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ABSTRACT OF THE DISSERTATION

Stochasticity in Biological Networks: Two Sides of a Golden Coin

by

Ting Lu
Doctor of Philosophy in Physics (Biophysics)

University of California, San Diego, 2007

Professor Peter G. Wolynes, Co-chair

Professor Jeff Hasty, Co-chair

Cells live with fluctuations arising from various sources and occurring at a broad

spectrum of scales. Stochasticity plays an amazing role in cellular functions and physiolog-

ical behaviors through biological networks that compose a living cell. Like two faces of a

coin, noise may be destructive in many biological systems but can also be constructive on

the other hand.

In this work, I combined computational, theoretical and experimental approaches

to explore stochasticity in biological networks. The origins, consequences and significance

of stochasticity were investigated through the developments of methodological techniques

as well as studies of specific yet important networks.

Effective temperature was proposed as a measurement of noise in gene networks.

It serves as an alternative to noise classification by “intrinsic” and “extrinsic” contributions

xv



and is in some sense a more fundamental approach. A generalized Gillespie algorithm was

derived for stochastic simulation of biochemical reactions that allows one to simulate biolog-

ical systems with time-dependent reaction rates and system volumes. In addition to these

developments, an important network topology abstracted from the multi-site phosphoryla-

tion networks of nuclear factors of activated T-cells was studied. Signal transduction of the

network was mapped onto a random walker problem in nonequilibrium statistical mechanics

and an optimal enzyme concentration was found that favors fast transduction. Noise at the

cellular population level was also studied. A generalized variation index was proposed to

measure variability and diversity of cellular populations. We found that cellular popula-

tion variability may depend on its initial conditions and environments. Finally we turned

to stochastic recombinant events in a gene circuit. A synthetic switch with both pheno-

typic and genotypic transitions was studied using combined experimental and theoretical

approaches. This led to the result that there is always a bias of cellular population to one

specific fate.

These studies show the two sides of stochasticity and help us to better understand

noise in biological systems and to aid in better design strategy of genetic circuits.

xvi



1

Introduction

1.1 Quantitative Systems Biology

Studying biological systems is a long march filled with thorns and treasures. But

the mission of it is never changed: To understand, predict and manipulate life. Biology

moved forward slowly in its long history because of the extreme complexity of life and

limitations of technology but the march has accelerated especially in the past decades.

With the completion of the Human Genome Project and the genome sequencing for major

model organisms, we now face an explosion of data as well as new chances for fundamental

understanding.

One of the most significant challenges of this mission is to understand biological

functions in terms of the interactions betweens proteins, genes and other small molecules [51].

To predict and design living machines, such an understanding needs to be quantitative

rather than qualitative. A set of fundamental laws, like those in chemistry, physics, and

engineering must be found, which are essential for predictions of biological systems. At the

molecular level, biological players are individually quite complicated but are also strongly

1
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entangled with each other. Therefore going beyond traditional approaches focusing on in-

dividual genes or molecules is of great difficulty but is necessary. What is needed is an

understanding at a systems level, rather than knowledge about individual components.

These two factors define quantitative systems biology [120, 64, 118].

Fortunately, recently developed techniques provide a set of powerful tools for the

biotechnological arsenal: Microarray experiments can efficiently generate huge amounts of

information about the connecting interactions between genes on a whole genome scale [98];

fluorescent proteins, tagged genes and quantum dots are increasingly used as labels in

various aspects of biological experiments [112, 79]; microfluidic techniques can be used to

easily manipulate microenvironments of cells and organisms [119]; microscopes and FACS

machines are used to monitor dynamics at single-cell level [105]. All these techniques bring

the study of biological systems into a stage where a quantitative systems level understanding

becomes not only possible but obligatory.

1.2 An Integrated Approach

Systems biology uses modeling and simulation, combined with experiment, to ex-

plore behaviors in biological systems, especially dynamic behaviors [64, 3]. This thesis

represents an example of such a combined theoretical, computational and experimental

approach.

1.2.1 Analytical Modeling

At the cellular level, many biological behaviors can be interpreted in terms of

more elementary physical and chemical processes. Once the actors are established then the
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principles and laws of physical sciences can be employed for quantitative descriptions of

biological phenomena. In this integrative approach, modeling provides the basis for quanti-

tative understanding since it converts qualitative information into a quantitative language.

Biological systems can be modeled in several ways and at different levels: The

most fundamental description is at the single-molecule level where individual atoms are

the basic elements. At this level microscopic principles like those in quantum mechanics

govern biological behavior. The second layer of modeling arises at the single-cell level,

where the fundamental units are molecules and thermodynamics and kinetic coefficients

may be used to model individual reaction events at the microscopic level. The highest level

of description is concerned with overall phenomenological behavior for a biological system

at a macroscopic level.

The studies in this thesis mainly focus on the second and the third levels where

microscopic and macroscopic descriptions overlap and are both employed.

At these levels, there are stochastic and deterministic descriptions. Among de-

terministic descriptions, traditional chemical kinetics allows one to transform a qualitative

description of molecular and genetic interactions into a quantitative one. Many kinetic

schemes, such as Michaelis-Menten reaction and Hill-type kinetics, occur over and over

again in biological systems [20]. Since deterministic chemical kinetics yields sets of ordinary

or partial differential equations, these models can be solved and analyzed using the tools

developed in nonlinear dynamics [107].

Deterministic modeling is simple and powerful. Nevertheless, it is not sufficient

when studying single cells. Biological systems usually behave in a stochastic rather than

deterministic manner because the numbers of many key biomolecules in a cell are only
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on the order of tens to hundreds. This means the number fluctuations of molecules are

not negligible. Many descriptions in nonequilibrium statstical mechanics can be used for

modeling such stochastic systems. Among these descriptions, the most widely used ones are:

Master equations, Fokker-Planck equations, and Langevin equations [113, 92, 40]. Because

of the complicity and nonlinearity of biological systems, these stochastic models are hard

to solve analytically even for simple systems. A set of approximation approaches such as

Ω-expansion, linear noise approximation, Eikonal approximation, and variational methods,

have been developed and play important roles [113, 92, 40].

1.2.2 Simulation

Computer simulation has been used in biological studies for more than half a

century and has proved successful in numerous examples. It provides an alternative language

to analytical modeling for many biological systems. With the increase of computation power,

simulation has become more and more important.

Much like modeling, simulation can be either deterministic or stochastic. Among

different methods, the Monte Carlo simulation developed by Gillespie in 1970s is regarded

as a gold standard for stochastic simulation of biological networks [45]. Later develop-

ments of the Gillespie algorithm also greatly increased the efficiency and applicability of

simulation [88, 73].

1.2.3 Molecular biology

Molecular biology provides the cornerstone for studying quantitative systems bi-

ology. Standard molecular biology techniques as well as efficient and cheap DNA synthesis

methods are required for quantitative laboratory work [95].
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1.2.4 Integration of the three aspects

The three aspects, analytical modeling, simulation and molecular biology, are not

isolated but interact strongly. Preliminary experiments provide qualitative information

about the main players in a system and the interactions between them. Modeling gives a

theoretical foundation that transforms the qualitative information from such experiments

into quantitative descriptions. The results and predictions of modeling give insights into

new experiments that should be be performed. Simulation serves as an alternative to

theoretical modeling when analysis is difficult and also serves as an alternate to experiment

as a means of simply and quickly checking one’s model. Comparing modeling, simulation

and experiment is a cycle which ultimately converges to concrete results.

1.3 Stochasticity in Biological Networks

Stochasticity is ubiquitously exhibited in biological systems [89, 91, 60, 29]. Stochas-

tic phenomena appear in organisms ranging from prokaryotic to eukaryotic and multicellu-

lar cells. It also occurs at different scales: At the molecular level, protein conformational

changes, transcription and translation, and genetic mutations are all stochastic [37, 60, 63].

At the level of whole cells, growth, division, transitions between phenotypes and cell dif-

ferentiation are all noisy. At the tissue and organ level, stochasticity plays a role as well,

notably in embryonal development and tumor growth [26].

This behavior resides largely in various complicated networks, such as gene net-

works, signal transduction networks, and metabolic networks. Understanding biological net-

works is therefore the basis for understanding living matter. Stochasticity in such networks

is the key to decoding mysteries of biology. Network stochasticity has therefore received
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extensive attention in the past few years with examples including: Protein production oc-

curring in “bursts” at random time intervals rather than in a continuous manner [122, 19],

observations of gene expression in individual cells that have also established the stochastic

nature of transcription and translation, noise which has been found to limit the precision

of biological rhythms, and contributions to the history of development of Caenorhabditis

elegans and Xenopus laevis [106, 116].

Stochasticity arises from multiple sources [109, 110, 90, 114]. At the molecular

level, noise comes from the intrinsic nature of biochemical reactions underlying the biological

dynamics, such as fluctuations due to discrete gene transcription. This is termed intrinsic

noise. Noise that originates from random fluctuation of other factors such as copy numbers

of RNA polymerase is termed extrinsic noise. Noise is also contributed by the fluctuating

environments of a cell, which is termed external noise.

Stochasticity in biological networks can have important consequences [89, 91, 60].

Much like its role in wireless communications, noise can destroy signals traveling through

biological networks, it can disperse distributions of numbers of molecules, perturb systems

away from their needed steady states and even drive cells to dramatically different states,

such as pathological ones in cancer. Noise is evil from this point of view. Inevitably

disturbed by noise, biological systems must still robust enough to resist to this molecular

noise and function well most of the time. On the other hand, stochasticity is not always bad.

The studies of stochastic focusing and stochastic resonance directly demonstrate the positive

effects of noise [38, 83]. Furthermore, from the viewpoint of a physicist, noise randomizes all

sorts of biological information, e.g., numbers of molecules and types of species, and increases

entropy of biological systems. The randomization of biological information is important to
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the diversification of species and allows evolution to be speeded. Noise thus also plays a

constructive role. We see that stochasticity is just like a coin with two faces: One evil and

the other angelic.

Two big questions arise from the two faces of stochasticity:

• How are biological networks designed by nature to guard against noise and function

robustly?

• How does noise diversify a species’ richness and thereby benefit its survival in evolu-

tion?

Clearly the study of stochasticity in biological systems will be vital to improving

our understanding of biology as a whole. Answering the above questions will help us to

understand architectures of biological networks that can function robustly and help us

understand ways that noise benefits evolution of biological systems. Furthermore, these

studies can directly aid our final goal to design biological systems, a goal now termed as

“synthetic biology” [5].

1.4 Goal

My thesis employs an integrated approach to study stochastic properties of bio-

logical networks for better understanding of network functions and architectures and to aid

in synthetic design strategy.

I approach this goal by developing methodological techniques as well as study-

ing specific systems. The concept of effective temperature in stochastic kinetics and gene

networks is introduced in Chapter 2. The effective temperature serves as a fundamental
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quantity for the measurement of genetic noise. In Chapter 3, a more general stochastic al-

gorithm is developed that can be used in systems with time-dependent reaction rates, as is

almost always the case in study of prokaryotes. A specific network topology that commonly

exists in gene networks and signal transduction networks is studied in Chapter 4. Vari-

ability of cellular population is investigated in Chapter 5 by proposing a general variation

index and studying a simple example. A synthetic switch with genotypic and phenotypic

transitions is studied using both experimental and theoretical approaches in Chapter 6.

Lastly, conclusions and future outlook are provided along with some closing remarks.



2

Methodological Developments I:

Effective Temperature as a

Measurement for Gene Networks

2.1 Introduction

Gene networks are inherently noisy systems, with fluctuations arising from the

stochastic nature of the underlying biochemical reaction events [76, 59, 51]. Fluctuations

become more important when the numbers of reactant molecules are small, as is often the

case in gene regulatory networks. The role of noise in gene expression has attracted much

attention over the past few years, and many approaches have been used to model these

systems. The Gillespie algorithm [45, 88, 73] is often considered to be the gold standard for

performing stochastic simulations of such stochastic biological processes.

The noise in gene networks can been classified as either intrinsic, related to the

9
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specific biochemical process under evaluation, or extrinsic, related to factors upstream of

this process [109, 110]. Various groups have experimentally investigated the effect that each

source has on gene expression, and these studies have greatly improved our understanding of

stochastic gene networks. Recent papers have laid a foundation for comparing experimental

data with quantitative models of simplified gene networks [85, 82] and have shown that noise

may limit the sensitivity of gene networks [102].

Many such models have employed the fluctuation-dissipation theorem, the central

theorem in equilibrium mechanics, to describe these networks [65]. However, gene networks

are complex, far-from-equilibrium systems for which the fluctuation-dissipation theorem

may break down. In this paper we explore how the fluctuation-dissipation theorem may

apply or break down in the realm of stochastic biochemical processes.

One of the key topics in quantitative biology is the search for measurable quanti-

ties which can be used to characterize the properties of a gene network. Here we explore

the potential that effective temperature may provide such a quantitative measure. In ther-

modynamics, temperature must be the same for two bodies when they are in thermal

equilibrium [49]. At equilibrium, temperature is independent of which part of a system

and the precise measurements made. Near equilibrium, temperature differences determine

the direction of heat flow. When a system is far from equilibrium, these key principles

of thermodynamics may fail. Nevertheless it has been possible to extend the concept of

temperature in thermodynamics to effective temperature in non-equilibrium systems [66]

that change sufficiently slowly, such as glassy systems [24, 23].

Since genetic systems often respond much more slowly than the rate of their indi-

vidual reaction events, we are encouraged to examine whether effective temperature plays
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an important role in gene networks. In fact, a few studies have already employed effective

temperature to investigate biological systems. For example, it has been used to study the

stability of motorized particles in cytoplasm [99] and to reveal the underlying active process

in hair bundles [74]. Here we examine effective temperature as determined by comparing

fluctuation to response in stochastic kinetics with the application to gene networks in mind.

Our first example focuses on the effective temperature of a simple birth-death process. We

then generalize our argument to describe the kinetics of two-species interactions.

The paper is organized as follows. After introducing the definition of effective

temperature, we investigate a birth-death process where exact expressions for the effective

temperature are derived both in the cases where there are large and small numbers of

particles. Monte Carlo simulations are compared to these exact results. We then study a

general system of two interacting chemical species. For this system, analytical results are

derived using Langevin method relevant for a relatively large numbers of particles. For the

two species problem we can examine whether temperature gradients determine the direction

of flows. Finally we use the effective temperature to study an unregulated gene where both

intrinsic and extrinsic nose are quantified using effective temperature. We conclude with a

general discussion.

2.2 Effective Temperature

Let us start with a classical exercise which interested Einstein one century ago [30,

65]. In the presence of a given potential field V (x), particles flow with the drift velocity

JF = −µc∂V (x)
∂x , where µ is the mobility and c is the concentration of particles at the position

x. On the other hand, particles diffuse randomly and obey the Ficks’s first law of diffusion
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as JD = −D ∂c
∂x . In thermal equilibrium, particles are in the Boltzmann distribution, i.e.

c ∼ exp[−V (x)/kBT ], and the net current JN = JF − JD is null, i.e. −µc∂V (x)
∂x + D ∂c

∂x = 0.

Therefore the mobility, due to the friction of particles, and the diffusion, due to the random

motions of the particles, are directly related

µ =
1

kBT
D (2.1)

This has become known as the Einstein relation. This relation between fluctuation(D) and

response(µ), when manifested in a more general manner, is called fluctuation-dissipation

theorem.

The fluctuation-dissipation theorem states a general relationship between the re-

sponse of a given system to an external disturbance and the internal fluctuations of the

system in equilibrium. This relationship contains the temperature and is central in ther-

modynamics. However, when a system is out of equilibrium, the theorem breaks down

and an extension of the theorem must be made. So the concept of effective temperature is

introduced.

In a near equilibrium system, it is customary to study mechanical fluctuations and

response. Consider such a mechanical system with a Hamiltonian H. If O1 and O2 are two

observables of the system, then the correlation between these two observables is described

by the function

C12(t′, t) = 〈O1(t′)O2(t)〉 − 〈O1(t′)〉〈O2(t)〉 (2.2)

where the brackets indicate the ensemble average.

If the system is subjected to a time-dependent small perturbation −h(t)O2(t)

where h(t) is a small field and O2(t) is an observable, then the Hamiltonian becomes

H → H − h(t)O2(t) (2.3)
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The response of the average of the observable O1 to the small perturbation−h(t)O2(t)

is then given by

R12(t′, t) =
δ〈O2(t′)〉

δh(t)
(2.4)

For systems with slow dynamics Cugliandolo et. al. [24] suggests the effective

temperature in the Fourier space may be defined as

Teff (ω) ≡ ωC̃
′
12(ω)

R̃
′′
12(ω)

(2.5)

where C̃
′
12(ω) is the real part of the Fourier transform of the correlation function Eq.(2.2)

and R̃
′′
o (ω) is the imaginary part of the Fourier transform of the response Eq.(2.4), i.e.,

C̃
′
12(ω) = ={

∫∞
0 dtC12(t)eiωt}, R̃

′′
12(ω) = <{

∫∞
0 dt R12(t)eiωt}.

Genetic networks are generally multi-timescale systems. The characteristic time

of binding events is much shorter than the half-life of the messenger RNA, which in turn

is one order of magnitude shorter than the half-life of the resulting protein. Cell-to-cell

communications and transportation processes are even possibly slower. These multiple

scale properties encourage us to investigate the role of defining effective temperatures in

genetic networks.

2.3 A Birth-Death Process

Genetic networks are extremely complex, involving binding processes, synthesis

processes and degradation processes. To understand the fundamental properties of noise

in gene networks, the response of networks to small perturbations, and the effective tem-

peratures, we begin with the simplest birth-death process, which describes synthesis and

degradation. Studying the simple birth death process already helps us understand the lim-
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Table 2.1: Birth-Death Process

reaction rate specified rate
φ → X g(x) kg

X → φ d(x) kd

its of the effective temperature concept. The reactions of a simple birth-death process are

shown in Tab. 2.1. The Master Equation for this process reads

∂

∂t
P (x, t) = g(x− 1)P (x− 1, t)− g(x)P (x, t) + d(x + 1)P (x + 1, t)− d(x)P (x, t) (2.6)

2.3.1 Large-N case

When the numbers of particles are large, the Master Equation can be approximated

by the Fokker-Planck Equation, which is equivalently to the Langevin equation:

d

dt
x = g(x)− d(x) + η(t) (2.7)

where η(t) is a Gaussian white noise term, i.e. 〈η(t)〉 = 0, 〈η(t)η(t′)〉 = [g(x) +

d(x)]δ(t− t′). Comparing this simple birth-death process with the Brownian motion of an

overdamped particle [17], we have the effective temperature of this process

Teff =
1
2
{g(x) + d(x)} (2.8)

where Teff can be further simplified as Teff = g(x) if the system is near the steady state

where g(x)−d(x) = 0 holds. If we specify g(x) and d(x) as those listed in the third column

of the Tab. 2.1, the effective temperature becomes Teff = kg.

The effective temperature of this birth-death process can also be derived from the

effective fluctuation-dissipation relationship. There are two kinds of perturbations that can

be used to calculate effective temperature according to the FD relation. We may use a
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perturbation of generation rate kg or a perturbation of degradation rate kd. Both of these

perturbations yield the same effective temperature Teff = kg. This result is consistent with

Eq.(2.8), which verifies the validity of the definition of effective temperature in the large N

limit.

2.3.2 Small-N case

In the last subsection, the Eq.(2.7) is appropriate for large number limit. But we

also wish to define the effective temperatures in the small number case to see if they the

same. In order to answer these questions, we first use the operator formulism for Master

equations [75] combined with the Eyink’s variational method [34] to get the correlation and

response and thus the effective temperatures for any value of the mean number.

In the operator formulation, the Master Equation Eq.(2.6) with specified reaction

rates is written as

d

dt
|Ψ(t)〉 = L̂|Ψ(t)〉 (2.9)

where the Liouvillian is L̂ = kg(â+ − 1) + kd(â − â+â). The Liouvillian is generally non-

Hermitian, i.e. L̂ 6= L̂+. The state function |Ψ(t)〉 is defined as |Ψ(t)〉 ≡
∑∞

0 P (n, t)|n〉

where P (n, t) is the probability of having n number of X at time t and |n〉 is the state with

n number of X. â and â+ are creation and annihilation operators respectively which have

the relations â|n〉 = n|n− 1〉, â+|n〉 = |n + 1〉 and [â, â+] = 1.

To solve the Eq.(2.9), we use the coherent trial Ansätze 〈ΨL| = 〈0|eâ(1+α(â+â−

1)) and |ΨR〉 = eu(â+−1)|0〉. The action for the system is

Γ =
∫ ∞

0
dt 〈ΨL(t)|(∂t − L̂)|ΨR(t)〉 (2.10)
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The variations of the action generate two equations for the parameters α and u

d

dt
α(t) = −kdα(t) (2.11)

d

dt
u(t) = kg − kdu(t) (2.12)

The steady states of the system 〈ΨL
s | = 〈0|eâ and |ΨR

s 〉 = eus(â+−1)|0〉 are then found by

taking α = 0 and u = kg

kd
≡ us in the above equations. This indicates that the steady state

distribution is a Poisson distribution with the mean us. This is confirmed to be the exact

distribution by solving the Master equation using the generating function method [77]. The

operator formulation, while cumbersome for the distribution function, is advantageous for

calculating correlation and response functions, as we see in the following description.

Recall that there are two types of perturbations of the system – a perturbation

of generation rate and a perturbation of degradation rate. These correspond to the per-

turbations of the Liouvillian L̂ by −h(t)(â+ − 1) and −h(t)(â − â+â). Because the Li-

ouvillian is non-Hermitian (L̂ 6= L̂+), the left and state functions are not conjugate, i.e.

|ΨR(t)〉 6= (〈ΨL(t)|)+. Likewise the time-dependent expression for an operator in the Heisen-

berg representation of the stochastic process is somewhat different from that for quantum

system with a Hermitian Hamiltonians.

In the non-Hermitian case, a time-dependent operator can be defined as [25]

Â(t) = ˆ̄U+ÂsÛ (2.13)

where Û and ˆ̄U+ are the evolution operators for the forward and backward Kolmogorov

processes respectively. Because of the non-Hermitian property of the Liouvillian, the for-

ward evolution operator is not the conjugate of the backward, i.e., (Û)+ 6= ˆ̄U+. However,

Û and ˆ̄U+ should conserve the evolution, i.e. ˆ̄U+Û = Û ˆ̄U+ = 1.
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Now we turn to the calculation of correlation and response functions. For a per-

turbation of Liouvillian corresponding to the generation rate with L̂ − h(t)(â+ − 1), the

corresponding correlation and response functions can be obtained after some algebra(see

Appendix A). These are

C(t′, t) = u2
s + use

−kd(t′−t) (2.14)

R(t′, t) = e−kd(t′−t) (2.15)

from which the effective temperature may be derived

T g
eff = kg (2.16)

This is exactly the same as what was obtained in the large number limit.

On the other hand, for a perturbation of the degradation rate of the Liouvillian

with L̂−h(t)(â− â+â), the corresponding correlation and response functions(see Appendix

A) are

C(t′, t) =
1
2
(u3

s + u2
s + 2u2

se
−kd(t′−t) + use

−kd(t′−t)) (2.17)

R(t′, t) = use
−kd(t′−t) (2.18)

The effective temperature is thus found to be

T d
eff = kg + kd/2 (2.19)

This temperature is different from either the one found by perturbing the generation rate

in small number regime Eq.(2.16) or what was found in large number limit Eq.(2.8).

For this birth-death process, the percentage of the relative difference of the two

temperatures is 50kd
kg

%. When the average number of a protein kg

kd
is 10, the difference of
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the two temperatures is 5%, which is already obvious. Further, when the average number is

around 1, the difference will be up to 50%. In some natural and synthetic genetic systems,

the numbers of molecules is actually small. One study shows that the freely available dimers

of the repressors CI in the phage lambda is only around 10 [8, 9], in which case small number

will be an important effect. This effect might be dominant in those cases where there are

few copies or even sometimes a single copy of a gene in the natural genome or in the case

of there being only a few copies of plasmids in a cell.

However, when the number of molecules is large, i.e. kg/kd >> 1, both T g
eff and

T d
eff merge consistently to the large number limiting value kg.

2.3.3 Comparison with simulations

To check the effective temperatures derived analytically, we carried out some ex-

plicit simulations. We used the Gillespie simulation [45] to generate data following the

reaction rules in Tab.2.1. We use the rate coefficients shown in the Tab.2.1 to generate data

for each run and made 10000 runs of the program to represent the ensemble of trajectories.

We numerically calculated the correlations and use averaged response.

To calculate the response function, we actually found the frequency-dependent

susceptibility of the system rather than response function just as one would do in real

experiments [24]. The simulation first ”equilibrated” after waiting for a long enough time

to allow the system comes to a steady state and to fluctuate around that state. We then

turned on the perturbations (for a perturbation of generation rate we use k
′
g = kg(1 + 5%),

for a perturbation of degradation rate we use k
′
d = kd(1 + 5%) ). We recorded all of the

data once the perturbation was added. 10000 independent runs provided an ensemble that

could be numerically averaged to get the susceptibility.
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Figure 2.1: Effective temperatures corresponding to different mean value numbers kg/kd

for a perturbation of −h(t)x. The parameters {kg=10.0, kd = 0.1}, {kg=5.0, kd = 0.1},
{kg=1.0, kd = 0.1} and {kg=0.1, kd = 0.1} are chosen in the panels A, B, C, and D
respectively. Broken lines have a slope of − 1

kg
, dotted lines have a slope of − 1

kg+kd/2 ,
and lines with circles are the simulation results with corresponding reaction rates. The X
and Y axes are correlation and susceptibility respectively, and both are scaled so that the
correlations range from 0 to 1 in all of the figures for comparison.
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Following Cugliandolo and Kurchan we can draw parametric fluctuation-dissipation

plots of the response versus the correlation, where the negative reciprocal of the slope of the

curve indicates the effective temperature [24]. Fig.2.1 clearly indicates that for a perturba-

tion of −h(t)(â+ − 1) the slope is always equal to −1/kg. This result is found regardless

of the mean values of the species number. This means that the corresponding effective

temperature is always kg. However, we can see from Fig.2.2 that for a perturbation of

−h(t)(â − â+â) the slope of the simulation is equal to −1/(kg + kd/2). This difference

becomes more clear when the mean number is small in panel D. For this observable, we see

that the corresponding effective temperature is kg + kd/2 rather than kg. Although these

two effective temperatures are not the same, they tend to become equal when the mean

number becomes large (e.g. the left upper panel in Fig. 2.1 and Fig. 2.2). Both of the

simulations agree very well with the analytical results in the above subsection.

2.3.4 Physical interpretation

Both the analytical and numerical results show that there is more than one effective

temperature for a birth-death process. Effective temperature is thus not a unique quantity,

but rather is observable-dependent. This result is surprising given the general properties

of effective temperature for a far-from-equilibrium system[66]. In equilibrium systems all

of the effective temperatures must converge to the same value regardless of the observable

used in measurements [65] but this need not be the case for an out of equilibrium system.

The fact that there are two different effective temperatures does not contradict our physical

intuition, but simply emphasizes that the system in a steady-state is not a true state of

equilibrium.

The two effective temperatures explore different aspects of the system dynamics in
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Figure 2.2: Effective temperatures corresponding to different mean value numbers kg/kd

for the perturbations of −h(t)x2. The parameters {kg=10.0, kd = 0.1}, {kg=5.0, kd = 0.1},
{kg=1.0, kd = 0.1} and {kg=0.1, kd = 0.1} are chosen in the panels A, B, C, and D
respectively. Broken lines have a slope of − 1

kg
, dotted lines have a slope of − 1

kg+kd/2 , and
lines with circles are the simulation results with corresponding reaction rates. The X and Y
axes are correlation and susceptibility respectively, both are scaled so that the correlations
range from 0 to 1 in all of the figures for comparison.
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Table 2.2: Two-Species Interacting Process

reaction rate const.
φ → A kg1

A → φ kd1

φ → B kg2

B → φ kd2

A → m1A + n1B u

B → m2B + n2A v

the steady states corresponding to two different perturbations. The difference between the

two temperatures is, however, a ’higher order’ correction in some sense. As shown above,

they converge to each other in the large number limit.

2.4 A Two-Species Interacting Process

Now we turn to a more complex example involving interactions between two

species. The two species A and B may have their own generation and degradation pro-

cesses, and if one species is consumed by the other, they become correlated due to this

interaction (Table 2.2). When their numbers are high, the two species essentially interact

as a predator-prey system and may be described by Langevin Equations [44]

∂

∂t
A = kg1 − d1A + f2B + D1ξ1(t) + Da

3ξ3(t) + Da
4ξ4(t) (2.20)

∂

∂t
B = kg2 − d2B + f1A + D2ξ2(t) + Db

3ξ3(t) + Db
4ξ4(t) (2.21)

where d1 = kd1 + (1−m1)u, d2 = kd2 + (1−m2)v, f1 = n1u, f2 = n2v. ξi(t) is a Gaussian

normal noise with the properties 〈ξi(t)〉 = 0 and 〈ξi(t)ξj(t′)〉 = δi,j · δ(t − t′). Their noise

intensities are D1 =
√

kg1 + kd1A, D2 =
√

kg2 + kd2B, Da
3 = (m1 − 1)

√
uA, Db

3 = n1

√
uA,

Da
4 = n2

√
vB, Db

4 = (m2 − 1)
√

vB.
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The correlations arising from the interactions enter as common noise terms in

Eqs.(2.20,2.21). These linear equations could arise from a nonlinear system by linearizing

around the steady states. This is especially relevant in the current context since both the

correlations and response are only calculated when the system is at a steady state. The

numbers m1, m2, n1 and n2 can be arbitrary positive or negative integers, and represent

different types of interactions between the two species. For example, m1 = m2 = 1, n1 =

n2 = −1 implies that A consumes B and there is competition between A and B, while

m1 = m2 = 0, n1 = n2 = 1 means A reacts to B and B reacts to A. All of the reaction rates

are shown in column two of the Table 2.2. We note that for a system of molecular species

the steady state values should be positive, i.e.

A∗ =
f2kg2 + d2kg1

d1d2 − f1f2
> 0 (2.22)

B∗ =
f1kg1 + d1kg2

d1d2 − f1f2
> 0 (2.23)

d1d2 − f1f2 6= 0 (2.24)

2.4.1 Effective temperature of the two-species system

As explored in the single birth-death process, generally there are multiple effective

temperatures, with different temperatures corresponding to measurements using different

perturbations. Instead of comparing all of the temperatures of the two species, we focus on

the effective temperature corresponding to the perturbation of the generation rates and the

autocorrelation of one species as a measurement for the interacting process. Other effective

temperatures can be derived in straight-forward fashion. We will lose some information by

using only one of the effective temperatures, corresponding to the autocorrelation, but we

will still capture the essence of the situation.
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The autocorrelations of A and B for the two-interacting species are derived using

the fourier transform(see Appendix B)

CAA = (ω2+d2
2)D2

1+f2
2 D2

2+[(d2Da
3+f2Db

3)2+ω2(Da
3 )2]+[(d2Da

4+f2Db
4)2+ω2(Da

4 )2]
(ω2+f1f2−d1d2)2+(d1+d2)2ω2 (2.25)

CBB = f2
1 D2

1+(ω2+d2
1)D2

2+[(f1Da
3+d1Db

3)2+ω2(Db
3)2]+[(f1Da

4+d1Db
4)2+ω2(Db

4)2]
(ω2+f1f2−d1d2)2+(d1+d2)2ω2 (2.26)

The response functions can be derived similarly (see Appendix B)

RAA = iω−d2
ω2+iω(d1+d2)+f1f2−d1d2

(2.27)

RBB = iω−d1
ω2+iω(d1+d2)+f1f2−d1d2

(2.28)

Following the definition Eq.(2.5), we have the effective temperature for species A and B

from Eqs.(2.25-2.28)

TAA
eff (ω) = (ω2+d2

2)D2
1+f2

2 D2
2+[(d2Da

3+f2Db
3)2+ω2(Da

3 )2]+[(d2Da
4+f2Db

4)2+ω2(Da
4 )2]

ω2+f1f2+d2
2

(2.29)

TBB
eff (ω) = f2

1 D2
1+(ω2+d2

1)D2
2+[(f1Da

3+d1Db
3)2+ω2(Db

3)2]+[(f1Da
4+d1Db

4)2+ω2(Db
4)2]

ω2+f1f2+d2
1

(2.30)

These are the effective temperatures of the predator-prey system. The expressions

show that the effective temperature for each species depends not only on its own birth-death

rate but also on the birth-death rate of the other species. They are correlated by interacting

terms.

The temperatures depend on the time scale just as they do for other non-equilibrium

systems, e.g. glasses [24], where the fluctuation-dissipation theorem in its simple form

breaks down [65]. A convenient way to illustrate this breaking down is to draw correlation-

susceptibility plots [24], since the negative reciprocal of the slope of the curves indicates the

effective temperature of a system. For the simplicity, we set the birth-death noise terms D1

and D2 to be constants, and set the correlated noise terms Da
3 ,Db

3,D
a
4 and Db

4 to be zero.
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This is a simplified version of the general interacting process shown above. However, even

this simple system suffices to demonstrate the breaking down of the fluctuation-dissipation

relation. Here we employ the inverse Fourier transform to get the correlation and response

functions in real space and then draw the plots.

CAA(t) = [d2
2−(x−y)2]T1+f2

2 T2

4xy(x−y) e−(x−y)t − [d2
2−(x+y)2]T1+f2

2 T2

4xy(x+y) e−(x+y)t (2.31)

CBB(t) = [d2
1−(x−y)2]T2+f2

1 T1

4xy(x−y) e−(x−y)t − [d2
1−(x+y)2]T2+f2

1 T2

4xy(x+y) e−(x+y)t (2.32)

RAA(t) = (x+y)−d2

2y e−(x+y)t − (x−y)−d2

2y e−(x−y)t (2.33)

RBB(t) = (x+y)−d2

2y e−(x+y)t − (x−y)−d1

2y e−(x−y)t (2.34)

where x = (d1 + d2)/2, y =
√

(d1 − d2)2 + 4f1f2/2, T1 = D2
1/2 and T2 = D2

2/2.

Fig.2.3 illustrates the properties of the system on the different time scales. The

parameters are chosen as follows: m1 = m2 = n1 = n2 = 1, v = 0 and u = 0, 0.5, 1.0, 1.5, 2.0.

Because we set v = 0, the only interaction of the two species is A → A + B, i.e. A can

generate B. ¿From the diagram, it is clear that when there is no interaction, the effective

temperature is a constant, which means that the fluctuation-dissipation theorem holds.

However when there is an interaction, the curves are not straight lines, but instead bend to

the left. The larger the coupling, the more the curve deviates from the straight line. These

curves indicate that the fluctuation-dissipation theorem is breaking down in a frequency

dependent way.

2.4.2 A specific two-species example

Here we study a special case to illustrate that the effective temperature in some

ways can still play the same role as temperature does in thermodynamics. The interactions

are chosen as u = v, m1 = m2 = 0 and n1 = n2 = 1, i.e. A → B and B → A. This means
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Figure 2.3: Illustration of multiple time scales properties of effective temperature. X axis
is the scaled correlation, Y axis is the susceptibility. The dashed line represents A, the solid
lines with symbols are for B. The solid lines with symbols from up to down correspond
to the coupling strengths u = 0, 0.5, 1.0, 1.5, 2.0. The parameters are chosen as following:
kg1 = 50.0, kd1 = 1.0, kg2 = 20.0, kd2 = 1.0, m1 = m2 = n1 = n2 = 1, v = 0.
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Figure 2.4: Effective temperature vs. interaction strength for the non-interacting case.
Left Panel: The solid line, broken line and dash-dotted line stand for the effective tem-
perature of the species A, the effective temperature of the species B, and the mean of the
two effective temperature when there’s no coupling. Right Panel: The difference of the two
effective temperatures in the left panel versus the interaction strength. Here kg1 = 200.0,
kd1 = 1.0, kg2 = 50.0, kd2 = 1.0, m1 = m2 = 0, n1 = n2 = 1, u = v and w = 10.0.

that A reacts to become B and B reacts to become A.

To investigate the thermalization of the system, we focus on the difference of the

two effective temperatures, i.e.

∆Teff (ω) = TAA
eff (ω)− TBB

eff (ω) (2.35)

Together with the Eqs.(2.29, 2.30), the above equation tells us that as the coupling

strength increases, the difference between the two effective temperatures decreases. That

is, the two temperatures tend to equalize, as the ’hotter’ one drops in temperature and the

’cooler’ one increases in temperature.

Both Fig.(2.4) and Fig.(2.5) demonstrate this behavior. In Fig.(2.4) we assumed

that the fluctuating terms are uncorrelated and their noise intensities are constant; that

is, the terms Da
3 , Db

3, Da
4 and Db

4 are zero and D1 and D2 are constants. The left panel

shows that the ’hotter’ species decreases in temperature and the ’cooler’ species increases
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Figure 2.5: Effective temperature vs. interaction strength for the interacting case. Left
Panel: The solid line, broken line and dash-dotted line stand for the effective temperature of
the species A, the effective temperature of the species B, and the mean of the two effective
temperature when there’s no coupling. Right Panel: The difference of the two effective
temperatures in the left panel versus the interaction strength. Here kg1 = 200.0, kd1 = 1.0,
kg2 = 50.0, kd2 = 1.0, m1 = m2 = 0, n1 = n2 = 1, u = v and w = 10.0.

in temperature monotonically with the increase of their interaction strength. When the

coupling is strong enough, the two temperatures converge to the same value. The right

panel clearly shows that the difference of the two temperatures decreases with increasing

interaction strength.

Fig.(2.5) shows the result for the general correlated case. In the left panel we see

that both of the temperatures increase at first and then drop after reaching a maximum, and

ultimately they converge to the same value. The non-monotonic behavior, which is different

from the uncorrelated case, comes from the correlation of the noise. The curves are similar

to stochastic resonance curves[38]. Nevertheless, the difference of the two temperatures

decreases monotonically, as seen in the right panel.

This example shows that the effective temperature in stochastic kinetics behaves

much like ordinary temperature.
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2.4.3 Remarks

The coupling between the two species as well as their own generation and degra-

dation rates determine the effective temperatures. The effective temperatures are thus not

always equal, but instead their discrepancy is system and interaction dependent. The ef-

fective temperature characterizes the properties and the state of that system. For example,

with the physically meaningful coupling of the above example, the system holds the thermal

properties: a) The flow goes from ’high’ temperature to ’low’ temperature, and b) if the

coupling is strong enough, the temperatures of the two subsystems equalize.

The strategy for calculating effective temperature in solving Eqs.(2.20,2.21) is quite

general, and it can be used to study more complex interaction networks involving multiple

species, such as cascades.

2.5 Effective Temperature in Gene Networks

It has been suggested that the noise in gene networks can be broken down into

intrinsic and extrinsic components[109]. If we consider the fluctuations of one particular

species of a multiple species interacting network, then intrinsic noise originates from the

stochastic nature of the reactions leading to expression of this species alone, whereas ex-

trinsic variability arises from sources that effect the expression of all species. While this

manner of noise classification is useful, it does have some limitations. For example, when

there exists a correlation between the noise terms of the different species in a network,

as there often is in gene networks, there is no simple way to separate the total noise into

intrinsic and extrinsic components.

Fundamentally, the intrinsic-extrinsic classification is actually just the inverse
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Fourier transform of the power spectrum of the correlation functions, because the noise

intensity is just the autocorrelation function of the species. But the power spectrum is

more general. For the two species case, Eq.(2.25) and Eq.(2.26) give the noise classification

expressions. As seen from the expressions, there exist cross-correlation terms between intrin-

sic sources and extrinsic sources. The power spectrum expressions Eq.(2.25) and Eq.(2.26),

beyond the intrinsic-extrinsic classification, include the correlated noise sources.

Based on what we know about effective temperature, it appears to be a good

candidate for the quantitative analysis of gene networks. To explore this possibility, we

will calculate the effective temperature of an unregulated gene present in many copies, and

investigate what the effective temperature can tell us about this system.

We assume that there are N copies of a particular gene. Also, assuming that

there are x number of bound operators, then the number of unbound operators is N − x.

The operator sites are assumed to have no explicit regulation (i.e. the operator sites are

fluctuating stochastically), and the state of each operator site (bound or unbound) will

effect the rate of transcription. kf and kb are the binding and unbinding reaction rates for

the operator, kg1 and kg2 are the protein generation rates of an bound operator and an

unbound operator, and kd is the degradation rate of the protein. Given these parameters,

the Langevin equations describing the operators and the protein quantity, p, are:

dx

dt
= −kfx + kbR0(N − x)−D1η1(t) + D2η2(t) (2.36)

dp

dt
= kg1x + kg2(N − x)− kdp + D3η3(t) + D4η4(t)−D5η5(t) (2.37)

The noise intensity terms are D1 =
√

kfx, D2 =
√

kbR0(N − x), D3 =
√

kg1x, D4 =√
kg2x, and D5 =

√
kdp. The noise ηi(t) (i=1,2,3,4,5) is uncorrelated normal Gaussian

noise.
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From the exact solutions Eqs.(2.29, 2.30) of the general equations Eqs.(2.20, 2.21),

we find two different effective temperatures for the DNA and the protein number:

TO(ω) = T1 (2.38)

TP (ω) = T2 + T1
(kg1 − kg2)2

ω2 + (kf + kb)2
(2.39)

Here T1 = D2
1 +D2

2 and T2 = D2
3 +D2

4 +D2
5 with the substitutions of x and p by the steady

state values x∗ and y∗. T1 and T2 are independent on the frequency.

These results show that the effective temperature of the DNA TO(ω), T1 is in-

dependent of the protein. The effective temperature of the protein TP (ω), on the other

hand, is composed of two parts, T2 and T1
(kg1−kg2)2

ω2+(kf+kb)2
, which means that the ’hotness’ of

the DNA actually effects the temperature of the protein. This is logical since the operator

sites regulate the downstream production of the protein, but the protein does not regulate

the production of the DNA.

To relate this to the notion of intrinsic and extrinsic noise, we can study the pro-

teins as our system. Using this system, the fluctuation of the proteins due to the stochas-

ticity of the chemical reaction Eq.(2.37) is the intrinsic noise, while the the fluctuation of

the DNA operator is the extrinsic noise. Using a standard method to calculate the total

noise [109, 102], we may write the total noise for this unregulated gene system in terms of

intrinsic and extrinsic noises as:

σ2
t = σ2

in + σ2
ex (2.40)

Following the same strategy that we used in the study of a two-species process,
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the equivalent power spectrum expression is:

Cp(ω) =
D2

3 + D2
4 + D2

5

k2
d + ω2

+
(kg1 − kg2)2(D2

1 + D2
1)

[(kf + kb)2 + ω2](k2
d + ω2)

=
1

k2
d + ω2

· T2 +
(kg1 − kg2)2

[(kf + kb)2 + ω2](k2
d + ω2)

· T1 (2.41)

Comparing the power spectrum expression with the effective temperature Eq.(2.39),

we see that the effective temperature can function as an alternative means to quantify and

analyze different sources of noise in gene networks. In this example, the temperature TP

divides noise into intrinsic and extrinsic components, but separates the noise source via

time scale. In addition, because the effective temperature can measure the stability of a

system [99], here TP
eff tells how much of effective temperature (T2) comes from the intrinsic

noise (σ2
in) and how much of the effective temperature (T1

(kg1−kg2)2

ω2+(kf+kb)2
) comes from the ex-

trinsic noise (σ2
ex). This gives a measure of the contributions of intrinsic and extrinsic noises

to the ’hotness’ of the system, which is not merely a summation of intrinsic and extrinsic

noise components. Moreover, the effective temperature explores the frequency selectivity of

the system. From the expression of the effective temperature Eq.(2.39), we can see that the

intrinsic noise always contributes to the system, but the extrinsic noise is frequency depen-

dent. We see that the extrinsic noise plays an important role in the low frequency region,

but it is filtered out in the high frequency region. This underlying property is masked by the

power spectrum expression, demonstrating an advantage of using the effective temperature.

2.6 Conclusions and Discussions

Temperature is a central notion of thermodynamics, and the fluctuation-dissipation

theorem is important in near equilibrium statistical mechanics. However, the theorem

breaks down for stochastic dynamical kinetics and gene networks since such systems are
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far from equilibrium. The FD plot introduced in glass theory nevertheless provides an

understanding of the interacting stochastic processes.

The effective temperature in general is observable dependent and therefore is not

unique, but when the systems are large it has some of the same valuable properties as found

when describing glasses [66]. The observable-dependence shows that a birth-death process

in a steady state is nevertheless not an equilibrium system. Although there are multiple

effective temperatures corresponding to different types of correlations, the properly chosen

effective temperature can be used to explore the dynamic properties of a system. The

autocorrelation effective temperature in a simple situation controls the flow between two

interacting biochemical species.

Effective temperature provides an alternative language for discussing the origin of

noises in stochastic cell biology. It goes beyond the intrinsic-extrinsic classification that has

already been introduced and works in cases where the noise of various species is correlated.

Moreover, using the general definition of the effective temperature for out-of-

equilibrium systems, it should also be applicable to more complex genetic circuits that

do not relax to fixed steady states, such as repressor oscillators [33]. When spatial het-

erogeneities in real cells are considered, diffusion and transportation of regulatory proteins

also can have a great impact [78]. The slowness of the ordered dynamics of the regulatory

networks in comparison to the molecular events suggest the idea of effective temperature

could be generally useful. Further developments of the concept of effective temperature as

a means to characterize more complex gene networks will be needed, however, to increase

our understanding of multi-gene regulation in organism.
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Methodological Developments II:

Generalized Gillespie Algorithm

3.1 Introduction

Successful completion of the Human Genome Project has led to the realization that

effective models for predicting cellular behavior must take into account the dynamic net-

work interactions that mediate gene regulation. Since behavior arising from these complex

interactions is difficult to predict without quantitative models, there is a need for exper-

imentally validated computational modeling approaches that can be used to understand

the complexities of gene regulation. Such model approaches will be invaluable in the gen-

eration of logically consistent hypotheses and will provide a framework for the systematic

comparison of data across multiple experiments.

There is strong experimental evidence that the level of expression from the same

gene varies significantly from one cell to another within a genetically-identical colony [41,

35
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33, 14, 81, 13, 32, 58]. Such macroscopic variations are routinely observed in the cells of

organisms ranging in complexity from bacteria to mammals. Theoretically, with mRNA

numbers that are often less than ten, the intrinsic noise of the underlying biochemical

reactions implies that large fluctuations originating from small molecular numbers simply

must exist. While the importance of fluctuations in this context was stressed over thirty

years ago [108], the recent experimental evidence has led to a resurgence of interest in the

utilization of stochastic simulation techniques to model gene regulatory networks[6, 52, 109,

58, 89].

When fluctuations arise from the small number of reactant molecules, the stochas-

tic simulation algorithm developed by Gillespie is considered the ”gold standard” for mod-

eling [43, 45]. The advantage of this algorithm is that it provides an exact numerical

simulation of the underlying biochemistry. However, both the original algorithm and later

developments have focused on volume-fixed systems, and have not systematically consid-

ered the effect of volume changes on the simulation routine [50, 88, 42]. Here we extend the

Gillespie simulation routine to account for time-dependent rate constants arising from cellu-

lar growth and division. Specifically, we address the physical background for the stochastic

simulation routine from the microscopic level, and reinvestigate the derivation of the Gille-

spie routine. Although our results are general for simulations involving time-dependent rate

constants, we focus on the generation of an algorithm for cellular systems with changing

volume. Examples are provided to illustrate the algorithm, and we propose a criterion that

can be used to determine if a simple replacement of the traditional Gillespie algorithm is

sufficient with changing volume.



37

3.2 Background

Generally, a biochemical reaction occurs when a combination of reactant molecules

collides with relevant speeds above a certain threshold in a short interval of time. Because of

the randomness of molecular position and speed, Brownian motion of nonreactive molecules,

temperature fluctuations, and other influences, stochasticity is an inherent property of the

underlying biochemistry. When the average cellular size is small (i.e. a bacterium), it is

commonly assumed that the cell acts as a well-mixed bioreactor. While even in small cells

there are specific gene regulatory processes where spatial compartmentalization is the first-

order consideration, there is no evidence to date that such spatial effects dominate in a

generic sense.

When spacial structure of the cell is not taken into account the current state of

the system may be represented by the number of reactant molecules of each kind present

in the cell along with the physical variables characterizing the state of the cell as a whole,

such as volume, temperature, concentration of solute, etc. The sufficient condition for this

description is the requirement that the chemical system inside cell is a well-stirred mixture,

that is non-reactive collisions occur much more frequently than reactive collisions [45]. This

assumption makes description of the system inherently stochastic in the sence that a given

state of the system lacks positions and velocoties and therefore the evolution from this state

can not be a deterministic process. Then the most complete description of stochastic system

may be given in terms of the corresponding Master Equations.

It is easy to see that the probability P1(t, µ)dt that a particular reaction Rµ among

reactant molecules will occur in the next time interval [t, t + dt] depends on the volume of
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the reactor

P (t, µ)dt =
aµ

[V (t)]rµ−1
dt (3.1)

The probability density P (t, µ) is usually called the propensity of the chemical reaction Rµ.

Living cells do not grow indefinitely: they reach a certain size and then divide.

While this process itself is not deterministic, in order to illustrate our approach we will make

the simplifying assumption that the cell division time is constant, and that all molecules

are divided evenly among the daughter cells.

3.3 Modified Gillespie Algorithm for Reactions in Variable

Volume

Let us now consider necessary modifications to Gillespie algorithm in the case of

variable volume of the cell. Suppose the volume V (t) contains a spatially homogeneous

mixture of Xi, i = 1..N species which may interact through the reaction channels Rµ, µ =

1..M . Next assume that a subset of these channels is characterized by the time-dependent

propensities as(t) = a′s/V (t), s = 1..S, while the propensities of the remaining channels do

not depend on time, denote those aq, q = S + 1..M . We normalize time so that the volume

of cells doubles in a unit time interval, after which the cell divides.

Following Gillespie [45] we introduce the following probabilities,

• P (τ, µ|Y, t)dτ - probability that, given the state Y = (X1, . . . , XN ) at time t, the next

reaction in V (t) will occur in the infinitesimal time interval (t + τ, t + τ + dτ), and it

will be reaction Rµ
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• aµ(t)dt - probability that, given the state Y = (X1, . . . , XN ) at time t, reaction Rµ

will occur in V within the interval (t, t + dt).

We compute P (τ, µ|Y, t)dτ as a product of the probabilities that no reaction will

occur within (t, t+τ) times the probability that Rµ will occur within the subsequent interval

(t + τ, t + τ + dτ)

P (τ, µ|Y, t)dτ = P0(τ |Y, t) · aµ(t + τ)dτ (3.2)

To find P0(τ |Y, t) we note that [1− dτ
∑

µ aµ(t + τ)] is the probability that no reaction will

occur during dτ , hence

P0(τ +dτ |Y, t) = P0(τ |Y, t)[1−dτ
∑

µ

aµ(t+ τ)] = P0(τ |Y, t)[1−dτ
∑

s

as(t+ τ)−dτ
∑

q

aq]

(3.3)

Using the initial condition P0(τ = 0|Y, t) = 1, we solve the differential equation (3.3) to find

P0(τ |Y, t) = exp[−
∑

s

∫ t+τ

t
dτ ′as(t + τ ′)] · exp[−τ

∑
q

aq] (3.4)

Next we combine Eqs.(3.2,3.4),

P (τ, µ|Y, t) = aµ(t + τ) · exp[−
∑

s

∫ t+τ

t
dτ ′as(t + τ ′)] · exp[−τ

∑
q

aq] (3.5)

Now we specify the dependence of as on time explicitly, assuming that V (t + τ) =

V (t) exp[cτ ] with c = ln(2).

Performing the integration in Eq.(3.5) we find,

P (τ, µ|Y, t) =


as(t) exp[−cτ ] · exp[−fc(τ)As − τAq] s = 1..S,

aq · exp[−fc(τ)As − τAq] q = S + 1..Q,

(3.6)

with

As =
∑

s

as(t), Aq =
∑

q

aq, fc(τ) = (1− exp[−cτ ])/c, (3.7)
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It is easy to compute the probability of any reaction to occur between time t and t + T .

Integrating Eq. (3.6) over time and summing over all channels, we find,∫ T

0

∑
µ

dτP (τ, µ|Y, t) = 1− exp[−Asfc(T )− TAq] (3.8)

The limit of this equation when T →∞ yields the probability that any reaction will occur

after time t.

NP =


1, Aq 6= 0,

1− exp[−As/c], Aq = 0

(3.9)

This probability is 1 when at least one time-independent channel is present (Aq 6= 0).

However if Aq = 0, this probability is less than one because there is a finite probability

exp[−As/c] that no reaction will ever occur due to the exponentially decaying propensity

of all of the reactions.

When all channels are time-independent, as = 0, s = 1..S Eq.(3.6) is reduced to

the standard formula derived by Gillespie [45],

P (τ, µ|Y, t) = aµ · exp[−τ
∑

µ

aµ], (3.10)

where the summation over µ now includes all channels. We note that the same result is

recovered in the formal limit c → 0 and limc→0 fc(τ) = τ , which corresponds to time-

independent volume.

We should note that in fact the cell volume grows exponentially only until it

doubles from its original value V0, after which the cell divides and the volume is reset to

V0. So we may only use formula (3.5) for times t + τ < tn, the next cell division time, (or

equivalently, for mod (t + τ) < 1)

In order to implement Direct Gillespie algorithm we must address two questions:

when the next reaction will occur and which reaction it will be.
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Next reaction time. It is convenient to distinguish three possible scenarios,

depending on the presence of time-dependent channels.

Case (1), Aq 6= 0, As 6= 0. Here we have both types of reactions and use Eq.(3.6). To find the

time of the next reaction, t+τ , we use the inversion method [46]. According to this method,

in order to map the uniform random number (URN) to a number from a distribution with

a given probability density function (PDF), one has to obtain a distribution from this PDF,

draw a URN, set the distribution function equal to this number, and invert the equation.

Using Eq.(3.6), and summing P (τ, µ|Y, t) over all channels and integrating over time up to

τ ′ = τ , we find the distribution function,

F (τ, |Y, t) =
∫ τ

0
dτ ′

∑
µ

P (τ ′, µ|Y, t) = 1− exp[−fc(τ)As −Aqτ ] (3.11)

Let u1 be a URN, then the time interval until the next reaction is given by the solution of

the transcendental equation (1− u1 is also a URN),

exp[−fc(τ)As −Aqτ ] = u1 (3.12)

which may be expressed using a Lambert function W 1 as

cτ = W (α exp[α + β])− α− β, with α = As/Aq, β = c ln(u1)/Aq (3.13)

If the time of the next reaction t + τ with τ obtained from Eq.(3.13) is less than

the time of the next cell division tn, the time is advanced to t + τ and one of the reactions

is selected (see below). However, the time of the next reaction calculated using τ from

Eq.(3.13) may exceed the time of the next cell division. In this case we simply advance

time to the next cell division time tn, divide the volume and the numbers of proteins by
1Lambert function, W (x) is a solution of the equation y exp[y] = x. Here we use the nonnegative part of

the principal branch of W . It is of the same complexity as the log function and may be effectively evaluated
for x ≥ 0. For details see R.M. Corless, G.H. Gonnet, D.E.G. Hare, D.J. Jeffrey, and D.E. Knuth, ”On The
Lambert W Function”. Adv. Comp. Math. 5, pp. 329-359, (1996)
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Figure 3.1: Distribution function of time until the next reaction for Case 2 when no time-
independent channels are present. If URN u1 is greater than F1, instead of selecting the
next reaction, the cell division at time [t] + 1 is performed.
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two (more generally, this division may be non-even and chosen from a binomial distribution

or partitioned in accordance with some empirically determined distribution), and select τ

again.

Case (2), Aq = 0, As 6= 0. In this case only time-dependent channels are present

and we use Eq.(3.6) with aq = 0, q = S + 1..M . As a result we obtain

cτ = ln
[

As

As + c ln(1− u1)

]
(3.14)

This case is special because there is a finite possibility that no reaction will happen

in the interval τ = [0,∞].

Formally, Eq.(3.14) has no solution τ for u1 > F∞ = 1 − exp[−As/c] (see Figure

3.1). In this case, as in the case when the solution τ exists but {t + τ} > 1, no reaction

is implemented but time is advanced to the time of the next cell division (to tn), and the

volume and number of proteins are reset.

Case (3), Aq 6= 0, As = 0. This is the standard situation covered by Gillespie

algorithm, and the time to the next reaction is given by

τ = − 1
Aq

lnu1 (3.15)

Which reaction to choose. This step is similar to the standard DG algorithm.

The only difference comes from the fact that in the interval [t, t + τ ], the time-dependent

propensities change due to cell growth, and thus one has to choose which reaction will occur

based on the propensities at time t + τ . Using a second URN u2 we find the channel ν = µ

µ−1∑
ν=1

aµ(t + τ) < u2(Aq + As(t + τ)) ≤
µ∑

ν=1

aµ(t + τ), 1 ≤ ν ≤ M (3.16)

To summarize, the modified Direct Gillespie algorithm contains the following steps:



44

1. Input values for cµ , µ = 1, . . . ,M and initial state (x1, . . . , xN ), set t = 0.

2. Compute aµ = hµ ·cµ, along with As =
∑

s as(t), Aq =
∑

q aq, s = 1..S, q = S +1..M .

3. Generate uniform random numbers u1, u2.

4. Check if Aq is zero; if it is then use Eq.(3.14) to compute the time interval τ until the

next reaction, otherwise compute τ according to Eq. (3.13)

5. Check whether mod (t + τ) < 1. If yes, go to the next step. If no, update time

t → [t] + 1, reset volume V → V0 and the number of proteins of each species in the

cell xi → xi/2, and return to step 2.

6. Find the channel of the next reaction µ using Eq. (3.16)

7. Update time t → t + τ , and adjust xi in accordance with the particular reaction rµ.

Proceed to step 2.

Let us now discuss under what conditions our modified Time-dependent Direct

Gillespie algorithm (TDG) is expected to yield results that differ from a naive application

of the standard Direct Gillespie, which we will denote the Naive Direct Gillespie (NDG)

approach. This naive approach arises from a natural assumption for generalizing the Gille-

spie algorithm, whereby the time-dependent rate constants are simply updated after each

time step (i.e, the algorithm is not rederived). This corresponds to using the instantaneous

values of the propensities associated with the current (at the moment of reaction) value

of the cell volume. First consider the simple case with a single time-dependent channel.
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Compare the distributions for the time interval until the next reaction,

P1(τ |t) =a(t) exp[−fc(τ)a(t)− cτ ], (TDG) (3.17)

P0(τ |t) =a(t) exp[−a(t)τ ], (NDG) (3.18)

In both cases the distribution functions decay exponentially at a rate proportional to a(t).

When a(t) � 1, in both cases the mean value of τ is much smaller than one. Additionally,

cτ may be neglected as compared with the much larger term fc(τ)a(t) = a(t)(τ + O(τ2)) ≈

a(t)τ . Therefore, for small values of τ , the distributions (3.17,3.18) are nearly the same.

Thus, when the propensity as is large, the two algorithms should yield almost identical

results. On the other hand, when a(t) is small, the probability that a reaction will occur

during the cell doubling time according to TDG algorithm approaches a/(2 ln 2), whereas

according to the naive NDG algorithm, it is a. Thus, the difference between these two

algorithms for small a can be significant.

3.4 Example: Transcriptional Regulation without Feedback

In order to concretely illustrate the difference between the correct algorithm (TDG)

and the naive approach (NDG), we now turn to a simple yet nontrivial example where

analytic progress can be made. The example involves a single gene which fluctuates between

two states S0 and S1. The transition S0 → S1 occurs when a regulator protein (whose

number is assumed to be constant throughout the cell cycle) is bound to the gene’s promoter,

and so this transition probability is inversely proportional to the cell volume v. Upon

division of the cell, both its volume and the number of all proteins are halved. For simplicity,

we assume that the number of regulator proteins quickly reaches a steady-state value. We

neglect the fast relaxation of the number of regulator proteins, and assume that an effective
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propensity for the production of proteins is inversely proportional to the volume at any

instance of time. The propensity of the reverse process S1 → S0 is assumed independent of

the cell volume. The gene S is producing protein X at a rate α0 when it is in state S0, and

α1 when it is in state S1 (for definiteness, we assume α0 < α1). The biochemical reactions

describing this model system are summarized in Table 1.

Table 3.1: Biochemical reactions for a simple system describing a constitutive promoter.

µ reaction aµ

1 S0
k1/v−−−→ S1 k1/v s0

2 S1
k−1−−→ S0 k−1 s1

3 S0
α0−→ S0 + X α0 s0

4 S1
α1−→ S1 + X α1 s1

5 X
kx−→ kx x

Here v = exp[ln 2 t/T0], and T0 is the cell division time. At times t = nT0, the

volume v is halved v → v/2, and the number of proteins is halved, x → x/2. In the case of

constant volume, this single-gene constitutive model was explored by Kepler and Elston [62]

using a master equation for the time-dependent probability ps
x of having both the promoter

in the state s = [0, 1] and x proteins. Using a similar approach for growing and dividing cells,

we obtain equations for the dynamics of the partial moments M s
q ≡ 〈xq〉s =

∑
x xqps

x (see

Appendix). The zeroth moments M s
0 represent the probabilities for the promoter to be in

the sth state. The sum of the first moments M1 = M0
1 + M1

1 is the average number of

proteins 〈x〉, and V ar = M0
2 + M1

2 − (M0
1 + M1

1 )2 is the variance of the number of proteins.

In the case of constant volume, these moments reach a steady-state [62], but when the

volume is allowed to oscillate, the moments asymptotically approach an oscillatory regime

as one might expect (see below Figure 3.2). The time-averaged probability of finding the
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promoter in an unbound (bound) state M0
0 (M1

0 ) can be accurately approximated by the

formulas M0
0 = k−1/(k−1 + 0.72k1) and M1

0 = 1−M0
0 .

Let us now describe the results of the simulations of the reactions listed in Table

3.4. In this simple example, the fast reactions 3 − 5 are computationally expensive in

the direct Gillespie algorithm, since the average time step between these reactions is very

small compared with the cell division time. In order to make progress on realistic problems

involving many such fast reactions, a more natural approach is a hybrid simulation technique

[1, 50], where the dynamics of the fast subset is modelled either deterministically or using

Langevin equations, while the slow reactions are modelled with Gillespie. We adopt this

approach and simulate the dynamics of the proteins X using a Langevin equation (B.6).

This equation was integrated using the Euler-Murayama method [39].

The differences between the use of the standard and modified Gillespie algorithm

for the slow reaction is evident in the distribution of residence times p0(tr), and the distribu-

tion of phases p(θ) describing transitions from the S0 to S1 state within a unit cell-doubling

interval, where θ = mod (t, 1) ∈ [0, 1] (since the propensity of the inverse reaction is inde-

pendent of volume, the residence time distribution for the bound state is simply described

by the Poisson statistics).

For small k1, most of the time step 2 of the algorithm yields negative result (ran-

domly selected time t + τ exceeds the next cell division time), so the time will be advanced

to the next cell division time and another draw is performed. Therefore, most of the tran-

sitions from S0 to S1 will be selected at the cell division time when V = 1. Then it is

easy to see from (3.17), (3.18) that the phase distributions for the two versions of Gillespie
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algorithm are

p0(θ) ≈ 1 (NDG), p1(θ) ≈ 21−θ ln 2 (TDG) (3.19)

Accordingly, the distribution of residence times at small k1 is mostly determined by the

number of unit time intervals during which the transition S0 → S1 does not occur. The

probability of the transition to not occur per unit time is e−k1 for NDG algorithm and

exp(−k1/2 ln 2) for TDG algorithm, thus for long times the same distribution scales as

p0(tr) ∝ e−k1tr (NDG), p1(tr) ∝ 21−θ ln 2 (TDG) (3.20)

In Figure 3.2 we show the time dependencies of ensemble-averaged promoter state

s1 (a,d) and protein concentration 〈x〉/v (b,c,e,f) obtained numerically using the standard

and modified Direct Gillespie algorithms for four different sets of parameters. In the same

plots we put single realizations of s and x. As seen for the plots, modified Gillespie algorithm

yields the results virtually indistinguishable from the theoretical curves. For comparison,

Figure 3.2a,d also show the mean values of s1 as a function of time obtained using standard

Gillespie algorithm based on instantaneous volume. In this case visible deviations from

theoretical dependencies are obtained.

Figure 3.3 shows the time-averaged characteristics s0, 〈x〉, V ar as functions of the

forward propensity k1 for α0 = 100, α1 = 500, kx = 10, k−1 = 1. As seen for this Fig-

ure, TDG simulations are in excellent agreement with master equation analysis, whereas

standard NDG simulations show systematic deviations.

Figure 3.4,a illustrates the distributions of phases θ of “forward” reaction S0 → S1

within a single cell cycle and Figure 3.4,b shows the distribution of residence times tr in

S0 state. These distributions obtained numerically with NDG and TDG algorithms are in

good agreement with theoretical predictions (3.19), (3.20) for small k1.
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Figure 3.2: Time series of the probability of state S1 of the promoter, s1, (a,d) and
the concentration of proteins 〈x〉/v (b,c,e,f) obtained with NDG and TDG algorithms and
theoretically using master equation approach (ME) for different parameter values. Left
column: k1 = k−1 = 0.1, right column k1 = k−1 = 10, second row: kx = 0.01, α0 = 10, α1 =
50, third row: kx = 10, α0 = 100, α1 = 500. Dashed lines in panels (b,c,e,f) show the
(〈x〉 ± σx)/v range of concentration fluctuations. Dash-dotted lines show a single typical
trajectory of the stochastic system. The TDG time series virtually coincide with theoretical
curves.
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3.5 Discussion

In this work, we have derived a generalisation of the Gillespie algorithm to account

for cellular growth and division, and compared this algorithm with an adiabatic Gillespie

routine where the volume is simply updated as time progresses. While the adiabatic routine

was shown to be quite accurate if any of the chemical reactions are fast compared with the

growth rate, it is typically not feasible in realistic settings to simulate all reactions with a

pure Gillespie-type routine. We therefore focused our comparison on a hybrid simulation

technique [17, 24], whereby the fast reactions were simulated with Langevin equations, and

the slow reactions simulated with Gillespie method. In these simulations, the average time

between random events may be significant as compared with the cell division time, and

here we were able to demonstrate the necessity of using our generalisation of the Gille-

spie algorithm. Importantly, the generalised algorithm does not significantly increase the

computational expense, so this derived method is preferred regardless of accuracy consid-

erations. Our method specifies how a periodic deterministic event, namely cell division,

can be incorporated into the Gillespie routine. While in order to illustrate our approach,

we considered deterministic volume growth and division, future work could focus on addi-

tional sources of noise, such as a stochastic growth rate, fluctuations arising from unequal

partitioning of molecules at cell division, or variations in the DNA replication time before

division. As experiments begin to discriminate between the sources of noise in the cellular

environment, simulation routines that correctly incorporate individual noise sources will be

increasingly useful.

Acknowledgements: This chapter contains materials in Lu T, Volfson D, Tsimring L, and
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Ladder Reaction Network

Achieving a quantitative understanding of the reaction networks that transduce

cellular signals is one of the major challenges in biology. Signaling networks are found in a di-

verse set of organisms, ranging from prokaryotes to eukaryotes, and provide mechanisms for

fundamental processes such as gene-regulatory control and cellular communication. Qual-

itative descriptions of the biomolecular components and mechanisms of cellular signaling

have greatly improved our understanding of how cells function and have given insights into

how to intervene therapeutically when such signals are miscommunicated. Experimental ad-

vances now allow quantitative studies of signal transduction and thereby inspire theoretical

treatments. Many networks of nonlinear reactions exhibit interesting behavioral features as

ultrasensitivity, adaption, robustness, and discrete “all-or-none” response which have been

quantitatively explored [56, 18, 35, 36, 93, 97, 27, 16].

A commonly occurring network topology is the reaction ladder network . This net-

work may be viewed as a generalization of multiple-site phosphorylation/dephosphorylation

cascades, such as the pathway governing nuclear factor activation of T-cells (NFAT), which

54
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regulates the response of T-cells to antigen signaling [22, 54, 55, 100, 94]. To stimulate

T-cells, NFAT must be transported to the nucleus. This transition occurs in response to a

conformational change that exposes a nuclear localization sequence (NLS), which is normally

buried in the protein interior in the inactive conformation and thus makes the NFAT inac-

cessible to transport by importin. The NLS becomes exposed in response to the progressive

dephosphorylation of specific serine residues in its regulatory domain. This dephosphoryla-

tion occurs in response to an increase of intracellular calcium ions that activate calcineurin,

which then dephosphorylates the masking residues. Once a sufficient number of sites have

been dephosphorylated, conformational changes expose the NLS so that it can now be trans-

ported into the nucleus by the importin. This is not a one-way process. Inside the nucleus,

the NFAT may be progressively re-phosphorylated by kinases and subsequently exported

to the cytoplasm by the exportin Crm1 [54, 55]. To summarize this network generically,

the NFAT can exist in a variety of phosphorylation states and at various locations within

the cell. Transitions between these phosphorylation/compartmentalization states can be

described as a network of reactions consisting of two groups of species Ci and Ui, where

the Ci species reside in the cytoplasm and the Ui species reside in the nucleus (Fig. 4.1).

On each side of the cytonuclear barrier there are M + 1 species having different levels of

phosphorylation. This network topology can generally be interpreted as representing either

processive or distributive mechanisms of phosphorylation [48, 7]. If the subscript i labels

a specific order of phosphorylation, e.g., phosphorylation of residue A, followed by residue

B, followed by residue C. . ., the network describes the processive (de)phosphorylation; if

i represents for the number of (de)phosphorylated residues, the network describes the dis-

tributive phosphorylation mechanism, e.g., one residue is first phosphorylated, followed by
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two residues, then three residues. . . . Of course the rates connecting i and i+1 will be differ-

ent for the two mechanisms, but the network topology remains the same. In the following,

we study the processive phosphorylation of residues.

The rates of both phosphorylation (by kinases) and dephosphorlyation (by phos-

phatases) are naturally modeled as Michaelis-Menten reactions with rates that depend on

the availability of enzymes. Although dephosphorylations dominantly occur in the cyto-

plasm and phosphorylations dominantly occur in the nucleus in the case of NFAT signal-

ing [22, 54, 55], in our model we allow them both to occur in either environment with

different rates. The protein phosphorylation state by affecting the conformation of that

protein determines how easily it is translocated into or out of the nucleus. In our model ki
+

represents the reaction rate from Ci to Ui and ki
− is the rate of going from Ui to Ci. An

individual NFAT molecule thus makes random walks through its prosphorylation/location

space according to these microscopic reaction rates.
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Figure 4.1: The reaction ladder network. The C and U represent two distinct com-
partmental locations of the signaling molecules, say, cytoplasmic and nuclear regions. The
subscript i (i = 0, 1, 2, ...,M) indicates the dephosphorylation states. The C̄i and Ĉi (Ūi and
Ûi) are the signaling protein-enzyme complex forms. The subscripts f , b and c represent
forward, backward and catalyzed rates of each reaction. The ki

+ and ki
− are the transport

rates for transitions between Ci and Ui.
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The NFAT signaling network shares its topology with many other networks in the

cell. It simplifies to a typical two-state system if there is only a single phosphorylation

state; the network resembles an enzymatic futile cycle when there are two phosphorylation

states but no compartmental transport [96]; and the network is also similar to the Monod-

Wyman-Changeux Model [80]. The reaction ladder network thus presents a paradigm for

the interplay of spatial heterogeneity and post-transcriptional modification in the flow of

biological information. The modification reactions, conformational changes and intercom-

partmental transports, are intrinsically stochastic events. On the ladder network each

signaling molecule follows a path through the network, causing transcription to occur at

random times. When the modifying enzymes are abundant, the network is effectively lin-

ear and each molecule walks through location/phophorylation space independently. When

enzymes are limited in number, the network becomes nonlinear and the walks of different

signaling molecules interact by competing for enzymes. Ultimately it takes only one NFAT

to turn on its target gene. Thus we can say, somewhat anthropomorphically, that the indi-

vidual NFAT’s are competing in a race to the DNA. We thus have a problem of determining

the statistics of mean first passage for multiple walkers.

The statistical problem of calculating the mean first-passage time for random

walkers has a distinguished history [77, 113, 70, 15, 123]. Here we will find the first passage

time and the survival probability in terms of a dynamic probability distribution. We will

then show that the exact solution of this problem of multiple random walkers having the

same goal does indeed agree with the results of Monte Carlo simulation of the network when

enzymes are unlimited. The mean first passage time distribution is found to be asymmetric

and has a long tail. The solution also shows there is an optimal forward reaction rate
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yielding the most rapid arrival of a viable signaling protein to the target.

4.1 The Distribution of First Passage Times and Survival

Probability

Different phosphorylation and dephosphorylation processes are catalyzed by spe-

cific enzymes [87, 53]. For simplicity of treatment, we assume a universal kinase and a

universal phosphatase, Kc and Fc, in the cytoplasm and another set, Ku and Fu, in the

nucleus. Also for simplicity we assume only apo proteins can be transported between the

cytoplasm and the nucleus. The enzymes (Kc, Fc, Ku and Fu) as well as the signaling

protein-phosphatase complexes (C̄i or Ūi) and the signaling protein-kinase complexes (Ĉi

or Ûi) cannot be transported.

Suppose that there are ci, c̄i and ĉi proteins in the Ci, C̄i and Ĉi states and

ui, ūi and ûi proteins in the Ui, Ūi and Ûi states respectively (i = 0, 1, 2, ...,M). Then,

the numbers of proteins in each state is described by a 6M + 6 dimensional vector ~n ≡

(ĉ0, c0, c̄0, û0, u0, ū0; ...; ĉM , cM , ūM , ûM , uM , ūM ), where ĉ0, ū0, ûM and c̄M are zeros due

to the boundaries of the network. The numbers of the enzymes in the system are de-

fined by a four dimensional vector ~E = (Fc,Kc, Fu,Ku). We define a state |Ψ(t)〉 as

|Ψ(t)〉 ≡
∑

~n,~E
P (~n, ~E, t)|~n, ~E〉, where P (~n, ~E, t) is the probability having ~n and ~E num-

bers of proteins and enzymes in the network. The Master equation describing the network

can then be written as ∂
∂t |Ψ(t)〉 = W |Ψ(t)〉, where W is the transition rate matrix whose

dimension depends on the total numbers of enzymes and substrates.

Generally solving this Master equation represents a challenging many-body prob-

lem. However, when the numbers of enzymes in the cytoplasm and the nucleus are very
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large compared to the total number of signaling proteins, as often happens in real biological

systems, the phosphorylation and dephosphorylation processes which lead to the transi-

tions of the signaling molecules are uncorrelated. Each protein can then be modeled as

an independent random walker. Our assumption of an enzyme-saturated situation makes

the mathematics of the network relative simple and the problem of multiple but indepen-

dent random walkers can be solved exactly. This exact solution allows several interesting

properties of the network to be explored.

A key aspect characterizing signaling pathways is the time to achieve a response

after receiving an upstream signal, i.e., the typical delay time between a stimulus and the

corresponding response. This is a stochastic quantity. The response occurs when one of the

random walkers successfully binds to the DNA. To quantify this, we may consider the first

passage time for a random walker starting from the initial position ~ri, arriving at the final

position ~rf for the first time. F (~ri, ~rf , t) is the probability distribution of such a random

walker, initially in ~ri, whose first passage time of reaching the final position ~rf is time t.

F (~ri, ~rf , t) is related to the occupancy probability P (~ri, ~rf , t), which is the probability that

a particle is found at the position ~rf at time t irrespective of when it arrived. This relation

is

P (~ri, ~rf , t) =
∫ t

0
dτF (~ri, ~rf , τ)P s(~rf , ~rf , t− τ) (4.1)

Both the first passage time probability F (~ri, ~rf , τ) and occupancy probability P (~rf , ~rf , t)

are normalized through
∫

dtF (~ri, ~rf , t) = 1 and
∫

d~rfP (~ri, ~rf , t) = 1. P s(~r, ~r, t) is the

occupancy probability with the identical initial and final position, i.e., the chance of a

particle staying at and returning to the same position ~r after time t. In terms of Laplace
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transforms, the above equation can then be rewritten as

F (~ri, ~rf , t) = L−1
{ L{P (~ri, ~rf , t)}
L{P (s)(~rf , ~rf , t− τ)}

}
(4.2)

The survival probability is the probability that up to time t the random walker

still has never reached the target position ~rf , which is represented as S(~ri, ~rf , t). By the

definition, the survival probability S is

S(~ri, ~rf , t) = 1−
∫ t

0
dτF (~ri, ~rf , τ) (4.3)

The above first passage time probability and survival probability are formulated

for a single particle, it is, however, straightforward to expand this to the multi-particle case

if there is no interaction between random walkers. In the case of large number of enzymes,

multiple particles move independently and thus the probability for having all N particles

can be obtained by multiplying the survival probabilities for each single particle, i.e.

S(~ri, ~rf , t;N) = SN (~ri, ~rf , t; 1) =
(
1−

∫ t

0
dτF (~ri, ~rf , τ ; 1)

)N
(4.4)

The probability of having exactly z of total N particles in the position ~rf at time

t irrespective of their arrivals is

P (~ri, ~rf , t;N, z) =
N !

z!(N − z)!
P z(~ri, ~rf , t) · [1− P (~ri, ~rf , t)]N−z (4.5)

One defines the accumulated first passage time probability F ac(~ri, ~rf , t;N, z) as

the probability that at time t z of the total N particles have all arrived at the destination

for the first time by time t. The expression is

F ac(~ri, ~rf , t;N, z) =
zN !

z!(N − z)!
SN−z(~ri, ~rf , t; 1) · [1− S(~ri, ~rf , t; 1)]z−1 · F (~ri, ~rf , t; 1) (4.6)

We may also defines the simultaneous first passage time probability F si(~ri, ~rf , t;N, z),

which is the probability that at time t z of the total N particles simultaneously arrived at
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the destination for the first time. The corresponding expression is the same as that for

single particle case, i.e., F si(~ri, ~rf , t;N, z) = L−1
{

L{P (~ri,~rf ,t;N,z)}
L{P (s)(~rf ,~rf ,t−τ ;N,z)}

}
.

4.2 Results

It is easy to assign different rates to each step and carry out the calculations.

For simplicity, we will first assume uniform forward reaction rates αf as well as uniform

backward rates αb and catalyzed rates αc for all phosphorylation and dephosphorylation

events. We also assume that the transportation rates ki
+ increase evenly and ki

− decrease

evenly with the increase of the number of unphosphorylated sites i, i.e. ki
+ = kM

+ (γ+)i−M ,

ki
− = k0

−(γ−)−i (i = 0, 1, 2, · · · ,M). This assumption captures the empirical observation

that fully dephospharylated NFAT is much easier to transport from the cytoplasm into the

nucleus than phospharylated NFAT. In the nucleus, the fully phospharylated NFAT is most

easily transported to the cytoplasm [87].

4.2.1 Comparison of the exact solution with simulation

Figure 4.2 illustrates three trajectories taken from a Monte Carlo simulation of a

signaling protein traveling from the initial fully phospharylated state C0 in the cytoplasm

to the fully dephosphorylated state UM in the nucleus [43, 73]. The red diamonds in Fig. 4.2

indicate that the protein is found in the cytoplasm regardless of its specific form (Ci, C̄i,

or Ĉi) while the green dots indicate that the protein is found in the nucleus. Transitions

between red and green sites indicate a transversal across the cytoplasm-nucleus barrier while

up and down transitions indicate phosphorylation and dephosphorylation events.

In Fig. 4.3, we compare the mean first passage time probability and survival prob-
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Figure 4.2: Three typical trajectories of a random walker traveling from C0 to UM is
plotted as time vs. site number, i.e. the state of dephospharylation. The red diamonds
label a protein in the cytoplasmic form (Ci, C̄i or Ĉi), while the green dots label the nuclear
form (Ui, Ūi or Ûi). The parameters are chosen as following: the phosphorylation site
number M = 5, the forward reaction rates α′f = βf = β′f = αf = 0.2, the backward rates
α′b = βb = β′b = αb = 1.0, the catalyzed rates α′c = βc = β′c = αc = 1.0, the transport rates
kM

+ = k0
− = 0.2, and the ratio of transport rates γ+ = γ− = 2.718.

ability from the exact solution with those from the Monte Carlo simulations. The left panel

shows several distributions of the first passage time probability computed from the exact

solutions (solid lines) and those computed from the stochastic simulations (broken lines)

with the same parameters, the right panel shows the corresponding survival probabilities

from the exact solutions (red broken lines) and those from simulations (crosses). These

simulation results agree very well with the exact solutions.

An exact solution can be found not only for the steady state distribution but also

for the dynamics away from the steady states. Table 4.1 shows the occupancy probability
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Figure 4.3: Comparisons of the probabilities of the first passage time and survival prob-
abilities. Left panel: probability vs. the first passage time. Right panel: the survival
probability vs. time. Parameters are the same as those in Fig. 4.2.

Table 4.1: Probability distribution of a random walker at time t = 50. For a given i,
the three terms Ci, C̄i and Ĉi with same phosphorylation states are collected together to
represent the total probability of a protein at the i phosphorylation state in the C group.
The three terms Ui, Ūi and Ûi are also collected together for the same reason. Parameters
are chosen the same as those in Fig. 4.2.

Ci + C̄i + Ĉi Ui + Ūi + Ûi

0.2236 0.0294
0.2098 0.0358
0.1540 0.0410
0.0983 0.0424
0.0571 0.0404
0.0358 0.0325

distribution at time t = 50s when the network is far from the steady state. The difference

between the exact solution and simulation is around 2%, which is essentially the sampling

error. Figure 4.4 further explores the network dynamics. For a network with size M=5,

the walker initially resides in the C0 state (t = 0s) but propagates to other states by time

t = 10s and t = 50s. Eventually the probability reaches a steady profile. The last time

shown, t = 1500s, is much later than the mean first passage time 180s).

We can also compare the model’s predications with laboratory experiments carried
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Figure 4.4: Dynamic propagation of the probability distribution. In the site axis, the C(i)
and U(i) (i = 0, 1, · · · , 5), defined as C(i) = Ci + C̄i + Ĉi and U(i) = Ui + Ūi + Ûi, are
collected terms representing the probabilities of a protein at the i phosphorylation state in
the C group and the U group respectively. Four time slices t = 0, 10, 50, 1500 are chosen to
show the dynamic propagation. The parameters are chosen the same as those in Fig. 4.2.

by Dolmetsch et al.. These experiments measure differential NFAT activation as a function

of the amplitude and duration of a calcium stimulus [28]. Their work uncovered three

different response patterns of the nuclear fraction of total NFATs that result from different

stimulus (spike followed by plateau, a single spike and a low-level plateau). In Fig. 4.5,

stimuli similar to experimentally used inputs (left panel) are entrained to our model and
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Figure 4.5: Comparisons of experiments with the model. (a) The concentration of phos-
phatases in cytoplasm is as the input with three different patterns: spike followed by plateau
(red line), a single spike (green line), and a low-level plateau (black line), which are the
same as experimental stimuli [28]. (b) Fractions of proteins in nuclear forms predicted from
the model and those from experiments. Different colors correspond to different stimuli.
The curves in the inset are experimental results from Dolmetsch et al. [28]. Parameters are
chosen as: the phosphorylation site number M = 5, the forward reaction rates βf = 1.0,
α′f = β′f = 0.1, the backward rates αb = βb = 1.0, α′b = β′b = 0.1, the catalyzed rates
αc = βc = 10.0, α′c = β′c = 10.0, the transport rates kM

+ = 0.6, k0
− = 0.1, and the ratio of

transport rates γ+ = γ− = 2.718.

are also shown to result in three response patterns (right panel). The predicted patterns

agree well with those seen in the experimental studies (inset of right panel).

4.2.2 An optimal forward reaction rate favors the passage

Many studies have hightlighted the efficiency, sensitivity, and robustness of signal

transduction networks [56, 36, 69]. In this regard the ladder network exhibits an interesting

property, the existence of an optimal value for the forward reaction rates. Figure 4.6

shows the mean, the most probable and the root-mean-square of the first passage time of a

signaling protein from the C0 state to the UM . Clearly there is an optimal forward reaction

rate for the passage: The optimum occurs at αf ' 1 for the mean first passage time, but

the optimal values of αf ' 2 for the most probable and the root-mean-square passage times
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are around 2.

The existence of this optimum may seem to conflict with the intuition that the

higher enzyme concentration is, the shorter the passage time is. When the forward re-

action rates are very slow, the forward reactions do indeed constitute a bottleneck. But

with increasing forward reaction rates, the walkers will be found more and more often in

the signaling protein-enzyme complex forms. This helps signaling proteins move towards

dephosphorylated states. Eventually when the forward reaction rate is too large compared

to the transportation rates k+ and k−, the signaling proteins will then spend most of their

time in the transport incompetent complex forms (C̄i, Ĉi, Ūi or Ûi) rather than in the

apo forms required for transport. This ultimately leads to slower transport between the

cytoplasm and the nucleus.

This intriguing phenomenon could also be qualitatively explained as follows. The

passage time of a signaling protein from the fully phosphorylated state in the cytoplasm

(C0) to the fully dephosphorylated state in the nuclear (UM ) consists of two parts: the

time for dephosphorylation (Td) and the time for transport (Tt). The typical time from

site A to its neighbor B can be estimated by adding the inverse rates using the “one-step-

forward” approximation. Assuming there are total l neighbors Ci, i = 1, ..., l (including

B = Cj) that A can directly jump to with rate ki, the typical time is ( kj∑
ki
×kj)−1. For each

dephosphorylation step from state i to i+1, this estimate yields a time (2αf +ki
+)/α2

f +(αb+

αc)/α2
c . The total dephosphorylation time is about Td = M×[(2αf +k̄+)/α2

f +(αb+αc)/α2
c ],

where k̄+ is the average of ki
+’s. The transport time from Ci to Ui can be approximated as

(2αf + ki
+)/ki2

+ based on similar approximations. Since the transport could happen in any

Ci state, the mean transportation time requires averaging over all i, which results in a time
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Tt = (2αf + k̄+)/k̄2
+. The total mean passage time can therefore be approximated as

T =
{

M [
2αf + k̄+

α2
f

+
αb + αc

α2
c

] +
2αf + k̄+

k̄2
+

}
(4.7)

The existence of an optimal forward reaction rate requires the existence of a solution to

the equation ∂T/∂αf = 0 has solution(s). As a result, we must have the equation α3
f −

Mk̄2
+αf −Mk̄3

+ = 0. With the parameters shown in Fig. 4.6, the optimal forward rate is

estimated to be 0.49, which is comparable with the exact solution (' 1) as shown in the

figure.
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Figure 4.6: An optimal forward reaction rate αf favors efficient passage. The horizontal
axis is the forward reaction rate swept from 0.05 to 50. The three curves represent the
mean first passage time, the root mean square first passage time and the most probable
first passage time according to the forward rate αf . Other parameters are fixed as the
phosphorylation site number M = 5, the forward reaction rates α′f = βf = β′f = αf , the
backward rates α′b = βb = β′b = αb = 1.0, the catalyzed rates α′c = βc = β′c = αc = 1.0, the
transport rates kM

+ = k0
− = 0.2, and the ratio of transport rates γ+ = γ− = 2.718.
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4.2.3 Asymmetry of the reaction network effects the passage

Although the ladder network is symmetrical in topology, the reaction rates in the

cytoplasm and nucleus are quite different owing to different availabilities of appropriate

enzymes. To illustrate the effect of the network’s asymmetry on signal transduction, we

employ two parameters to probe this: the phosphorylation asymmetry parameter and the

transport asymmetry parameter. The phosphorylation asymmetry parameter is defined as

θ =
a′f
af

= a′b
ab

= a′c
ac

=
b′f
bf

= b′b
bb

= b′c
bc

, where θ ≤ 1, which characterizes the preference for

undergoing dephosphorylation compared to the phosphorylation processes in the different

environments. The other parameter, transport asymmetry parameter φ, is defined as φ =

af

bf
= ab

bb
= ac

bc
=

a′f
b′f

= a′b
b′b

= a′c
b′c

, which characterizes the relative activities of reactions in the

cytoplasm compared to the corresponding reactions in the nucleus.

Figure 4.7 illustrates the effects of these asymmetries on the network behavior.

The left panel shows that increasing the phosphorylation asymmetry slows down signaling;

the right panel shows that increasing the transport asymmetry speeds up signaling.

4.2.4 The first passage time distribution has a long tail

The probability distribution of the first passage time has a long tail due to the

network’s hierarchical structure. In the limits of either large or small forward reaction rates,

the probability distribution is very flat and the tail can be extremely long.

With the long-tail distribution, the mean first passage time can be greatly different

from the most probable first passage time. In Fig. 4.3, the most probable first passage times

for αf = 0.5, 0.2, 0.1 are 40, 60 and 100s respectively. However, the ratio of the mean first

passage time and the most probable first passage time ranges from on the order of 1 to
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Figure 4.7: Effect of the asymmetry of the reaction networks to the passage rate. The left
panel shows a plot of characteristic times as functions of the parallel asymmetry parameter
θ. The other parameters are fixed at the phosphorylation site number M = 5, the forward
reaction rates αf = βf = 0.2, the backward rates αb = βb = 1.0, the catalyzed rates
αc = βc = 1.0, the transport rates kM

+ = k0
− = 0.2, and the ratio of transport rates

γ+ = γ− = 2.718. The right panel is the plot of characteristic times as functions of rung
asymmetry parameter φ. The other parameters are fixed at M = 5, α′f = β′f = 0.2,
α′b = β′b = 1.0, α′c = β′c = 1.0, kM

+ = k0
− = 0.2, γ+ = γ− = 2.718.

the order of 3 with the chosen set of parameters. Fig. 4.6 shows that the ratio of the most

probable first passage time and mean first passage time is large even on a logarithm scale.

4.3 Conclusions and Discussions

In this paper, we studied a general signal transduction network-reaction ladder

network that models multiple—site phosphorylation and cytonuclear transport. As often

happens for real networks, the enzymes are assumed to be abundant, and so each signaling

protein independently wanders through its various states of phosphorylation and location

in compartments. Except for the last binding step, the network is effectively linear and

therefore can be solved exactly. This exact solution is confirmed using the Monte Carlo

simulation. Even this simple network exhibits several interesting stochastic features. It
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exhibits a long tail of the probability distribution for the signaling time and there is an

optimal forward reaction rate that favors speedy signaling. This optimum suggests there

may be an optimal amounts of enzymes for efficient signal transduction.

When available enzymes are not abundant, the random walkers on the network

become correlated because they must share the limited resources of available enzymes.

Nonlinearity then starts to play an important role throughout the process not just in the

acquiring last step of the final target. In this situation when an enzyme is bound, several

phosphorylation or dephosphorylation events will occur before unbinding, similar to the

processive aspect of transcription [84]. It will be interesting to study such scenarios in or-

der to study the effects of oscillatory upstream signaling molecules on the network. These

will help us further understanding the phenomenology and quantitative design criteria of

effective signal transduction mechanisms.

Acknowledgements: This chapter contains materials in Lu T, Shen T, Zong C, Hasty J,

and Wolynes P, Statistics of cellular signal transduction as a race to the nucleus by multiple

random walkers in compartment/phosphorylation space, Proc. Natl. Acad. Sci., 103:16752-

16757 (2006).
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Variability and Diversity of

Cellular Populations

Stochasticity is an amazing property that exists ubiquitously in biological sys-

tems. Variation due to stochastic fluctuations occurs in various organisms and at different

scales [89, 60, 104, 29]. Numerous studies show that noise is not always negligible but

can play a significant role in many cellular functions and physiological behaviors. For ex-

ample, noise seems to underly the emergence of neural precursor cells from an initially

homogenous population during the development of Drosophila melanogaster [103]. Noise

contributes to the traversal of start and progression of yeast cells into the cell cycle [12].

Noise can also limits the precision of circadian clocks [11]. A recent study illustrates that

molecular random fluctuation influences the fates of cells infected with human immunode-

ficiency virus [117]. All these studies lead us to trace the origins of noise and looking for a

corresponding mathematical characterization.

Noise occurring at the genetic and molecular level has been intensive studied in

71
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the past few years [89, 60, 104, 47, 91]. Multiple sources contribute to the observable vari-

ability [109]. Stochasticity inherent to biochemical reaction events of gene expression is

classified as genetic intrinsic noise, such as fluctuations from transcription of a gene and

translation of mRNA. This noise arises from the intrinsic nature of chemical reactions as

molecular transformation. Variability arising from sources that are external to the bio-

chemical process of gene expression under consideration is termed genetic extrinsic noise.

Examples of extrinsic noise are fluctuations in the abundances of RNA polymerases and

ribosomes and different copy numbers of a gene. Noise in gene expression is propagated

through network cascades and the corresponding amplitude of the fluctuation can be either

increased or damped [101, 85, 102, 72].

However, variability at molecular level is not the final product of noise. Genetic

noise further triggers fluctuation and heterogeneity of entire cellular populations since dif-

ferent types of cells usually have distinct adaptations and fitness to environments, such as

different growth rates and survival capabilities [111, 121, 67, 10, 61]. A random switch of an

individual cell from one type to another can lead to dramatic changes at the level of an entire

population [86]. The discrete nature of cells ensures that cellular growth, division, death

and transitions between different types are ultimately and essentially non-deterministic.

These must generate additional contributions to population variation. Diversity of a cel-

lular population, representing the species richness of that population [68, 57], is therefore

affected intrinsically by all such stochastic factors. Source-oriented observations and theo-

retical studies in ecology also have reported various population fluctuations of animals and

plants, like plant species, animal populations, and all sorts of factors, like climate, age and

sex, are studied and discussed [21, 4].
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The existence of noise sources at multiple (molecular to cellular) levels and po-

tential couplings between these levels encourage us to search a quantification of phenotypic

cellular population variability.

5.1 Methods

Here is a simple example illustrating population variation and motivating the

development for measurements. For a two-phenotype community as shown in Fig. 5.1a, we

simulated the cellular population dynamics in a microfluidic chip using the Monte Carlo

method [45, 88] multiple times. We then recorded the cell populations of each runs in the

microfluidic chip and got the statistics of populations. Figure 5.1b shows the coefficients

of variation (standard deviation divided by mean) for each phenotype versus trial number

for different initial states. As can be seen clearly, two experiments, one starts with real low

cell numbers and the other starts with high cell numbers which fully fill the chip. These

have distinct difference of variation coefficients although these two sets of experiments have

a same environment and same microscopic rate coefficients of the community.

5.1.1 Cellular Population Variation Index

Let us imagine an experiment starting with two genetically identical cells that

belong to two different phenotypes, green and red, as shown in Fig. 5.2. Cells of each

phenotype may grow, divide, and die in the culture as well as randomly switch from one

phenotype to the other depending on the intrinsic mechanism and their environment. In

this experiment, we take a couple of snapshots at different times and record the population

of each phenotype. We then repeat the experiment many times: starting with the same two
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Figure 5.1: (a), A two-phenotype community. Each phenotype (green and red) has its own
birth rate coefficient(g1, g2) and death rate coefficient(d1, d2). They are able to switch from
one phenotype to the other with the transition rate coefficients (t12 and t21). (b), Coefficient
of variation (CV) versus sample number. A two-phenotype community (illustrated by (a))
grows in a chemostat environment which can contain a maximum of 200 cells and is taken
to measure at t = 6 for all experiments. Blue and red curves are the CVs of phenotype
1 and 2 with the initial state (1, 1) respectively, while green and magenta curves are the
CVs of phenotype 1 and 2 for the initial state (100, 100) respectively. It is clear to see that
different initial states of a community in a same chemostat environment result in different
variation coefficients. The parameters are the same as those in Fig. 5.3.
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Figure 5.2: An illustration of the ensemble population diversity. The initial state, one
phenotype each, is the same for three ensembles. Here colors represent distinct phenotypes.
Cells grow, divide and die (the broken lines in the cartoon indicate that the circled cell is
dead). Four snapshots are taken at specific times. Multiple runs of the experiment result
in different population in each phenotype: Green cells turn out to be the dominant in the
first sample, while red cells in the last sample, and both types are comparable in the middle
sample.

cells, growing in the same culture and taking snapshots at the same time points. Finally,

when we compare the snapshots at the same time from different runs, we will find that the

percentage of each phenotype, as well as the overall population are different among runs,

some of which might even be strikingly distinct.

Quantitative tools of measurements are needed to analyze these data. For a com-
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munity with I species and ni cells for species i (i = 1, 2, ..., I), Simpson proposed a ‘concen-

tration’ to measure the diversity, Θ = 1
N2

I∑
i=1

n2
i , where N =

I∑
i=1

ni is the overall population of

the community [68]. Similar quantities were introduced in the study of spin glass dynamics

and single molecule dynamics [115, 124]. This concentration describes the probability of

any two randomly chosen individuals from a community belonging to the same species. The

complement of the concentration, 1 − Θ, is termed the Simpson index and describes the

probability that two randomly picked individuals belong to different species. Thus it is a

measure of the population diversity of a particular community. However, the population for

each species can vary from one run to another and the index proposed by Simpson does not

account for the variation from this fluctuation. To investigate the population diversity with

the incorporation of the cellular and intracellular stochasticity, we propose a generalized

population variation index (detailed in Appendix) as

D ≡
〈n2〉 −

(
〈n〉

)2(
〈n〉

)2 (5.1)

where n is a I-dimensional vector of cellular population with each components ni repre-

senting the population of species i, the bar operator, (·), represents
∑
n

P (n)(·) the ensemble

average over the different population distributions of a community, while the bracket oper-

ator, 〈(·)〉, represents 1
S

S∑
j=1

(·) the average over species (phenotypes and genotypes) with a

given distribution. This index can be written as

D =
〈n2〉 − 〈n〉2(

〈n〉
)2︸ ︷︷ ︸

≡Di

+
〈n〉2 −

(
〈n〉

)2(
〈n〉

)2︸ ︷︷ ︸
≡Dc

(5.2)

Here the first part Di, termed the intra-colony variation index, measures the population dif-

ference between species under the same average of population distribution. It is therefore the

ensemble averaged Simpson concentration. This non-negative index plays a similar role as
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the Simpson concentration does: It is zero when the population is evenly distributed among

species, increases with the unevenness of population distribution, and reaches its maximum

when all of the population belongs to a single species. The second part, Dc, termed as

the cross-colony variation index, measures the population variation among colonies. It goes

to zero when the overall population is the same from colony to colony and becomes large

when the variation in population size is large among colonies. These two variations are in

some sense analogous to those of intrinsic and extrinsic contributions to the noise in gene

expression[109]. Here ‘intrinsic’ refers to the intra-colony variation while ‘extrinsic’ refers to

cross-colony variation. This generalized index reduces to Simpson’s index when we neglect

population dispersion, i.e., when the distribution of population size is a δ-function. In such

cases, Dc goes to zero and Di becomes (〈n2〉− 〈n〉2)/〈n〉2 = SΘ−1, where S is the number

of species and Θ is the Simpson concentration [68].

5.1.2 Cellular Population Dynamics

The population dynamics of a colony consists of cellular birth, death and tran-

sitions between types (phenotypes or genotypes), which can be fully characterized by the

following Master equation

d
dtP (n, t) =

∑
r

[
G(n− r) + D(n− r) + T(n− r)

]
P (n− r, t)

−
∑
r

[
G(n) + D(n) + T(n)

]
P (n, t) (5.3)

where P (n, t) is the probability of a colony with its population size in state n (n is a vector

n = {n1, n2, ..., nI} that fully characterizes the state of the colony, i.e., there are n1 cells

for type 1, n2 cells for type 2, etc.) at time t, r is a vector representing the numbers of cells

changed in an corresponding event. G(n), D(n) and T(n) are the rates of cellular birth,
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death, and type transition processes. These rates are generally determined by intracellular

events and environmental conditions. The proposed variation index as well as cellular

population dynamics is also applicable to describe genotypic variations that root in DNA

mutation and random drift and lead to molecular evolution [63].

5.2 Results

5.2.1 Free Growth Environment

The Variation Index

We first study the variation of cell populations growing in an ideal case where there

is no constraints on nutrition or space. In these environments, all the reaction rates can

be assumed for simplicity as linear functions of their arguments. We use a two-phenotype

community as an example to explore the population variation as shown in Fig. 5.1. The

population dynamics can be described by

d
dtP (n1, n2, t) = g1n

−
1 P (n−1 , n2, t) + d1n

+
1 P (n+

1 , n2, t) + g2n
−
2 P (n1, n

−
2 , t) + d2n

+
2 P (n1, n

+
2 , t)

+t12n
+
2 P (n−1 , n+

2 , t) + t21n
+
1 P (n+

1 , n−2 , t)−
[
(g1 + d1 + t21)n1 + (g2 + d2 + t12)n2

]
P (n1, n2, t)(5.4)

where gi and di are the rate coefficients of birth and death for phenotype i respectively, tij

is the rate coefficient of the transition from type j to type i, and n±i = ni ± 1 (i = 1, 2).

The analysis of the variation index and the two-phenotype system shows that we

only need to track the dynamics of the first two moments of the probability distribution

function to investigate the population variability and diversity of a community (detailed in

Appendix). It is analytically unaccessible generally but, for this linear free growth case,

is solvable. By constructing a vector consisting of the first and the second moment as
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M(t) =
(
n̄1(t), n̄2(t), n2

1(t), n
2
2(t), n1n2(t)

)T , we have a simplified yet sufficient description

d

dt
M(t) = Q ·M(t) (5.5)

where the matrix Q is given by

Q =



s1 t12 0 0 0

t21 s2 0 0 0

r1 t12 2s1 0 2t12

t21 r2 0 2s2 2t21

−t21 −t12 t21 t12 s1 + s2


Here parameters s1 = g1−d1−t21, s2 = g2−d2−t12, r1 = g1+d1+t21 and r2 = g2+d2+t12.

Exact expressions of the first moment, M(1)(t) =
(
n̄1(t), n̄2(t)

)T , and second mo-

ments, M(2)(t) =
(
n2

1(t), n
2
2(t), n1n2(t)

)T (detailed in Appendix) allow us to study the

temporal behavior of the population variation, which can be expressed as a function of

M(t) as

D(t) =
M

(2)
1 + M

(2)
2 − 2M

(2)
3

(M (1)
1 + M

(1)
2 )2

+
(M (2)

1 + M
(2)
2 + 2M

(2)
3 )− (M (1)

1 + M
(1)
2 )2

(M (1)
1 + M

(1)
2 )2

(5.6)

where M
(i)
j (t) is the jth element of the ith moment at time t. This variation expression

is characterized by five exponents, (θ, ν, θ + ν, 2θ, 2ν), where θ = 1
2(s1 + s2 + ∆), ν =

1
2(s1 + s2 −∆) and ∆ =

√
(s1 − s2)2 + 4t12t21. The exponent θ is the Lyapunov exponent

for the deterministic exponential growth of the dynamic systems [67].
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Figure 5.3: Propagation of the population variation over time. The dotted, dash and
solid lines represent intra-colony, cross-colony, and overall population variation. The color
of the line (red, orange, green, and blue) corresponds to the initial distribution (1,1), (1,10),
(10,1), or (100,100) respectively. The change of the background color presents the onset of
an external signal: pale green means no signals in the culture (tOFF

12 ) while pale magenta
means a signal is released into the culture (tON

12 ). Parameters are g1 = 1.0, g2 = 0.5,
d1 = d2 = 0.01, t12 = 0.01, tOFF

21 = 0.01, tON
21 = 0.5.
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Figure 5.4: Asymptotic population variation with respect to different initial distributions.
Left panel: The four surfaces correspond to cross-colony variation, deterministic variation,
intra-colony variation and total population variation (summation of intra- and cross- colony
variations). Right panel: A cut slice passing the vertical axis and the diagonal in horizontal
plane in the left three-dimensional variation. The variation index is different from the
deterministic variation but approaches it when the initial numbers of cells are large. Initial
phenotypes are assumed to be delta-distributed and parameters are the same as those in
Fig. 5.3.

Figure 5.3 illustrates the propagation of the population variation in different envi-

ronmental conditions and with different initial states. Here the background colors represent

different environments, the colors of the lines (red, orange, green, and blue) represent the

initial states of the community ((1, 1), (1, 10), (10, 1), and (100, 100)) and the types of those

lines (dotted, dash, and solid) correspond to the contributions of the population variation

(intra-colony, cross-colony, and overall population variation). All of the variation contribu-

tions approach constant values at the long time limit in a constant free growth environment

(Upper panel). When the environment is changed, the population variations are out of the

stationary values and adapted to new steady states according to the updated environment

(Lower panel).

As can be seen in Fig. 5.3, different initial states result in different cellular popula-
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tion variabilities despite of the same rates for all events of the cellular population dynamics.

For the long time and asymptotic behaviors, the largest exponent, 2θ, has the dominant

contribution to population variation, where the intra-colony and cross-colony indices asymp-

totically become

D∞
i =

[
C21 − F1(0)

](
K11 + K21 − 2K31

)
γ2

1

[
1 + s2−s1+∆

2t12

]2

D∞
c =

[
C21 − F1(0)

](
K11 + K21 + 2K31

)
γ2

1

[
1 + s2−s1+∆

2t12

]2 − 1 (5.7)

where the detailed expressions of C21, F1(0) and Kij are in Appendix.

Figure 5.4 explicitly shows the effects of the initial states of a cell population to

the long time limit of the cellular population variability. The left panel illustrates the de-

pendence of population variation on its initial cellular population. From bottom to up, the

four surfaces correspond to cross-colony, deterministic, intra-colony, and overall population

variation. Here the deterministic results are obtained for comparison from the correspond-

ing mass action dynamics (mean-field dynamics) which was solved based on the first order

moments alone and completely ignoring the effect of the second order. The right panel

is a cross section passing the vertical axis and the diagonal line in the horizontal surface.

As shown in both panels, smaller initial cell population results in larger final population

variation. With the increasing of initial cell population, overall variation decreases and ap-

proaches the deterministic result which is independent of the initial state. This dependence

of the population variation on the initial numbers of cells is somewhat analogous to the noise

in gene networks, where smaller numbers of molecules bring larger randomness and gene

noise becomes negligible when the mean numbers of molecules are sufficiently large [71].
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A Numerical Experiment

We further perform a numerical experiment using the Monte Carlo method [45, 88].

The population dynamics of a two-phenotype community is simulated to illustrate the pop-

ulation variation and diversity. Following the processes in Fig. 5.1a, different phenotypes

have their own rates of birth, death and transitions. In the experiment, the cellular popula-

tions grow from different initial states (n1(0), n2(0)): (1, 1), (1, 10), (10, 1), and (100, 100)

and for each set of given initial condition, we averaged over 100,000 simulation trajectories.

The results show that both the ensemble averaged means and variances of each phenotypes

agree well with those from analytical solutions (the differences are less than 0.5%).

Figure 5.5 is a direct illustration of celluar population variations with sample

trajectories. The upper left, upper right, lower left and lower right panels correspond to

different initial states (1, 1), (1, 10), (10, 1), and (100, 100). In each panel, the solid

black line and broken black lines are the mean cell populations of phenotype 1 and 2 from

analytical solutions. Each pair of a solid line and a broken line with a same color are the

two trajectories of phenotypes 1 and 2 from a single run. There are 14 pairs of trajectories

are shown in each panel. It is clear to see that a community with small initial numbers

of cells has huge variability (e.g., Upper left panel) and the variability is remembered and

does not diminish even when the population is extremely large. However, a community

with large initial cellular population has less population variability. All these results nicely

demonstrate the theoretical analysis.
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Figure 5.5: Simulation of cellular population dynamics in free growth environments. The
upper left, upper right, lower left and lower right panels correspond to different initial
numbers of cells ( (1, 1), (1, 10), (10, 1), and (100, 100) ). In each panel, the black bold
solid and bold broken lines are the mean numbers of phenotype 1 and phenotype 2 from
analytical solutions. Each pair of a solid line and a broken line with same color are the two
trajectories of phenotype 1 and phenotype 2 respectively from a single simulation. There
are 14 pairs of trajectories shown in each panel. Initial phenotypes are assumed to be
delta-distributed and parameters are the same as those of Fig. 5.3.
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5.2.2 Chemostat Environments: Eliminating the Cross-Colony Variation

Realistic environments of cellular dynamics usually have limited nutrition sources,

like flask cultures and agarose plates [2], as well as space constraints, like microenvironments

of microfluidic chips [31]. Here we turn to study the variability and diversity of cellular

populations in these types of chemostat environments.

Cells grow in chemostat environments with sufficient nutrition supplies but restrict

spatial limits, equivalently speaking, cells can grow exponentially as they are in free growth

environments but their overall population is capped to a maximum value. After their overall

population has reached the maximum, the dynamics changes: On average, whenever a new

cell is born, one cell in the environment will be randomly washed out because of the space

constraints.

We perform another numerical experiment by simulating the cellular population

dynamics in such an ideal chemostat environment. Figures 5.6a and 5.6b show the typical

trajectories from Gillespie simulations for initial states (1, 1) and (100, 100) respectively.

Different colors of curves in the figures represent the trajectories from different runs. As can

be seen in these figures, the variabilities of cell populations in different initial conditions are

distinct when the overall populations are less than the maximum (= 1000 here), which is the

same as that in free growth environments. After the cell populations reach the maximum,

the population dynamics and the variations start to change. After an interesting transient

period, it reach a new steady state.

Figure 5.6c shows the evolutions of intra-colony, cross-colony and overall variations

in chemostat environments. All of the variation indices starting from different initial states

converge to the same ones. Moreover, cross-colony variations go to zero. This is consistent
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Figure 5.6: Cellular population variations in chemostat environments. (a) and (b), Typical
trajectories of cell populations of the two phenotypes from the Gilespie simulations. (a) is
for the initial state (n1(0) = n2(0) = 1) and (b) is for the initial state (n1(0) = n2(0) =
100). X-axis is time and Y-axis is cell population. Different colors of the curves represent
the trajectories from different runs. The maximum population is chosen as 1000 and the
rest parameters are the same as those in Fig. 5.3. (c), Variations collapse in chemostat
environments. Green, magenta and black sets of curves correspond to intra-colony, cross-
colony, and overall variations for different initial conditions (From up to down: (1,1), (3,3),
(10,10) and (100,100)). After transit differences, all of the cross-colony go to zero and all
of the intra-colony variations and overall variations come to a same one regardless of their
different initial conditions. (d) Comparison of variation indices in chemostat environments
from simulations with analytical limits. Green solid, magenta solid, and black solid curves
are intra-colony, cross-colony, and overall variations from the simulations respectively; green
dotted, magenta dotted, and black dotted curves are intra-colony, cross-colony, and overall
variations in free growth environments, green dashed, magenta dash, and black dash curves
are the long time limits of intra-colony, cross-colony, and overall variations from analytical
calculations.
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with the previous statement that cross-colony variation goes to zero when the population

is the same from colony to colony since the overall populations here are constrained to be

identical in chemostat environments.

The variation of cell populations cannot be calculated analytically in these chemo-

stat environments, but the initial stage and the long-time limit of variation are accessible

(detailed in Appendix) and are comparable to those from simulations. The steady state

distribution of cellular populations in the long-time limit is expressed as

P (n1) =
n1∏
i=1

(
t12[N∗ − (i− 1)] + g1(i− 1)(1− i−1

N∗ )
t21i + g2i(1− i

N∗ )
)P (0) (5.8)

where N∗ is the population maximum, P (0) is determined by normalization and from which

variation indices are derived.

Figure 5.6d shows that the variation indices in chemostat environments are the

same as those in free growth environments at the beginning when overall populations are

away from the maximum. They start to deviate from those in free growth environments

when overall populations approach the maximum, and finally reach new steady states re-

gardless of initial conditions after a period of time. As shown in the figure, the transition

time of variation indices from those in free growth environments to the new steady long-

time limits could be long (∼ 13 here), which tells that it needs a quite long time to have

concrete statistics for experiments with different initial states after the overall populations

have reached the maximum.

5.3 Conclusions and Discussions

Population diversity is one of the most important and fascinating characters of life

designed by nature. It can benefit a community, e.g., reinforces the survival probability of
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species the under selective pressures and therefore offers better chances for life to evolve

and to adapt to fluctuating and unpredictable environments [104, 91, 60, 121]. On the other

hand, there are cases that population unification is highly demanded, for instance in the

development of multicellular organisms [2].

A general population variation index was proposed to measure the diversity and

variability of cellular populations. Using a two-phenotype community as an example, we

examined the propagation of population variations in different environments and with initial

conditions. One of the interesting results is that the initial state of a cell population is

important to its variation in free growth environments and lasts even in the long time

limit. However, this effect loses in chemostat environments upon the overall population

has reached the maximum of the environments and all variations collapse to a same one

regardless of their initial states.

This study provides a theoretical tool to study the variability and diversity of cellu-

lar populations. It also brings some suggestions for basic experimental protocols. Microflu-

idics techniques have revolutionary impacts on biological experiments in the past several

years and are widely used in single cell experiments. Chambers in microfluidic chips are

good chemostat environments with finite space to contain a certain numbers of cells. This

study implies that it might be important to have a larger initial population or longer experi-

mental time in such chemostat environments to decrease run-to-run variability and increase

the accuracy of experiments. Another example is Polymerase Chain Reaction (PCR) [2].

With sufficient supply of DNA primers, Polymerases, Deoxynucleotide triphosphates, and

buffer solution, a template DNA piece is amplified exponentially without any nutrition or

space limitations. This amplification reaction is pretty much a free growth process. Since



89

there is a certain probability that a template is not perfectly amplified, our study suggests

that it is important to have a larger amount of initial DNA templates to obtain final DNAs

with a higher purity.

Acknowledgements: Portions of this chapter appear in part in Lu T, Shen T, Bennett M,

Wolynes P, and Hasty J, Phenotypic variability of growing cellular populations, submitted.
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A Synthetic Switch with

Phenotypic and Genotypic

Transitions

In this thesis, we have studied stochasticity in different biological systems and

at different levels, such as fluctuations of molecule numbers, variations of cellular popu-

lations and conformational changes of signaling molecules. However, this variability does

not change the genetic content of the biological systems. Therefore, all of theses changes

represent phenotypic variability. Here we present our work on variability in a gene circuit

which contains genetic modifications as well as phenotypic variability.

6.1 A Bias of Cellular Populations

The circuit of our system is close to the toggle switch by Gardner et al. [41].

As shown in Figure 6.1(a), it consists of two constituitive promoters PL and Ptrc−2 that

90
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regulate the expression of the LacI and CI genes respectively. LacI is a repressor of the

Ptrc−2 promoter and CI is a repressors of the PL promoter. A ssra tagged-gene was fused to

the CI gene to increase the degradation rate of the CI protein. The GFP gene is expressed

from the Ptrc−2 promoter to serve as a reporter.

HIGH

LOW

OFF ON

ssra

GFPmut3b

ORI

CI

Ptrc-2

PL

T1

T2

LacIKanR

(a) (b)
Figure 6.1: (a)Plasmid map of the genetic switch. The circuit is similar to the toggle
switch by Gardner et al. [41]. It consists of two constituitive promoters PL and Ptrc−2 that
regulate the expression of LacI and CI genes respectively. LacI is a repressor of the Ptrc−2

promoter and CI is a repressors of the PL promoter. A ssra tagged-gene was fused to the
CI gene to increase the degradation rate of the CI protein. The GFP gene is expressed
from the Ptrc−2 promoter to serve as a reporter. (b)Two states of the switch according to
its GFP expression level. Increasing temperature shifts the switch to a low GFP expression
level while increasing IPTG concentration shifts the switch to a high GFP expression level.

Due to the design of the circuit, there are two states for the switch’s GFP ex-

pression level – one high state and one low state, which are shown in Figure 6.1(b). This

allele of the CI gene is temperature sensitive. It does not fold correctly when the envi-

ronmental temperature is physiologically high (> 42oC). Consequently this means that its
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binding affinity to the PL promoter decreases quickly as a function of temperature, which

results in a high expression level of the LacI gene and the switch is channeled into the low

state at this temperature. LacI proteins bind to Ptrc−2 in their tetramer form. However, in

the presence of Isopropyl β-D-1-thiogalactopyranoside (IPTG) the LacI protein undergoes

a conformational change which causes the loss of its binding affinity to the promoter. In

this situation, both the CI gene and the GFP gene are highly expressed and the switch is

channeled into the high state. This switch is hence controllable by the environment: In-

creasing temperature shifts the switch to a low GFP expression level while increasing IPTG

concentration shifts the switch to a high GFP expression level.

A set of flow cytometry experiments with different temperature and IPTG concen-

trations allow us to determine the optimal environment for cells in specific states. A culture

at 42oC and without IPTG (42oC, 0M) is beneficial for the cells in the low state, which is

termed a low state environment. Cells in a culture at 30oC and with 10−3M IPTG (30oC,

10−3M) are mainly in high GFP expression levels with few of them in the low state, we term

this environment a high state environment. Cells in 30oC and without IPTG (30oC, 0M)

can stay in either the low or the high states, which we call a bistable state environment.

We can logically operate this switch by changing cellular environments.

Figure 6.2 illustrates the dynamics of a cell population containing this switch in

a changing environment. The cellular environment starting with the high state is sequen-

tially shifted to the bistable, low, bistable, high, and bistable environments over 28 hours.

The middle panel illustrates the mean fluorescence of cell populations in the experiment.

Background colors (orange, green, and sky blue) represents different environments (High,

Bistable, and Low respectively). As can be seen clearly, mean fluorescence level is high (low)
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when cells are grown in the high (low) state environment and maintains the previous state

when cells are shifted to the bistable state environment. However, the mean fluorescence

level biases toward the low state after a long time period. It can be further seen in the

single-cell fluorescence distributions surrounding the mean fluorescence plot each points in

which corresponds to a fluorescence distribution panel (the last point is not shown).

To characterize the origin of the bias, we altered the experiment by changing pro-

cedures. A control experiment was done changing the environment of the over night culture

from the high state to the low state. The result shows that mean fluorescence increases

shortly to a high level when the environment is shifted to the high state. However the fluo-

rescence starts to decrease gradually, which is the same as what happened in the previous

experiment. Another control experiment was done by increasing the IPTG concentration

to a higher level (10−2M) which was supposed to help the switch stay in the high state.

However, this did not reduce the bias (Data not shown). Therefore, neither changing the

initial preparation or increasing the IPTG concentration helped to reduce the downward

trend bias of mean fluorescence levels.

6.2 Phenotypic and Genotypic Transitions

All experiments in the above section encouraged us to speculate that there may

be a third state for this switch in which a cell does not express fluorescence protein but

can survive in kanamycin containing media. Furthermore, once a cell transits to this third

state, it is rare or impossible to switch back. If this were not the case, a sufficiently high

concentration of IPTG should eliminate or, at least largely reduce, the fluorescence bias.

This transition to the third state could be phenotypic, which means the genetic
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content of the circuit is kept the same as it was before the transition, but the expression

of the fluorescent protein has ceased due to an environmental factor. A similar example

is bacteria persistence. The transition could also be genotypic such as a random mutation

including a recombinant event, in which case the genetic content of circuit is changed.

To determine which is the case, we perform a restriction enzyme digestion followed

by gel electrophoresis to check the genetic structure of the plasmid in cells. A cell population

initially prepared in the low state environment is split into two: One half of the cells still

grow in the low state environment while the other half are changed to grow in the high

state environment. At different time points, parts of the cell population were sampled for

plasmid contents. To do this we digested the plasmids of the samples and measured the

size of resulting DNA fragments by gel electrophoresis. Figure 6.3 shows the plasmid sizes

of sampled cells. The left columns correspond to the plasmid sizes of cells in the low state

environment all the time. The right columns columns correspond to the plasmid sizes of

cells in the high state environment. As can been seen clearly, plasmid sizes of cells in the

low state environment are constantly around 6kb over all time periods while those of the

cells in the high state environment are initially around 6kb as well but appear to be 2kb

also after a certain time. With time going on, the percentage of 2kb plasmids increases and

later becomes dominant. This confirms that there is a genotypic transition which occurs

for cells in the high state environment.

Upon examination of the plasmid map we found that 6kb is the size of the original

plasmid while 2kb is approximately equivalent to the overall sizes of the replication region,

antibiotic resistance region and one of the terminators. This suggests that the genotypic

transition removed the whole genetic switch from the original plasmid while maintaining
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the original features of the plasmid.

To determine exactly the mutational mechanism, DNA sequencing of both types

of plasmids was performed and verifies that the plasmids after the transition contain the

replication and marker regions but do not contain the switch component. It is further

verified that there are a identical 9 base pairs in both of the terminators which result in

recombination events. This resolves the paradox that the third state of switch does not

allow GFP expression but guarantees the survival of cells in the antibiotic environments.

Now we have a complete picture of this synthetic switch. The circuit has two

distinct states according to its GFP expression level, which are termed HIGH state and

LOW states respectively (Marked with green and red in Figure 6.4). These two states are

switchable and the transitions between them are phenotypic. Besides these two states, there

is a third state (Marked with gray in the figure) which is unidirectionally transited from

both of the switchable states. Therefore this is a switch consisting of both genotypic and

phenotypic transitions.

6.3 Modeling

With the finding of the third state of this switch, we are on the stage for quanti-

tative understanding.
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6.3.1 A cellular population model

A deterministic description can be employed to model the cellular population

dynamics by following the states and transitions illustrated in Fig. 6.4.

Ṅh = (gh − dh − wh − kh)Nh + klNl

Ṅl = (gl − dl − wl − kl)Nl + khNh (6.1)

Ṅn = (gn − dn)Nn + whNh + wlNl

where Nh, Nl, and Nn are the numbers of cells in the switchable high, the switchable low,

and the non-switchable low states, gh, gl and gn are the corresponding growth rates, dh,

dl and dn are the corresponding death rates, and kh and kl are phenotypic transition rates

between the switchable states while wh and wl are the genotypic transition rates.

This simple model can be solved exactly with the solution as following

Nh = C1e
αt + C2e

βt

Nl = C1( b2−a1+∆
2b1

)eαt + C2( b2−a1−∆
2b1

)eβt

Nn = C1(2a3b1−a1b3+b2b3+b3∆
2b1(α−c) )eαt + C2(2a3b1−a1b3+b2b3−b3∆

2b1
)eβt + C3e

ct

where α = a1+b2+∆
2 , β = a1+b2−∆

2 , ∆ =
√

(a1 − b2)2 + 4a2b1, a1 = gh − dh − wh − kh,

b1 = kl, a2 = kh, a1 = gl − dl − wl − kl, a3 = wh, b3 = wl, c = gn − do. Coefficients C1, C2,

and C3 are determined by initial conditions.

6.3.2 Comparison of the model with experiments

This minimal model is simple, nevertheless, it can capture cellular population

dynamics of the switch in changing environments.



97

To test the model, we start with cells prepared over night in the high state envi-

ronment, then pass the cells to fresh media next day and keep them growing in the high

state environment. The culture is diluted constantly to avoid overgrowth and the OD is

kept around 0.1 ∼ 0.4. At time t = 0, 3 and 6, some cells are taken out from the culture

in the high state environment and passed to low state environments. The results of this

experiment is showed in Figure 6.5(a) which illustrates the dynamics of the percentage of

cells in High state over time. The black curve corresponds to the population that grow in

the high state environment all the time while blue, red, and green curves correspond to the

populations that are shift to the low state environment at time t = 0, 3, and 6. Besides

the percentage of cells in the high state, we have the dynamics of single-cell fluorescence

distributions which are indicated in the first two rows of Figure 6.6: Each frame corresponds

to the fluorescence distribution at a certain time. The background colors of sky blue and

orange represents the high and low state environments. Clearly, the population in the high

state environment is shrinking gradually in the high state environment (First row) and goes

to zero much more quickly when it is shifted to the low state environment(Second row).

Figure 6.5(b) shows the results from the minimal population model. The colors of

curves have the exact means as those corresponding ones in Fig. 6.5(a). Both qualitative

and quantitative behaviors of population dynamics from the model and the experiment are

consistent.

Similarly, cells prepared initially in the low state environment can grow in the same

environment through out the experiment or can be shifted to the high state environment

at different times (t = 0, 3, 6). The results are shown in Fig. 6.5(c) which are consistent

with the corresponding modeling results Fig. 6.5(d). The corresponding single cell results
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are indicated in the third and fourth rows of Fig. 6.6.

6.4 Conclusions and Discussions

In this work, we studied a three-state synthetic switch in changing environments.

Two of the three states have the same genetic content and are switchable depending on

environmental conditions. However, transitions to the third state are irreversible and ac-

company the change of genetic content. This simple switch has rich content by exhibiting

both phenotypic and genotypic transitions.

The genotypic transition events to the third state are rare and have disastrous

consequences at the cellular population level. Because of a much heavier metabolic load for

a cell in the switchable high state, it grows much slower than those in either the switchable

low state or the non-switchable low state. This means that a single genotypic transition

will cause the non-switchable state cells to take over a whole cell population finally.

One lesson we can learn from this study is to check possible DNA repeat in a

designed circuit before we build it. It would help to at least reduce the chance for recom-

bination. It is important to design criteria in synthetic biology in which we are aiming to

build specific circuits.

This study also shows the evolution of biological systems. Because of heavier

metabolic burdens for the switchable high state, cell population adapt to the non-switchable

third state in which cells can survive but do not express fluorescence proteins. This is a

great example demonstrating the Darwin’s theory of evolution.

Acknowledgements: Portions of this chapter appear in part of Lu T, Stricker J. and Hasty
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Figure 6.2: A long run of experiment shows the bias of GFP expression level. The
middle plot is the time course of mean fluorescence of single cells in changing environments.
Different background colors represent different environmental conditions where cells live:
light blue, peridot and pumpkin correspond to Low state environment (42oC, 0M), Bistable
state environment(30oC, 0M), and High state environment(30oC, 10−3M). The upper two
and lower two rows of panels are single-cell fluorescence probability distributions at specific
time points each of which corresponds to a data point in the middle plot. The panels marked
with time(T = 1, 4, 9, 12, 15.5) correspond to the moments for environmental changes that
are denoted with green spots in the middle plot.
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Figure 6.4: Phenotypic and genotypic transitions of the switch. The circuit has two
distinct states corresponding to its GFP expression level. They are termed HIGH and
LOW states (Marked with green and red in the plot). These two states are switchable and
their transitions are phenotypic. Besides those, there is a third state (Marked with gray)
which can be unidirectionally transited from both switchable states. Circuit’s gene content
is changed in these types of transitions.
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Figure 6.5: Cellular population dynamics in changing environments. (a)Percentage of cells
in High state in different environments. Black curve: A cell population grows in High state
environment. At t = 0, 3, 6 a portion of cells in High state environment(Black curve) are
shifted to Low state environment. (b)Modeling results for cell population starting with the
high state environment. (c)Percentage of cells in High state in different environments. Black
curve: A cell population grows in Low state environment. At t = 0, 3, 6 a portion of cells
in Low state environment(Black curve) are shifted to High state environment. (d)Modeling
results for cell population starting with the low state environment.
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Figure 6.6: Propagation of single-cell fluorescence distribution in changing environments.
The first and third rows correspond to the fluorescence distributions of cells in the high
and the low state environments at time t = 0, 3, 6, 9 respectively. The second (fourth)
corresponds to the fluorescence distributions of cells that are shifted from the high (low)
state to the low (high) state environments starting with time t = 3. The background colors
blue and orange indicate the low and the high state environments.
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Concluding Remarks

7.1 Review

In this work, many aspects of stochasticity in biological networks were examined

by both developing general methodological techniques and investigating several important

network architectures. As a conceptual development, I proposed a measurable quantity,

effective temperature, to quantify noise in stochastic kinetics and genetic networks. As

a practical improvement to existing simulation approaches, I derived a generalized Gille-

spie simulation allowing for stochastic simulation of biological and chemical systems with

time-dependent reaction rates or time-dependent system volumes. Besides these two de-

velopments, I studied a specific network topology, termed as ladder reaction network, that

commonly occurs in signal transduction and gene regulation networks. I studied the signal

transduction time of this architecture by mapping signal transduction to a random walker

problem and found an optimal enzyme concentration that favors rapid signal transduction.

Fluctuations at molecular level are not the only aspect of noise. By proposing a generalized

variation index, I studied the consequences of stochasticity for cellular populations. I found
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that the variation of a cellular population may depend strongly on the population initial

state and corresponding environments. A synthetic switch with phenotypic and genotypic

transitions was also studied. A bias of cellular populations to their low state was puzzled

out by the combined experimental and computational approaches.

7.2 Significance

The studies undertaken help us to better understand the designs of natural bio-

logical network architectures and to understand how noise can diversify species and aid in

evolution. This work also gives insights to better design strategies for synthetic biology.

Furthermore, the proposed concepts, such as effective temperature and variation index, de-

rived simulation algorithm, as well as modeling approaches used in this work are broadly

applicable to the study of many other biological systems.



A

Effective Temperature

A.1 The Calculation of Correlation and Response Functions

for a Birth-Death Process

In order to calculate the correlation and response functions, we need an expression

for the time-dependent observables in ”Heisenberg” representation. From Eqs.(2.14,2.17),

we find that the expressions of â+(t) and â(t) are sufficient to describe the birth-death

process.

The non-Hermitian time-dependent expression of â is

â+(t) ≡ e−L̂t · â+ · eL̂t (A.1)

with the Lagrangian of the system L̂ = kg(â+ − 1) + kd(â− â+â).

To do this we use the following identity

exÂB̂e−xÂ = B̂ +
x

1!
[Â, B̂] +

x2

2!
[Â, [Â, B̂]] +

x3

3!
[Â, [Â, [Â, B̂]]] + · · · (A.2)
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The algebra of the operators is given as

â+ = â+

[L̂, â+] = kd(1− â+)

[L̂, [L̂, â+]] = −k2
d(1− â+)

[Â, [Â, [Â, B̂]]] = k3
d(1− â+)

· · ·

Summarizing all of the above terms yields the expression for â+(t):

â+(t) = â+ +
−1
1!

kd(1− â+)− 1
2!

k2
d(1− â+) +

−1
3!

k3
d(1− â+) + · · ·

= (â+ − 1)ekdt + 1 (A.3)

Similarly, we have an expression for â(t)

â(t) ≡ e−L̂t · â · eL̂t = (â− kg

kd
)e−kdt +

kg

kd
(A.4)

Now we can calculate the correlation and response functions. For a perturbation of

generation rate kg → kg + h(t), the Lagrangian L̂ is perturbed by a small term −h(t)(â+−

1). Using the time-dependent expressions of â(t) and â(t)+, we have the correlation and

response functions:

C(t′, t) = 〈â+(t′)â(t′)â+(t)â(t)〉

= 〈0|eâ · â+(t′)â(t′)â+(t)â(t) · e
kg
kd

(â+−1)|0〉

= u2
s + use

−kd(t′−t) (A.5)

R(t′, t) ≡ δ〈â+(t′)â(t′)〉
δh(t)

= 〈0|eâ · [â+(t′)â(t′)(â+(t)− 1)− (â+(t′)− 1)â+(t)â(t)] · e
kg
kd

(â+−1)|0〉

= e−kd(t′−t) (A.6)
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The corresponding effective temperature is derived from the definition Eq.(2.5):

Teff (ω) ≡ ωC̃
′
12(ω)

R̃
′′
12(ω)

=
−∂tC(t′, t)

R(t′, t)
= kg (A.7)

For a perturbation of degradation rate, the Liouvillian is perturbed by a small

term −h(t)(â− â+â). The correlation and response function are

C(t′, t) =
1
2
〈â+(t′)â(t′)â+(t)â(t)â+(t)â(t)〉

=
1
2
〈0|eâ · â+(t′)â(t′)â+(t)â(t)â+(t)â(t) · e

kg
kd

(â+−1)|0〉

=
1
2
(u3

s + u2
s + 2u2

se
−kd(t′−t) + use

−kd(t′−t)) (A.8)

R(t′, t) ≡ δ〈â+(t′)â(t′)〉
δh(t)

= 〈0|eâ · â+(t′)â(t′)[â(t)− â+(t)â(t)]− [â(t′)− â+(t′)â(t′)]â+(t)â(t) · e
kg
kd

(â+−1)|0〉

= use
−kd(t′−t) (A.9)

from which the effective temperature can be derived

Teff (ω) ≡ ωC̃
′
12(ω)

R̃
′′
12(ω)

=
−∂tC(t′, t)

R(t′, t)
= kg +

1
2
kd (A.10)

A.2 Solving the Eqs.(2.20, 2.21)

By taking the fourier transform of Eqs.(2.20, 2.21), we have

(d1 − iω)Ã(ω)− f2B̃(ω) = D1ξ̃1(ω) + Da
3 ξ̃3(ω) + Da

4 ξ̃4(ω) + kg1δ(ω) (A.11)

−f1Ã(ω) + (d2 − iω)B̃(ω) = D2ξ̃2(ω) + Db
3ξ̃3(ω) + Db

4ξ̃4(ω) + kg2δ(ω) (A.12)

where the noise intensities D1, D2, Da
3 , Db

3, Da
4 and Db

4 depend only on the steady state

values A∗ and B∗ of the two species.
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These two equations can be solved as

Ã(ω) = D1(d2−iω)ξ̃1(ω)+D2f2ξ̃2(ω)+[Da
3 (d2−iω)+Db

3f2]ξ̃3(ω)+[Da
4 (d2−iω)+Db

4f2]ξ̃4(ω)
ω2−iω(d1+d2)+f1f2−d1d2

(A.13)

B̃(ω) = D1f1ξ̃1(ω)+D2(d1−iω)ξ̃2(ω)+[Da
3f1+Db

3(d1−iω)]ξ̃3(ω)+[Da
4f1+Db

4(d1−iω)]ξ̃4(ω)
ω2−iω(d1+d2)+f1f2−d1d2

(A.14)

where the delta functions are ignored since they have no contributions in the later calcula-

tions of correlation and response functions.

The autocorrelation functions for the species A and B are thus

CAA = (ω2+d2
2)D2

1+f2
2 D2

2+[(d2Da
3+f2Db

3)2+ω2(Da
3 )2]+[(d2Da

4+f2Db
4)2+ω2(Da

4 )2]
(ω2+f1f2−d1d2)2+(d1+d2)2ω2 (A.15)

CBB = f2
1 D2

1+(ω2+d2
1)D2

2+[(f1Da
3+d1Db

3)2+ω2(Db
3)2]+[(f1Da

4+d1Db
4)2+ω2(Db

4)2]
(ω2+f1f2−d1d2)2+(d1+d2)2ω2 (A.16)

In order to calculate the response functions, we introduce two small perturbations

h̃1(ω) and h̃1(ω) to the system

(d1 − iω)Ã(ω)− f2B̃(ω) = D1ξ̃1(ω) + Da
3 ξ̃3(ω) + Da

4 ξ̃4(ω) + h̃1(ω) + kg1δ(ω) (A.17)

−f1Ã(ω) + (d2 − iω)B̃(ω) = D2ξ̃2(ω) + Db
3ξ̃3(ω) + Db

4ξ̃4(ω) + h̃2(ω) + kg2δ(ω)(A.18)

From which the response functions can be derived

RAA = δ〈Ã(ω)〉
δh̃1(ω)

= iω−d2
ω2+iω(d1+d2)+f1f2−d1d2

(A.19)

RBB = δ〈B̃(ω)〉
δh̃2(ω)

= iω−d1
ω2+iω(d1+d2)+f1f2−d1d2

(A.20)
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Moment Equations for the Single

Gene - No Feedback System

Similar to [62], we introduce the time-dependent probability ps
x to have promoter

in state s = [0, 1] and x proteins. The evolution of this probability between cell division

times is described by the two master equations

ṗ0
x = α0(p0

x−1 − p0
x) + kx[(x + 1)p0

x+1 − xp0
x] + k−1p

1
x − k1v

−1p0
x, (B.1)

ṗ1
x = α1(p1

x−1 − p1
x) + kx[(x + 1)p1

x+1 − xp1
x] + k1v

−1p0
x − k−1p

1
x, (B.2)

At cell division time tn, the volume v is halved, and also the number of the proteins

in the cell, so px(tn+) = p2x(tn−).

From Eqs.(B.1),(B.2) we can derive the equations for the partial moments of the

distribution of the number of proteins, defined as

〈xq〉0,1 ≡
∑

x

xqps
x (B.3)

The zeroth moments s0,1 = 〈x0〉0,1 give the marginal probabilities of the promoter to be in
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states 0, 1, respectively. The equations for s0,1 read

ṡ0 = − k1

v(t)
s0 + k−1s1 (B.4)

ṡ1 =
k1

v(t)
s0 − k−1s1 (B.5)

The equations for the first moments read

˙〈x〉0 = α0s0 − kx〈x〉0 −
k1

v(t)
〈x〉0 + k−1〈x〉1 (B.6)

˙〈x〉1 = α1s1 − kx〈x〉1 +
k1

v(t)
〈x〉0 − k−1〈x〉1 (B.7)

and for the second moments,

˙〈x2〉0 = α0s0 + 2α0〈x〉0 + kx(〈x〉0 − 2〈x2〉0)−
k1

v(t)
〈x2〉0 + k−1〈x2〉1 (B.8)

˙〈x2〉1 = α1s1 + 2α1〈x〉1 + kx(〈x〉1 − 2〈x2〉1) +
k1

v(t)
〈x2〉0 − k−1〈x2〉1 (B.9)

Here at cell division times the values of 〈x〉0,1 and 〈x2〉0,1 have to be reset, 〈x〉0,1(tn+) =

〈x〉0,1(tn−)/2 and 〈x2〉0,1(tn+) = 〈x2〉0,1(tn−)/4.

The asymptotic solution for s0 at large time t can be written in the form

s0(t) = k−1

∫ t

−∞
e
−

∫ t
t′

(
k1

v(y)
+k−1

)
dy

dt′ (B.10)

The mean values of s0,1 with good accuracy are approximated by the formulas

s0(t) =
k−1

k−1 + k1v−1
(B.11)

s1(t) =
k1v−1

k−1 + k1v−1
(B.12)

For small decay rate kx � 1, the mean value of the number of proteins 〈x〉 =

〈x〉0 + 〈x〉1 can be found from (B.6) assuming that the number of proteins doubles during

the cell division time. For small decay rates is simply leads to

〈x〉 =
3
2

k−1α1 + k1v(t)−1α0

k−1 + k1v(t)−1
(B.13)
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Similarly, we can obtain the mean variance of the number of proteins at large t, 〈x2〉 − 〈x〉2

(it has to increase 4 times between consecutive cell divisions).
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Variational Index

C.1 Variational index

Here, we introduce a general variation index as

D ≡

∫
dnP (n) 1

S

S∑
n

i=1

n2
i −

( ∫
dnP (n) 1

S

S∑
n

i=1

ni

)2

( ∫
dnP (n) 1

S

S∑
n

i=1

ni

)2
(C.1)

where
∫

dnP (n)(·) is the average of different population distribution of a community,

i.e., ensemble average, while 1
S

S∑
n

i=1

(·) is the average of phenotypes. By denoting (·) as

∫
dnP (n)(·) and 〈(·)〉 as 1

S

S∑
n

i=1

(·), the variational index can be expressed as D ≡ 〈n2〉−
(
〈n〉

)2(
〈n〉

)2 ,

which could be further written as

D =
〈n2〉 − 〈n〉2(

〈n〉
)2 +

〈n〉2 −
(
〈n〉

)2(〈
n〉

)2

≡ Di + Dc (C.2)

where Di infers to intra-colony index and Dc infers to cross-colony variation.

By exchanging the average sequence (summation and integral), we may rewrite
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the variational index Eq.(C.2) as

Dt =

1
S

∑
i

(
n2

i − ni

)
− 1

S2

∑
i,j

(
ninj − ni

)
1

S2

(∑
i
ni

)2
+

1
S2

∑
i,j

(
ninj − ni

)
− 1

S2

(∑
i
ni)2

1
S2

(∑
i
ni

)2

=

S
∑
i
n2

i −
∑
i,j

ninj(∑
i
ni

)2
+

∑
i,j

ninj −
(∑

i
ni

)2

(∑
i
ni

)2
(C.3)

From which we find that we need only calculate the first and the second moments rather

than the whole probability distribution to have the variation index.

C.2 Calculation of the First and Second Moments

The moment equation Eq.(5.5) could be decomposed to two sets of equations, one

set for the first moments and the other set for the second moments.

The first moments M(1)(t) =
(
n̄1(t), n̄2(t)

)T , the mean population of the dynamics,

are given by

M(1)(t) =

 n̄1(t)

n̄2(t)

 =

 1 1

s2−s1+∆
2t12

s2−s1−∆
2t12


 γ1e

θt

γ2e
νt

 (C.4)

where ∆ =
√

(s1 − s2)2 + 4t12t21, θ = 1
2(s1+s2+∆) and ν = 1

2(s1+s2−∆). The coefficients

are given by γ1 = (s1−s2+∆)
2∆ n̄1(0) + t12

∆ n̄2(0), γ2 = (s2−s1+∆)
2∆ n̄1(0)− t12

∆ n̄2(0).

We further can obtain the second moments, M(2)(t) =
(
n2

1(t), n
2
2(t), n1n2(t)

)T ,

which are given by

M(2)(t) = Y(t)C2 + Y(t)
∫ t

0
Y−1(t′)f(t′)dt′ = Y(t)[C2 + F(t)− F(0)] (C.5)
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where Y = KU(t), C2 = K−1M(2)(0), L = K−1f , and

K =



(s1−s2+∆)
2t21
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2t21

2t12
s2−s1
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2t12

(s2−s1−∆)
2t12

2t21
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1 1 1
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0 0 e(θ+ν)t



f =
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2
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2t12

−(t21 + s2−s1+∆
2 ) −(t21 + s2−s1−∆
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,F(t) =
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With the above exact expressions of the first and second moments, we can now

study the whole temporal behavior, which can be expressed as a function of M(t)

Dt(t) =
M

(2)
1 + M

(2)
2 − 2M

(2)
3

(M (1)
1 + M

(1)
2 )2

+
(M (2)

1 + M
(2)
2 + 2M

(2)
3 )− (M (1)

1 + M
(1)
2 )2

(M (1)
1 + M

(1)
2 )2

(C.6)

For the long-time, asymptotic behaviors of the population dynamics, the exponents

are most useful quantities for the characterization, just as the Lyapunov exponents for

general exponentially growth or relaxational dynamic systems. Up to the second moments,

there are five exponents for the two-phenotype community, (θ, ν, θ + ν, 2θ, 2ν), where

the largest exponent is 2θ. The long-time dynamics is mainly determined by the largest

exponent, therefore the two indices asymptotically become

D∞
i =

[
C21 − F1(0)

](
K11 + K21 − 2K31

)
γ2

1

[
1 + s2−s1+∆

2t12

]2

D∞
c =

[
C21 − F1(0)

](
K11 + K21 + 2K31

)
γ2

1

[
1 + s2−s1+∆

2t12

]2 − 1 (C.7)
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C.3 Cellular Populations in Chemostat Environments

The cellular population in a chemostat environment is constrained by the corre-

sponding container or chamber, where the dynamics is another story. It can be described

by the following Master equation

d
dtP (n1, n2, t) = g1n

−
1 P (n−1 , n2, t)[1−Θ(n−1 + n2 −N∗)] + d1n

+
1 P (n+

1 , n2, t)

+g2n
−
2 P (n1, n

−
2 , t)[1−Θ(n1 + n−2 −N∗)] + d2n

+
2 P (n1, n

+
2 , t) + t21n

+
1 P (n+

1 , n−2 , t)

+g1n
−
1

( n+
2

n−1 +n+
2

)
P (n−1 , n+

2 , t)Θ(n−1 + n+
2 −N∗)

+g2n
−
2

( n+
1

n−1 +n+
2

)
P (n+

1 , n−2 , t)Θ(n+
1 + n−2 −N∗)

−
[
(d1 + t21)n1 + (d2 + t12)n2 + (g1n1 + g2n2)[1−Θ(n1 + n2 −N∗)]

+ (g1+g2)n1n2

n1+n2
Θ(n−1 + n+

2 −N∗)
]
P (n1, n2, t) (C.8)

where Θ(x) is a step function with Θ(x) = 0(x < 0) or 1(x >= 0), N∗ is the

maximum population that the environment could contain.

The above equation is hard to solve analytically but could be computed numeri-

cally. Moreover, there are two limits that could be achieved analytically. One limit is the

initial stage where the cell population is still under maximum N∗, the equation is the same

as Eq.(C.12) and has been solved exactly. The other end is the long time limit where the

overall population is constrained around the maximum value.

At the maximum population stage, the overall population is always around N∗,

i.e. n1 + n2 ' N∗. Therefore the step function Θ(n±1 + n±2 −N∗) = 1. The Eq.(C.8) could

be nicely approximated by the following equation

d

dt
P (n1, t) =

(
t12(N∗ − n−1 ) + g1n

−
1 (1− n−1

N∗ )
)
P (n−1 , t) +

(
t21n

+
1 + g2n

+
1

(1− n−1
N∗ )

)
P (n+

1 , t) +
(
t12(N∗ − n1) + t21n1 + (g1 + g2)n1(1−

n1

N∗ )
)
P (n1, t) (C.9)
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The steady state distribution of the above equation (detailed balance) brings

P (n1)
P (n1 − 1)

=
t12[N∗ − (n1 − 1)] + g1(n1 − 1)(1− n1−1

N∗ )
t21n1 + g2n1(1− n1

N∗ )
(C.10)

From which we have the steady state distribution as

P (n1) =
n1∏
i=1

(
t12[N∗ − (i− 1)] + g1(i− 1)(1− i−1

N∗ )
t21i + g2i(1− i

N∗ )
)P (0) (C.11)

where the probability having no cells is

P (0) =
(
1 +

N∗∑
n1=1

n1∏
i=1

(
t12[N∗ − (i− 1)] + g1(i− 1)(1− i−1

N∗ )
t21i + g2i(1− i

N∗ )
)
)−1

C.4 Cellular Populations in an Environment with Finite Nu-

trition Supply Rates

The cellular population dynamics in an environment with finite nutrition supply

rate is governed by

d

dt
P (n1, n2, t) = g1n

−
1 (1− α1n

−
1 + α2n2

Nn
)P (n−1 , n2, t) + d1n

+
1 P (n+

1 , n2, t)

+g2n
−
2 (1− α1n1 + α−2 n2

Nn
)P (n1, n

−
2 , t) + d2n

+
2 P (n1, n

+
2 , t)

+t12n
+
2 P (n−1 , n+

2 , t) + t21n
+
1 P (n+

1 , n−2 , t)−
[
(d1 + t21)n1

+(d2 + t12)n2 + (g1n1 + g2n2)(1−
∑

i αini

Nn
)
]
P (n1, n2, t) (C.12)

where the terms (1 − Σiαini
Nn

) indicate the availability of left nutrition source, αi is the

nutrition cost rate for phenotype i and Nn is the overall nutrition flow.
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