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ABSTRACT OF THE THESIS

Temporally Continuous 3D Pose Estimation under Occlusion

by

Rohit Lal

Master of Science, Graduate Program in Electrical Engineering
University of California, Riverside, June 2024
Dr. Amit K. Roy-Chowdhury, Chairperson

The capability to accurately estimate 3D human poses is crucial for diverse fields such as

action recognition and virtual/augmented reality. However, a persistent and significant

challenge within this field is the accurate prediction of human poses under conditions of

severe occlusion. Traditional image-based estimators struggle with heavy occlusions due

to a lack of temporal context, resulting in inconsistent predictions. While video-based

models benefit from processing temporal data, they encounter limitations when faced with

prolonged occlusions that extend over multiple frames. Addressing these challenges, we

propose STRIDE (Single-video based TempoRally contInuous occlusion Robust 3D Pose

Estimation), a novel Test-Time Training (TTT) approach to fit a human motion prior

for each video. This approach specifically handles occlusions that were not encountered

during the model’s training. We validate STRIDE through comprehensive experiments on

challenging datasets like Occluded Human3.6M, Human3.6M, and OCMotion.
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Chapter 1

Introduction and Related Works

1.0.1 Introduction

Accurate 3D pose estimation [79, 59] is an important problem in computer vision

with a variety of real-world applications, including but not limited to action recognition

[31], virtual and augmented reality [2], and gait recognition [82, 15]. While the performance

of 3D pose estimation algorithms has improved rapidly in recent years, the majority of

these are image-based [61, 55, 59], estimating the pose from a single image. Consequently,

these approaches still face inherent challenges in handling occluded subjects due to the

limited visual information contained in individual images. To address these issues, recent

efforts have explored video-based pose estimation algorithms [74, 60], leveraging temporal

continuity across frames to resolve pose ambiguities from missing visual evidence.

Further, the success of both image and video-based state-of-the-art algorithms

[4, 63, 74, 52] relies heavily on supervised training on large datasets captured in controlled

settings [4]. This limits generalizability, as distribution shifts in uncontrolled environments
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Figure 1.1: Effect of occlusions on pose estimation. Image-based 3D pose estimators
[4] often struggle with heavy occlusions, as illustrated in this figure. Without temporal
context, predictions on highly obscured frames are inconsistent with prior poses, like the
erroneous pose in the third frame. Notably, even state-of-the-art video approaches [63] fail on
prolonged full occlusions spanning multiple frames, as in frames 4-5. This highlights another
critical limitation - models are brittle when deployed outside their training distributions.
Without training examples of such long-duration occlusions, models fail to extrapolate
reasonable poses. Our work addresses this through test-time training of a human motion
prior. By fine-tuning on each new video, we tailor this parametric prior to handling sequence-
specific occlusion patterns not observed during training. Given an initial noisy estimate, our
approach refines the pose sequence into an accurate, temporally coherent output, as shown
in the final row.

can significantly degrade performance. For example, consider a scenario of an individual

walking through a forest, periodically becoming fully obscured by trees, as depicted in

Fig. 1.1. Image-based pose estimation methods [4] struggle in such cases, as key spatial

context is lost when the person is occluded. Without additional temporal cues, the model

has insufficient visual evidence to accurately determine the 3D pose [54, 53]. On the other

hand, video-based approaches [52, 74, 78] also suffer from performance degradation, despite

modeling temporal information, due to such prolonged occlusions being absent in the training

data [7].
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Motion

Prior

Video Sequence Noisy 3D Poses Clean 3D Poses
Test Time Training

Pose Estimation

STRIDE

Figure 1.2: Overview of our approach. Our method enhances 3D pose estimation for
occluded videos through test-time training of a motion prior model. We first extract initial
3D pose estimates from the test video using any 3D off-the-shelf pose estimator. To address
occlusions and test distribution shifts, we then fine-tune the motion prior on that specific
video by optimizing for smooth and continuous poses over the sequence.

To deal with this large diversity in contexts, occlusion patterns, and imaging condi-

tions in real-world videos, we explore the Test-Time Training (TTT) paradigm for 3D pose

estimation. TTT allows for efficient on-the-fly adaptation to the specific occlusion patterns

and data distribution shifts present in each test video. This facilitates better generalization,

improving the model’s capability to handle even prolonged occlusions. Furthermore, this

reduces reliance on large annotated datasets, which are costly to collect, especially for

occluded motions.

Recent TTT approaches for 3D pose estimation [52, 51, 17, 16] fine-tune the

model using 2D cues like keypoints or silhouettes extracted from the test images. However,

this reliance on 2D cues has inherent limitations. Firstly, the 2D projection of 3D poses is

ambiguous, as many plausible 3D configurations can map to the same 2D keypoints. Secondly,

2D pose estimators themselves are susceptible to errors on unseen data distributions [59, 27].

Thus, fine-tuning on potentially imperfect and ambiguous 2D poses can incorrectly update

the model, leading to degraded 3D predictions.
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To overcome the limitations of existing methods, we propose STRIDE (Single-video

based TempoRally contInuous occlusion Robust 3D Pose Estimation), a novel test-time

training framework for 3D pose estimation under occlusion. The key component of our

approach is a parametric motion prior that is capable of modeling the dynamics of natural

human motions and poses. This motion prior is pre-trained using a BERT-style [14, 83]

approach on 3D pose sequences, learning to reconstruct temporally coherent poses when

given a series of noisy estimates as input. At test time, given a sequence of noisy 3D

poses from any existing pose estimation algorithm, STRIDE leverages this pre-trained prior

to produce a clean sequence by fine-tuning it on each new video. We use 3D kinematic

losses for motion smoothing via adapting the model to the video-specific motion patterns.

By leveraging the motion prior’s inherent knowledge of natural human movement during

test-time training, STRIDE avoids ambiguities of 2D pose information faced by existing

approaches. An overview of our approach is shown in Fig. 1.2.

A key advantage of our algorithm is that it can work alongside any off-the-shelf pose

estimator to improve temporal consistency, providing model-agnostic pose enhancements.

This allows STRIDE to not only surpass image-based pose estimators that lack contextual

cues to resolve occlusions, but also outperform video-based methods. Notably, STRIDE can

handle situations with up to 100% occlusion of the human body over many consecutive

frames. In comparison to existing test-time video based pose estimation method [60, 52], our

approach is up to 2 times faster than previous state-of-the-art method [52] and operates

without accessing any labeled training data during inference time, making it privacy [62]

and storage-friendly.
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Contributions. In summary, we make the following key contributions:

1. We propose a novel test-time training method, STRIDE, for achieving temporally

continuous 3D pose estimation under occlusion.

2. A motion prior model that refines noisy 3D pose sequences into smooth and continuous

predictions.

3. A model-agnostic framework that can refine poses from any off-the-shelf estimator,

highlighting efficiency and generalizability.

4. State-of-the-art results on challenging benchmarks including Occluded Human3.6M,

Human3.6M [21], and OCMotion [20]. We demonstrate enhanced occlusion robustness

and temporal consistency.

1.0.2 Related Works

Monocular 3D pose estimation. Monocular 3D pose estimation is a fundamental

and challenging problem in computer vision which involves the localisation of 3D spatial

pose coordinates from just a single image. The problem is inherently complex due to the

diversity of body shapes, clothing, self-occlusions, etc. Despite these bottlenecks, recent

deep learning-based methods have shown impressive performance on challenging academic

datasets [4, 79]. [46] proposed the first CNN-based approach to regress 3D joints from a

single image in an end-to-end fashion. Since then, numerous works [61, 55] have improved

upon these ideas by using additional information such as multi-view constraints and depth

information. Recent works [71] employ kinematic constraints for improved pose estimation,

while [72] uses anatomical constraints and data augmentation for obtaining state-of-the-art
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results on academic datasets. However, it is worth noting that these methods are trained

under supervised settings and often fail to generalize under distribution shifts. Owing to

these weaknesses, [35, 37] proposed self-supervised algorithms for 3D human pose estimation.

Although these works perform well in single image-based settings, they failed to generalise

under occlusions and also lack temporal continuity when extended to video-based settings.

2D-3D human pose lifting. Modern 3D human pose estimation encounters significant

challenges in generalization due to limited labeled data for real-world applications. [45]

addressed this issue by breaking down the problem into 2D pose estimation and 2D to

3D lifting. Subsequently, [6] improved on this by including self-supervised geometric regu-

larization, by synthetic data usage [84], spatio-temporal transformers [80], and frequency

domain analysis [78]. [83] achieved state-of-the-art results by modelling motion priors from

a sequence of 2D poses. Although these works perform well up to a certain degree, they

suffer from two problems: 1) depth ambiguity of 2D human poses, 2) inaccurate 3D human

poses if the initial 2D human poses are noisy. In contrast, we focus on 3D pose estimation

in a video-based setting and does not involve any 2D-3D pose lifting.

Video-based 3D pose estimation. Video based 3D human pose estimation have demon-

strated impressive performance gains on challenging datasets. Work proposed in [81] performs

direct regression to 3D human poses by employing consistency between 3D joints and 2D

keypoints. [56] utilized temporal convolutions for 3D human pose estimation in videos.

Works like [3] exploited SMPL pose and shape parameters from videos and used it for fine

tuning HMR for improved human pose estimation in the wild. Further, [76] proposed a

mixed spatio-temporal approach for 3D human pose regression which alternated between

6



spatial consistency and temporal consistency. A recent method, HuMoR [60] performed

a weighted regularization using predicted contact probabilities to maintain consistency

among joint positions and joint heights across frames. The current state-of-the-art method

CycleAdapt[52] handled the domain shift [32] between training and testing phases in 3D

human mesh reconstruction by cyclically adapting a human mesh reconstruction network

(HMRNet [22]) and a human motion denoising network (MDNet [52]) during test time.

Despite the success of the above methods in maintaining temporal consistency, they are

extremely slow due to an external optimization step and do not generalise well under dis-

tribution shifts. Severe occlusions often degrade the performance of these methods due to

missing poses. Our work emphasizes these shortcomings and brings temporal continuity

under severe occlusions by leveraging a motion-prior model that seamlessly handles missing

3D human pose estimates.

3D pose estimation under occlusion. Handling occlusions is a challenging problem,

especially in video-based 3D pose estimation settings. [8] performed data augmentation

using occlusion labels for 3D data using a novel Cylinder Man Model. Current methods solve

this problem by refining the 3D poses to maintain temporal consistency. Recent methods

like GLAMR [74] performed human mesh recovery in the global coordinate system from

extracted motions in the local coordinate system and performed motion infilling for missing

poses based on visible motions. SmoothNet [75] uses a temporal refinement network that

takes poses from existing single image based pose estimation methods for alleviating motion

jitters. Although these methods handle minor occlusions that infrequently occur in the

scene, they do not perform well under heavy occlusions.

7



Chapter 2

Methodology

We address the problem of extracting temporally continuous 3D pose estimates

from a monocular video that may contain heavy occlusions. Given an off-the-shelf monocular

3D pose estimator P (either image or video-based) that produces temporally inconsistent

poses due to occlusions or domain gaps, our goal is to output clean, temporally coherent

3D pose sequences that better match natural human motion dynamics. To achieve this, we

propose a two-stage approach, illustrated in Fig. 2.1:

1. Learning a motion prior: We first pre-train a self-attention-based motion prior model

M on labeled 3D pose datasets in a BERT-style manner [14, 83]. During pre-training,

we synthetically corrupt the 3D joint inputs with noise to simulate occlusions and other

errors. M is then trained to denoise these inputs and reconstruct a sequence of temporally

coherent 3D pose estimation. This allows M to learn very strong general priors of natural

human motion dynamics.

8



Frame 1 Frame 2 Frame 3 Frame 4 Frame n

Large Pre-training Stage Single Video Training

Add random mask and noise

Motion Prior Model (      )Motion Prior Model (      )

Sequence of temporally continuous pose Sequence of temporally continuous pose

Sequence of noisy/temporally inconsistent poses

Figure 2.1: The presented figure illustrates the pipeline for our temporally continuous pose
estimation, STRIDE. Initially, we pre-train a motion prior model, denoted as M, using a
diverse set of 3D pose data sourced from various public datasets. The primary objective of
this motion prior model is to generate a sequence of poses that exhibit temporal continuity
when provided with a sequence of initially noisy poses. Moving into the single video training
stage, we acquire a sequence of noisy poses using a 3D pose estimation model, P. The
weights of P are held constant during this phase. Subsequently, we pass this noisy pose
sequence through the motion prior model M and retrain it using various supervised losses, as
outlined in Eq. 2.5. The end result of this training process is a model capable of producing
temporally continuous 3D poses for that specific video.

2. Test-time alignment: For a given test video, we obtain potentially noisy per-frame

poses using P [4] and fine-tune the motion prior model M in an unsupervised manner to

align it to the specific motion exhibited in the video. This adaptation step allows us to

obtain temporally continuous pose estimates for the given video.

In Section 2.0.1, we describe the architecture of the motion prior model M. Next,

in Section 2.0.2, we detail the masked sequence modelling approach used for pre-training

the motion prior M on synthetically corrupted pose sequences. Finally, in Section 2.0.3, we

introduce the self-supervised losses used for fine-tuning M at test time on each video.

9



2.0.1 Network Architecture

We base our motion prior model M on the DSTFormer architecture [83], originally

proposed for lifting 2D poses to 3D. Here, we modify and adapt DSTFormer for the sequence-

to-sequence task of denoising and smoothing noisy 3D pose sequence inputs. Specifically, the

motion prior M takes in a sequence of 3D body poses represented as X ∈ RT×J×3, where T

is the number of frames, J is the number of joints, and each pose consists of J ×3 coordinate

values. It then denoises the input sequence to produce refined temporally coherent 3D poses

X̄ ∈ RT×J×3. M contains two key components: 1) a spatial block to capture the orientation

of joints, and 2) a temporal block to model the temporal dynamics of a joint. The spatial

block refines poses in each frame, while the temporal block smooths the transitions between

frames. We describe these components below:

Spatial block. This block utilizes Spatial Multi-Head Self-Attention (S-MHSA) to model

relationships among joints within each pose in the input sequence. Mathematically, the

S-MHSA operation is defined as:

S-MHSA(QS,KS,VS) = [head1; ...; headh]W
P
S ; headi = softmax(

Qi
S(K

i
S)

T

√
dK

)Vi
S

Here, Qi
S,K

i
S,V

i
S denote the query, key, and value projections for the ith attention head,

dk is the key dimension, and WP
S is the projection parameter matrix. We apply S-MHSA

to features of different time steps in parallel. The output undergoes further processing,

including residual connection and layer normalization (LayerNorm), followed by a multi-layer

perceptron (MLP).

Temporal block. This block utilizes Temporal Multi-Head Self-Attention (T-MHSA) to

model the relationships between poses across time steps, thereby enabling the smoothing of

10



the pose trajectories over the sequence. It operates similarly to S-MHSA but is applied to

per-joint temporal features parallelized over the spatial dimension:

T-MHSA(QT,KT,VT) = [head1; ...; headh]W
P
T ; headi = softmax(

Qi
T(K

i
T)

T

√
dK

)Vi
T

By attending to temporal relationships, T-MHSA produces smooth pose transitions over

time.

Dual-Stream Spatio-temporal Transformer. We then use the dual-stream architecture

which employs spatial and temporal Multi-Head Self-Attention mechanisms. These mech-

anisms capture intra-frame and inter-frame body joint interactions, necessitating careful

consideration of three key assumptions: both streams model comprehensive spatio-temporal

contexts, each stream specializes in distinct spatio-temporal aspects, and the fusion dynami-

cally balances weights based on input characteristics.

2.0.2 Learning a Motion Prior

To build a strong prior for human motion dynamics, we draw inspiration from the

success of large language models like BERT [14] that leverage large-scale self-supervised

pre-training. Here, we extend this paradigm to 3D human pose estimation. Specifically,

given a dataset of 3D pose sequences, we synthetically mask these sequences to simulate

occlusions and other errors. Similar to [12, 83], the prior M is trained to denoise these noisy

inputs to reconstruct a sequence of temporally coherent 3D poses.

During pre-training, we apply both joint-level and frame-level masking to a 3D

pose sequence X to obtain a corrupted sequence mask(X) which mimics realistic scenarios of

imperfect predictions and occlusions. The prior M is trained to reconstruct the complete 3D

11



motion sequence X̄ from this corrupted input X by minimizing losses on 3D joint positions

L3D between the reconstruction and the ground-truth pose. Additionally, we incorporate a

velocity loss LO following [56, 76].

L3D =

T∑
t=1

J∑
j=1

∥ X̄t,j −Xt,j ∥2 LO =

T∑
t=2

J∑
j=1

∥ Ōt,j −Ot,j ∥2

where Ōt = X̄t − X̄t−1, Ot = Xt −Xt−1.

2.0.3 Test-Time Alignment

Given the pre-trained motion prior model M that takes in noisy 3D poses and

outputs temporally coherent predictions, our goal is to leverage this for pose estimation on

new test videos. We first obtain an initial noisy estimate of the 3D pose sequence using any

off-the-shelf pose detector P [4]. As these models struggle on occlusions and distribution

shifts, their outputs lack temporal consistency. To address this, we pass the noisy poses

through M to achieve a refined estimate.

Although the prior refines pose, some inconsistencies like domain shift and novel

human motion may be present in the videos. Hence, we propose additional test-time training

of M using geometric and physics-based constraints to adapt to such situations. Similar

to internal learning approaches like Deep Video Prior [41], our proposed self-supervision

strategy fine-tunes the motion prior to the specifics of each test video for enhanced outputs.

Specifically, we utilize four different losses that regularize (1) the velocity of joints, (2) scale

variations in predictions (3) the size of limbs, and (4) the smoothness of poses (5) in missing

frames. Crucially, only M is updated during test-time training while P remains fixed to

preserve the pose estimation capabilities of off-the-shelf models.
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Limb loss: Limb length consistency is an important aspect of anatomically plausible 3D

human pose predictions. This loss encourages the model to produce temporally stable limb

lengths, contributing to more realistic and physically plausible pose estimations. The idea

is to penalize variability in limb lengths across frames. If the limb lengths exhibit large

variations, it may indicate inconsistency or instability in the predicted poses. The limb loss

function Llim is defined as follows,

Llim =
1

J

J−1∑
j=1

1

T

T∑
t=1

(
J t,j −

1

T

T∑
t′=1

J t′,j

)2

︸ ︷︷ ︸
Variance of Joint Lengths Across Time

. (2.1)

Here J ∈ RT×(J−1) represents a matrix of the normalised length of limb j < (J − 1) at

any time t < T . By calculating the variance of limb lengths and taking the mean, the loss

encourages the model to produce more consistent and stable limb lengths across the entire

sequence. This can be beneficial in applications where it is crucial to maintain anatomical

consistency in the predicted 3D poses.

To further regularize for the cases where the 3D pose estimation model P fails to

detect any pose, we use linear interpolation between joints. Consider that the video consists

of N frames, out of which the model fails to predict anything for q frames. The linear

extrapolation and interpolation function L : R(N−q)×J×3 → RN×J×3 fills in the missing

inputs. This provides pseudo-labels during training for two of our loss functions. These

pseudo-labels also help to ensure temporal continuity in the predicted poses.

Mean Per Joint Position (MPJP) loss: This loss focuses on the accuracy of the pose

estimation by penalizing deviations in the spatial position of individual joints. It computes

the mean Euclidean distance between the predicted X̂ poses and pseudo-poses X̃ = L(X̂)
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where X̂ is the noisy sequence of poses obtained from P. It measures the average distance

between corresponding joints in the predicted and pseudo labels. It is defined as follows,

LMPJP =
1

T · J · 3

T∑
t=1

J∑
j=1

3∑
d=1

∥X̂t,j,d − X̃t,j,d∥2 (2.2)

Normalized MPJP (N-MPJP) loss: This loss function introduces a normalization

step to address scale variations between the predicted and target poses. It calculates the

scale factor based on the norms of the predicted and target poses and then applies this

scale factor to the predicted poses before computing the MPJPE. The normalization in

LN-MPJP aims to make the model more robust to variations in absolute pose values. It is

particularly useful when the scale of the poses in the training and testing data may differ.

By incorporating scale information, LN-MPJP addresses scale-related issues during training,

potentially improving the model’s generalization to different scenarios.

LNMPJP = LMPJP(sX̂, X̃); where s =

∑T
t=1

∑J
j=1

∑3
d=1

∥∥∥X̃t,j,d · X̂t,j,d

∥∥∥
2∑T

t=1

∑J
j=1

∑3
d=1

∥∥∥X̂t,j,d

∥∥∥2
2

(2.3)

In Equation 2.3, s represents the scale. The combination of both LNMPJP and LMPJP losses

allows the model to simultaneously optimize for accurate joint positions (LMPJP) and address

scale variations (LNMPJP). The incorporation of LNMPJP allows the model to learn to handle

scenarios where the pose scale may differ between training and testing data.

Velocity loss: We optimize velocity loss similar to Eq. 2.4, but instead of ground truth,

we use pseudo-labels.The velocity loss helps in smoothing the movement and removing

unwanted jittering across frames.

Lvel =
1

N · (J − 1)

T−1∑
t=1

J∑
j=1

3∑
d=1

∥∥∥V̂ − Ṽ
∥∥∥
2

(2.4)
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where V̂ = X̂t+1,j,d − X̂t,j,d and Ṽ = X̃t+1,j,d − X̃t,j,d represent velocities of predicted poses

and pseudo label poses respectively.

Overall Loss. In summary, by combining all the above-mentioned losses into one final loss

function as shown in Eq. 2.5, M is trained to produce accurate joint positions, maintain

anatomical consistency, and handle scale variations,

Ltotal = λ1Lmpjp + λ2Lvel + λ3Llim + λ4Lnmpjp (2.5)

Here, λi, where i ∈ 1, 2, 3, 4, refers to loss-weighing hyper-parameters which remain constant

for all evaluations.
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Chapter 3

Experimentation

In this section, our primary objective is to provide a comprehensive understanding

of our approach. We elaborate on the datasets employed and conduct a thorough compari-

son with state-of-the-art methodologies. Furthermore, we analyze the qualitative results,

pinpointing areas where existing methods may falter. As a conclusive step, we perform an

ablation study to assess the impact of pre-training and different loss functions, shedding

light on their contributions to our experimental framework.

We conduct evaluations on three datasets with varying levels of occlusion: Hu-

man3.6M, representing scenarios without occlusion; OCMotion, moderate occlusion; and

Occluded Human3.6M, representing heavy occlusion. The metrics assessed include Procrustes-

aligned mean per joint position error (PA-MPJPE), mean per joint position error (MPJPE),

and acceleration error (Accel), measured as the disparity in acceleration between ground-

truth and predicted 3D joints. We report the metrics in (mm). We use BEDLAM-CLIFF [4]

as the off-the-shelf pose estimation method. We compare the error rates of STRIDE and the
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baseline methods in Table 3.1,3.2 and 3.3. The best results are in bold and green arrows

indicate the percentage improvement over the previous state-of-the-art method.

3.0.1 Datasets

Human3.6M [21]. An indoor-scene dataset, Human3.6M is a pivotal benchmark for 3D

human pose estimation from 2D images. Captured with a 4-camera setup, it includes 11

subjects, each with 15 different actions, annotated in the 17 keypoints format. Following

[4], we retain every 1 in 5 frames in the test split comprising the S9 and S11 sequence. We

perform experiments on the original publically available Human3.6M dataset to show that

our method achieves comparable performance with other state-of-the-art methods.

OCMotion [20]. OCMotion is a video dataset that extends the 3DOH50K image dataset

[77], incorporating natural occlusions. The dataset comprises 300K images captured at 10

FPS, featuring 43 sequences observed from 6 viewpoints. Its annotations for 3D motion

include SMPL, 2D poses, and camera parameters. The sequences {0013, 0015, 0017, 0019}

are designated for testing. Our method does not require supervised training, so we have

only used the test split when performing all experiments.

Occluded Human3.6M. We curate the Occluded Human3.6M dataset to evaluate our

method, specifically designed for assessing human pose estimation under significant occlusion,

unlike existing datasets such as Human3.6M, MPI-INF-3DHP[47], and 3DPW[67]. To

accomplish this, we use random erase occlusions on Human3.6M videos, completely covering

a person up to 100%. These occlusions persist spatially and temporally for 1.6 seconds

within 3.2 seconds of the video.
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BRIAR [13]. BRIAR is a large-scale biometric dataset featuring videos of human subjects

captured in extremely challenging conditions. These videos are recorded at varying distances

i.e close range, 100m, 200m, 400m, 500m, and unmanned aerial vehicles (UAV), with each

video lasting around 90 seconds. Most of the pose estimation methods fail on this dataset

due to the extreme amount of domain shifts. Additionally, BRIAR lacks ground truth data

for poses, which means evaluations of pose estimation methods on this dataset can only be

qualitative, relying on visual assessments rather than quantitative metrics.

3.0.2 Quantitative Results

Table 3.1: 3D Pose estimation results on Occluded Human3.6M. This dataset is crucial
as it is the only dataset that has significant occlusion. The results underscore that our
method surpasses all state-of-the-art with substantial percentage improvements, affirming
its robustness in handling occlusions.

Method PA-MPJPE MPJPE Accel

Im
ag

e

CLIFF [42] 183.5 100.5 38.4

BEDLAM [4] 179.5 98.9 39.1

V
id
eo

GLAMR [74] 213.9 380.3 42.3

PoseFormerV2 [78] 193.9 260.2 38.7

CycleAdapt [52] 77.6 132.6 48.7

MotionBERT [83] 76.1 112.8 28.7

Our Method 59.0 (57%↓) 80.7 (18%↓) 26.6 (7%↓)

Our method is most effective under heavy occlusions. We significantly outperform

other state-of-the-art methods on the Occluded Human3.6M dataset as shown in Table 3.1.

Notably, STRIDE performs significantly better than BEDLAM despite using pseudo-labels
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Table 3.2: 3D pose estimation results on OCMotion [20]. Our method outperforms
other image and video-based pose estimation methods. While PoseFormerV2 has the lowest
accel., it also exhibits the highest PA-MPJPE error. This is due to oversmoothing and
inaccurate interpolation between poses which compromises the pose estimation accuracy.

Method PA-MPJPE Accel Avg

Im
ag

e
OOH [77] 55.0 48.6 51.8

PARE [29] 52.0 43.6 47.8

BEDLAM [4] 47.1 49.0 48.0

V
id
eo

PoseFormerV2 [78] 126.3 28.5 77.4

GLAMR [74] 89.9 51.3 70.6

CycleAdapt [52] 74.6 57.5 66.0

ROMP [64] 48.1 57.2 52.6

Our Method 46.2 (2%↓) 47.8 47.0 (2%↓)

from BEDLAM. BEDLAM fails to produce poses under heavy occlusion; hence, the evaluation

results drop significantly. However, since STRIDE incorporates temporal information to

address these gaps in the video, we predict reasonable poses even in case of heavy occlusions

and improve the result of BEDLAM by a significant margin. It is important to note that by

using STRIDE we do not only outperform BEDLAM, but we also outperform all the other

existing video- and image-based state-of-the-art methods. This is mainly because existing

methods do not incorporate human motion prior and hence results in temporally implausible

poses.

Since Occluded Human3.6M contains artificial occlusions, we also evaluated on

the OCMotion dataset, which contains real-world, natural occlusions. Table 3.2 shows that
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Table 3.3: 3D pose estimation results on Human3.6M. Our evaluation demonstrates that
our results are comparable to the BEDLAM-CLIFF baseline. This is due to the occlusion-free
nature of the Human3.6M, which yields already refined and consistent poses with limited
room for improvement.

Method PA-MPJPE MPJPE Accel

Im
a
g
e

CLIFF [42] 56.1 89.6 -

BEDLAM-HMR [4] 51.7 81.6 -

BEDLAM-CLIFF [4] 50.9 70.9 39.14

V
id
eo

GLAMR [74] - - -

CycleAdapt [52] 64.5 106.3 57.25

MotionBERT∗ [83] 64.15 95.8 14.8

Our Method 50.4 (1%↓) 69.7 (2%↓) 37.1

our approach STRIDE attains state-of-the-art results on the OCMotion dataset [20]. Since

we obtained good pseudo-labels from BEDLAM under partial occlusions, we observe the

proximity of our results to BEDLAM. It is important to highlight that methods such as

[64, 29] are supervised and trained on the training split of OCMotion. In contrast, our

approach does not assume access to any labeled training dataset.

Our method demonstrates minor improvement over BEDLAM-CLIFF on the

original Human3.6M dataset, as evidenced in Table 3.3. The marginal enhancement is

primarily due to the nature of the Human3.6M dataset, which lacks occlusions, thereby

limiting the potential for improvement beyond the baseline.

Inference speed: Table 3.4 compares the inference times of various 3D pose estimation

methods on a 243-frame OCMotion video using an RTX 3090 GPU. HuMor and GLAMR
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Table 3.4: Inference time for various 3D pose estimation methods.

Method Time (sec)

HuMor [60] > 600

GLAMR [74] > 600

PoseFormerV2 [78] 129

CycleAdapt [52] 126

Our Method 68 (46%↓)

are notably slower, exceeding 10 minutes due to their intensive pose optimization phase. In

contrast, PoseFormerV2 and CycleAdapt show efficiency improvements with inference times

of 129 and 126 seconds, respectively. STRIDE outperforms these, achieving a significant

reduction to 68 seconds, making it 46% faster and highlighting its suitability for real-time

applications without sacrificing accuracy.

3.0.3 Qualitative Results

Our evaluation juxtaposes STRIDE against leading state-of-the-art techniques like

CycleAdapt [52]. Key insights from our comparison include:

Occluded Human3.6M: Traditional approaches often fall short in accurately predicting

missing 3D poses, struggling with high levels of occlusion. In contrast, our method utilizes

the dynamics of human motion to precisely infill missing poses, leading to a 57% error

improvement in performance compared to the former state-of-the-art method. These

improvements can be visualized in Fig. 3.1.
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Figure 3.1: 3D pose estimation results on Occluded Human3.6M. CycleAdapt
(second row) fails to generalize in cases when there is complete occlusion. STRIDE (third
row) produces temporally coherent pose infilling due to test time training. Note that the
translucent red color represents the ground truth poses.

Figure 3.2: 3D pose estimation results on OCMotion (0013, Camera01). This
figure demonstrates how our method incorporates temporal continuity into video sequences
under occlusion. The second row represents 3D poses predicted by CycleAdapt [52]. The
third row represents 3D poses predicted by STRIDE. Note: The 3D poses shown in translucent
red color in the second and third row represent the ground truths.

BRIAR [13]: The videos within the BRIAR dataset present a substantial domain shift, a

scenario not previously encountered by existing methodologies. Our algorithm distinguishes

itself by mitigating these distribution shifts, resulting in markedly superior performance.

While other techniques yield almost random predictions under these conditions, our method

dynamically adapts to this domain shift during test time. Although direct quantitative

comparisons are impossible due to the absence of ground truth, the visual comparisons

provided through our videos demonstrate our method’s enhanced efficacy.
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OCMotion [19]: In Fig. 3.5, we compare our method against an existing state-of-the-art

pose estimation method CycleAdapt [52]. In Frame 5, we can observe that CycleAdapt fails

to perform well in cases when there is self-occlusion. We observe that STRIDE’s predictions

are best aligned with the ground truth poses, even under significant occlusions or when the

person goes out of the frame.

3.0.4 Ablation Study

An ablation study conducted in Table 3.5 provides quantitative insights into the

significance of each component in STRIDE. Starting from a baseline with substantial errors,

the introduction of a motion prior alone drastically improves performance, underscoring

its effectiveness in driving the model toward realistic human pose dynamics. The addition

of Lmpjp enhances spatial accuracy, further lowering MPJPE to 82.1 and PA-MPJPE to

60.4. The improvement with Lvel suggests its role in smoothing motion. The best results

are observed when Lnmpjp is also included, indicating its critical function in accounting for

scale variations.

In conclusion, the ablation study reveals that each component contributes to

improving the accuracy and temporal consistency of the pose estimations, with the full

combination of components yielding the state-of-the-art results. This indicates that while

the motion prior sets a strong foundation for plausible poses, the various loss functions refine

and stabilize the pose predictions to align closely with natural human movement dynamics

and unseen poses. We find that using any off-the-shelf pose estimation method yields similar

improvements, thereby making STRIDE agnostic to any specific 3D pose estimation method.
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Table 3.5: Ablation study This table demonstrates how the inclusion of a pre-trained
motion prior and various losses collectively contributes to the model’s accuracy on Occluded
Human3.6M dataset.

Prior Lmpjp Lvel Llim Lnmpjp MPJPE PA-MPJPE

✗ ✗ ✗ ✗ ✗ 179.5 98.9

✓ ✗ ✗ ✗ ✗ 106.5 80.2

✓ ✓ ✗ ✗ ✗ 82.1 60.4

✓ ✓ ✓ ✗ ✗ 81.4 59.6

✓ ✓ ✓ ✓ ✗ 81.1 59.6

✓ ✓ ✓ ✓ ✓ 80.7 59.0

3.1 Implementation Details

We implement the proposed motion encoder DSTformer with depth N = 5, number

of heads h = 8, feature size = 512, embedding size = 512. For pretraining, we use sequence

length T = 243. The pretrained model could handle different input lengths thanks to the

transformer-based backbone. During finetuning, we set the backbone learning rate to be

0.1× of the new layer learning rate.

Setup. We have implemented the proposed model using PyTorch. For our

experiments, we utilized a CentOS machine equipped with 4 NVIDIA 3090 GPUs, specifically

designed for accelerating pretraining tasks. It’s worth noting that for finetuning and inference

processes, a single GPU typically proves to be more than adequate.

Pretraining. We do large scale pertaining using AMASS and Training split of

Human3.6M. For the implementation of AMASS [44], we initiate the process by rendering

the parameterized human model SMPL+H. Subsequently, we extract 3D keypoints using a
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predefined regression matrix. The extraction of 3D keypoints from the Human3.6M dataset

is accomplished through camera projection. Motion clips with a length of T = 243 are

sampled for the 3D mocap data. The input channels are set to Cin = 3, representing the

x and y coordinates along with confidence values. Data augmentation is applied through

random horizontal flipping.

The entire network undergoes training for a total of 90 epochs, employing a learning

rate of 0.0005 and a batch size of 64, facilitated by the Adam optimizer. The weights assigned

to the loss terms are parameterized by λO = 20. Additionally, we set the 3D skeleton masking

ratio to 15%, aligning with BERT’s configuration. This involves using 10% frame-level masks

and 5% joint-level masks. Despite variations in the proportion of these mask types, only

marginal differences are observed.

To ensure the smoothness of the noise and prevent severe jittering, we initially

sample noise z ∈ RTK×J for TK = 27 keyframes. Subsequently, we upsample it to z′ ∈ RT×J

and introduce a small Gaussian noise N (0, 0.0022).

3D Pose Estimation. We conduct training during the inference stage for a

duration of 30 epochs, employing the following hyperparameters: Batch size: 1, Learning

rate: 0.0002, Weight decay: 0.01, Learning rate decay: 0.99

The total loss, denoted as

Ltotal = λ1Lmpjp + λ2Lvel + λ3Llim + λ4Lnmpjp,

is comprised of multiple components, each weighted by specific coefficients. For this configu-

ration, we set the weights as follows: λ1 = 1, λ2 = 20, λ3 = 200, λ4 = 0.5.
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Figure 3.3: Effect of large-scale pre-training. We take 5 random samples from Occluded
Human3.6M and try to align DSTFormer architecture. We find that when DSTFormner is
initialised with motion-prior weights it converges faster.
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Figure 3.4: The figure above, from left to right, illustrates the variation in error values
across the x, y, and z coordinates within a single video. Notably, STRIDE exhibits relatively
lower error, particularly in scenarios involving occlusion. Furthermore, for y-coordinate, it is
evident that the error demonstrates a remarkable level of smoothness.

3.2 Temporal Smoothness

The existing metric falls short in capturing temporal smoothness or assessing errors

during occlusion. Additionally, there’s a likelihood that a model excelling in occluded

scenarios might not significantly impact overall performance if non-occluded cases dominate

the results. This becomes particularly apparent in cases of sporadic temporal occlusion.
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To address this issue and gain deeper insights into predictions during occlusions,

we visualize various errors in Fig. 3.4. This plot illustrates how the error in the x, y, and z

coordinates evolves in a video featuring occlusions. Notably, other methods demonstrate

subpar performance during occlusions, with the error in the x and z coordinates being

relatively minimal, exerting less influence on the final error. In contrast, the y-coordinate

error predominantly contributes to the overall error, where STRIDE stands out by consistently

having the least amount of error. The noteworthy aspect is the sustained and consistent

performance throughout the occluded duration.

Method PA-MPJPE MPJPE

PoseFormerV2 [78] 193.9 260.2

MotionBERT [83] 76.1 112.8

BEDLAM [4] 179.5 98.9

BEDLAM Interpolation [4] 64.1 83.3

STRIDE (ours) 59.0 80.7

Table 3.6: Quantitative comparison of 3D Pose estimation methods on Occluded Hu-
man3.6M.

3.3 Additional Qualitative Comparisons

In Fig. 3.5 we compare our method against a different state-of-the-art 3D pose

estimation method named PoseFormerV2 [78]. One trivial way to improve the results

of BEDLAM is by linear interpolation between frames. However, we found that just

interpolation was not enough as it may miss the results. Our loss optimization during
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(a) OCMotion Image (b) Ground Truth (c) PoseFormerV2 (d) STRIDE (ours)

Figure 3.5: This figure shows how our method works when tested in natural occlusion cases.
The translucent blue color in the second column, third column, and fourth column represents
the ground truth. Blue, red, and green similarly represent Ground Truth, PoseformerV2
and STRIDE results, respectively.

inference helps to achieve the best results. Interpolation results are shown in Table 3.6.

We provide videos where we compare STRIDE against CycleAdapt and GLAMR here

https://bit.ly/stride_results
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Chapter 4

Conclusion and Future Works

In conclusion, while existing 3D human pose estimation methods excel in various

scenarios, they struggle with handling significant occlusions. In this work, we introduce

STRIDE, an unsupervised approach which utilizes large-scale pre-training, self-supervised

learning, and temporal context to enhance 3D pose estimation for a single video containing

occlusions during the test time. STRIDE achieves state-of-the-art results on datasets that

contain significant human body occlusions such as Occluded Human3.6M and OCMotion

thus demonstrating improved occlusion robustness. Currently, a limitation of STRIDE is

that it can only extract temporally continuous 3D poses when there are no human-to-human

occlusions. Future work will focus on adapting STRIDE for multi-person occlusion scenarios.

Future work can also involve the using temporally continuous pose estimates to enhance

downstream tasks such as action recognition, mesh recovery, and gait recognition.
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