used algorithms for
solving linear programs in practice are Simplex and interior-point methods. Regarding Simplex algorithms,
commercial implementations algorithms use many carefully tuned heuristics (e.g. pre-solvers and heuristics
for maintaining sparsity and numerical stability), enabling them to quickly solve many practical problems
with millions of non-zeros to optimality. But, as is well known, their worst-case running times are expo-
nential. Also, for both Simplex and interior-point methods, running times can vary widely depending on
the structure of the underlying problem. (A detailed analysis of Simplex and interior-point running times
is outside the scope of this paper.) These issues make rigorous comparison between the various algorithms
difficult.

Still, here is a meta-argument that may allow some meaningful comparison. Focus on “square” con-
straint matrices, where r = Θ(c). Note that at a minimum, any Simplex implementation must identify a
non-trivial basic feasible solution. Likewise, interior-point algorithms require (in each iteration) a Cholesky
decomposition or other matrix factorization. Thus, essentially, both methods require implicitly (at least)
solving an r × r system of linear equations. Solving such a system is a relatively well-understood problem,
both in theory and in practice, and (barring special structure) takes Ω(r3) time, or Ω(r2.8) time using
Strassen’s algorithm. Thus, on “square” instances, Simplex and interior-point algorithms should have run-
ning times growing at least with Ω(r2.8) (and probably more). This reasoning applies even if Simplex or
interior-point methods are terminated early so as to find approximately optimal solutions.

In comparison, on “square” matrices, the algorithm in this paper takes time O(n+ r log(r)/ε2) where
n = O(r2) or less. If the meta-argument holds, then, for applications where (1 + ε)-approximate solutions
suffice for some fixed and moderate ε (say, ε ≈ 1%), for very large instances (say, r ≥ 104), the algorithm
here should be orders of magnitude faster than Simplex or interior-point algorithms.

This conclusion is consistent with experiments reported here, in which the running times of Simplex and
interior-point algorithms on large random instances exceed Ω(r2.8). Concretely, with ε = 1%, the algorithm
here is faster when r is on the order of 103, with a super-linear (in r) speed-up for larger r.

2 The problem studied here, packing and covering, can be reduced to Grigoriadis and Khachiyan’s problem. This
reduction leads to an O((r+ c) log(n)(U opt)2/ε2)-time algorithm to find a (1+ ε)-approximate packing/covering solution,
where U

.
= maxij Mij/(biaj). A pre-processing step [14, §2.1] can bound U , leading to a running time bound of O((r +

c) log(n)min(r, c)4/ε4).
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1.2 Technical roadmap

Broadly, the running times of iterative optimization algorithms are determined by (1) the number of iter-
ations and (2) the time per iteration. Various algorithms trade off these two factors in different ways. The
technical approach taken here is to accept a high number of iterations — (r+ c) log(n)/ε2, a typical bound
for an algorithm of this class (see e.g. [11] for further discussion) — and to focus on implementing each
iteration as quickly as possible (ideally in constant amortized time).

Coupling. Grigoriadis and Khachiyan’s sub-linear time algorithm uses an unusual technique of coupling
primal and dual algorithms that is critical to the algorithm here. As a starting point, to explain coupling,
consider the following “slow” coupling algorithm. (Throughout, assume without loss of generality by scaling
that aj = bi = 1 for all i, j.) The algorithm starts with all-zero primal and dual solutions, x and x̂,
respectively. In each iteration, it increases one coordinate xj of the primal solution x by 1, and increases
one coordinate x̂i of the dual solution x̂ by 1. The index j of the primal variable to increment is chosen
randomly from a distribution p̂ that depends on the current dual solution. Likewise, the index i of the
dual variable to increment is chosen randomly from a distribution p that depends on the current primal

solution. The distribution p̂ is concentrated on the indices of dual constraints MTx̂ that are “most violated”
by x̂. Likewise, the distribution p is concentrated on the indices of primal constraints Mx that are “most

violated” by x. Specifically, pi is proportional to (1 + ε)Mix, while p̂j is proportional to (1− ε)M
T

j x̂.3

Lemma 1 in the next section proves that this algorithm achieves the desired approximation guarantee.
Here, broadly, is why coupling helps reduce the time per iteration in comparison to the standard approach.
The standard approach is to increment the primal variable corresponding to a dual constraint that is “most
violated” by p — that is, to increment xj′ where j′ (approximately) minimizesMT

j′p (for p defined as above).
This requires at a minimum maintaining the vector MTp. Recall that pi is a function of Mix. Thus, a change
in one primal variable xj′ changes many entries in the vector p, but even more entries in MTp. (In the r× c

bipartite graph G = ([r], [c], E) where E = {(i, j) : Mij 6= 0}, the neighbors of j′ change in p, while all
neighbors of those neighbors change in MTp.) Thus, maintaining MTp is costly. In comparison, to implement
coupling, it is enough to maintain the vectors p and p̂. The further product MTp is not needed (nor is Mp̂).
This is the basic reason why coupling helps reduce the time per iteration.

Non-uniform increments. The next main technique, used to make more progress per iteration, is Garg
and Könemann’s non-uniform increments [8,12,7]. Instead of incrementing the primal and dual variables by
a uniform amount each time (as described above), the algorithm increments the chosen primal and dual
variables xj′ and x̂i′ by an amount δi′j′ chosen small enough so that the left-hand side (LHS) of each
constraint (each Mix or MT

j x̂) increases by at most 1 (so that the analysis still holds), but large enough so
that the LHS of at least one such constraint increases by at least 1/4. This is small enough to allow the
same correctness proof to go through, but is large enough to guarantee a small number of iterations. The
number of iterations is bounded by (roughly) the following argument: each iteration increases the LHS of
some constraint by 1/4, but, during the course of the algorithm, no LHS ever exceeds N ≈ log(n)/ε2. (The
particular N is chosen with foresight so that the relative error works out to 1 + ε.) Thus, the number of
iterations is O((r + c)N) = O((r + c) log(n)/ε2).

Using slowly changing estimates of Mx and MTx̂. In fact, we will achieve this bound not just for the
number of iterations, but also for the total work done (outside of pre- and post-processing). The key to
this is the third main technique. Most of the work done by the algorithm as described so far would be in
maintaining the vectors Mx and MTx̂ and the distributions p and p̂ (which are functions of Mx and MTx̂).
This would require lots of time in the worst case, because, even with non-uniform increments, there can still
be many small changes in elements ofMx andMTx̂. To work around this, instead of maintainingMx andMTx̂

exactly, the algorithm maintains more slowly changing estimates for them (vectors y and ŷ, respectively),
using random sampling. The algorithm maintains y ≈ Mx as follows. When the algorithm increases a
primal variable xj′ during an iteration, this increases some elements in the vector Mx (specifically, the
elements Mix where Mij > 0). For each such element Mix, if the element increases by, say, δ ≤ 1, then the
algorithm increases the corresponding yi not by δ, but by 1, but only with probability δ. This maintains not
only E[yi] = Mix, but also, with high probability, yi ≈Mix. Further, the algorithm only does work for a yi
(e.g. updating pi) when yi increases (by 1). The algorithm maintains the estimate vector ŷ ≈MTx̂ similarly,
and defines the sampling distributions p and p̂ as functions of y and ŷ instead of Mx and MTx̂. In this way

3 The algorithm can be interpreted as a form of fictitious play of a two-player zero-sum game, where in each round each
player plays from a distribution concentrated around the best response to the aggregate of the opponent’s historical plays.
In contrast, in many other fictitious-play algorithms, one or both of the player plays a deterministic pure best-response to
the opponent’s historical average.
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each unit of work done by the algorithm can be charged to an increase in |Mx|+ |MTx̂| (or more precisely,
an increase in |y| + |ŷ|, which never exceeds (r + c)N). (Throughout the paper, |v| denotes the 1-norm of
any vector v.)

Section 2 gives the formal intuition underlying coupling by describing and formally analyzing the first
(simpler, slower) coupling algorithm described above. Section 3 describes the full (main) algorithm and its
correctness proof. Section 4 gives remaining implementation details and bounds the run time. Section 5
presents basic experimental results, including a comparison with the GLPK Simplex algorithm.

1.3 Preliminaries

For the rest of the paper, assume the primal and dual problems are of the following restricted forms,
respectively: max{|x| : Mx ≤ 1, x ≥ 0}, min{|x̂| : MTx̂ ≥ 1, x̂ ≥ 0}. That is, assume aj = bi = 1 for each
i, j. This is without loss of generality by the transformation M ′

ij = Mij/(biaj). Recall that |v| denotes the
1-norm of any vector v.

2 Slow algorithm (coupling)

To illustrate the coupling technique, in this section we analyze the first (simpler but slower) algorithm
described in the roadmap in the introduction, a variant of Grigoriadis and Khachiyan’s algorithm [9]. We
show that it returns a (1− 2ε)-approximate primal-dual pair with high probability.

We do not analyze the running time, which can be large. In the following section, we describe how
to modify this algorithm (using non-uniform increments and the random sampling trick described in the
previous roadmap) to obtain the full algorithm with a good time bound.

For just this section, assume that each Mij ∈ [0,1]. (Assume as always that bi = aj = 1 for all i, j; recall
that |v| denotes the 1-norm of v.) Here is the algorithm:

slow-alg(M ∈ [0,1]r×c, ε)

1. Vectors x, x̂← 0; scalar N = ⌈2 ln(rc)/ε2⌉.
2. Repeat until maxiMix ≥ N :

3. Let pi
.
= (1 + ε)Mix (for all i) and p̂j

.
= (1− ε)M

T

j x̂ (for all j).

4. Choose random indices j′ and i′ respectively
from probability distributions p̂/|p̂| and p/|p|.

5. Increase xj′ and x̂i′ each by 1.

6. Let (x⋆, x̂⋆)
.
= (x/maxi Mix, x̂/minj M

T

j x̂).

7. Return (x⋆, x̂⋆).

The scaling of x and x̂ in line 6 ensures feasibility of the final primal solution x⋆ and the final dual
solution x̂⋆. (Recall the assumption that bi = aj = 1 for all i, j.) The final primal solution cost and final dual
solution costs are, respectively |x⋆| = |x|/maxiMix and |x̂⋆| = |x̂|/minj M

T

j x̂. Since the algorithm keeps the
1-norms |x| and |x̂| of the intermediate primal and dual solutions equal, the final primal and dual costs will
be within a factor of 1− 2ε of each other as long as minj M

T

j x̂ ≥ (1− 2ε)maxiMix. If this event happens,
then by weak duality implies that each solution is a (1− 2ε)-approximation of its respective optimum.

To prove that the event minj M
T

j x̂ ≥ (1 − 2ε)maxi Mix happens with high probability, we show that
|p| · |p̂| (the product of the 1-norms of p and p̂, as defined in the algorithm) is a Lyapunov function — that
is, the product is non-increasing in expectation with each iteration. Thus, its expected final value is at
most its initial value rc, and with high probability, its final value is at most, say, (rc)2. If that happens,
then by careful inspection of p and p̂, it must be that (1− ε)maxiMix ≤ minj M

T

j x̂+ εN , which (with the

termination condition maxi Mix ≥ N) implies the desired event.4

4 It may be instructive to compare this algorithm to the more standard algorithm. In fact there are two standard
algorithms related to this one: a primal algorithm and a dual algorithm. In each iteration, the primal algorithm would
choose j′ to minimize MT

j′
p and increments xj′ . Separately and simultaneously, the dual algorithm would choose i′ to

maximize (Mp̂)i′ , then increments x̂i′ . (Note that the primal algorithm and the dual algorithm are independent, and in
fact either can be run without the other.) To prove the approximation ratio for the primal algorithm, one would bound the
increase in |p| relative to the increase in the primal objective |x|. To prove the approximation ratio for the dual algorithm,

4



Lemma 1 The slow algorithm returns a (1−2ε)-approximate primal-dual pair (feasible primal and dual solutions

x⋆ and x̂⋆ such that |x⋆| ≥ (1− 2ε)|x̂⋆|) with probability at least 1− 1/(rc).

Proof In a given iteration, let p and p̂ denote the vectors at the start of the iteration. Let p′ and p̂′ denote
the vectors at the end of the iteration. Let ∆x denote the vector whose jth entry is the increase in xj during
the iteration (or if z is a scalar, ∆z denotes the increase in z). Then, using that each ∆Mix = Mij′ ∈ [0,1],

|p′| =
∑

i

pi(1 + ε)Mi∆x ≤
∑

i

pi(1 + εMi∆x) = |p|
[

1 + ε
pT

|p|M∆x
]

.

Likewise, for the dual, |p̂′| ≤ |p̂|[1− ε(p̂/|p̂|)TMT∆x̂].

Multiplying these bounds on |p′| and |p̂′| and using that (1 + a)(1− b) = 1 + a − b − ab ≤ 1 + a − b for
a, b ≥ 0 gives

|p′||p̂′| ≤ |p||p̂|
[

1 + ε
p

|p|
T

M∆x − ε∆x̂TM
p̂

|p̂|
]

.

The inequality above is what motivates the “coupling” of primal and dual increments. The algorithm
chooses the random increments to x and x̂ precisely so that E[∆x] = p̂/|p̂| and E[∆x̂] = p/|p|. Taking
expectations of both sides of the inequality above, and plugging these equations into the two terms on the
right-hand side, the two terms exactly cancel, giving E[|p′||p̂′|] ≤ |p||p̂|. Thus, the particular random choice
of increments to x and x̂ makes the quantity |p| |p̂| non-increasing in expectation with each iteration.

This and Wald’s equation (Lemma 9, or equivalently a standard optional stopping theorem for super-
martingales) imply that the expectation of |p||p̂| at termination is at most its initial value rc. So, by the
Markov bound, the probability that |p||p̂| ≥ (rc)2 is at most 1/rc. Thus, with probability at least 1− 1/rc,
at termination |p||p̂| ≤ (rc)2.

Assume this happens. Note that (rc)2 ≤ exp(ε2N), so |p||p̂| ≤ (rc)2 implies (1+ε)maxi Mix(1−ε)minj MT

j x̂ ≤
|p||p̂| ≤ exp(ε2N). Taking logs, and using the inequalities 1/ ln(1/(1−ε)) ≤ 1/ε and ln(1+ε)/ ln(1/(1−ε)) ≥
1− ε, gives (1− ε)maxiMix ≤ minj M

T

j x̂+ εN.

By the termination condition maxiMix ≥ N , so the above inequality implies (1 − 2ε)maxiMix ≤
minj M

T

j x̂.

This and |x| = |x̂| (and weak duality) imply the approximation guarantee for the primal-dual pair
(x⋆, x̂⋆) returned by the algorithm. ⊓⊔

3 Full algorithm

This section describes the full algorithm and gives a proof of its approximation guarantee. In addition to the
coupling idea explained in the previous section, for speed the full algorithm uses non-uniform increments
and estimates of Mx and MTx̂ as described in the introduction. Next we describe some more details of those
techniques. After that we give the algorithm in detail (although some implementation details that are not
crucial to the approximation guarantee are delayed to the next section).

Recall that WLOG we are assuming ai = bj = 1 for all i, j. The only assumption on M is Mij ≥ 0.

Non-uniform increments. In each iteration, instead of increasing the randomly chosen xj′ and x̂i′ by 1,
the algorithm increases them both by an increment δi′j′ , chosen just so that the maximum resulting increase
in any left-hand side (LHS) of any constraint (i.e. maxi∆Mix or maxj ∆MT

j x̂) is in [1/4,1]. The algorithm
also deletes covering constraints once they become satisfied (the set J contains indices of not-yet-satisfied
covering constraints, that is j such that MT

j x̂ < N).
We want the analysis of the approximation ratio to continue to hold (the analogue of Lemma 1 for

the slow algorithm), even with the increments adjusted as above. That analysis requires that the expected
change in each xj and each x̂i should be proportional to p̂j and pi, respectively. Thus, we adjust the
sampling distribution for the random pair i′, j′ so that, when we choose i′ and j′ from the distribution and
increment xj′ and x̂i′ by δi′j′ as defined above, it is the case that, for any i and j, E[∆xj ] = αp̂j/|p̂| and
E[∆x̂i] = αpi/|p| for an α > 0. This is done by scaling the probability of choosing each given i′, j′ pair by a
factor proportional to 1/δi′j′ .

one would bound the decrease in |p̂| relative to the increase in the dual objective |x̂|. In this view, the coupled algorithm
can be obtained by taking these two independent primal and dual algorithms and randomly coupling their choices of i′ and
j′. The analysis of the coupled algorithm uses as a penalty function |p||p̂|, the product of the respective penalty functions
|p|, |p̂| of the two underlying algorithms.

5



To implement the above non-uniform increments and the adjusted sampling distribution, the algorithm
maintains the following data structures as a function of the current primal and dual solutions x and x̂: a set
J of indices of still-active (not yet met) covering constraints (columns); for each column MT

j its maximum
entry uj = maxiMij ; and for each row Mi a close upper bound ûi on its maximum active entry maxj∈J Mij

(specifically, the algorithm maintains ûi ∈ [1, 2]×maxj∈J Mij).
Then, the algorithm takes the increment δi′j′ to be 1/(ûi′ +uj′). This seemingly odd choice has two key

properties: (1) It satisfies δi′j′ = Θ(1/max(ûi′ , uj′)), which ensures that when xj′ and x̂i′ are increased by
δi′j′ , the maximum increase in any LHS (any Mix, or MT

j x̂ with j ∈ J) is Ω(1). (2) It allows the algorithm
to select the random pair (i′, j′) in constant time using the following subroutine, called random-pair (the
notation p× û denotes the vector with ith entry piûi):

random-pair(p, p̂, p× û, p̂× u)

1. With probability |p× û||p̂|/(|p× û||p̂|+ |p||p̂× u|)
choose random i′ from distribution p× û/|p× û|,
and independently choose j′ from p̂/|p̂|,

2. or, otherwise,
choose random i′ from distribution p/|p|,
and independently choose j′ from p̂× u/|p̂ × u|.

3. Return (i′, j′).

The key property of random-pair is that it makes the expected changes in x and x̂ correct: any given
pair (i, j) is chosen with probability proportional to pip̂j/δij , which makes the expected change in any xj
and x̂i, respectively, is proportional to p̂j and pi. (See Lemma 2 below.)

Maintaining estimates (y and ŷ) of Mx and MTx̂. Instead of maintaining the vectors p and p̂ as direct
functions of the vectors Mx and MTx̂, to save work, the algorithm maintains more slowly changing estimates

(y and ŷ) of the vectors Mx and MTx̂, and maintains p and p̂ as functions of the estimates, rather than as
functions of Mx and MTx̂.

Specifically, the algorithm maintains y and ŷ as follows. When any Mix increases by some δ ∈ [0,1] in
an iteration, the algorithm increases the corresponding estimate yi by 1 with probability δ. Likewise, when
any MT

j x̂ increases by some δ̂ ∈ [0,1] in an iteration, the algorithm increases the corresponding estimate ŷj

by 1 with probability δ̂. Then, each pi is maintained as pi = (1 + ε)yi instead of (1 + ε)Mix, and each p̂j is
maintained as p̂j = (1− ε)ŷj instead of (1 + ε)Mix. This reduces the frequency of updates to p and p̂ (and
so reduces the total work), yet maintains y ≈ Mx and ŷ ≈ MTx̂ with high probability, which is enough to
still allow a (suitably modified) coupling argument to go through.

Each change to a yi or a ŷj increases the changed element by 1. Also, no element of y or ŷ gets larger
than N before the algorithm stops (or the corresponding covering constraint is deleted). Thus, in total
the elements of y and ŷ are changed at most O((r + c)N) = O((r + c) log(n)/ε2) times. We implement the
algorithm to do only constant work maintaining the remaining vectors for each such change. This allows us
to bound the total time by O((r+ c) log(n)/ε2) (plus O(n) pre- and post-processing time).

As a step towards this goal, in each iteration, in order to determine the elements in y and ŷ that
change, using just O(1) work per changed element, the algorithm uses the following trick. It chooses a
random β ∈ [0,1]. It then increments yi by 1 for those i such that the increase Mij′δi′j′ in Mix is at least
β. Likewise, it increments ŷj by 1 for j such that the increase Mi′jδi′j′ in MT

j x̂ is at least β. To do this
efficiently, the algorithm preprocesses M , so that within each row Mi or column MT

j of M , the elements can
be accessed in (approximately) decreasing order in constant time per element accessed. (This preprocessing
is described in Section 4.) This method of incrementing the elements of y and ŷ uses constant work per
changed element and increments each element with the correct probability. (The random increments of
different elements are not independent, but this is okay because, in the end, each estimate yj and ŷi will
be shown seperately to be correct with high probability.)

The detailed algorithm is shown in Fig. 1, except for the subroutine random-pair (above) and some
implementation details that are left until Section 4.

Approximation guarantee. Next we state and prove the approximation guarantee for the full algorithm
in Fig. 1. We first prove three utility lemmas. The first utility lemma establishes that (in expectation) x,
x̂, y, and ŷ change as desired in each iteration.
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solve(M ∈ R
r×c
+ , ε) — return a (1− 6ε)-approximate primal-dual pair w/ high prob.

1. Initialize vectors x, x̂, y, ŷ← 0, and scalar N = ⌈2 ln(rc)/ε2⌉.

2. Precompute uj
.
= max{Mij : i ∈ [r]} for j ∈ [c]. (The max. entry in column Mj .)

As x and x̂ are incremented, the alg. maintains y and ŷ so E[y] = Mx, E[ŷ] = MTx̂.

It maintains vectors p defined by pi
.
= (1 + ε)yi and, as a function of ŷ:

J
.
= {j ∈ [c] : ŷj ≤ N} (the active columns)

ûi ∈ [1, 2]×max{Mij : j ∈ J} (approximates the max. active entry in row i of M)

p̂j
.
=

{

(1− ε)ŷj if j ∈ J
0 otherwise.

It maintains vectors p× û and p̂ × u, where a× b is a vector whose ith entry is aibi.

3. Repeat until maxi yi = N or minj ŷj = N :

4. Let (i′, j′)← random-pair(p, p̂, p× û, p̂× u).

5. Increase xj′ and x̂i′ each by the same amount δi′j′
.
= 1/(ûi′ + uj′ ).

6. Update y, ŷ, and the other vectors as follows:

7. Choose random β ∈ [0, 1] uniformly, and

8. for each i ∈ [r] with Mij′δi′j′ ≥ β, increase yi by 1

9. (and multiply pi and (p× û)i by 1 + ε);

10. for each j ∈ J with Mi′jδi′j′ ≥ β, increase ŷj by 1

11. (and multiply p̂j and (p̂× u)j by 1− ε).

12. For each j leaving J , update J , û, and p× û.

13. Let (x⋆, x̂⋆)
.
= (x/maxi Mix, x̂/minj M

T

j x̂). Return (x⋆, x̂⋆).

Fig. 1 The full algorithm. [i] denotes {1, 2, . . . , i}. Implementation details are in Section 4.

Lemma 2 In each iteration,

1. The largest change in any relevant LHS is at least 1/4:

max{max
i

∆Mix,max
j∈J

∆MT

j x̂} ∈ [1/4,1].

2. Let α
.
= |p||p̂|/

∑

ij pip̂j/δij . The expected changes in each xj , xj, yi, ŷj satisfy

E[∆xj] = αp̂j/|p̂|, E[∆yi] = E[∆Mix] = αMp̂i/|p̂|,

E[∆x̂i] = αpi/|p|, E[∆ŷj ] = E[∆MT

j x̂] = αMTpj/|p|.

Proof (i) By the choice of û and u, for the (i′, j′) chosen, the largest change in a relevant LHS is

δi′j′ max
(

max
i

Mij′ ,max
j∈J

Mi′j

)

∈ [1/2,1] δi′j′ max(ûi′ , uj′ )

⊆ [1/4,1] δi′j′(ûi′ + uj′ )

= [1/4,1].

(ii) First, we verify that the probability that random-pair returns a given (i, j) is α(pi/|p|)(p̂j/|p̂|)/δij . Here
is the calculation. By inspection of random-pair, the probability is proportional to

|p× û| |p̂| piûi
|p× û|

p̂j
|p̂| + |p| |p̂× u|pi

p

p̂juj
|p̂× u|

which by algebra simplifies to pip̂j(ûi + uj) = pip̂j/δij .
Hence, the probability must be α(pi/|p|)(p̂j/|p̂|)/δij , because the choice of α makes the sum over all i

and j of the probabilities equal 1.
Next, note that part (i) of the lemma implies that in line 8 (given the chosen i′ and j′) the probability

that a given yi is incremented is Mij′δi′j′ , while in line 10 the probability that a given ŷj is incremented is
Mi′jδi′j′ .

Now, the remaining equalities in (ii) follow by direct calculation. For example:

E[∆xj] =
∑

i

(αpi/|p|)(p̂j/|p̂|)/δij)δij = αp̂j/|p̂|. ⊓⊔
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The next lemma shows that (with high probability) the estimate vectors y and ŷ suitably approximate
Mx and MTx̂, respectively. The proof is simply an application of an appropriate Azuma-like inequality
(tailored to deal with the random stopping time of the algorithm).

Lemma 3

1. For any i, with probability at least 1− 1/(rc)2, at termination (1− ε)Mix ≤ yi + εN .

2. For any j, with probability at least 1− 1/(rc)2, after the last iteration with j ∈ J, it holds that (1− ε)ŷj ≤
MT

j x̂+ εN .

Proof (i) By Lemma 2, in each iteration each Mix and yi increase by at most 1 and the expected increases
in these two quantities are the same. So, by the Azuma inequality for random stopping times (Lemma 10),
Pr[(1− ε)Mix ≥ yi + εN ] is at most exp(−ε2N) ≤ 1/(rc)2. This proves (i).

The proof for (ii) is similar, noting that, while j ∈ J, the quantity MT

j x̂ increases by at most 1 each
iteration. ⊓⊔

Finally, here is the main utility lemma. Recall that the heart of the analysis of the slow algorithm
(Lemma 1) was showing that in expectation |p||p̂| was non-increasing. This allowed us to conclude that
(with high probability at the end) maxi Mix was not much larger than minj M

T

j x̂. This was the key to
proving the approximation ratio.

The next lemma gives the analogous argument for the full algorithm. It shows that the quantity |p||p̂|
is non-increasing in expectation, which, by definition of p and p̂, implies that (with high probability at the
end) maxi yi is not much larger than minj ŷj . The proof is essentially the same as that of Lemma 1, but
with some technical complications accounting for the deletion of covering constraints.

Since (with high probability by Lemma 3) the estimates y and ŷ approximate Mx and Mx̂, respectively,
this implies that (with high probability at the end) maxi Mix is not much larger than minj M

T

j x̂. Since the
algorithm maintains |x| = |x̂|, this is enough to prove the approximation ratio.

Lemma 4 With probability at least 1− 1/rc, when the algorithm stops, maxi yi ≤ N and minj ŷj ≥ (1− 2ε)N .

Proof Let p′ and p̂′ denote p and p̂ after a given iteration, while p and p̂ denote the values before the
iteration. We claim that, given p and p̂, E[|p′| |p̂′|] ≤ |p| |p̂| — with each iteration |p| |p̂| is non-increasing in
expectation. To prove it, note |p′| =

∑

i pi(1+ ε∆yi) = |p|+ εpT∆y and, similarly, |p̂′| = |p̂|− εp̂T∆ŷ (recall
∆yi, ∆ŷj ∈ {0, 1}). Multiplying these two equations and dropping a negative term gives

|p′| |p̂′| ≤ |p| |p̂|+ ε|p̂|pT∆y − ε|p|p̂T∆ŷ.

The claim follows by taking expectations of both sides, then, in the right-hand side applying linearity of
expectation and substituting E[∆y] = αMp̂/|p̂| and E[∆ŷ] = αMTp/|p| from Lemma 2.

By Wald’s equation (Lemma 9), the claim implies that E[|p| |p̂|] for p and p̂ at termination is at
most its initial value rc. Applying the Markov bound, with probability at least 1 − 1/rc, at termination
maxi pimaxj p̂j ≤ |p||p̂| ≤ (rc)2 ≤ exp(ε2N).

Assume this event happens. The index set J is not empty at termination, so the minimum ŷj is achieved
for j ∈ J. Substitute in the definitions of pi and p̂j and take log to get maxi yi ln(1+ ε) ≤ minj ŷj ln(1/(1−
ε)) + ε2N .

Divide by ln(1/(1− ε)), apply 1/ ln(1/(1− ε)) ≤ 1/ε and also ln(1 + ε)/ ln(1/(1− ε)) ≥ 1− ε. This gives
(1− ε)maxi yi ≤ minj ŷj + εN .

By the termination condition maxi yi ≤ N is guaranteed, and either maxi yi = N or minj ŷj = N . If
minj ŷj = N , then the event in the lemma occurs. If not, then maxi yi = N , which (with the inequality in
previous paragraph) implies (1− ε)N ≤ minj ŷj + εN , again implying the event in the lemma. ⊓⊔

Finally, here is the approximation guarantee (Theorem 1). It follows from the three lemmas above by
straightforward algebra.

Theorem 1 With probability at least 1− 3/rc, the algorithm in Fig. 1 returns feasible primal and dual solutions

(x⋆, x̂⋆) with |x⋆|/|x̂⋆| ≥ 1− 6ε.

Proof Recall that the algorithm returns (x⋆, x̂⋆)
.
= (x/maxiMix, x̂/minj M

T

j x̂). By the naive union bound,
with probability at least 1− 3/rc (for all i and j) the events in Lemma 3 occur, and the event in Lemma 4
occurs. Assume all of these events happen. Then, at termination, for all i and j,
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(1− ε)Mix ≤ yi + εN (1− 2ε)N ≤ ŷj

yi ≤ N
and

(1− ε)ŷj ≤ MT

j x̂+ εN.

By algebra, using (1− a)(1− b) ≥ 1− a− b and 1/(1 + ε) ≥ 1− ε, it follows for all i and j that

(1− 2ε)Mix ≤ N and (1− 4ε)N ≤ MT

j x̂.

This implies minj M
T

j x̂/maxiMix ≥ 1− 6ε.
The scaling at the end of the algorithm assures that x⋆ and x̂⋆ are feasible. Since the sizes |x| and

|x̂| increase by the same amount each iteration, they are equal. Thus, the ratio of the primal and dual
objectives is |x⋆|/|x̂⋆| = minj M

T

j x̂/maxiMix ≥ 1− 6ε. ⊓⊔

4 Implementation details and running time

This section gives remaining implementation details for the algorithm and bounds the running time. The
remaining implementation details concern the maintenance of the vectors (x, x̂, y, ŷ, p, p̂, u, û, p× û, p̂× u) so
that each update to these vectors can be implemented in constant time and random-pair can be implemented
in constant time.

The matrix M should be given in any standard sparse representation, so that the non-zero entries can
be traversed in time proportional to the number of non-zero entries.

4.1 Simpler implementation

First, here is an implementation that takes O(n logn+ (r+ c) log(n)/ε2) time. (After this we describe how
to modify this implementation to remove the logn factor from the first term.)

Theorem 2 The algorithm can be implemented to return a (1 − 6ε)-approximate primal-dual pair for packing

and covering in time O(n logn+ (r+ c) log(n)/ε2) with probability at least 1− 4/rc.

Proof To support random-pair, store each of the four vectors p, p̂, p× û, p̂ × u in its own random-sampling
data structure [15] (see also [10]). This data structure maintains a vector v; it supports random sampling
from the distribution v/|v| and changing any entry of v in constant time. Then random-pair runs in constant
time, and each update of an entry of p, p̂, p× û, or p̂× u takes constant time.

Updating the estimates y and ŷ in each iteration requires, given i′ and j′, identifying which j and i

are such that Mi′j and Mij′ are at least β/δi′j′ (the corresponding elements yi and ŷj get increased). To
support this efficiently, at the start of the algorithm, preprocess the matrix M . Build, for each row and
column, a doubly linked list of the non-zero entries. Sort each list in descending order. Cross-reference the
lists so that, given an entry Mij in the ith row list, the corresponding entry Mij in the jth column list can
be found in constant time. The total time for preprocessing is O(n logn).

Now implement each iteration as follows. Let It denote the set of indices i for which yi is incremented
in line 8 in iteration t. From the random β ∈ [0,1] and the sorted list for row j′, compute this set It by
traversing the list for row j′ in order of decreasing Mij′ , collecting elements until an i with Mij′ < β/δi′j′

is encountered. Then, for each i ∈ It, update yi, pi, and the ith entry in p × û in constant time. Likewise,
let Jt denote the set of indices j for which ŷj is incremented in line 10. Compute Jt from the sorted list
for column i′. For each j ∈ Jt, update p̂j , and the jth entry in p̂ × u. The total time for these operations
during the course of the algorithm is O(

∑

t 1 + |It|+ |Jt|).
For each element j that leaves J during the iteration, update p̂j . Delete all entries in the jth column

list from all row lists. For each row list i whose first (largest) entry is deleted, update the corresponding ûi
by setting ûi to be the next (now first and maximum) entry remaining in the row list; also update (p× û)i.
The total time for this during the course of the algorithm is O(n), because each Mij is deleted at most
once.

This completes the implementation.
By inspection, the total time is O(n logn) (for preprocessing, and deletion of covering constraints) plus

O(
∑

t 1 + |It|+ |Jt|) (for the work done as a result of the increments).
The first term O(n logn) above is in its final form. The next three lemmas bound the second term (the

sum). The first lemma bounds the sum except for the “1”. That is, it bounds the number of times any yi
or ŷj is incremented. (There are r + c elements, and each can be incremented at most N times during the
course of the algorithm.)
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Lemma 5

∑

t

|It|+ |Jt| ≤ (r + c)N = O((r+ c) log(n)/ε2).

Proof First,
∑

t |It| ≤ rN because each yi can be increased at most N times before maxi yi ≥ N (causing
termination). Second,

∑

t |Jt| ≤ cN because each ŷj can be increased at most N times before j leaves J

and ceases to be updated. ⊓⊔

The next lemma bounds the remaining part of the second term, which is O(
∑

t 1). Given that
∑

t |It|+
|Jt| ≤ (r+ c)N , it’s enough to bound the number of iterations t where |It|+ |Jt| = 0. Call such an iteration
empty. (The 1’s in the non-empty iterations contribute at most

∑

t |It|+ |Jt| ≤ (r + c)N to the sum.)

We first show that each iteration is non-empty with probability at least 1/4. This is so because, for
any (i′, j′) pair chosen in an iteration, for the constraint that determines the increment δi′j′ , the expected
increase in the corresponding yi or ŷj must be at least 1/4, and that element will be incremented (making
the iteration non-empty) with probability at least 1/4.

Lemma 6 Given the state at the start of an iteration, the probability that it is empty is at most 3/4.

Proof Given the (i′, j′) chosen in the iteration, by (1) of Lemma 2, by definition of δi′j′ , there is either an
i such that Mij′δi′j′ ≥ 1/4 or a j such that Mi′jδi′j′ ≥ 1/4. In the former case, i ∈ It with probability at
least 1/4. In the latter case, j ∈ Jt with probability at least 1/4. ⊓⊔

This implies that, with high probability, the number of empty iterations does not exceed three times the
number of non-empty iterations by much. (This follows from the Azuma-like inequality.) We have already
bounded the number of non-empty iterations, so this implies a bound (with high probability) on the number
of empty iterations.

Lemma 7 With probability at least 1− 1/rc, the number of empty iterations is O((r+ c)N).

Proof Let Et be 1 for empty iterations and 0 otherwise. By the previous lemma and the Azuma-like in-
equality tailored for random stopping times (Lemma 10), for any δ,A ≥ 0,

Pr
[

(1− δ)
∑T

t=1
Et ≥ 3

∑T
t=1

(1− Et) + A
]

≤ exp(−δA).

Taking δ = 1/2 and A = 2 ln(rc), it follows that with probability at least 1 − 1/rc, the number of empty
iterations is bounded by a constant times the number of non-empty iterations plus 2 ln(rc). The number
of non-empty iterations is at most (r+ c)N , hence, with probability at least 1− 1/rc the number of empty
iterations is O((r + c)N). ⊓⊔

Finally we complete the proof of Theorem 2, stated at the top of the section.

As discussed above, the total time is O(n logn) (for preprocessing, and deletion of covering constraints)
plus O(

∑

t 1 + |It|+ |Jt|) (for the work done as a result of the increments).

By Lemma 5,
∑

t |It|+ |Jt| = O((r+ c) log(n)/ε2). By Lemma 7, with probability 1− 1/rc, the number
of iterations t such that |It|+ |Jt| = 0 is O((r+ c) log(n)/ε2). Together, these imply that, with probability
1− 1/rc, and the total time is O(n logn+ (r + c) log(n)/ε2). This and Theorem 1 imply Theorem 2. ⊓⊔

4.2 Faster implementation.

To prove the main result, it remains to describe how to remove the logn factor from the n logn term in the
time bound in the previous section.

The idea is that it suffices to approximately sort the row and column lists, and that this can be done in
linear time.

Theorem 3 The algorithm can be implemented to return a (1 − 7ε)-approximate primal-dual pair for packing

and covering in time O(n+ (c+ r) log(n)/ε2) with probability at least 1− 5/rc.
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Proof Modify the algorithm as follows.
First, preprocess M as described in [14, §2.1] so that the non-zero entries have bounded range. Specifi-

cally, let β = minj maxi Mij . Let M ′
ij

.
= 0 if Mij < βε/c and M ′

ij
.
= min{βc/ε,Mij} otherwise. As shown in

[14], any (1−6ε)-approximate primal-dual pair for the transformed problem will be a (1−7ε)-approximate
primal-dual pair for the original problem.

In the preprocessing step, instead of sorting the row and column lists, pseudo-sort them — sort them
based on keys ⌊log2 Mij⌋. These keys will be integers in the range log2(β)± log(c/ε). Use bucket sort, so that
a row or column with k entries can be processed in O(k+ log(c/ε)) time. The total time for pseudo-sorting
the rows and columns is O(n+ (r+ c) log(c/ε)).

Then, in the tth iteration, maintain the data structures as before, except as follows.
Compute the set It as follows. Traverse the pseudo-sorted jth column until an index i with Mij′δi′j′ <

β/2 is found. (No indices later in the list can be in It.) Take all the indices i seen with Mij′δi′j′ ≥ β.
Compute the set Jt similarly. Total time for this is O(

∑

t 1 + |I
′
t|+ |J ′

t |), where I′t and J ′
t denote the sets

of indices actually traversed (so It ⊆ I′t and Jt ⊆ J ′
t ).

When an index j leaves the set J, delete all entries in the jth column list from all row lists. For
each row list affected, set ûi to two times the first element remaining in the row list. This ensures ûi ∈
[1,2]maxj∈J Mij .

These are the only details that are changed.
The total time is now O(n+(r+ c) log(c/ε)) for preprocessing and deletion of covering constraints, plus

O(
∑

t 1 + |I
′
t|+ |J ′

t |) to implement the increments and vector updates. To finish, the next lemma bounds
the latter term. The basic idea is that, in each iteration, each matrix entry is at most twice as likely to be
examined as it was in the previous algorithm. Thus, with high probability, each matrix element is examined
at most about twice as often as it would have been in the previous algorithm.

Lemma 8 With probability at least 1− 2/rc, it happens that
∑

t(1 + |I′t|+ |J ′
t |) = O((r + c)N).

Proof Consider a given iteration. Fix i′ and j′ chosen in the iteration. For each i, note that, for the random
β ∈ [0,1],

Pr[i ∈ I′t] ≤ Pr[β/2 ≤Mij′δi′j′ ] ≤ 2Mij′δi′j′

= 2Pr[β ≤Mij′δi′j′ ] = 2Pr[i ∈ It].

Fix an i. Applying Azuma-like inequality for random stopping times (Lemma 10), for any δ,A ≥ 0,

Pr
[

(1− δ)
∑

t[i ∈ I
′
t] ≥ 2

∑

t[i ∈ It] + A
]

≤ exp(−δA).

(Above [i ∈ S] denotes 1 if i ∈ S and 0 otherwise.)
Taking δ = 1/2 and A = 4 ln(rc), with probability at least 1− (rc)2, it happens that

∑

t[i ∈ I
′
t] ≤ 4

∑

t[i ∈ It] + 8 ln(rc).

Likewise, for any j, with probability at least 1 − 1/(rc)2, we have that
∑

t[j ∈ J ′
t ] ≤ 2

∑

t[j ∈
Jt] + 8 ln(rc).

Summing the naive union bound over all i and j, with probability at least 1− 1/rc, it happens that the
sum

∑

t(|I
′
t|+ |J ′

t |) is at most 4
∑

t(|It|+ |Jt|) + 8(r+ c) ln(rc).
By Lemma 5 the latter quantity is O((r+ c)N).
By Lemma 7, the number of empty iterations is still O((r+ c)N) with probability at least 1−1/rc. The

lemma follows by applying the naive union bound. ⊓⊔

If the event in the lemma happens, then the total time is O(n+(r+c) log(n)/ε2). This proves Theorem 3.
⊓⊔

5 Empirical Results

We performed an experimental evaluation of our algorithm and compared it against Simplex on randomly
generated 0/1 input matrices. These experiments suffer from the following limitations: (i) the instances are
relatively small, (ii) the instances are random and thus not representative of practical applications, (iii) the
comparison is to the publicly available GLPK (GNU Linear Programming Kit), not the industry standard
CPLEX. With those caveats, here are the findings.
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The running time of our algorithm is well-predicted by the analysis, with a leading constant factor of
about 12 basic operations in the big-O term in which ε occurs.

For moderately large inputs, the algorithm can be substantially faster than Simplex (GLPK – Gnu
Linear Programming Kit – Simplex algorithm glpsol version 4.15 with default options).5 The empirical

running times reported here for Simplex are to find a (1± ε)-approximate solution.

For inputs with 2500-5000 rows and columns, the algorithm (with ε = 0.01) is faster than Simplex by
factors ranging from tens to hundreds. For larger instances, the speedup grows roughly linearly in rc. For
instances with moderately small ε and thousands (or more) rows and columns, the algorithm is orders of
magnitude faster than Simplex.

The test inputs had r, c ∈ [739,5000], ε ∈ {0.02,0.01,0.005}, and matrix density d ∈ {1/2k : k =
1, 2,3, 4, 5,6}. For each (r, c, d) tuple there was a random 0/1 matrix with r rows and c columns, where each
entry was 1 with probability d. The algorithm here was run on each such input, with each ε. The running
time was compared to that taken by a Simplex solver to find a (1− ε)-approximate solution.

GLPK Simplex failed to finish due to cycling on about 10% of the initial runs; those inputs are excluded
from the final data. This left 167 runs. The complete data for the non-excluded runs is given in the tables
at the end of the section.

5.1 Empirical evaluation of this algorithm

The running time of the algorithm here includes (A) time for preprocessing and initialization, (B) time for
sampling (line 4, once per iteration of the outer loop), and (C) time for increments (lines 8 and 10, once per
iteration of the inner loops). Theoretically the dominant terms are O(n) for (A) and O((r+ c) log(n)/ε2) for
(C). For the inputs tested here, the significant terms in practice are for (B) and (C), with the role of (B)
diminishing for larger instances. The time (number of basic operations) is well-predicted by the expression

[12(r+ c) + 480d−1]
ln(rc)

ε2
(1)

where d = 1/2k is the density (fraction of matrix entries that are non-zero, at least 1/min(r, c)).
The 12(r+ c) ln(rc)/ε2 term is the time spent in (C), the inner loops; it is the most significant term in

the experiments as r and c grow. The less significant term 480d−1 ln(rc)/ε2 is for (B), and is proportional to
the number of samples (that is, iterations of the outer loop). Note that this term decreases as matrix density
increases. (For the implementation we focused on reducing the time for (C), not for (B). It is probable that
the constant 480 above can be reduced with a more careful implementation.)

The plot below shows the run time in seconds, divided by the predicted time (the predicted number of
basic operations (1) times the predicted time per basic operation):
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The time exceeds the predicted time by up to a factor of two for large instances.
To understand this further, consider the next two plots. The plot on the left plots the actual the number

of basic operations (obtained by instrumenting the code), divided by the estimate (1). The plot on the right
plots the average time per operation.

5 Preliminary experiments suggest that the more sophisticated CPLEX implementation is faster than GLPK Simplex,
but, often, only by a factor of five or so. Also, preliminary experiments on larger instances than are considered here suggest
that the running time of Simplex and interior-point methods, including CPLEX implementations on random instances
grows more rapidly than estimated here.
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The conclusion seems to be that the number of basic operations is as predicted, but, unexpectedly, the
time per basic operation is larger (by as much as a factor of two) for large inputs. We observed this effect on
a number of different machines. We don’t know why. Perhaps caching or memory allocation issues could be
the culprit.

5.2 Empirical evaluation of Simplex

We estimate the time for Simplex to find a near-optimal approximation to be at least 5min(r, c)rc basic
operations. This estimate comes from assuming that at least Ω(min(r, c)) pivot steps are required (because
this many variables will be non-zero in the final solution), and each pivot step will take Ω(rc) time.
(This holds even for sparse matrices due to rapid fill-in.) The leading constant 5 comes from experimental
evaluation. This estimate seems conservative, and indeed GLPK Simplex often exceeded it.

Here’s a plot of the actual time for Simplex to find a (1− ε)-approximate solution (for each test input),
divided by this estimate (5min(r, c)rc times the estimated time per operation).
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Simplex generally took at least the estimated time, and sometimes up to a factor of ten longer. (Note
also that this experimental data excludes about 10% of the runs, in which GLPK Simplex failed to terminate
due to basis cycling.)
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5.3 Speed-up of this algorithm versus Simplex.

Combining the above estimates, a conservative estimate of the speed-up factor in using the algorithm here
instead of Simplex (that is, the time for Simplex divided by the time for the algorithm here) is

5min(r, c)rc

[12(r+ c) + 480d−1] ln(rc)/ε2.
(2)

The plot below plots the actual measured speed-up divided by the conservative estimate (2), as a
function of the estimated running time of the algorithm here.
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The speedup is typically at least as predicted in (2), and often more.

To make this more concrete, consider the case when r ≈ c and ε = 0.01. Then the estimate simplifies
to about (r/310)2/ ln r. For r ≥ 900 or so, the algorithm here should be faster than Simplex, and for each
factor-10 increase in r, the speedup should increase by a factor of almost 100.

5.4 Implementation issues

The primary implementation issue is implementing the random sampling efficiently and precisely. The
data structures in [15,10], have two practical drawbacks. The constant factors in the running times are
moderately large, and they implicitly or explicitly require that the probabilities being sampled remain
in a polynomially bounded range (in the algorithm here, this can be accomplished by rescaling the data
structure periodically). However, the algorithm here uses these data structures in a restricted way. Using the
underlying ideas, we built a data structure from scratch with very fast entry-update time and moderately
fast sample time. We focused more on reducing the update time than the sampling time, because we expect
more update operations than sampling operations. Full details are beyond the scope of this paper. An
open-source implementation is at [19].

5.5 Data

The following table tabulates the details of the experimental results described earlier: “t-alg” is the time
for the algorithm here in seconds; “t-sim” is the time for Simplex to find a (1− ε)-optimal soln; “t-sim%”
is that time divided by the time for Simplex to complete; “alg/sim” is t-alg/t-sim.
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r c k 100ε t-alg t-sim t-sim% alg/sim
739 739 2 2.0 1 3 0.31 0.519
739 739 2 1.0 7 6 0.51 1.251
739 739 2 0.5 33 7 0.64 4.387
739 739 5 2.0 3 1 0.51 2.656
739 739 5 1.0 15 1 0.63 8.840
739 739 5 0.5 63 2 0.76 30.733
739 739 4 2.0 2 2 0.51 0.970
739 739 4 1.0 11 3 0.64 3.317
739 739 4 0.5 46 4 0.76 11.634
739 739 3 2.0 2 3 0.43 0.561
739 739 3 1.0 9 5 0.60 1.745
739 739 3 0.5 38 6 0.72 6.197
1480 740 3 2.0 2 9 0.37 0.304
1480 740 3 1.0 13 13 0.53 0.959
1480 740 3 0.5 57 16 0.64 3.478
1480 740 2 2.0 2 24 0.44 0.102
1480 740 2 1.0 11 33 0.60 0.342
1480 740 2 0.5 51 39 0.71 1.313
1480 740 5 2.0 4 4 0.41 0.928
1480 740 5 1.0 18 6 0.56 2.930
1480 740 5 0.5 77 7 0.66 10.447
1480 740 4 2.0 3 6 0.34 0.495
1480 740 4 1.0 15 10 0.49 1.496
1480 740 4 0.5 64 12 0.60 5.239
740 1480 3 2.0 3 14 0.35 0.211
740 1480 3 1.0 14 21 0.51 0.667
740 1480 3 0.5 63 29 0.71 2.139
740 1480 2 2.0 2 13 0.27 0.192
740 1480 2 1.0 11 25 0.51 0.462
740 1480 2 0.5 54 34 0.68 1.597
740 1480 5 2.0 5 7 0.59 0.699
740 1480 5 1.0 22 9 0.72 2.460
740 1480 5 0.5 94 10 0.82 9.054
740 1480 1 2.0 2 23 0.24 0.097
740 1480 1 1.0 9 41 0.44 0.237
740 1480 1 0.5 47 55 0.59 0.848
740 1480 4 2.0 3 12 0.47 0.313
740 1480 4 1.0 17 15 0.61 1.130
740 1480 4 0.5 73 19 0.75 3.803

r c k 100ε t-alg t-sim t-sim% alg/sim
1110 1110 3 2.0 3 21 0.30 0.142
1110 1110 3 1.0 13 33 0.48 0.399
1110 1110 3 0.5 58 43 0.62 1.354
1110 1110 6 2.0 6 5 0.64 1.327
1110 1110 6 1.0 29 6 0.76 4.763
1110 1110 6 0.5 121 6 0.83 17.903
1110 1110 5 2.0 4 9 0.48 0.480
1110 1110 5 1.0 20 13 0.64 1.575
1110 1110 5 0.5 86 15 0.77 5.439
1110 1110 4 2.0 3 17 0.43 0.203
1110 1110 4 1.0 16 24 0.60 0.649
1110 1110 4 0.5 68 29 0.71 2.325
1111 2222 1 2.0 3 94 0.15 0.036
1111 2222 1 1.0 15 198 0.30 0.077
1111 2222 1 0.5 78 344 0.53 0.227
1111 2222 4 2.0 5 94 0.49 0.057
1111 2222 4 1.0 26 123 0.64 0.212
1111 2222 4 0.5 119 148 0.77 0.803
1111 2222 3 2.0 4 109 0.35 0.042
1111 2222 3 1.0 21 163 0.52 0.134
1111 2222 3 0.5 104 222 0.71 0.467
1111 2222 6 2.0 9 23 0.66 0.426
1111 2222 6 1.0 44 26 0.76 1.664
1111 2222 6 0.5 187 29 0.84 6.346
1111 2222 2 2.0 3 83 0.18 0.047
1111 2222 2 0.5 91 269 0.57 0.339
1111 2222 5 2.0 6 63 0.57 0.110
1111 2222 5 1.0 32 77 0.69 0.415
1111 2222 5 0.5 140 88 0.79 1.594
2222 1111 4 2.0 4 53 0.38 0.092
2222 1111 4 1.0 23 75 0.54 0.311
2222 1111 4 0.5 107 91 0.65 1.185
2222 1111 3 2.0 4 53 0.29 0.080
2222 1111 3 1.0 21 84 0.46 0.253
2222 1111 3 0.5 97 115 0.63 0.848
2222 1111 6 2.0 7 21 0.49 0.373
2222 1111 6 1.0 34 26 0.61 1.297
2222 1111 6 0.5 148 30 0.71 4.816
2222 1111 2 2.0 3 102 0.36 0.037
2222 1111 2 1.0 17 139 0.49 0.127
2222 1111 2 0.5 88 173 0.61 0.513
2222 1111 5 2.0 5 42 0.41 0.141
2222 1111 5 1.0 27 57 0.56 0.472
2222 1111 5 0.5 120 70 0.68 1.696
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r c k 100ε t-alg t-sim t-sim% alg/sim
1666 1666 4 2.0 5 117 0.40 0.045
1666 1666 4 1.0 24 163 0.56 0.153
1666 1666 4 0.5 111 201 0.69 0.554
1666 1666 3 2.0 4 112 0.29 0.040
1666 1666 3 1.0 21 185 0.48 0.114
1666 1666 3 0.5 98 245 0.64 0.400
1666 1666 6 2.0 8 42 0.51 0.210
1666 1666 6 1.0 38 55 0.66 0.697
1666 1666 6 0.5 165 63 0.76 2.612
1666 1666 2 2.0 3 109 0.20 0.036
1666 1666 2 1.0 18 221 0.41 0.083
1666 1666 2 0.5 88 313 0.58 0.282
1666 1666 5 2.0 6 82 0.44 0.080
1666 1666 5 1.0 29 109 0.58 0.269
1666 1666 5 0.5 130 133 0.71 0.981
1666 3332 2 2.0 5 354 0.12 0.017
1666 3332 2 1.0 30 857 0.29 0.036
1666 3332 2 0.5 162 1594 0.54 0.102
1666 3332 5 2.0 9 509 0.51 0.020
1666 3332 5 1.0 51 654 0.65 0.078
1666 3332 5 0.5 227 762 0.76 0.299
1666 3332 1 2.0 5 350 0.09 0.015
1666 3332 1 1.0 24 1003 0.25 0.025
1666 3332 1 0.5 135 1881 0.46 0.072
1666 3332 4 2.0 7 578 0.38 0.014
1666 3332 4 1.0 42 899 0.58 0.047
1666 3332 4 0.5 204 1087 0.71 0.188
1666 3332 3 2.0 6 533 0.20 0.013
1666 3332 3 1.0 36 1095 0.41 0.033
1666 3332 3 0.5 180 1741 0.65 0.104
1666 3332 6 2.0 13 255 0.56 0.051
1666 3332 6 1.0 60 319 0.70 0.190
1666 3332 6 0.5 271 361 0.79 0.752
3332 1666 5 2.0 9 275 0.38 0.033
3332 1666 5 1.0 45 392 0.54 0.115
3332 1666 5 0.5 213 482 0.66 0.441
3332 1666 4 2.0 7 274 0.30 0.028
3332 1666 4 1.0 40 414 0.45 0.097
3332 1666 4 0.5 195 556 0.60 0.352
3332 1666 3 2.0 6 316 0.24 0.020
3332 1666 3 1.0 34 544 0.41 0.063
3332 1666 3 0.5 178 703 0.53 0.254
3332 1666 6 2.0 11 154 0.39 0.071
3332 1666 6 1.0 52 218 0.56 0.238
3332 1666 6 0.5 233 273 0.70 0.854

r c k 100ε t-alg t-sim t-sim% alg/sim
2499 2499 2 2.0 5 530 0.13 0.011
2499 2499 2 1.0 29 1556 0.40 0.019
2499 2499 2 0.5 159 2275 0.58 0.070
2499 2499 5 2.0 9 580 0.42 0.016
2499 2499 5 1.0 46 793 0.58 0.059
2499 2499 5 0.5 217 960 0.70 0.227
2499 2499 4 2.0 8 662 0.31 0.012
2499 2499 4 1.0 42 1064 0.50 0.040
2499 2499 4 0.5 195 1369 0.64 0.143
2499 2499 7 2.0 17 125 0.50 0.139
2499 2499 7 1.0 76 162 0.65 0.475
2499 2499 7 0.5 327 190 0.77 1.715
2499 2499 3 2.0 6 618 0.18 0.011
2499 2499 3 1.0 35 1079 0.32 0.032
2499 2499 3 0.5 174 1774 0.53 0.099
2500 5000 6 2.0 19 2525 0.52 0.008
2500 5000 6 1.0 98 3337 0.69 0.029
2500 5000 6 0.5 458 3828 0.79 0.120
2500 5000 7 2.0 26 1042 0.60 0.026
2500 5000 7 1.0 124 1272 0.73 0.098
2500 5000 7 0.5 556 1427 0.82 0.390
5000 2500 3 2.0 10 2165 0.23 0.005
5000 2500 3 1.0 62 3828 0.40 0.016
5000 2500 3 0.5 338 5586 0.58 0.061
5000 2500 6 2.0 17 1352 0.39 0.013
5000 2500 6 1.0 90 1832 0.53 0.049
5000 2500 6 0.5 418 2297 0.66 0.182
5000 2500 5 2.0 14 1752 0.33 0.008
5000 2500 5 1.0 82 2592 0.49 0.032
5000 2500 5 0.5 397 3330 0.63 0.119
5000 2500 4 2.0 12 1916 0.26 0.006
5000 2500 4 1.0 70 3177 0.44 0.022
5000 2500 4 0.5 367 4197 0.58 0.087
3750 3750 7 2.0 23 1828 0.50 0.013
3750 3750 7 1.0 111 2343 0.64 0.047
3750 3750 7 0.5 506 2712 0.74 0.187
3750 3750 6 2.0 18 3061 0.40 0.006
3750 3750 6 1.0 91 4263 0.55 0.022
3750 3750 6 0.5 432 5279 0.68 0.082

6 Future directions

Can one extend the coupling technique to mixed packing and covering problems? What about the special
case of ∃x ≥ 0;Ax ≈ b (important for computer tomography). What about covering with “box” constraints
(upper bounds on individual variables)? Perhaps most importantly, what about general (not explicitly
given) packing and covering, e.g. to maximummulticommodity flow (where P is the polytope whose vertices
correspond to all si → ti paths)? In all of these cases, correctness of a natural algorithm is easy to establish,
but the running time is problematic. This seems to be because the coupling approach requires that fast
primal and dual algorithms of a particular kind must both exist. Such algorithms are known for each of the
above-mentioned problems, but the natural algorithm for each dual problems is slow.

The algorithm seems a natural candidate for solving dynamic problems, or sequences of closely related
problems (e.g. each problem comes from the previous one by a small change in the constraint matrix).
Adapting the algorithm to start with a given primal/dual pair seems straightforward and may be useful in
practice.

Can one use coupling to improve parallel and distributed algorithms for packing and covering (e.g. [14,
21]), perhaps reducing the dependence on ε from 1/ε4 to 1/ε3? (In this case, instead of incrementing a
randomly chosen variable in each of the primal and dual solutions, one would increment all primal and dual
variables deterministically in each iteration: increment the primal vector x by αp̂ and the dual vector x̂ by
αp for the maximal α so that the correctness proof goes through. Can one bound the number of iterations,
assuming the matrix is appropriately preprocessed?)
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7 Appendix: Utility Lemmas

The first is a one-sided variant of Wald’s equation:

Lemma 9 [20, lemma 4.1] Let K be any finite number. Let x0, x1, . . . , xT be a sequence of random variables,

where T is a random stopping time with finite expectation.

If E[xt − xt−1 |xt−1] ≤ µ and (in every outcome) xt − xt−1 ≤ K for t ≤ T , then E[xT − x0] ≤ µE[T ].

The second is the Azuma-like inequality tailored for random stopping times.

Lemma 10 Let X =
∑T

t=1
xt and Y =

∑T
t=1

yt be sums of non-negative random variables, where T is a random

stopping time with finite expectation, and, for all t, |xt − yt| ≤ 1 and

E
[

xt − yt |
∑

s<t xs,
∑

s<t ys
]

≤ 0.

Let ε ∈ [0,1] and A ∈ R. Then

Pr
[

(1− ε)X ≥ Y +A
]

≤ exp(−εA).
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Proof Fix λ > 0. Consider the sequence π0, π1, . . . , πT where πt = 0 for t > λE[T ] and otherwise

πt
.
=

∏

s≤t

(1 + ε)xs(1− ε)ys = πt−1(1 + ε)xt(1− ε)yt ≤ πt−1(1 + εxt − εyt)

(using (1 + ε)x(1− ε)y ≤ (1 + εx− εy) when |x− y| ≤ 1).
From E[xt − yt |πt−1] ≤ 0, it follows that E[πt |πt−1] ≤ πt−1.
Note that, from the use of λ,

∑

s≤t xs−ys and (therefore) πt−πt−1 are bounded. ThusWald’s (Lemma 9),
implies E[πT ] ≤ π0 = 1.

Applying the Markov bound,

Pr[πT ≥ exp(εA)] ≤ exp(−εA).

So assume πT < exp(εA). Taking logs, if T ≤ λE[T ],

X ln(1 + ε)− Y ln(1/(1− ε)) = lnπT < εA.

Dividing by ln(1/(1−ε)) and applying the inequalities ln(1+ε)/ ln(1/(1−ε))≥ 1−ε and ε/ ln(1/(1−ε)) ≤
1, gives (1− ε)X < Y +A. Thus,

Pr[(1− ε)X ≥ Y +A] ≤ Pr[T ≥ λE[T ]] + Pr[πT ≥ exp(εA)] ≤ 1/λ+ exp(−εA).

Since λ can be arbitrarily large, the lemma follows. ⊓⊔
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