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SUMMARY

Iron is essential for life, but its imbalances can lead to severe health implications.
Iron  deficiency  is  the  most  common  nutrient  disorder  worldwide,  and  iron
disregulation  in  early  life  has  been  found  to  cause  long-lasting  behavioral,
cognitive, and neural effects. However, little is known about the effects of dietary
iron on gut microbiome function and metabolism. In this study, we sought to



investigate the impact of dietary iron on the fecal metabolome and microbiome
by using mice fed with three diets with different iron content: an iron deficient,
an  iron  sufficient  (standard),  and  an  iron  overload  diet  for  almost  7  weeks.
Additionally,  we  sought  to  understand  whether  any  observed changes  would
persist past the 7-week period of diet intervention. To assess this, all  feeding
groups  were  switched  to  a  standard  diet,  and  this  feeding  continued  for  an
additional 7 weeks. Analysis of the fecal metabolome revealed that iron overload
and deficiency  significantly  alter  levels  of  peptides,  nucleic  acids,  and  lipids,
including di- and tri-peptides containing branched-chain amino acids, inosine and
guanosine, and several microbial conjugated bile acids. The observed changes in
the fecal metabolome persist long after the switch back to a standard diet, with
the cecal gut microbiota composition and function of each group distinct after
the 7-week standard diet wash-out. Our results highlight the enduring metabolic
consequences  of  nutritional  imbalances,  mediated  by  both  host  and  gut
microbiome, which persist after returning to original standard diets.

INTRODUCTION 

Iron deficiency impacts  more than two billion individuals worldwide, including
~40% of the population in the developing world and ~10% of the population in
developed countries1,2. This makes it the most widespread nutritional deficiency
across  the  globe.  Deficiency  of  this  essential  metal  can  result  in  impaired
immune response3, stunted growth4, and cognitive defects5 due to the essential
roles  of  iron  in  biological  processes.  These  include  erythropoiesis,  oxygen
transport,  mitochondrial  respiration,  electron  transfer/mediation  of  oxidation-
reduction reactions, hormone synthesis, DNA replication, and cell cycle control6.
Iron  deficiency  can  occur  during  malnutrition7 but  is  also  observed  in
overnutrition8,9. Furthermore, iron homeostasis is altered in metabolic diseases
like  inflammatory  bowel  disease  and  non-alcoholic  fatty  liver  disease10,  in
neurodegenerative diseases like Alzheimer's and Parkinson’s diseases11,12, and in
cancers13.  It is, therefore, essential to better understand how iron excess and
deficiency can impact both host and microbial metabolism. 

Nutrient  availability  profoundly  shapes  the  composition  and  function  of  the
microbial communities that colonize host organisms (humans, mice, etc.). This
dynamic relationship is exceptionally relevant in the gut,  where the levels of
micronutrients,  like  polyphenols  and  flavonoids,  or  macronutrients,  like
carbohydrates  and  proteins,  result  in  microbial  communities  with  distinct
compositions and functions14,15. Although underappreciated, metals, such as iron,
copper, manganese, zinc, and cobalt, are also essential micronutrients required
by all organisms and substantially influence the gut microbiota. Just as in higher
organisms, iron is the most common redox-active metal found in enzymes16 and
is a critical component of both iron-sulfur clusters and heme, co-factors required
for ATP production, detoxification of toxins, and mediating oxidation-reduction
reactions. Given  these  important  roles  for  iron,  host  organisms  use  iron
sequestration to control the growth of pathogens in a process called nutritional
immunity17,18, yet metal acquisition pathways remain understudied in the context



of  the  commensal  human  microorganisms.  For  example,  Bacteroides
thetaiotaomicron, a human gut commensal bacterium, was recently found to use
siderophores enterobactin and salmochelin produced by other bacteria to survive
in the inflamed gut19,20. 

Little is known about how the gut microbiota acquires iron and how dietary iron
levels affect the function of these organisms, though studies have shown that
dietary iron levels modulate microbial composition2,21. For example, a decades-
old study found higher counts of  Enterobacteriaceae in infants receiving iron-
fortified cow milk than in those receiving unfortified breast milk22. These results
were reproduced in a study on the effects of dietary iron fortification in Kenyan
infants,  which also revealed increased levels of enterobacteria and decreased
levels  of  lactobacilli23.  These findings  were dependent  on  diet,  with  a  recent
study  showing  that  galacto-oligosaccharide/fructo-oligosaccharide  prebiotics
could modulate the gut microbiota toward a community rich in Bifidobacterium
species24. Similar results have been observed in animal studies, with an increase
in  Enterobacteriaceae observed  in  both  weaning  pigs  and  rats  fed  iron-
supplemented diets23,25. The study in rats investigated the effects of dietary iron
deficiency and supplementation on short-chain fatty acid production but did not
measure other metabolite levels. 

While previous studies performed 16S rRNA sequencing to observe how changes
in  dietary  iron  levels  affect  gut  microbiota  composition,  it  remains  unknown
which enzymatic pathways of the gut microbial communities are modulated by
these  dietary  changes25.  Because  of  functional  redundancy,  where  different
microbial  species  encode for  similar  biological,  untargeted metabolomics  and
metagenomic sequencing are essential to understanding the functional response
of  the gut  microbiome to  changing dietary  iron. Previous  human and animal
studies investigating the metabolome under altered iron intake have focused on
plasma, blood, and liver samples but effects on the fecal metabolome have been
largely ignored26–30. Additionally, whether iron-mediated metabolic changes are
reversible upon restoration of a standard diet remains an open question. 

We performed a murine longitudinal study to address these knowledge gaps and
assess whether dietary iron excess or deficiency can alter host and associated
gut microbial  metabolism in a way that persists past the dietary intervention
period. Animals were assigned to one of three feeding groups: an iron deficient,
an iron sufficient (standard), or an iron overload diet. Ferric citrate, a commonly
used oral iron supplement and an approved food ingredient by various regulatory
boards31, was added to supplement an iron-deficient diet to standard or excess
iron levels. This iron source has been previously demonstrated to affect fecal iron
levels  and  the  abundance  of  bacterial  taxa  in  mice32.  Moreover,  it  is  well-
established that elevated levels of dietary iron promote hepcidin signaling in the
liver,  leading  to  reduced  iron  absorption  and  accumulation  in  the  intestinal
lumen.  Here, we investigate the impact of iron-deficient and overload diets on
the  fecal  metabolome  using  untargeted  liquid  chromatography  followed  by
tandem  mass  spectrometry  (LC-MS/MS). All  three  feeding  groups  were  then
switched back to an iron-sufficient diet after 7 weeks of dietary intervention and



followed for an additional 7 weeks to assess whether observed changes could be
reversed  by  restoring  standard  iron  levels  using  LC-MS/MS  and  investigating
cecal microbial communities using metagenomic sequencing.

RESULTS

The fecal  metabolome is shaped by dietary iron level and converges
when standard dietary iron levels are restored 

To investigate whether dietary iron influences the metabolism of the host and
the gut microbiome during development, mice between the ages of 30 and 36
days were divided into three feeding groups: a Fe-deficient group, a standard
(Fe-sufficient) group, and a Fe-overload group. All 15 mice were initially fed a
standard diet before the age of 5 weeks, (between 30 and 36 days). This point
was defined as study day 0 when the adolescent mice were further divided into
three groups and were provided with Fe-deficient, standard, or Fe-overload diets
until study day 47. At this stage, all three feeding groups were switched back to
the same standard diet (Figure 1A).

Our  results  show that  the fecal  metabolomes of  the three diet  groups  begin
diverging at the first point of collection on study day 4 and continue to diverge
for  the  remainder  of  the  dietary  intervention  period.  Unsupervised  principal
component analysis (PCA) of the fecal metabolomes, along with permutational
analysis of variance (PERMANOVA), was used to assess this separation (Figure
1C). The divergence between the three diet groups starts on day 4 (F = 3.7, p =
0.001) and continues to increase as time progresses past the day of the diet
switch (F = 5.8, p = 0.002), reaching its maximum on day 61 (F = 8.4, p =
0.001). At the final two time points (days 82 and 96), the three groups begin to
converge,  revealing  that,  eventually,  the  differences  in  the  fecal  metabolic
profiles  diminish  with  time  after  iron  levels  are  restored.  Four  PCA  plots
highlighting key time points in the study design are visualized in  Figure 1B.
These  time  points  were  taken  immediately  before  the  start  of  the  dietary
intervention (day 0), the conclusion of the intervention (day 47), the time point
with maximal observed separation between groups (day 61), and the conclusion
of the study (day 96). 

No separation of metabolomic profiles is observed among the three diet groups
on  the  initial  day  of  the  study  (day  0).  However,  by  the  final  day  of  the
differential  dietary  iron  intake  intervention  (day  47),  separation  is  observed
among  the  three  feeding  cohorts.  While  Fe-deficient  and  Fe-overload  groups
were switched back to standard, Fe-sufficient feed after day 47 fecal collection,
the most significant difference between diet groups occurs at day 61 (Figure
1B, Figure S1). Finally, on day 96, the final time point for sample collection, the
diet groups show obvious convergence of metabolic profiles. The full dataset was
also subjected to unsupervised PCA analysis and colored by mouse individual
and cage  number metadata  to  confirm no significant  clustering by individual
mouse  (Figure  S2A),  or  by  cage  effect  (Figure  S2B), though  a  noticeable
separation based on mouse age was observed (Figure S2C). Taken together,



unsupervised  analysis  suggests  a  strong  relationship  between  dietary  iron
supplementation and the fecal metabolome of mice.

Figure 1. Dietary iron levels alter the fecal metabolome profile. (A) Design of the
study. Mice were purchased from Jackson laboratory, and each diet cohort was housed
separately in 2 cages per cohort.  Days indicate fecal  collection time points.  The diet
study  was  started  at  30-36  days  post-birth.  (B)  Unsupervised  principal  component
analyses (PCAs) of the fecal metabolomes for days 0, 47, 61, and 96. Group centroids are
included  as  a  triangle  and  95%  confidence  ellipses  are  included  as  visual  aids.  (C)
Permutational analysis of variance (PERMANOVA) was calculated for each fecal collection
timepoint in the study.

Differential dietary iron intake modulates lipid and peptide levels

To find metabolic features that differed between Fe-deficient, standard, and Fe-
overload groups,  pairwise partial  least squares discriminant  analysis  (PLS-DA)
was performed on the data collected on the final day of the dietary intervention
(study day 47) (Figure S3A-B).  This time point was chosen to represent the
dietary intervention period as this day had the most pronounced metabolomic
differentiation within the period before the washout  (switch back to standard
diet) based on PERMANOVA results. The features from study day 47 with the 30
highest PLS-DA loadings and VIP scores > 1 from pairwise PLS-DA for standard
vs. Fe-deficient and standard vs. Fe-overload metabolomes were extracted and
plotted  (Figure  S3C-D).  Each  feature  was  either  paired  to  a  level  2
annotation33,34 using  the  Global  Natural  Products  Social  molecular  networking
platform (GNPS)35 or using the in silico tools SIRIUS36 and CANOPUS37 to generate
level 3 annotations33,34. In parallel, univariate statistical analysis was performed
on study day 47 to corroborate the results of supervised multivariate analysis.
Data  from  each  diet  group  was  checked  separately  for  normality  before
univariate analysis (Table S2). One-way ANOVA was conducted on the three diet
groups followed by a Tukey’s post-hoc test to assess pairwise differences. 



25 of the 30 features (83.3%) with the highest loading scores and VIP scores > 1
from pairwise PLS-DA of Fe-deficient versus standard diet were also significant in
univariate analysis at day 47 (Figure 2A). The same percentage of features (25
of  the  30,  83.3%)  with  the  highest  loading  scores  and VIP  scores  > 1  from
pairwise PLS-DA of Fe-overload diet versus standard diet were also significant in
univariate analysis (Figure 2B). Overall, the agreement between the supervised
multivariate and univariate results led us to further investigate molecular classes
represented by the features driving the differences between the diet  groups.
Short asynchronous time-series analysis (SantaR)38 was used to investigate the
fluctuation of the features with high loading scores across the duration of the
study (Figure 2C). While some features were exclusively present in one diet
group (oligopeptides in Fe-deficient diet, medium-chain fatty acids and purine
nucleosides/tides in Fe-overload diet),  other features were suppressed in only
one diet,  such as the methylpyridine family of metabolites in the case of Fe-
overload. The temporal dynamics also differed based on feature; for example,
some features exhibited differences immediately on study day 4 (i.e., medium-
chain  fatty  acid),  while  others  showed  longer  delays  in  response  (i.e.,
oligopeptide production). Using this analysis, we were able to prioritize molecular
classes that were most impacted by dietary iron for further analysis.



Figure 2. Oligopeptide, lipid, purine nucleoside, and methylpyridine molecular
families  are modulated by dietary iron level.  (A)  Univariate  analysis  comparing
standard and Fe-deficient diets show consistency with the supervised approach, as the
30 highest loadings are also significant features in univariate analyses.  11 out of 30
features extracted from PLS-DA are representative of oligopeptide molecular class. (B)
Univariate  analysis  for  standard  vs  Fe-overload  diets  highlights  presence  of  lipid
molecules  (mostly  fatty-acids  and  derivatives;  7  out  of  30)  and  purine  nucleos(t)ide
molecule in Fe-overload case. (C) Representative short asynchronous time-series analysis
plots  changes  in  mean  abundance  over  the  time  course  study  for  select  significant
features. Short asynchronous time-series analysis plots were generated using normalized
feature abundances.

Metabolism eventually recovers from exposure 

To assess the persistence of observed metabolic changes for select molecular
classes, we applied this approach to the dataset from samples collected on study
day 61, when the highest separation of metabolic profiles between three diets



was observed. Similarly, the top 30 features with the highest loadings and VIP
scores  > 1 were extracted from each pairwise PLS-DA model,  comparing Fe-
deficient versus standard diets and Fe-overload versus standard diets  (Figure
S4). The significance of extracted loadings was juxtaposed with the results of
univariate analysis for the study day 61. Notably, 26 out of 30 features (86.7%)
exhibited significance in the univariate analysis for the Fe-deficient and standard
diet  comparison  (Figure  3A).  12  out  of  30  features  (40.0  %)  of  differential
loadings were significant for Fe-overload and standard diets (Figure 3B). Upon
annotating these features with level 2 and level 3 confidence levels, consistent
molecular class trends surfaced, resembling those observed during the dietary
intervention  period.  Specifically,  a  heightened  presence  of  oligopeptides  was
noted in the Fe-deficient diet compared to the standard group, while increased
levels  of  fatty  acids  were  evident  in  the  Fe-overload  group.  Significantly,  a
substantial proportion of the metabolic changes induced by varying dietary iron
loads persisted beyond the differential diet period, extending into the washout
period.  Moreover,  in  the  majority  of  these  instances,  the  altered  levels  of
molecule  production  were  restored  upon  reverting  to  a  standard  diet.  This
underscores the resilience and reversibility of the metabolic effects associated
with different dietary iron loadings.

Figure  3.  Differential  abundance  features  persist  into  the  washout  phase
before  eventually  recovering.  Univariate  analysis  shows  consistency  with  the
supervised multivariate approach, as the 30 highest loading features are also significant
features  in  the  univariate  analysis  of  Fe-deficient  versus  standard  diets  (A)  and  Fe-
overload versus standard diets (B). 

Fe-deficiency diet results in fecal di-, tri-, and oligopeptides increased 
abundance 



Feature-based molecular networking (FBMN) was performed in GNPS on the full
dataset  across  all  days of  collection and visualized in Cytoscape 3.9.139.  The
color composition of the pie charts corresponds to the specific diet type cohorts
in which the molecule was detected. In total, 6687 features were detected after
blank subtraction, and among them, 374 were annotated in GNPS to yield a 6.5%
annotation rate. Features were grouped by MS/MS spectral similarity, facilitating
the  organization  of  the  large  dataset  obtained  from  the  experiment.  Visual
assessment  of  the  molecular  network  colored  by diet  metadata  (Figure S5)
revealed that networks containing at least one annotated peptide member were
predominantly  present  in  the  Fe-deficient  diet  samples,  highlighted  in  red.
Moreover, given that numerous features with high predictive power for the Fe-
deficient diet were annotated as peptides using  in silico methods, we further
investigated this molecular class. 

More than 20 features could be annotated as level  2  matches33,34 to  peptide
library spectra in GNPS, with annotations concentrated as di- and tri-peptides.
Clear  hierarchical  clustering  patterns  emerge  when  heatmaps  for  annotated
peptides were constructed (Figure S7),  with peptides exhibiting substantially
higher  abundance  in  Fe-deficient  samples  than  in  the  other  two  dietary
conditions. Notably, samples with the highest peptide abundance were collected
during the later days of the study (study days 68 and 75), as visualized in the
short asynchronous time-series analysis (Figure 4A). 

Peptides  consistently  exhibited  distinct  profiles  for  the  Fe-deficient  diet
compared to the other two diets. Peptide abundance increased at study day 33
and peaked around study day 68 before gradually returning to low levels that
matched the standard diet (Figures 4A and S6). This observation is intriguing
for several reasons: first, the change in peptide profiling is reversible once iron is
reintroduced into the deficient diet;  and second, there appears to be a delay
between the diet switch and the response in peptide abundance to this change.
As with the level 2 peptide annotations, the same trend was also observed for
the  743  features  with  in  silico  di-  and  tri-peptide  annotations  (Figure  S8).
Heatmaps revealed a robust hierarchical clustering pattern, along with increased
abundance in the Fe-deficient samples for most of these features during the later
timepoints (Figures S7 and S8).



Figure  4.  Short  asynchronous  time-series  analysis  of  molecular  features
modulated by dietary iron.  Normalized feature  abundance  was plotted  as  a  time
course analysis over all days of the diet study for the following molecular classes: (A)
peptides, (B) fatty acids and derivatives, (C) purine nucleosides, and (D) conjugated bile
acids.  These  molecular  classes  were  prioritized  based  on  numerous  instances  within
features found with VIP scores > 1 and high loadings. Each plot is constructed for the
comparison of two diet types (Fe-deficient vs. standard and Fe-overload vs. standard).
Feature abundance for the omitted diet type matches the trend in the standard diet.
Plots  visualizing  all  three  diet  types  at  a  time  can  be  found  in  the  Supplementary
Information. The inset of each plot represents the molecular network to which the feature
belongs and was retrieved from GNPS and visualized in Cytoscape.

Fe-overload  diet  results  in  increased  fecal  abundance  of  fatty  acid
derivatives and purine nucleosides



While di- and tripeptides were found to differentiate between standard and Fe-
deficient  diets,  13 of  the 30 VIP  features  from PLS-DA of  Fe-overload  versus
standard diet are fatty acids and derivatives. Stearidonic acid and methionine-
conjugated  caproic  acid  level  2  annotations  (Figure  4B)  were  among  the
features with increased abundance in Fe-overload.  In  both cases,  the highest
abundance was observed after the diet switch then decreased to levels present
in the standard diet by study day 96. Several additional phospholipids, including
specific lysophosphatidylcholines,  exhibited distinct profiles in the Fe-overload
diet.  At  the  same  time,  certain  phosphatidylethanolamine  molecules  were
abundant in both standard and Fe-deficient diets but were below the limit of
detection in the Fe-overload diet. Distinct clustering of Fe-overload diet and Fe-
deficient diet samples were also observed in heatmaps constructed for in silico
annotated lipids (Figure S10).

Along  with  fatty  acids  and  their  derivatives,  purine  nucleosides  were  also
increased in abundance in the Fe-overload diet with respect to standard and Fe-
deficient  diets.  Specifically,  inosine,  guanosine,  and  deoxyguanosine  level  2
annotations  were  more  abundant  in  Fe-overload  (Figure  4C).  After  the  diet
switch back to standard,  all  three molecules converged back to levels in the
standard diet. This points to the reversibility of the iron-dependent increases in
abundance.  While the abundance of  inosine in the Fe-overload diet began to
increase on study day 33 of sample collection and peaked around study days 61-
68, it eventually returned to levels matching those observed in the standard diet
by the conclusion of the study (Figure 4C). In contrast, increases in guanosine
and deoxyguanosine abundance started earlier (day 4 for guanosine and day 19
for  deoxyguanosine).  Enrichment  of  guanosine  and  deoxyguanosine  was
consistently observed throughout most of the study period, even after the return
to a standard diet, and only began to decrease on day 75. When the  in silico
annotated purine nucleosides and nucleotides (based on NPC class40, ClassyFire
most  specific class,  and ClassyFire  class  annotations41)  were clustered into a
heatmap, Fe-overload samples exhibit a similar trend in the purine nucleoside
abundance profiles (Figure S12).

Iron intake levels differentially influence microbial metabolite 
production

While peptides, fatty acid derivatives, and purine nucleosides can be produced
by both host and the gut microbiota, amino acid-conjugated bile acids42–44 are
produced  exclusively  by  microbial  communities42–44.  This  class  of  bile  acids
conjugates was also found to be influenced by dietary Fe levels. More broadly,
bile acid homeostasis was altered in both Fe-overload and Fe-deficiency (Figure
S14). This finding was consistent with previous reports showing that Fe-overload
in rats  altered bile  acid homeostasis  through altered enzyme expression45.  In
addition to the host-produced bile acids reported previously, we found twelve of
the  39  total  spectral  matches  to  conjugated  bile  acids  were  affected  by
differential iron supplementation (Figure S13). Of these, 9 trihydroxylated bile
acids were found to be differentially abundant between the diets. These were
primarily  conjugated  with  aromatic  and  heterocyclic  amino  acids,  including



phenylalanine (Phe), tryptophan (Trp), tyrosine (Tyr), and histidine (His), as well
as  non-polar  isoleucine  and  leucine  (Ile/Leu),  and  polar  threonine  (Thr).  The
remaining three spectral  matches were to recently discovered dihydroxylated
bile acid conjugates, specifically conjugated to threonine (Thr), glutamate (Glu),
and histidine (His)42–44,46. While the distribution pattern of each conjugated bile
acid varies, most detected bile acid conjugates exhibited reduced abundance in
dietary Fe-overload compared to standard and Fe-deficient diets.  An arginine-
conjugated trihydroxylated bile acid was the only bile acid conjugate to exhibit a
remarkably different trend, with a higher abundance in the Fe-deficient diet than
in  both  standard  and  Fe-overload  diets47.  The  abundance  of  this  feature
increased after the diet switch but reverted to standard diet levels by the end of
the study.

Iron intake influences cecal microbiome composition and function

The metabolic profiles exhibit a lag between the conclusion of differential dietary
Fe feeding (study day 47) and the day of maximal separation between groups
through PCA (study day 61).  Moreover,  while the group separation decreases
after study day 61 to study day 96, after the removal of the iron imbalance in
their diet, there remains significant separation between the original diet groups
at study day 96 (PERMANOVA R2 = 0.233, p= 0.001). We hypothesized that this
persistence in the fecal metabolome difference was a result of changes in gut
microbiota composition and functionality that took place alongside changes in
host metabolism. To investigate this hypothesis, metagenomic sequencing was
performed on cecal samples collected at the end of the study (study day 96).
Unsupervised  PCA  analysis  of  metagenomic  data  was  consistent  with  this
hypothesis, revealing significant separation between groups based on microbial
composition (R2=0.24, p=0.014) at the study conclusion (Figure 5A and  5C).
Supervised PLS-DA confirmed unsupervised results, and differential abundance
analysis using ALDEx2 was used to identify signature taxa and (Figure 5B and
5D). The microbial taxa driving separations between the standard diet group and
the  Fe-deficient  group  were  consistent  with  previously  reported  changes  in
literature.  For  example,  both the  Lactobacillus  and  Limosilactobacillus  genera
were  increased  in  abundance  during iron  deficiency.  This  is  consistent  with
previous  reports  that  Limosilactobacillus  and  Lactobacillus  both facilitate  iron
absorption  during  anemia48–50.  On  the  other  hand,  taxa  observed  in  higher
abundance  in  the  Fe-overload  group  have  been  previously  associated  with
dysbiosis, such as  Anaerotruncus colihominis51, and high Fe-levels, like  Blautia
and Ruminococcacae52.

In  addition to the altered cecal  microbial  composition,  differences in  enzyme
profiles  between the  diet  groups  were  also  observed.  Differentially  abundant
enzymes with an effect size >2 were further investigated. Interestingly, almost
all  enzymes were downregulated in cases of abnormal  iron loading (both Fe-
overload  and  Fe-deficiency)  as  compared  to  standard  diet. Overall,  the
expression of 44 enzymes was decreased in the Fe-deficient group compared to
the  standard  one  (Figure  5F),  while  the  expression  of  39  enzymes  was
decreased and 1 was increased in mice fed an Fe-overload as compared to a



standard diet (Figure 5G). Of these, the expression of 22 enzymes was affected
in both the Fe-deficient and Fe-overload groups.
 
The  KEGG  Mapper  prediction  tool53,54 was  utilized  to  identify  the  pathways
affected by altered dietary iron levels.  Biosynthesis  of  secondary  metabolites
was the most affected pathway with the expression of 14 enzymes altered in this
pathway. 5 enzymes in the purine metabolism pathway were also found to be
suppressed  in  both  Fe-deficient  and  Fe-overload  conditions  as  compared  to
standard.  Decreased  expression  of  an  additional  enzyme
(phosphoribosylglycinamide formyltransferase 1) was observed in Fe-deficiency
as  well  as  in  Fe-overload  (amidophosphoribosyltransferase).  De  novo purine
biosynthesis was most affected by the modulation of dietary iron (Figure S17),
as  the activity  of  key enzymes is  iron-dependent.  Five additional  translocase
enzymes  linked  to  the  hydrolysis  of  nucleoside  triphosphates  were  also
modulated by dietary iron. This observation is consistent with iron-dependent
changes in purine nucleoside abundance observed in fecal metabolomics data
(Figure 4C and Figure S11).
 
Branched-chain  amino  acid  (BCAA)  biosynthesis  was  suppressed  in  the  Fe-
deficient  diet,  and  to  a  lesser  degree,  in  Fe-overload  diets  (Figure  S18).
Specifically,  enzymes  responsible  for  the  first  and  third  steps  of  BCAA
biosynthesis,  acetohydroxyacid  synthase  and  dihydroxy-acid  dehydratase
(DHAD),  respectively,  show high effect  sizes in the Fe-deficient  diet  and less
pronounced effects in the Fe-overload diet. DHAD contains two active-site Fe–S
clusters that are likely modulated by iron availability55–58.  In addition to BCAA
biosynthesis, alanine (Ala), aspartate (Asp), and Glu biosynthesis, Phe, Tyr, and
Trp biosynthesis along with Arg biosynthesis were decreased in both Fe-deficient
and Fe-overload groups (Figure S19,  S20,  S21), while ornithine biosynthesis
was specifically perturbed in the Fe-overload diet (Figure S20). Fatty acid and
polyunsaturated  fatty  acid  biosynthesis  was  affected  in  the  Fe-deficient  diet
versus  the standard diet.  The  gene  encoding  3-oxoacyl-[acyl-carrier-protein]
reductase was found at significantly lower levels in Fe-deficient cohort compared
to a standard diet.  Altered lipid biosynthesis is  consistent  with metabolomics
data, which revealed increased levels of fatty acids and PCs in Fe-overload diet
as compared to Fe-deficient and standard diets (Figure S22).   We consistently
observe  decreased  enzyme  expression  of  those  enzymes  containing  Fe-S
clusters.





Figure 5. Dietary iron levels significantly alter cecal microbiome composition

and  functionality. (A)  Unsupervised  principal  component  analysis  (PCA)  reveals
separation  between  the  three  study  groups  after  the  study  (day  96)  according  to

PERMANOVA (R2 = 0.024, p= 0.014). (B) PLS-DA of cecal microbial communities between
the  three  study  groups.  (C)  PCA  reveals  separation  within  enzyme  function  at  the

conclusion of the diet study and switch back to normal feeding (R2 = 0.023, p= 0.076).
(D)  PLS-DA  of  microbial  enzymatic  function  between  the  three  study  groups.  Group

centroids are included as a triangle along with 95% confidence ellipticals as visual aids.
ALDEx2 differential abundance analysis identified taxa signatures of (E) Fe-deficient vs

standard groups and (F) standard and Fe-overload groups and enzymatic signatures of
(G) Fe-deficient and standard groups and (H) Fe-overload and standard groups.

DISCUSSION

Differential  dietary  iron intake affected  the fecal  metabolome throughout  the
dietary study. Cecal microbiome composition and function were only assessed at
the completion of the study, at which point composition and function differed by
dietary group. Observed changes in the metabolome and microbiome persisted
for 49 more days past the end of dietary intervention after Fe-deficient and Fe-
overload feeding groups were switched back to a standard diet. These findings
highlight the importance of dietary iron on both host and microbial metabolism
and  microbiome  composition.  The  differential  iron  feeding  altered  levels  of
peptides,  nucleic  acids,  and  lipids  (fatty  acid  and  bile  acid)  metabolism and
persisted even long after diets were reverted to standard iron intake.

These molecular classes were also consistent with Fe-dependent modulation of
enzyme  expression. For  example,  nearly half  of  the top 30 features with the
highest loadings and VIP scores > 1 from pairwise PLS-DA between Fe-deficient
and standard diets  for  the dietary  intervention period were di-  or  tripeptides
(Figure 2A), and the expression of enzymes involved in BCAA, Arg, Ala, Asp, and
Glu metabolism was decreased in Fe-deficiency.  These results indicate that the
gene expression of enzymes responsible for BCAA biosynthesis was suppressed,
thereby  reducing  de  novo synthesis  of  amino  acids.  BCAAs  can  only  be
synthesized  by bacteria  and  fungi  but  not  animals59,  so  reduced microbiome
BCAA biosynthesis may be consistent with the prominent increases in di- and tri-
peptides containing branched-chain amino acids that are observed in the Fe-
deficient group as compared to the standard diet (Figure S7). We speculate that
protein catabolism by either the host or the gut microbiota may be responsible
for the observed increase in di- and tripeptides as a compensatory mechanism
for reduced biosynthesis. 

Amongst the  the top 30 features with the highest loadings and VIP scores > 1
from the pairwise PLS-DA of Fe-overload and standard diets were mostly lipids
(including both mono-, di-, and tri-carboxylic acids and bile acids) and nucleic
acids. As in the Fe-deficient versus standard pairwise comparison, the modulated
metabolome features  between Fe-overload  versus  standard  diet  groups  were
consistent with altered enzyme expression at the study conclusion. For example,
6  enzymes  in  the  purine  metabolism  pathway  were  suppressed  in  the  Fe-



overload group (Figure S17), likely due to the iron dependence of key enzymes
in this pathway. For example, the activity of ribonucleotide reductase (RNR), an
enzyme essential for DNA synthesis and repair, depends on iron in its active site
[4Fe-4S]  cluster60–62.  Enzymes  participating  in  purine  salvage,  such  as
adenylosuccinate lyase (ADSL), also exhibit iron-dependent activity, with ADSL
levels elevated in the liver of nursing piglets fed a high-iron diet63. 

Purine  metabolites  produced  by  both  the  host  and  gut  microbiota  serve  as
critical messengers beyond their canonical functions in DNA and RNA, and the
gut microbial communities play a crucial role in modulating purine nucleoside
levels64. Disruption of purinergic signaling has been linked to health conditions
ranging from  inflammation and neurodegeneration to cancer65,  as purines are
crucial building blocks for nucleotides used by intestinal mucosa for immunity,
energy  production,  and  cell  growth66.  Moreover,  increased  purine  salvage,
triggered by the elevated degradation of purine nucleotides by both the host and
the gut microbiota, has been described as contributing to inflammatory bowel
disease67, while gut bacterial purine catabolism may be a key mechanism driving
atherosclerosis through the modulation of uric acid levels68. Consistent with this
study, Fe-dependent modulation of purine metabolism was observed previously
in liver and hippocampus metabolomes in a nursing piglet model; upon dietary
Fe-overload treatment, guanosine, inosine, and other purine metabolites were
detected  to  suggest  a  shift  in  flux  from  the  salvage  pathway  toward
degradation63.  The present study provides the first  evidence of  the impact  of
dietary Fe on purine nucleosides in fecal  samples, suggesting that dietary Fe
affects a key aspect of gut microbiota-host signaling. 

Bile acids have also recently emerged as important signaling molecules in the
host that act  through receptor binding43,69.  Fe-overload in rats was previously
demonstrated  to  alter  bile  acid  homeostasis  through  reduced  expression  of
Cyp7a1, the enzyme that  performs the rate-limiting conversion of  cholesterol
into cholic acid, and decreased expression of Bsep, the transporter responsible
for bile acid efflux45. This study was consistent with this previous report, as bile
acid homeostasis was altered in both Fe-overload and Fe-deficient diet groups as
compared to the standard diet group (Figure S14). We were intrigued to find
that amino acid conjugated bile acids43 were also modulated by dietary Fe levels.
While recently discovered in biological samples, these molecules have reported
bioactivities ranging from protection against the deleterious effects of high-fat
diets70 to antagonizing the  farnesoid X receptor (FXR)42,71. Different conjugated
bile acids exhibit specific patterns in Fe-deficient or Fe-supplemented diets as
compared  to  standard  diets.  For  example,  Arg-bMCA  increased  during  Fe-
deficiency  relative  to  the  standard  diet,  while  Glu-CDCA  increased  in  the
standard diet relative to Fe-overload (Figure 4D). As unique microorganisms can
produce each bile acid conjugate41,68, we hypothesize that the different microbial
taxa  within  each  diet  group  result  in  a  characteristic  conjugated  bile  acid
signature.

In  conclusion,  this  is  the  first  study  demonstrating  the  role  of  dietary  Fe  in
modulating both host and microbial metabolites in fecal samples. Importantly,



this  study  also  suggests  that  while  many  metabolites  exhibit  reversible
abundance profiles when animals return to a standard diet, the gut microbiota
composition and function remain divergent between the different diet  groups
even after a long wash-out period.

LIMITATIONS OF THE STUDY

All  MS/MS  spectral  matches  are  level  2  or  3  annotations,  meaning  that
stereochemistry  and  regiochemistry  may  remain  undefined.  Additionally,  a
retention time drift of approximately 14 seconds was observed for the internal
standard (Figure S15), and although our feature finding in MZmine was set with
a retention tolerance that takes this drift into account, there remain some split
features.  All  spectral  annotations  with  more  than  one  match  were  manually
inspected, and any split features (observed in MZmine) were summed. In these
cases, this is explicitly stated. 

METHODS

Animals. Wild-type specific pathogen-free C57BL/6 mice were  purchased from
the Jackson Laboratory and used in our study, under protocols and guidelines
approved by the Institutional Animal Care and Use Committee of the University
of California, San Diego. Overall, each diet cohort contained 5 mice housed in
two cages per cohort, with 2-3 mice per cage. In the normal and Fe-overload diet
cohorts, there were 5 female mice housed in 2 cages per group. The Fe-deficient
diet  was fed to two male mice and three female mice housed in 2 separate
cages.

Dietary  intervention. The  following  diets  were  used  in  the  study.  (1)  Iron
deficiency: Teklad diet, TD.120514; (2) Standard iron: in Teklad diet, TD.120515,
50 ppm ferrous sulfate was replaced with ferric citrate; (3) Iron overload: Teklad
diet, TD.120514, 6 g of ferric citrate iron/kg of diet (6000 ppm iron) were added.

Sample Collection. Fecal pellets were collected on days 0, 4, 8, 12, 19, 26, 33, 
40, 47, 54, 61, 68, 75, 82, and 96. Mice were sacrificed on day 96 and organs 
were collected under sterile conditions.  

Sample Processing for MS. Fecal samples were thawed on ice for 30 mins before
adding a stainless-steel bead to every sample. 80% MeOH solvent was added to
each sample to maintain mass-to-volume ratio of 1 mg per 10 µL. Samples were
homogenized at 25 Hz for 5 min, centrifuged at max speed for 15 min, then
supernatant was transferred and dried in vacuo overnight. Samples were stored
at  -80  °C  until  analysis,  at  which  point  they  were  reconstituted  in  80%
MeOH+1uM sulfadimethoxine to 1 mg/mL. 

UHPLC-MS/MS. For LC-MS/MS analysis, 5 µL were injected into a Vanquish UHPLC
system  coupled  to  a  Q-Exactive  orbitrap  mass  spectrometer  (Thermo  Fisher



Scientific, Bremen, Germany). For the chromatographic separation, a C18 porous
core column (Kinetex C18, 50 x 1.0 mm, 1.8 um particle size, 100 A pore size,
Phenomenex,  Torrance,  USA)  was  used.  For  gradient  elution,  a  high-pressure
binary gradient system was used. The mobile phase consisted of solvent A H2O +
0.1 % formic acid (FA) and solvent B acetonitrile (ACN) + 0.1 % FA. The flow rate
was set to 0.15 mL/min. After injection, the samples were eluted with one of the
following linear gradients: 0-1 min, 5% B, 1-7 min 5-99% B, followed by a 2.5 min
washout phase at 99% B and a 1.5 min re-equilibration phase at 5% B. Data
dependent acquisition (DDA) of MS/MS spectra was performed in positive mode.
Electrospray ionization (ESI) parameters were set to 40 L/min sheath gas flow, 14
L/min  auxiliary  gas  flow,  0  L/min  sweep  gas  flow  and  400°C  auxiliary  gas
temperature; the spray voltage was set to 3.5 kV and the inlet capillary to 320°C
and 50 V S-lens level was applied. MS scan range was set to 150-1500 m/z with a
resolution at m/z 200 (Rm/z 200) of 35,000 with one micro-scan. The maximum ion
injection time was set to 100 ms with an automated gain control (AGC) target of
1.0E6. Up to 5 MS/MS spectra per MS1 survey scan were recorded DDA mode
with Rm/z 200 of 17,500 with one micro-scan. The maximum ion injection time for
MS/MS scans was set to 100 ms with an AGC target of 5E5 ions. The MS/MS
precursor isolation window was set to m/z 1. Normalized collision energy was set
to a stepwise increase from 20 to 30 to 40% with z = 1 as default charge state.
MS/MS scans were triggered at the apex of chromatographic peaks within 2 to 15
s from their first occurrence. Dynamic precursor exclusion was set to 5 s. Ions
with unassigned charge states were excluded from MS/MS acquisition as well as
isotope peaks. 

   
Feature Finding and Molecular Networking. Raw data conversion to mzML format
and  peak  picking  were  performed  using  MSConvert  and  MZmine.  Both  .raw
and .mzML files were uploaded to MASSIVE database and made available for
public  access (f  tp://massive.ucsd.edu/MSV000084783/)  .  Data  processing  was
carried out in MZmine 3.472 using the parameters specified in the .xml batch file
in  the  Supplementary  Information.  Subsequently,  feature  based  molecular
networking (FBMN) was performed in the GNPS platform using the .mgf file and
feature table retrieved from MZmine 3.4,  along with the metadata file.  Bray-
Curtis  PCoA Distance  Metric  and  row sum normalization  were  applied  to  the
GNPS  job.  The  GNPS  job  link  can  be  found  here:
https://gnps.ucsd.edu/ProteoSAFe/status.jsp?
task=d35b583c2cf3435289a0aca8de4df4dd.

Statistical Analysis. The mass spectrometry data were further processed in the
statistical software environment R (version 4.1.2). The MZmine feature table was
blank subtracted with a cutoff value of 0.3 (i.e., features with a ratio of mean
intensity in blanks vs mean intensity of features less than 30% were considered
background noise and removed). After blank subtraction, minimum LOD (Limit of
Detection)  imputation  was  applied.  The  imputed  data  table  was  then  either
normalized by total ion count per sample or was subjected to centered log-ratio
(CLR) transformation using the vegan 2.6.4 package. The imputed, normalized

https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=d35b583c2cf3435289a0aca8de4df4dd
https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=d35b583c2cf3435289a0aca8de4df4dd


data were used in short asynchronous time-series analysis, while the CLR-scaled
feature table was utilized in subsequent univariate and multivariate analyses.

  
For the univariate analysis,  the processed feature table was merged with the
metadata table and checked for normality using the Shapiro-Wilk test. Due to the
interest in the pairwise comparison of abnormal Fe loadings to standard dietary
levels,  we divided the data into different sets based on diet  types and time:
Standard  & Fe-overload  before  the diet  intervention,  Standard  & Fe-deficient
before  the  diet  intervention,  Standard  &  Fe-overload  after  the  wash-out,
Standard & Fe-deficient after the wash-out.  The majority of features in every
dataset were found to be normally distributed. Therefore, an ANOVA test was
performed on each feature against the sample area followed by the Tukey HSD
post-hoc test to evaluate the differences among different diets at a significance
level of p < 0.05.

Unsupervised principal  component  analysis (PCA) and supervised partial  least
squares-discriminant  analysis  (PLS-DA)  were  conducted  to  uncover  significant
variations between the different diet groups. PCA analyses were performed using
the factoextra 1.0.7 package on the data from separate days, as well as on the
whole  dataset.  The  results  of  the  PERMANOVA  analysis,  performed  with  the
adonis2  function  from  vegan  package,  were  utilized  to  quantify  the  most
significant  separation  for  each  independent  time  point  (day  of  fecal  sample
collection). The data for the supervised multivariate analysis were subset into
two sets: days 4-47 and days 51-96, indicating the time before and after the diet
switch. PLS-DA plots were built using the mixOmics 6.22.0 package, where diet
groups were assigned as response variables. The evaluation of PLS-DA model
performance was  carried out using leave-one-out validation to determine the
optimal  number  of  components  to  be  used.  Discriminating  metabolites  were
identified through variable importance in projection (VIP) scores > 1.

In silico chemical classification.  From the initially identified 5731 features, only
606 compounds were successfully matched with public libraries for annotation.
To  enhance  the  identification  of  unknown  compounds,  annotation  was
additionally propagated by employing the in silico tools Canopus and SIRIUS36,37.
The mgf result file from MZmine 3.4 as uploaded to the SIRIUS application, and
specific parameters were selected, including the following: Database: none, Mass
deviation of the fragment peaks in ppm: 5, Maximum number of candidates in
the  output:  10,  Ion  mode:  positive,  Analysis  used:  Orbitrap,  Schema:  Auto,
Minimum number of MS/MS peaks: 1.  As a result, an additional 5550 compounds
were  in  silico annotated,  propagating  identification  of  previously  unknown
metabolites.
 
Data  visualization. Molecular  networking  results  obtained  from  GNPS  were
visualized  in  Cytoscape39,  with  nodes  represented  as  pie  charts.  The  color
distribution  in  each  pie  chart  corresponded  to  the  relative  abundance  of
metabolites  in  each diet  type.  To  visualize  the dose dependence  of  selected
metabolites on dietary iron, the santaR 1.2.3 package  was employed to plot



feature abundance against  time,  and the gplots   3.1.3 package was used to
generate heatmaps.

Whole  Genome  Sequencing.  The  UC  San  Diego  Microbiome  Core  performed
nucleic  acid  extractions  utilizing  previously  published  protocols73.  Briefly,
samples were purified using the MagMAX Microbiome Ultra Nucleic Acid Isolation
Kit  (Thermo Fisher  Scientific,  USA)  and automated  on  KingFisher  Flex  robots
(Thermo Fisher Scientific,  USA).  Blank controls  and mock communities  (Zymo
Research Corporation, USA) were included and carried through all downstream
processing  steps.  DNA  was  quantified  using  a  PicoGreen  fluorescence  assay
(Thermo Fisher Scientific, USA) and metagenomic libraries were prepared with
KAPA  HyperPlus  kits  (Roche  Diagnostics,  USA)  following  manufacturer's
instructions and automated on EpMotion automated liquid handlers (Eppendorf,
Germany). Sequencing was performed on the Illumina NovaSeq 6000 sequencing
platform with  paired-end 150 bp cycles  at  the  Institute  for  Genomic  Medicine
(IGM), UC San Diego.
 
Microbiome Data  Analysis.  Demultiplexed fastq  files  provided  by  the  UC San
Diego Microbiome Core were uploaded to Qiita74 (Study ID 15161). Files were
processed using the default workflow, involving trimming of the autodetected
adapters, filtering of reads mapping to the mouse genome, and the generation of
the operational genomic unit (OGU) and KEGG orthologous (KO) tables and using
Woltka75.  R  version  4.2.2  (R  Foundation  for  Statistical  Computing,  Vienna,
Austria)  was  used for  the downstream analysis.  Data  was  manipulated using
`phyloseq  v  1.42.0`  and  OGUs  were  collapsed  at  species  level.  Data  was
centered log ratio transformed using the decostand function from `vegan v 2.6-
4`  and  taxa  with  zero  variance  between  samples  was  removed  using  the
nearZeroVar function from `caret v 6.0-94`. PCA was performed using `mixOmics
v 6.22.0` and centroid separation was evaluated using PERMANOVA from the
adonis2  function  from  `vegan  v  2.6-4`.  Group  dispersion  was  checked  for
satisfying PERMANOVA assumptions using the function betadisper from `vegan v
2.6-4`.  PLS-DA  was  performed  using  `mixOmics  v  6.22.0`  and  models  were
evaluated using leave-one-out (loo) cross validation to calculate the classification
error rate (CER). Finally, pairwise differential abundance analysis for taxa and
enzymes was performed using ALDEx276 from `CoDaSeq v 0.99.6`. Taxa with p
value < 0.05 were retained for interpretation.
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Data availability: 

All untargeted LC-MS/MS data used in this study are publicly available at MassIVE
(https://massive.ucsd.edu/)  under  the  following  accession  numbers:
MSV000084783 (doi:10.25345/C51M4J). The feature-based molecular networking
job  is  publicly  available  at  GNPS:  https://gnps.ucsd.edu/ProteoSAFe/status.jsp?
task=d35b583c2cf3435289a0aca8de4df4dd. 
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