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Massive deployment of embedded systems including various sensors, on-board and road-side

computing units, wireless communication among vehicles and infrastructure via enabling

technology of the Internet of Things (IoT), and intelligent algorithms are changing the

transportation sector, leading to novel systems known as Intelligent Transportation Sys-

tems (ITS). However, with these newer technologies come unforeseen safety and security

concerns. Research has shown that effects of attacks on the peripherals or the Electronic

Controller Units (ECUs) in modern vehicles may cause congestion, but more importantly

endanger passengers and passersby. An attack vector on one component/subsystem of an

ITS will tend to lead to effects on other components/subsystems due to the connectivity be-

tween them. In 2014, a whopping 15000+ existing wireless devices (sensors and controller)

deployed across 45 U.S. states and 10 countries were found to be potentially vulnerable to

exploits that could lead to remote modifications of traffic timing control. The situation will

be exacerbated in the future with the increase in autonomy level and the reliance on sensors

and communications.

In spite of the recent interest and importance of ITS security, there have been few efforts

to consolidate, structure, and unify this large body of research. There has also been an

increasing divergence between academic research and industrial practice in the area, each

xiv



of which has evolved independently with little interaction and in some cases with little

understanding of the assumptions, issues, trade-offs, and scales considered by the other.

In addition to a lack of a clear consolidation and summary of related ITS security works,

research on modeling/analysis tools for ITS security is also lacking.

For these reasons, this dissertation tackles these challenges by providing 1) a consolidation

in ITS security research in terms of both V2X and IoT aspects (with a focus on battery

systems) and 2) two methodologies to model and analyze the performance of ITS under

attacks. Both methodologies are designed to be standalone open-sourced tools that ITS

designers, engineers, and researchers may utilize to promote the growth of ITS security The

first methodology focuses on modeling attacks and analyzing their impacts on vulnerable

connected Fixed-Time Traffic Signal Control Systems. The second methodology is presented

hand-in-hand with an attack taxonomy that focuses on a more advanced ITS system use-case

called Vehicular Communication (V2X) Advisory Speed Limit Control (ASL) and involves

the study of various attack types on different components of the ITS.
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Chapter 1

Introduction

1.1 Background

Transportation systems play a major role for goods, services, and people. To ensure that

transportation systems are fulfilling their role to the fullest, an extensive amount of work

has been put into traffic management schemes to reduce or prevent congestion [206, 200].

Congestion arises when the demand for a certain part of the transportation infrastructure is

greater than the services/supply it may provide. Preventing or reducing traffic congestion

may reduce environmental and health issues, improve safety, and help save money and time

for people and services. In fact, according to a 2010 White Paper by the European Commis-

sion [92], the “external costs of road traffic congestion alone amount to 0.5% of Community

GDP [Europe]” and will continue to increase if nothing is done to mitigate its impacts [206].

The last few decades have seen a transformation in both automotive and transportation

systems from mechanical or electro-mechanical systems to electronic, software-based systems.

According to the U.S. Department of Transportation Federal Highway Administration, “on
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average, adaptive signal control technologies improve travel time by more than 10%. In

areas with particularly outdated signal timing, improvements can be 50% or more” [201].

Furthermore, the U.S. Department of Transportation has established a long-term Intelligent

Transportation Systems (ITS) program to encourage the widespread use of ITS across the

nation [200]. ITS are transportation-centric Cyber-Physical System (CPS) that are combi-

nations of subsystems that work with one another to improve transportation performance.

Each subsystem is made up of loops between sensors of physical phenomena (e.g., number

of vehicles, vehicle speeds, vehicle presence), controllers and traffic agencies. To fully grasp

a comprehensive understanding of the performance of ITS, each of its subsystems requires

individual modeling and analysis.

To aid existing and traditional traffic control systems and to prepare for upcoming imple-

mentations of ITS, the Internet of Things (IoT) has become an enabling technology. Wireless

communication is being used as for the remote control over the signal timings of one or sev-

eral intersections, and the transfer of information between sensors, controllers, and traffic

management agency servers [74]. Although there has been a shift toward implementing ITS,

fixed-timing plans are still the most common throughout the world due to legacy and regu-

latory issues. In 2008, 90% of traffic control systems throughout the U.S. were fixed-timing

control systems [157].

On the other hand, modern automotive systems are complex distributed systems involving

the coordination of hundreds of Electronic Control Units (ECUs) communicating through a

variety of in-vehicle networks and the execution of several hundred Megabytes of software.

First, the systems are cyber-physical: the ECUs coordinate, monitor, and control a variety of

sensors and actuators including LIDAR, cameras, radar, light matrices, devices for sensing

angular momentum of the wheels, devices for automated brake and steering control, etc.

Second, many computation and communication tasks across the different ECUs, sensors,

and actuators must be accomplished under hard real-time requirements; e.g., a pedestrian
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detection algorithm must complete a slew of complex activities including the capture of

sensory data, aggregation, communication, analytics, image processing, security analysis,

etc., within the time constraints to enable successful completion of the appropriate actuarial

response such as warning the driver or automatically braking.

Furthermore, the complexity is anticipated to rise sharply with increasing autonomy levels

in vehicles. For instance, a future self-driving car with autonomy level 4 will include several

elements not available in today’s (level 2) systems. Example elements include: 1) vehicle-to-

vehicle (V2V) and vehicle-to-infrastructure (V2I) communications with a variety of networks

of different levels of trustworthiness, 2) a diversity of sensors to detect driving conditions (e.g.,

potholes, moisture, pedestrians, etc.), and 3) distributed computing elements to perform in-

vehicle analytics and react to evolving conditions on the fly.

Security is therefore obviously of paramount importance for automotive systems. Given

that the system involves the complex interaction of sensory, actuarial, and computational

elements, an “innocent” misconfiguration or error in one component may result in a subtle

vulnerability that can be exploited in-field with potentially catastrophic consequences. Re-

cent work has shown that it is viable, and even relatively straightforward, to hack a vehicle

remotely, get control over its driving functionality, and cause an accident. The situation will

be exacerbated in the future with the increase in autonomy level and the reliance on sensors

and communications: an attacker may hack a vehicle remotely through the interception or

tampering of sensor data and/or V2V and V2I messages without requiring physical access or

even proximity to the vehicle under attack, thus resulting in a sharp increase in the attack

surface.

Consequently, the proliferation and adoption of connected, autonomous, self-driving cars crit-

ically depends on our ability to ensure that they perform securely in a potentially adversarial

environment. Unsurprisingly, there has been a large interest in recent years in the security

of automotive systems, with a flurry of publications demonstrating a diversity of security
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vulnerabilities and exploits, as well as techniques for defense against these vulnerabilities.

1.2 Research Challenges

Unfortunately, in spite of the interest and importance of ITS security, there has been few

efforts to consolidate, structure, and unify this large body of research. Consequently, publi-

cations in the area typically appear isolated approaches for specific attacks or defenses, rather

than a disciplined study of security challenges or systematic approaches to counter them.

Furthermore, much of the research on automotive security is conflated with other related

areas on security assurance with analogous but different challenges, including wearables, the

Internet of Things, or even traditional hardware and software designs.

Finally, there has been an increasing divergence between academic research and industrial

practice in the area, each of which has evolved independently with little interaction and in

some cases with little understanding of the assumptions, issues, trade-offs, and scales consid-

ered by the other. All this leaves a researcher getting initiated in this area with the daunting

tasks of sifting through the various challenges, complexities, and research directions; identify-

ing approaches applicable to automotive systems in particular; and comprehending evolving

challenges caused by the rising complexity of these systems through the past, present, and

future.

In addition to a lack of a clear consolidation and summary of related ITS security works,

research on modeling/analysis tools for ITS security is also lacking. For this reason, two new

methodologies to model and analyze the performance of ITS under attacks are presented

in this dissertation. The first methodology focuses on modeling attacks and analyzing their

impacts on Fixed-Time Traffic Signal Control Systems (the most popular type), which are

exposed to security vulnerabilities due to added connectivity. The second methodology
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focuses on a more advanced ITS system use-case called Vehicular Communication (V2X)

Advisory Speed Limit Control and involves the study of various attack types on different

components of the ITS. Both methodologies are designed to be standalone open-sourced

tools that ITS designers, engineers, and researchers may utilize to promote the growth of

ITS security.

1.3 Overview of Contributions

As aforementioned, this dissertation will tackle the existing research challenges of: 1) pro-

viding a better understanding of the security of the ever-growing ITS in terms of both

automotive and IoT security, 2) developing unique tools to assist ITS designers and engi-

neers to better analyze and develop security solutions, a.The structure of this dissertation

will be as follows:

• Chapter 2 will provide an extensive overview and taxonomy of ITS security challenges

and related works.

• Chapter 3 will provide a detailed methodology on modeling and analyzing attack im-

pacts on Connected Fixed-Time Traffic Signal Control Systems.

• Chapter 4 will similarly provide a methodology for the ITS use-case: V2X Advisory

Speed Limit Control.

• Chapter 5 will discuss the cyber-physical risks involved with battery system security

in ITS.

• Chapter 6 will conclude the dissertation with some remarks on the contributions and

on ideas for future research.
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Chapter 2

A Comprehensive Overview and

Taxonomy of ITS Security

2.1 Introduction

This chapter represents a first step to provide a comprehensive, systematic overview of

both research and practice in ITS security, with a focus on automotive and V2X security.

A systematic categorization of research advances in various aspects of both attacks and

defenses on automotive electronics is developed and presented. Furthermore, this chapter

discusses current practices in security assurance, points out their constraints and trade-offs,

and provides perspective on the rationale involved. In short, this chapter serves as a research

contribution for an ITS researcher, designer, or engineer to begin investigation on all aspects

of the security of connected and autonomous vehicles.

The remainder of the chapter is organized as follows. Section 3.2.1 provides a brief overview

of automotive electronics and software to provide a sense of the complexity, potential vulner-

abilities, and attacker entry points. Different components of electronic and software system
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security are also recounted, to provide a background for the rest of the chapter. In Section

2.3, some challenges in mitigating security vulnerabilities in automotive systems are pre-

sented. Sections 2.4, 2.5, 2.6, and 2.7 describe various categories of research in automotive

security. In Section 2.8 one specific, celebrated vehicle hack is closely examined, e.g., by

Miller and Valasek in 2015; the goal of this case study is to examine how vulnerabilities at

different levels can be “chained” together by a hacker to compromise a vehicle. Section 2.9

consists of a high-level overview of industrial practice in identifying security vulnerabilities.

Section 2.10 briefly discusses security challenges with the automotive supply chain. Section

2.11 concludes the chapter. Note that while this chapter comprehensively discusses automo-

tive security at the vehicle level, automotive security involves many other components, e.g.,

validation of individual SoCs and ECUs in automobiles, the relation between security and

functional safety, etc. These components are outside the scope of this chapter and previously

published literature [219, 217, 215, 216] for these topics are referred.

2.2 Background

2.2.1 Electronics and Software in Modern Automotive Systems

The transformation of automotive systems from a mechanical or electro-mechanical system

to a chiefly electronic one arguably began with the development of engine control and fuel

injection systems in the 1970s. Starting from the 1990s, the design complexity of automotive

systems has been dominated by electronic parts, with more focus on software components in

the last decade. Today’s cars include electronics and software for infotainment, driver assis-

tance (ADAS), and energy efficiency (e.g., emission control), to name a few. The electronic

and software components in an automobile (which is loosely referred to as “electronics”) are

typically divided into five functional domains:
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Figure 2.1: Overview of an automotive system architecture. Each box refers to an ECU
(controller). ECUs are connected with one another through buses and intra-networking
protocols such as Controller Area Network (CAN) and Local Interconnect Network (LIN).
CAN is primarily used for core driving functionality and engine control as well as for sensors,
comfort, infotainment, and the Adaptive Front-Lighting System.

8



• Telematics: This includes the multimedia and infotainment components of the car

including radio, rear-seat entertainment, and navigation systems.

• Body: This includes air-conditioning and climate control, the electronic dashboard,

power doors, seats, windows, mirrors, lights, park distance control, etc.

• Chassis: This includes features such as the Antilock Braking System, Stability Con-

trol, Adaptive Cruise Control, etc.

• Powertrain: This includes the electronics for controlling the engine, fuel injection,

transmission gear, ignition timing, etc.

• Passive Safety: This includes all the electronics designed to add safety mechanisms,

including roll-over sensors, airbags, belt pre-tensioners, etc.

Obviously, many automotive features cross-cut a variety of functional domains. For exam-

ple, many modern cars include speed-compensated volume adjustment, i.e., adjustment of

multimedia volume in response to increasing speed of the car. This requires communication

between the radio (part of telematics) and ADAS components. Other similar examples in-

clude automatic braking while reversing if the backup camera senses a child or small obstacle

and showing the reversing trajectory on display (which requires computation of angular mo-

mentum of the wheels). To enable these features, automotive system architectures involve

significant and complex communication among the different in-vehicle components. This is

implemented through a variety of protocols including Controller Area Network Bus (CAN-

Bus), Local Interconnect Network (LIN), FlexRay, and Media Oriented Systems Transport

(MOST). Figure 2.1 provides a representative automotive architecture. In addition to

in-vehicle communication, current and emergent vehicles also communicate with external

entities (e.g., other cars, infrastructure components, etc.).
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2.2.2 Security Requirements

Traditionally, the security of a Functional Safety of Electrical/Electronic/Programmable

Electronic Safety-related (E/E/PE) System includes the following foundational pillars: con-

fidentiality, integrity, and availability, also referred to as the CIA pillars [101]. More recently,

authentication and repudiation have been added as additional pillars, particularly for com-

municating systems and devices.

1. Confidentiality: This refers to the requirement that sensitive, critical system infor-

mation and data are not perceivable by parties who are not the intended recipients.

2. Integrity: This refers to the requirement that an unauthorized entity cannot corrupt

or modify sensitive data or information. In the context of communicating agents,

integrity involves the requirement that data received is not different than what was

originally intended to be sent. Further, the data should be accompanied by a warranty

that it was sent from the expected user at an expected time.

3. Availability: This refers to the requirement that a legitimate user or application can

access requested resources and perform functions within a guaranteed time limit. An

obvious subversion on availability is a denial-of-service (DOS) attack.

4. Authentication: The assurance that communicating parties can verify the identity

of each other and that parties are only able to attain access to resources corresponding

to their access level.

5. Non-Repudiation: This refers to the assurance that a party cannot refute something

they have done (e.g., sending a packet). It requires a mechanism to prove the history

of a communicating party. This usually involves a combination of authentication and

integrity.
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Of course, the above requirements are very general. Translating them for a specific applica-

tion involves definitions of security policies targeted towards that system, e.g., confidentiality

requirements are enforced through security policies that stipulate how sensitive assets in the

system can be accessed and the agents and devices authorized to access them [28, 29, 219].

Nevertheless, the five pillars above can be used to systematize and categorize security at-

tacks and defenses. For this chapter, when discussing security vulnerabilities on automotive

systems, this taxonomy will be used to categorize both attacks and defenses.

2.3 Some Challenges with Automotive Security

At a high level, security attacks on automotive systems are obvious instances of general

cybersecurity problems. In particular, a large number of electronic and software components

that were not originally designed to be connected to the Internet are now connecting to the

Internet, so it is unsurprising that security vulnerabilities exist which can then be exploited in

the field. On the other hand, one challenge is that traditional cybersecurity solutions cannot

be directly used to mitigate such attacks. Just has been shown in other CPS in research

and real-life incidents regarding manufacturing, nuclear, sewage, train, bio-engineering, and

others [59, 61, 60, 58, 170, 146, 246, 10, 81].

In particular, automotive systems are in the field for a long time compared to traditional

information technology (IT) systems, mobile systems, and wearable devices. For instance, a

mobile phone remains in the field for a couple of years. In contrast, a car may remain in the

field for a decade or more. This gives the hacker a long time to find vulnerabilities in deployed

vehicles. Furthermore, even if there is no security problem at the time of deployment,

security requirements can change within this long life-time, adversely impacting the level of

security assurance on a deployed, mature system. Furthermore, traditional security assurance

solutions, e.g., encryption, authentication, etc., are typically computationally intensive. It is
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First Author Year Experimental Surface Citation
Koscher 2010 Unknown [158]

Checkoway 2011 Unknown [51]

Foster 2015
Mobile Devices Ingenierie
TCU used by Uber

[85]

Miller 2012
2010 Ford Escape & 2010
Toyota Prius

[189]

Miller 2015 2014 Jeep Cherokee [190]

Keen Security Lab 2016-19 Tesla Model S, BMW
[5], [6],
[7], [8]

Smith 2016 2006 Chevrolet Malibu [247]

Table 2.1: Summary of works that have hacked on-road vehicles to study their vulnerabilities
and potential exploits

difficult to deploy many of these solutions with the memory and computation constraints of

automotive ECU’s. Finally, such solutions may raise issues related to privacy. For instance,

in connected platoons, strong authentication may be desirable to ensure that a vehicle-

to-vehicle communication is indeed coming from an authentic vehicle; however, a strong

authentication scheme may disclose the identity of the sending vehicle, which can then be

used to extract various private information including location and driving history.

2.4 A Sampling of Automotive Security Attacks

For the last decade, researchers and white-hat hackers have been experimenting on advanced

automotive systems to analyze them and discover vulnerabilities. Their primary purpose in

doing this is to showcase the need for secure automotive systems as more and more capabil-

ities are added to them over time. Each entity has used unique methods and experimental

setups to conduct their studies. One of these hacks will be studied in-depth in Section 2.8.

In this section, a high-level overview of the different hacks is provided to give a general flavor

of the spectrum of techniques involved. Table 2.1 provides a summary of these hacks and

the related publications organized by author, year, experimental surface (vehicle type) and
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citations.

One of the earliest comprehensive attacks on an in-field automobile (they did not publish

details of the vehicle involved) was performed by Koscher et al. [158] in 2010. The work

primarily involved exploits based on physical attacks. Subsequently, two other chapters

were published following up on the original hack, e.g., by Checkoway et al. [51] and Foster

et al. [85]. Checkoway et al. expanded upon Koscher et al.’s work with remote exploits

that take advantage of the vehicle’s telematics system. Foster et al. provide a thorough

vulnerability analysis of the in-vehicle systems. They considered vulnerabilities of newly

introduced (at the time of publication of their work) technologies including new telematic

control units (TCU) to both direct and remote attacks.

A landmark study in automotive hacking was performed in 2015 by Miller and Valasek [190]

who exhibited a way to remotely control the driver assistance system of a 2014 Jeep Cherokee

and drive it off the road. This work is particularly relevant to the research community since it

provides detailed documentation and explanation to enable the reproduction of their results.

In addition to the above, there has been work by white-hat hackers and research teams to

discover and perform exploits on automotive systems primarily to facilitate research and

awareness. One such team: the Keen Security Lab of Tencent [9], discovered exploits on

several models of the Tesla Model S, including remote attacks through the CAN module and

firmware over-the-air (OTA) updates. They also performed a thorough assessment of in-

vehicle equipment in several BMW vehicle models and found many vulnerabilities. Another

organization known as the Car Hacking Village [167], comprising several DefCon hackers,

published a detailed guide for the ethical hacking of automotive systems [247]. They also

include a list of recommended equipment to use. They demonstrate their approach on a

2006 Chevrolet Malibu Sedan, although their techniques apply to other vehicles.
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2.5 Security of In-vehicle Networks

The functionalities of automotive systems are typically implemented through the communi-

cation and coordination of ECUs and MCUs across several in-vehicle networks. For obvious

reasons, these in-vehicle networks are the primary targets of automotive security exploitation:

the goal is typically to “fool” the networks into communicating or delivering unauthorized

messages. Since many of the messages carried by these networks can have significant im-

pacts on vehicular functionality, e.g., messages through the CAN network can affect vital

driving functions including braking and cruise control, a successful attack on the network

would typically lead to the compromise of the entire system. Table 2.2 shows the differences

between several common in-vehicle network protocols.

Protocol Interface Topology Bandwidth Transmission Arbitration

CAN
[250]

Multi-
Master

Bus 1 Mbps
Asynch-
ronous

Bit-wise arbitration where
lowest message ID gets con-
trol of the bus.

LIN
[228]

Master-
Slave

Bus 20 Kbps
Synch-
ronous

All messages are initiated by
the master and one or zero
slaves will respond to a given
message.

MOST
[102]

Timing
Master-
Slave

Daisy
Chain or
Star

150 Mbps
Synch-
ronous

Access token is passed around
the bus in a circle. A node
can only transmit data if it
has the token, ensuring fair
access for all nodes.

FlexRay
[182]

Multi-
Master

Star or
Bus

10 Mbps

Synch-
ronous and
Asynch-
ronous

Static segment with fixed in-
terval messages and dynamic
segment with CAN-like arbi-
tration.

Table 2.2: Comparison between several common in-vehicle network protocols.

Wolf [290] discusses many inherent vulnerabilities of in-vehicle networks. For example, LIN

uses a master-slave architecture with all communication initiated by the master [228]. If

the master is compromised then the entire sub-network of slave nodes can be disabled.

Since LIN networks often control auxiliary features such as windows, lights, mirrors, fans,
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Figure 2.2: Common internal and remote attack vectors on automotive software systems are
the diagnostic ports and telematics system.

etc., this can impact vehicle usability. Another example is the MOST protocol, which is

primarily used for multimedia and infotainment. MOST networks use a ring or daisy-chain

topology and have a single timing master node that continuously sends timing frames to

synchronize slaves [102]. Since this is the only form of synchronization in the network, an

attacker can send malicious timing frames to desynchronize nodes and disable the bus. This

can render infotainment/telematics devices inoperable. An even greater vulnerability exists

with CAN and FlexRay networks as they are designed for high speed, real-time systems and

are often implemented in safety-critical applications. Both FlexRay and CAN are susceptible

to exploits due to lack of authentication or encryption [182, 250]. This can allow attackers

to cause malfunctions in safety-critical systems such as stability control, anti-lock braking,

and engine management as well as in drive-by-wire systems such as electronic throttle and

steering. This section primarily focuses on the security of CAN networks, since they have

been ubiquitous and often form the primary communication bus in most vehicles. Many

recent studies [51, 158, 85], have shown that it can be compromised by an attacker with

relative ease, allowing them to enable or disable critical safety systems.
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The two most common attacks for CAN-Bus exploitation are through (1) diagnostic ports

and (2) telematics or infotainment systems. Figure 2.2 illustrates the different attack vectors.

Diagnostic ports are a common entry point for an attacker due to the relative ease associated

with launching an attack, assuming the attacker has physical access to the diagnostic port

(i.e., access to the vehicle). Telematics and infotainment systems often use wireless protocols

such as Bluetooth, cellular 2G/3G/4G, WiFi, and GPS, which enable attackers to remotely

interface with these systems and launch attacks.

2.5.1 Attacks through Physical Access

In the United States, all vehicles sold since 1996 are required to use an OBD-II diagnostic port

(specified in SAE J1962) to transmit emissions-related codes and data for vehicular emissions

testing. Additionally, US legislation requires all vehicles sold since 2008 to support the ISO

15765-defined CAN standard through this OBD-II interface. Although the requirement is

only for emissions-related information, most manufacturers use it as a primary diagnostic and

reprogramming port as well. Since the port directly connects to several onboard computers

via CAN, an attacker with physical access to the vehicle can easily launch attacks and

compromise critical vehicle systems. The attacker could be an individual with legitimate

access, (e.g., a valet driver or mechanic), or someone who gains illegitimate access e.g.,

through burglary. Once the attacker gains physical access, there is a wide array of OBD-II

adapters available online to allow them to transmit and receive CAN messages.

Attacks through physical access, while easy to administer, have not been perceived as a

”real” threat to automotive security. A standard response to such an attack has been that,

if the attacker did have physical access, they could simply cut the brake wire or perform

other similar damage, rather than hacking the vehicle through a CAN network. Nevertheless,

as attention to automotive security has intensified in recent years, there have been efforts to
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mitigate such attacks. To combat exploits that utilize the physical OBD-II port, Markham et

al. [183] proposed a role-based access control policy: each commercial OBD-II device would

be certified by manufacturers and would send a public key and X.509 certificate to the vehicle

to prove its identity. Once a device is verified by the vehicle, it is given access to certain

systems based on its privilege; non-certified devices would only have permission to read the

bus, while a certified mechanic’s scan tool would have both read and write permissions.

Nevertheless, note that attacks similar to the PassThru exploit [51] would circumvent this

form of authentication.

2.5.2 Remote Attacks through Infotainment/Telematics

The Defense Advanced Research Projects Agency (DARPA) has demonstrated exploitable

hacks in vehicular infotainment applications such as the UConnect R© system in Chrysler,

Jeep, FIAT, etc. [188]. They demonstrated that they could remotely control a vehicle via

CAN bus commands. Their hacking demonstrations resulted in several recalls, including 1.4

million Chrysler automobiles [100].

Since 2004, the Environmental Protection Agency requires all vehicles manufactured in the

US to support SAE J2534 PassThru devices, allowing Windows computers to communicate

with a vehicle’s internal bus networks. Consequently, many mechanics and technicians use

J2534 PassThru devices for diagnostics and emissions testing. PassThru devices connect to

the OBD-II port in vehicles and communicate with the Windows machine via a wired or wire-

less network. Checkoway et al. [51] showed how it is possible to hack these devices remotely

through a local WiFi network. Since the PassThru device used by Checkoway depended on

external network security, its communication over the local wireless network was not secured.

This allowed them to perform a shell injection and install malicious binaries on the PassThru

device and use the PassThru to install malicious code on a connected vehicle as well. Check-
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oway also demonstrated that a worm could be implemented to copy malicious code between

multiple PassThru devices on the same network, increasing the impact of this attack. Other

remote attacks include the exploitation of vulnerabilities in infotainment/telematics systems.

These systems often include interfaces for Bluetooth, cellular, GPS, and other wireless pro-

tocols, as well as a communication channel to the internal CAN network; this makes them

particularly attractive targets for remote attacks. Exploits to these systems often involve

traditional hardware and software security exploits. For example, Checkoway et al. [51]

showed a buffer overflow attack by installing a simple Trojan application on a connected

Android phone; the application listened to Bluetooth traffic to determine if a certain model

of telematics unit was connected and, if so, delivered the attack payload. Furthermore, using

the bridging capability of the infotainment system, they could send arbitrary CAN messages

to the internal CAN network.

2.5.3 Integrity and Availability Attacks

CAN was designed for real-time systems and prioritizes speed and reliability of delivery.

CAN messages are broadcast to every node in the network, permitting anyone with bus

access to perform packet sniffing. Additionally, CAN messages do not contain any authen-

tication information to verify senders; the message ID is the only identifier used by a node

to determine if it should process a message. This enables attackers to easily perform replay

attacks by sending packets with message IDs that match the IDs of legitimate messages they

want to spoof. Since CAN messages control various driving functions, attacks on integrity

and availability can be mounted through appropriate CAN messages. For instance, Koscher

et al. [158] showed how to send specific CAN messages in consumer vehicles that utilize

electronic stability and brake control (e.g., ABS braking) to enable and disable brakes at

speed.
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It is difficult to prevent replay and availability attacks on CAN networks without significant

protocol changes. However, there has been interest in detecting attacks non-intrusively by

checking for anomalous bus traffic. Several intrusion detection strategies have been developed

to defend against attacks on in-vehicle systems. Taylor et al. [259] demonstrated a non-

intrusive anomaly detector for identifying replay attacks on CAN networks. The algorithm

measures inter-packet timing over a sliding window and compares average times to historical

averages to create an anomaly signal, and targets both replay and availability attacks. Note,

however, that while such a solution is effective at detecting availability and replay attacks for

periodic messages, they are ineffective at detecting attacks involving non-periodic messages

due to their reliance on historic timing averages. Additionally, since these methods do not

check message data for anomalies (only message timing), an attacker who can modify data

within periodic messages without affecting timing intervals would be able to subvert these

methods. Cho et al. [62] proposed an anomaly-based intrusion detection system (IDS)

that utilizes the intervals and clock skews of periodic in-vehicle messages to create unique

fingerprints for each ECU. Deviations from this signature indicate an intrusion into the

network by a compromised ECU or other device. The proposed IDS was able to detect these

intrusions with a false positive rate of 0.055%.

2.5.4 Authentication and Non-Repudiation Attacks

CAN networks have many restrictions that make it difficult to implement many known

authentication protocols. Herrewege [272] discusses many of these restrictions. First, since

CAN networks often have hard real-time constraints, one cannot introduce an authentication

protocol that significantly impacts message timings. Second, each CAN message can only

contain a maximum of 8 bytes, meaning that extra authentication data cannot simply be

appended to existing messages. Third, since CAN message IDs correspond to specific func-

tions, it is not feasible to add extra IDs for authentication data. Finally, the unidirectional
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message-passing methodology used by CAN makes it difficult to directly address specific

nodes without using a rudimentary method such as flags. The combination of these factors

makes it difficult for vehicle manufacturers to implement secure access control policies with-

out significant time or capital investment. Car manufacturers typically prevent unauthorized

re-flashing of the software on ECUs through CAN; however, the restrictions discussed above

imply that only light-weight authentications can be implemented, which can be easily by-

passed resulting in integrity and non-repudiation attacks through unauthorized, over-the-air

update. Koscher et al. [158] showed that in a mid-range consumer vehicle, the authentica-

tion scheme used to control write access is a simple challenge-response pair: the car will ask

for a 16-bit key which, if provided, unlocks the ECU software. They demonstrated that this

form of key can be cracked with brute force in a matter of days.

Some manufacturers choose to keep critical systems on a separate, high-speed bus instead of

on the primary bus so that critical systems are not affected if the primary bus is disabled.

This can help prevent attacks on critical systems; however, since it is relatively easy for an

attacker to re-flash ECUs, the attacker could compromise any ECU which communicates on

both networks. For example, Koscher et al. [158] showed that the telematics unit (which

communicates with both networks) was able to be reprogrammed from the low-speed bus to

send custom messages on the high-speed bus.

Furthermore, Koscher et al. showed how to apply software reprogramming to launch non-

repudiation attacks as follows. One can introduce a Trojan software by re-flashing the ECU

such that the existing functionality would not be affected, allowing the original software and

the malware to coexist. After the malware executes an attack (e.g., disabling the engine or

locking the brakes), it would delete itself and relevant log data from the ECU to prevent

detection during a forensic investigation.

Addressing the above attacks requires the development of authentication protocols that can

meet CAN’s real-time requirements. Herrewege et al. [272] presented a message authen-

20



tication protocol named CANAuth, which inserts a hashed message authentication code

(HMAC) between sampling points of a CAN bus interface. This is done using the CAN+

protocol proposed earlier by Ziermann [305] to encode data at a higher frequency within a

single CAN bit without interfering with the underlying CAN bus protocol.

2.5.5 Ransomware and Thefts through CAN

The idea of a ransomware attack is to make a system functionality inaccessible to the user and

demand ransom in exchange for returning access. In cybersecurity, this attack typically takes

the form of encrypting important system files or locking functionality. In automotive systems,

however, an attacker with the ability to send CAN messages can easily mount ransomware

attacks by gaining control over a variety of in-vehicle functionalities. For instance, most

vehicles today employ a central locking system and use CAN to control in-vehicle displays

and user interfaces. Koscher et al. [158] showed that it is easy to control the locking of

vehicle doors; turning on the horn; activating and deactivating the Heating, Ventilation, and

Cooling (HVAC) system; or displaying arbitrary messages through the panel cluster display.

In addition to ransomware, it is easy to use CAN to enable theft of the vehicle silently

without activating the alarm, e.g., by sending messages to the telematics unit to successively

(1) unlock the doors, (2) disable the immobilizer, and (3) start the engine.

2.6 Security of Vehicular Communications

A key feature of emergent autonomous vehicles is the ability to communicate with other

vehicles, with the infrastructure, and with other devices connected to the Internet. Many

features of autonomous transportation depend on such communications, including platoon-

ing, cooperative route management, etc. Consequently, there has been significant interest in
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designing effective vehicular communications. Thus, potential threats on such communica-

tions and the proposed defenses are observed in this section.

Vehicular communication or Vehicular-to-Everything (V2X) has been introduced as an amend-

ment to the IEEE 802.11p standard. The standard was originally intended for Vehicle-to-

Vehicle (V2V) and Vehicle-to-Infrastructure (V2I) communications [4]. However, Vehicle-

to-IoT (V2IoT) communications are anticipated to be implemented and standardized in

the near future [16]. 5G-based Cellular-V2X is also being introduced by companies such

as Qualcomm to compete against 802.11p as the leading V2X standard. 5G promises to

be revolutionary for V2X due to its higher bandwidth capacity, smaller cell sizes, and new

beam-forming capabilities relative to 4G Long-Term Evolution (LTE) [35, 180]. Figure 2.3

provides a visualization of the connected environment induced by V2X. A major part of

security challenges in V2X is inherited from, and similar to, those in non-mobile ad hoc

wireless networks. However, a compromise in V2X is much more serious since automobiles

are safety-critical, electro-mechanical systems that influence major factors of peoples’ lives

[83]. For this reason, there have been efforts from standards bodies including IEEE and

the European Telecommunications Standards Institute (ETSI) to develop standards and

guidelines for V2X communication and Intelligent Transportation Systems (ITS) to meet

the security objectives [4, 78, 289].

Unfortunately, due to the complexity of these systems and their subsystems, it is challenging

to guarantee or even satisfy a majority of these security objectives [232]. Attack vectors

targeting V2X are large and diverse as the methods used to compromise a vehicle’s security

depend on the kinds of entry points accessible to the attacker. V2X attacks are generally

categorized by sophistication levels based on the distance between the attacker and the

target vehicle. A direct/physical attack can be mounted by an attacker who is able to

obtain physical access to the vehicle or hardware (e.g., OBU, CAN bus, transceivers), either

as the owner of the vehicle or via successful attacks/exploits of the CAN network as discussed
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in Section 2.5. A remote attack is mounted by an attacker that does not have direct access

to the vehicle.
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Figure 2.3: Vehicular communication aka Vehicle-to-Everything (V2X) environment with
traditional, connected, and autonomous vehicles. Each line corresponds to a type of one or
two-way communication channel for a specific application (V2V, V2I, V2IoT). Each connec-
tivity line may also represent a potential attack vector for an exploitation.

2.6.1 Confidentiality Attacks

Confidentiality may be breached if an attacker directly accesses their OBU (as shown in the

previous section) or purchases and implements 802.11p on a Software-Defined Radio (SDR)

to sniff packets containing private or critical information [40]. For example, they could track

a nearby vehicle via the position, speed, and action identities (unique to the event and

contains information about originator) in V2V Decentralized Environmental Notification

Messages (DENM) [232] or steal someone’s credit card information transmitted over the

air for Electronic Toll Collection (ETC) [166]. Tracking may lead to identifying a driver’s
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behaviors, personal interests, home/work address, and/or their real identity [41, 126]. In

the future, when peer-to-peer sharing is implemented, a key challenge will be to ensure the

privacy of network traffic between vehicles, infrastructure, and IoT devices [169, 83].

To address the requirement for confidentiality, asymmetric key-based encryption methods

have been proposed (e.g., Elliptical Curve Cryptography) by IEEE [4]. However, these

methods are costly and challenging to implement in the ad hoc, heterogeneous environ-

ment of V2V communications [232]. Another challenge is latency, which must be kept to

a minimum (less than or equal to 50ms for triggering events and resulting actions). Thus,

ensuring that a cryptographic solution is both reliable and fast is a major challenge [232].

Furthermore, encryption methods should also be able to adapt to the situation (emergency

or entertainment) to reduce energy and timing costs and ensure both safety and security.

There have been proposed solutions [284, 283, 176] which attempt to use the benefits of the

dynamically-changing physical environment to quickly generate highly random, symmetric

cryptographic keys by adapting to the energy and timing constraints of V2X scenarios and

the reciprocal fading properties of the wireless channel. Other solutions [76, 257, 292] at-

tempt to algorithmically reduce the overhead of existing cryptographic solutions.

To prevent attacks on privacy, researchers have recommended using pseudonyms, sending

data during only a part of the taken route (rather than all), ensuring k-anonymity, and

consistently updating unique identifiers such as the MAC address, public key certificates,

and probe message IDs [41, 173]. Some solutions provide domain-specific mitigation and

prevention approaches for specific applications such as Electronic Toll Booth Collection [24,

185].
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2.6.2 Integrity, Authentication and Non-Repudiation

Attacks on integrity and authentication typically involve tampering, fuzzing, and spoofing in

some fashion. Tampering or fuzzing attacks involve the modification or injection of noise into

packets sent over the air to confuse the involved parties, but they do not require attackers

to masquerade as others. Besides remote V2X attacks, attackers may maliciously alter the

code of in-vehicle CPUs, e.g., using malware or reflashing (via physical access to OBU or

remote attacks to the telematics/infotainment from V2IoT [203]), or modify the original

data before it is transmitted. Spoofing attacks, such as the Sybil attack, are detrimental to

network productivity and breach both the integrity and authentication security objectives.

Douceur [75] proposed the Sybil attack. It involves a malicious node that adopts multiple

addresses of legitimate (Sybil) nodes. This means that all messages will be rerouted to this

malicious node instead of the legitimate nodes. Having these messages, the attacker can

tamper with them and resend them to the legitimate nodes, or deceive nearby vehicles into

believing that they are surrounded by traffic to get an empty route for itself once others

choose alternate routes [75, 160]. Another attack method: tunneling, involves imitating a

short wireless channel between two legitimate nodes from both ends of a network [214]. It

causes the two legitimate nodes to select the malicious node in their routing algorithms. In

turn, this allows the malicious node to infer information about the nodes, modify packets,

and delay their communication attack availability. Timing-faking attacks were also shown

to be effective against V2X systems. By delaying the timing of packets, RSUs will end

up making incorrect decisions and force vehicles to enter sub-optimal routes with traffic,

accidents, or other unforeseen circumstances [253].

Attacks on integrity and/or authentication could lead to a variety of impacts, including

but not limited to traffic congestion and extra fuel costs, lower travel time for an attacker,

ransomware, injury, and even murder. Garip et al. [91] showed how to simulate V2V attacks
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on connected autonomous vehicles using botnets (many bot vehicles in a targeted area).

In their Manhattan grid experiments, they discovered that such attacks could overcome

correlation-based defenses and cause traffic congestion (increase in average trip time by 50%)

when only 1% of traffic is in the botnet area. Various recent researches [97, 220, 221, 56]

discovered that traffic controllers were highly vulnerable to spoofing attacks. These attacks

will lead to sub-optimal signal timing plans at intersections or freeway ramps to cause more

traffic congestion, reduced travel times for attackers, or even accidents due to spoofed or

tampered traffic signal information or unexpected timing changes and distracted/unaware

drivers. Wireless authentication is also being implemented with Electric Vehicles (EVs) and

the Smart Grid. In particular, there is a standardization where EVs would be able to use keys

and certificates to wirelessly authenticate with a charging station and recharge the vehicle

[49, 50]. However, an attacker (car thief) nearby may perform a substitution attack and use

the victim’s credentials instead of their own (which are invalid) to charge their vehicle.

Attacks that violate non-repudiation typically either directly target related security require-

ments (i.e., integrity, authentication, and availability) or directly target weak points in the

non-repudiation schemes. For example, an attack may involve deciphering a weak crypto-

graphic key used in a non-repudiation scheme (e.g., digital signature) or delaying mechanisms

that verify the action history of a vehicle or node (e.g., voting, blockchain) [277, 71, 18].

Defending against attacks on vehicular communications is of crucial importance to the

proliferation of connected vehicles. In the 802.11p/WAVE standard, the necessary pro-

tection mechanisms provided for integrity include using a Message Authentication Code

(MAC) (if using symmetric keys) over the data, and a digital signature (if using asymmet-

ric keys and identities) via RSUs and/or authorities like the Department of Motor Vehi-

cles [110, 254, 173, 212, 63, 213, 232, 17]. These solutions may ensure authentication and

non-repudiation as well. Combining these with a tamper-resistant cryptographic unit (such

as the Trusted Platform Module in [104]) can provide significant protection against the
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attacks discussed above. Maintaining timeliness and freshness additionally requires time-

variant parameters [232, 17]. However, note that these defenses may push development costs

up and suffer from deterministic seeds, mismanagement of secret keys, and occasionally the

tight resource constraints of embedded devices.

There has also been significant work on detection methods for integrity violations in vehicular

communications. Relevant approaches include correlating messages from neighbors or using

a reputation-based mechanism (via RSUs or authorities) to either infer the trustworthiness

of messages or immediately detect tampered messages [38, 108, 91, 230, 45, 299]. Plausibil-

ity checks on the received data (time and location) have been proposed to prevent usage of

spoofed data or even detect Sybil attacks (based on GPS data [107]). In [110], the authors

propose a low-cost, position-based routing protocol using digital signatures/certificates, plau-

sibility checks, and rate limitations to limit attacker capabilities. Another approach is to

provide watchdog vehicles to monitor network traffic and identify potential attackers [116].

2.6.3 Availability

Since availability is intertwined with integrity and authentication, many of the attacks on

integrity and non-repudiation discussed in Section 2.6.2 also impact availability. Further-

more, there are many networking attacks unique to availability, e.g., flooding/spamming,

blackholes/greyholes/wormholes, physical layer jamming, and malware. Impacts of black-

holes/greyholes/wormholes are studied in many recent chapters [36, 268, 282], which demon-

strate attacks resulting in the network dropping packets in flight. Flooding and spamming

attacks include message-based Denial of Service [39, 114]. Basciftci et al. [30] demonstrated

a physical layer jamming attack with SDRs from National Instruments and simulated the

same jamming attack in an LTE network simulation platform to cause a performance drop

of over 40% for more than 50% of users. Finally, after malware injection into a vehicle,
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infrastructure, or IoT device, an attacker may purposely interfere with the receptions and

processing of data to reduce the operational effectiveness of a vehicle and its peers.

Given the close correspondence between availability attacks and integration/repudiation at-

tacks, defenses against the latter also serve as defenses against the former. However, there

are also specific detection and prevention methods against availability attacks. Kaur et al.

[147] present a detection and prevention technique for wormhole attacks by forcing authen-

ticated nodes to hash their routing-based messages and also increment the number of hops

appropriately for a unique decision message. If the hops were modified by the attacker, then

the hash will be different than the hashed version of the legitimate message and the mali-

cious message will be discarded. Khatoun et al. [152] provide a solution to identify malicious

nodes performing Black Hole attacks by aggregating and analyzing information from RSUs

and vehicles to measure the reliability and reputation of nodes. Jamming attacks may be

mitigated or prevented via network coding techniques [94].

2.6.4 V2X and 5G

The upcoming complex 5G ecosystem is envisioned to include autonomous and connected

vehicles, drones, air traffic control, transportation systems, health, smart factories, smart

homes, smart cities, cloud-driven systems (robots and virtual reality), industrial processes

and much more [175, 14, 204, 48, 179]. By 2020, it is expected that over 25 billion IoT units

will be connected via various wireless and wired networking protocols of all types (auto-

motive systems alone are expected to utilize 3G, 4G LTE, IEEE 802.11p, intra-networking,

Bluetooth, and ZigBee among others) [234].

The 5G ecosystem promises exciting business opportunities, but its extreme level of inter-

connectivity is also a double-edged sword and comes with risks.

Due to the inter-connectivity of various devices under various protocols, the attack surface
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will be ever-growing and attractive for malicious entities and also terribly difficult for busi-

nesses to manage. Attacks may start from one endpoint to another endpoint in a completely

different subsystem (e.g., smart home to connected autonomous vehicle). Devices and pro-

tocols that were once considered too complex for attackers to target or bother with are now

more commonplace and well-understood by hackers.

In 2016, there was a leap in malware attacks [288, 115] and in 2017 alone, there was a 250%

increase in mobile ransomware attacks due to the rapid adoption of LTE and IoT [234]. It is

clear that when devices with legacy security solutions will become connected, unless properly

secured, 5G devices will become attractive targets for larger-scale attacks such as the Mirai

DDoS in 2016 [260, 21, 155]. The Mirai malware enabled attackers to seek out vulnerable

devices via Telnet (incidentally Telnet was found to be potentially exploitable in several of

the automotive aforementioned research works [158, 51, 190]) to take control over them, to

prevent users from regaining control, and to utilize them to perform large-scale DDoS attacks

on Internet service provider devices at the lower-layer Internet protocols [234, 260, 32].

It would not be surprising if many ECUs in vehicular networks were exploited to become

a part of large scale botnet attacks (potentially up to the Tbps traffic volume scale [260])

or even the target of DoS attacks. Further, new types of networking protocols and appli-

cations resulting from 5G (e.g., Software-Defined Networks (SDN), Virtual Mobile Network

Operators (VMNO), Mobile Edge Computing) reduce the gap and create softer boundaries

between devices. Thus, they require new security designs and solutions to prevent access-

related exploits.

In particular, infotainment systems of connected and autonomous vehicles will be connected

to all sorts of devices for many services (e.g., entertainment [193], performance like battery

management [179], and traffic control [83]). They will become attractive targets for threats

such as ransomware or direct vehicle control. Finally, privacy concerns on identity tracking,

behavior inferences, subscribed services, locations, and mobility patterns will rise because
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of the need for and capability to process massive data traffic flows through 5G [175, 32].

Such vital user information may be exploited in unethical ways or may be used in spoofing

attacks. Battery Management System (BMS) security is of notable importance since BMSs

and batteries are present in many types of devices and systems in the IoT and ITS ecosystems.

Chapter 5 will go into further detail regarding BMS security.

Despite these potential security risks, the large scale, virtualization, and inherent distribu-

tive properties of future 5G networks may be also useful to eliminate threats such as DDoS

attacks [12, 32]. Improvements in security techniques like firewalls, server load balancing,

and FPGA-based Flexible Traffic Acceleration [234] and employment of physical layer se-

curity [283, 284, 295] will definitely help as well. In short, to address the risks of legacy

software and hardware connecting with other devices through 5G, both businesses and ser-

vice providers alike must strive to design their products with security in mind from the

ground up.

2.7 Security of Vehicular Components

In addition to the communication mechanisms (whether in-vehicle or V2X), electronics com-

ponents in the vehicle are also obviously subject to attacks.

2.7.1 Privacy Attacks on Infotainment Components

Most modern consumer vehicles have voice control or hands-free calling to allow users to

keep their eyes on the road while using infotainment systems or making phone calls. Note

that the microphone remains active for the entire duration of phone calls. These technologies

can be exploited by an attacker to covertly record audio inside the vehicle. Checkoway et

al. [51] demonstrated how to use a compromised telematics unit to record audio from an
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in-cabin microphone and stream it through a cellular network. Furthermore, vehicle location

data can be extracted from the telematics unit as well, enabling attackers to monitor a user’s

location at all times. This could be used to identify high-value targets, such as owners of

expensive vehicles who park at large corporations, to potentially find their home address for

further surveillance or theft. The attacks on aftermarket TCUs demonstrated by Foster also

facilitate these forms of data extraction [85].

2.7.2 Attacks on Wireless Key Entry and Ignition

Since the mid-1990s, Radio Frequency Identification (RFID), Remote Keyless Entry (RKE)

and/or Remote Keyless Ignition (RKI) have commonly been implemented for consumer

comfort and vehicle security against thieves. Ironically, these wireless communication-based

solutions are also insecure. There have been several works [42, 247, 87] that found vulnerabil-

ities in all three applications primarily because of design errors. Furthermore, stringent cost

requirements make the implementation of advanced and sophisticated protection in these

areas challenging.

In particular, signals to open or lock a car or start the engine could be stored, blocked, or

relayed either wirelessly or over a cable. Such attacks could allow thieves to unlock and/or

start a vehicle despite its owner being physically away. In 2005, a Texas Instrument RFID

transponder used as an ignition key in millions of vehicles was also found to be hackable

due to weak cryptographic keys [42]. In 2015, Kamkar developed and presented the RollJam

attack on RKE [143]. The RollJam exploit simultaneously stores and jams a signal sent to

unlock the door; then, when the driver sends an unlock signal to the door again, it is again

blocked but the first stored signal is sent instead to the vehicle’s receiver. This allows the

attacker to use the second stored signal to unlock the car at will. Such an attack would only

cost approximately $32 and it was successfully tested on Nissan, Cadillac, Ford, Toyota,
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Lotus, Volkswagen, and Chrysler vehicles.

Ibrahim et al. [127] demonstrated a three-step attack involving (1) set-up, (2) jamming and

recording, and (3) hijacking. Their attacks were more flexible than the RollJam attack (re-

motely controller jammer, no need for precisely tuned jammer) and easier (constant jamming

forces user to eventually use mechanical key and not reset the RKE code). They tested their

attack with various distance parameters ( distance from user to vehicle and distance from

user to attacker’s logger device) on six vehicles S̆koda Yeti (2016), S̆koda Octavia (2009),

Mazda 6 (2009), Toyota Rav4 (2014), Mitsubishi Pajero (2015) and Nissan Sunny (2014).

Note that the challenges to securing wireless key entry and ignition systems include resource

limitations of hardware and the high costs of cryptographic solutions. Most researcher

recommendations include using RF signal properties to verify if a user is truly nearby or

not [153, 202, 233]. Yang et al. [296] propose a low cost (memory and complexity) solution

that involves a challenge-response protocol based on distance bounding, where the verifier

measures an upper-bound of the actual distance to the prover so that the attacker cannot

convince them that they are closer than they really are. Furthermore, a possible solution

to wireless attacks on wireless authentication between EVs and the smart grid has been

recommended through a “cyber-physical authentication protocol” which requires physical

access of the charging cable to verify the identity and legitimacy of a vehicle [50].

2.7.3 Sensor Attacks

Integrated and embedded sensors in automotive systems are crucial for the operation of

connected and autonomous vehicles. With wireless communication, connected vehicles can

exchange sensor data with each other for smarter applications and better control. Vehicles

with autonomous capability need more informative and accurate sensors (e.g., LIDAR and

camera), and more efficient and reliable algorithms for control (e.g., machine learning mod-
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els) [171, 126]. Consequently, the security of sensors is critical to prevent severe functional

and safety-critical impacts from exploits. Unfortunately, these sensors and sensor data-based

algorithms are heavily vulnerable to malicious environmental and wireless communication

modifications.

Rouf et al. developed an attack with a low-cost software-defined radio (SDR) that captured

and read Tire Pressure Monitoring System (TPMS) communication packets from a vehicle

up to 40 meters away [129]. TPMS messages also include identifiers of tire sensors that

are sufficiently unique for attackers to use to track the vehicle. Furthermore, they demon-

strated the possibility of injecting packets into the TPMS network to trigger a fake warning

signal [129]. Several of the hacking works mentioned in Table 2.1 have experimented and

demonstrated TPMS remote attacks on their testbeds.

There have also been studies of attacks on navigation systems [124, 123, 151]. These studies

found that the GPS receiver was vulnerable to spoofing. Spoofing attacks would provide

false location information and may lead to longer trip times or, worse, accidents. Corre-

spondingly, radar, another sensory component used to measure distances, is also susceptible

to jamming and spoofing [294]. Furthermore, recent research [209, 109] discovered that lasers

or similar technology could spoof the existence of vehicles to LIDAR. Image-based machine

learning algorithms and models can also be fooled to make incorrect and life-endangering

decisions if small modifications were made to road signs or lines (e.g., stickers, markings,

delineation) [294, 209, 70, 13, 64, 211, 245, 8, 122].

In addition to the above, given the complexity of autonomous and connected vehicles, there

is a strong necessity to have miscellaneous sensors everywhere to ensure safety and perfor-

mance. Examples include gyroscopes and anti-lock braking system (ABS) sensors as well

as visible light, infrared, thermal infrared, odometric (accelerometers, gyroscopes, etc.), and

acoustic sensors. Attacks on these types of sensors vary in difficulty because of their varying

accessibility levels [208, 126]. ABS sensors could be spoofed or jammed via an electromag-
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netic actuator that can be as far as three meters away from the wheel speed sensors [238].

Visible light, infrared, and thermal infrared sensors can all be deceived or jammed with

environment-based injections of the same medium (but attacks may be difficult due to lim-

ited ranges) [208, 226]. Magnetic or thermal attacks may potentially affect odometric sensors

to affect vehicle navigation but the success probability is low due to the hardware costs, range,

and timing of such attacks.

For attacks that attempt to deceive the sensor-based algorithms with changes in the envi-

ronment, Yan et al. [294] applied redundancy, logic checking, confidence priority, and attack

detection along with sensor fusion. Petit et al. [209] applied low-cost software solutions such

as random sampling, multiple sampling (for LIDAR), and a shortened pulse period. For

eavesdropping and data spoofing attacks on network-based sensors such as TPMS, typical

mitigation approaches include better logic consistency checks and low-cost cryptographic

solutions with freshness and a strong source of randomness to prevent unauthorized access

or usage of fake data [232, 129].

GPS and GNSS spoofing may be prevented with Navigation Message Authentication (NMA)

and replay/spoofing detection methods [123]. Assuming a multi-antenna array is being used,

Danesnmand et al. proposed a low-cost method that first detects spoofing signals, maximizes

authentic signals and then attenuates the spoofing signals [69]. Another approach to detect

and defend against deception-based attacks on sensors and their algorithms is to perform a

design-time and run-time secure state estimation and identify which sensors are trustworthy

through satisfiability solving [242].

2.7.4 Attacks on Map-Based Navigation

Map-based navigation is an application that both connected and autonomous vehicles may

utilize to reduce trip time and improve passenger comfort. Map data may be stored already in
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the vehicle, received from RSUs, or received from cloud-based and mobile-based applications

such as Waze and Google Maps [132]. Attacks that poison these maps in storage or deceive

navigation applications with ghost cars may lead to less effective navigation by vehicles and

eventually, traffic congestion [298, 240].

A summary of the notable works mentioned in Sections 2.5-2.7 is summarized in Table 2.3

for works on Attack Methods and in Table 2.4 for works on Defense Methods.

2.8 Digging Deeper: A Car Hacking Case Study

The preceding sections attempted to provide a structure and taxonomy to the diversity of

attack surfaces on current and emergent automotive systems, and the corresponding de-

fenses. Nevertheless, successful attacks demonstrated on automotive systems actually cross-

cut many of these structures. This section dives deeper into a specific, demonstrated attack

on a modern automobile, , Miller and Valasek’s 2015 exploitation of a Jeep Grand Chero-

kee. The authors have described this attack in detail in a white chapter [190], enabling

researchers to identify the various vulnerabilities exploited to successfully compromise a de-

ployed vehicle and get control over its functionality. These details make this work a good

target for a pedagogical case study. In addition, key elements of this attack and some of the

high-level insights are discussed. Readers interested in further understanding are referred to

their white chapter.

The Miller-Valasek work was done in the backdrop of two previous works, by Koscher et al.

[158] and Checkoway et al. [51]. Koscher et al.’s work showed that once an attacker can

send CAN messages, they can easily control driving functionality; however, no means were

provided for getting access to CAN messages remotely. Of course, an attacker with physical

access to a victim’s car can cause physical damage in other forms (eg, by cutting the brake
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Year Application Attack Method Attack Impact Complexity Citations

2010 In-Vehicle
Physical Access
and Code Exploits

Vehicle Control Low-High [158]

2011 In-Vehicle
Remote Access and
Code Exploits

Vehicle Control Low-High
[42, 143,
127, 51]

2011 V2V / V2I
Timing Faking At-
tack

Suboptimal
Routes/Traffic
Conges-
tion/Accidents

Low [253]

2012 V2X
DDOS Black-
hole Attack by
Synchronization

Slightly Reduced
Network Perfor-
mance

Low-
Medium

[39]

2015 V2V
Botnet-based
Spoofing Attack

Suboptimal
Routes/Traffic
Congestion

Medium [91]

2015 V2X Greyhole Attack
Extremely Re-
duced Network
Performance

Low [282]

2015 V2X
Physical Layer
Jamming

Slightly-Extremely
Reduced Network
Performance

Medium-
High

[30]

2015
Autonomous
Navigation

Camera and LI-
DAR Deception

Slightly-Extreme
Reduced Network
Performance

Low-High
[209,
211, 298]

2018 V2I and ITS
Data Spoofing to
Traffic Controller
or Traffic Sensors

Traffic Congestion Medium
[56, 97,
220, 221,
298]

2018
Autonomous
Navigation

Deception with
Toxic Signs

Control and Perfor-
mance Loss, Life-
Endangering Situa-
tions

Medium
[291, 64,
245, 13,
211]

2008,
2015,
2018

Autonomous
Navigation
/ Route
Adaptation

GPS Spoofing

Control and Perfor-
mance Loss, Life-
Endangering Situa-
tions

Medium
[124,
120, 300]

Table 2.3: Notable works according to targeted applications, attack methods, descriptions,
and complexity. Complexity is subjectively defined based on the requirements to launch
the attack: deployment and resources (time, memory, space). There are three levels (low,
medium, high), where one or more levels (ranges) are provided per attack category.
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Application Defense Description Complexity Citations

V2X Voting Architecture
Multi Agent-based vot-
ing

Medium-
High

[71]

V2X Blockchain Architecture
Verification of Authen-
ticity, Integrity and
Non-Repudiation

High
[45, 243,
293]

V2X

Certificate Manage-
ment, Digital Signa-
tures, and Message
Authentication Codes

Verification of Authen-
ticity and Integrity of
Data

Medium-
High

[254, 128,
173, 232,
17]

V2X
Low Cost Crypto-
graphic Schemes

Physical Layer Key
Generation and Ex-
change, ID-Based
Cryptosystem

Low
[232, 284,
283, 63]

V2X
Watchdogs and Data-
Based Malicious Behav-
ior Detection

Spoofing/Sybil/Black-
Hole/Gray-Hole De-
tection, Position-based
Routing

Medium-
High

[54, 207,
99, 108,
116, 304,
299, 230,
147, 152,
110]

V2X
Location Privacy
Preservation and
Pseudonyms

Pseudonyms based on
ID and Context

Medium-
High

[24, 37,
185, 196,
82]

V2X Network Coding
Jamming Mitigation or
Prevention

Medium-
High

[94]

V2X
Vehicular Visible Light
Communication, In-
frared, Radar

Reduced range of con-
nection

Medium-
High

[271, 174,
244]

In-Vehicle and
V2X

Malware Detection
Cloud-based On-Board
Malware Defense Man-
ager

High [303]

In-Vehicle Intrusion Detection
Timing-Based CAN-
Bus Anomaly Detector

Low [259]

In-Vehicle Intrusion Detection
Clock-Based ECU Fin-
gerprinting

Low [62]

In-Vehicle
Role-Based Access Con-
trol

Authentication of Phys-
ical OBD-II Devices
with X.509 Certificates

Medium-
High

[183]

In-Vehicle
Authentication and Ac-
cess Control

Encoding HMAC on top
of Existing CAN-Bus
Messages

Medium-
High

[272]

Table 2.4: Notable works on defenses, their descriptions, and complexity. Complexity is sub-
jectively defined based on the requirements to launch the defense: deployment and resources
(time, memory, space). There are three levels (low, medium, high), where one or more levels
(ranges) are provided per defense category.
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wire). Consequently, while this demonstration was interesting, it was less than compelling.

Checkoway et al. reported the ability to get remote access to CAN, but no details were

provided. Miller and Valasek’s chapter described the first compelling remote exploitation on

a deployed vehicle with sufficient detail for the attack to be reproducible.

The hack proceeds in three key stages: (1) compromising the head unit, (2) identifying a

pathway for access to CAN from the head unit, (3) message injection into CAN to compro-

mise driving functionality. Note that each stage is non-trivial, eg CAN message injection

requires significant analysis of CAN messages.

Compromising the Head Unit: The key idea behind this attack is to exploit a vulnera-

bility in inter-process communication (IPC). IPC is a standard means for software processes

to communicate with each other, either through standardized or proprietary protocols: the

typical approach is for IPC services to be implemented through software daemons that use

a variety of ”sockets” to enable communication among processes. The IPC daemon in the

Grand Cherokee was a standard daemon called D-Bus, which is a highly configurable IPC

daemon used in a variety of embedded systems. Typically, communication through D-Bus

requires authentication. The vulnerability exploited was an open, unmonitored port in D-

Bus, that enabled anonymous access. Consequently, any entity or process that could connect

to that port would be provided access to the D-bus services. In particular, if a hacker could

get into the wireless network of a vehicle, then, given the knowledge of the port number for

the specific open port, they could anonymously connect to D-Bus without requiring further

authentication.

Getting Into the Vehicle Network: Obviously, the network of a car would not be open

to public access, they are typically protected by a firewall. One option is for the hacker to

physically hack into a connected electronic component inside the vehicle that is connected

to the car’s network; however, that would require physical access to the car. This problem
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was circumvented by exploiting another “feature” of the Jeep Grand Cherokee: the ability to

connect from any device subscribed to the network of the car’s wireless carrier. In particular,

the network carrier for the cellular modem in the Jeep’s head unit was Sprint, and this

carrier provided a feature that enabled any Sprint device to communicate with any other

Sprint device through the SprintTM wireless network. Consequently, it was possible to get a

Sprint burner phone, tether it to any computer, and thereby give that computer access to

the Sprint network where the address and port of the victim D-Bus daemon was visible.

CAN Message Injection: Given the above steps, it became possible to remotely compro-

mise the head unit. This enabled the attacker to have full control over the in-car infotainment

including radio volume, temperature control, and the heads-up display among others. How-

ever, there was no direct connection between the head unit and the driving functionality

of the car.1 Achieving that would require the ability to inject arbitrary messages on the

CAN-C bus that controlled the various ADAS components.

Obviously, the head unit components were not directly connected to this bus. However, they

could not be physically isolated either, since many features in the car require communication

between ADAS and infotainment, e.g., the ability to see the trajectory in the display while

reversing, a feature available in most modern cars, would require communication of the

angular momentum information from the wheels to the display component. To address this,

the head unit includes two integrated circuits, an ARMTM and a V850TM with different

components connected. The ARM component to which the radio was connected was not

permitted to send CAN messages; the V850 could send CAN messages but was not directly

connected to outside connections (and consequently, compromised head unit components).

However, they were connected through an SPI link that enables communication between

the two processors and, furthermore, the ARM processor could reprogram the V850 system

through software. This enables the hacker to use a compromised ARM processor (through

1Through the control of the infotainment, they could show a speed on the display that was different from
the actual speed of the car, but they could not actually affect the speed of the car.
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exploitation of the head unit) to reprogram the V850 to accept any command provided

through the SPI link. Consequently, any subsequent communication from ARM (e.g., CAN

messages representing directives to brake, steering, accelerator, etc.) would be accepted by

V850 and passed on through the CAN-C network to the appropriate component, completing

the compromise.

It should be mentioned that this compromise is not possible on today’s on-road vehicles

(which have been patched by Jeep and Sprint), e.g., Sprint has blocked all the traffic to the

exposed D-bus port thereby preventing the attacker from gaining access to the head unit of

the vehicle over the internet. Nevertheless, it is worth noting the cost: Jeep had to recall

over 1.4 million vehicles in response to the hack. From the perspective of this chapter, it is

also important to realize that a practical hack of a car actually cuts across the developed

taxonomy and typically involves multiple compromises. It is frightening that it is reasonably

easy to perform such a hack on a deployed automotive system.

2.9 Automotive Security Validation in Practice

Given the plethora of attacks as discussed above, how does the automotive industry approach

the security validation of current (and emergent) vehicles? Unfortunately, the state of the art

today is primarily manual. In particular, much of the practice is based on penetration testing

[219], i.e., performing security attacks on the car in a controlled environment. The Miller-

Valasek hack discussed in Section 2.8 provides a blueprint of the approach that can be taken

to approach this complex task. More generally, penetration testing for an automotive system

typically involves three steps, e.g., finding an entry point, exploring and reverse-engineering

various firmware code installed in the system, and finally identifying vulnerabilities in the

firmware to gain control over the vehicle functionality. This section provides a brief insight

into the process.
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2.9.1 Finding Entry Points in a Vehicle

Physical access to a car can provide a multitude of entry points for a security hacker, e.g.,

through access to CAN via an OBD-II connector. However, as discussed in the preceding

sections, it is possible to get remote access to the car. In fact, every external input to the

car is typically explored as a potential entry point. In particular, most modern cars connect

to the Internet through a device with cellular connectivity, such as a mobile phone. If this

connection is through another device, e.g., via tethering with a mobile phone, that device

becomes a point of vulnerability. If the car connects directly, e.g., through a cellular chip, it

is more complex to find an entry point. One potential area of exploration include possible

open ports that are sometimes accessible through the Internet.

Another area is the variety of security certificates, e.g., if the car connects through a secure

socket layer (SSL), then that includes a variety of certificates, many of which include several

configurations which can lead to the possibility of a misconfigured certificate. A third possi-

bility is through a variety of remote commands. In particular, various vehicle functionalities

can be accessed through mobile apps, e.g., remote engine start, remote door lock/unlock,

remote climate control, etc. These commands typically use a middleware service e.g., an

MQTT broker [3], which can provide an entry point for an attack as well.

The above techniques provide some obvious “low-hanging fruits” for penetration testing, and

are often successful. However, the Internet connectivity of most vehicles is generally more

secure. In particular, most electronic components of a car are typically protected by a firewall

and not accessible externally through the Internet. Accessing such components requires first

getting access to a computer within the vehicle’s network. The Miller-Valasek work showed

one way to do this, e.g., through the “feature” provided by the network provider Sprint that

enabled any Sprint device to communicate with any other device within the Spring network,

including devices that were within a vehicle. One avenue is to hack into one device of a car
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(possibly locally) and use the hacked device to enable access to other devices connected to

the same network.

Such attacks can be thwarted by not permitting devices in one vehicle to access devices

in other vehicles even within the same network. When this is implemented, various other

techniques can be used, e.g., by implementing a cellular tower simulator/emulator, or apply-

ing fuzzing techniques [256] on the various external-facing software including the Bluetooth

stack, USB stack, etc. In addition, many vehicles have a variety of exposed hardware inter-

faces including debug interfaces (e.g., JTAG), serial consoles, etc. Serial consoles are used

during the development phase but sometimes inadvertently left open at deployment, some-

times including shells with root privilege. Finally, one can find entry points by observing or

injecting CAN messages, e.g., sometimes it is possible to reprogram a CPU through CAN

messages as demonstrated in Miller-Valasek.

2.9.2 Obtaining and Reverse-engineering Firmware

Simply finding an entry point is not sufficient to compromise a vehicle: one must also find

ways to modify its functionality. This is typically performed through reverse-engineering and

modifying the firmware. Sometimes the original firmware binary is directly available from

the manufacturer’s Web site or through an insider in the dealership. If not, the firmware can

sometimes be lifted directly from the flash memory, or a root shell in the serial console. Once

the firmware is obtained, various standard reverse-engineering tools can be applied to inter-

pret the firmware, e.g., Binwalk [142], Ida Pro [1], etc. Note that this is not a trivial matter,

e.g., firmware is not structured, and is often targeted for a variety of non-standard instruc-

tion set architectures (e.g., V850) with complex memory layout. Furthermore, they are large,

e.g., of the order of Gigabytes in many cases. So it is not feasible to comprehend the entire

functionality. However, it is often possible to short-change the process by identifying and
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interpreting specific functions or symbols. In particular, strings and symbols are sometimes

left in the firmware which can provide convenient starting points for reverse-engineering.

2.9.3 Privilege Escalation

The final step in a successful automotive hack is the ability to run arbitrary code or send

arbitrary messages. In traditional computing systems, most software processes do not have

this privilege. However, in embedded devices, it is often common for all software processes

to run with administrator privilege. Since much of automotive software has been derived

from embedded systems both in design philosophy and in implementation, this feature is

often available there as well. Even if all processes do not have administrator privilege, most

boot-up processes do and are obvious targets for a hack. Other processes to target are

IPC daemons, e.g., DBus, as demonstrated by Miller-Valasek. Finally, most automotive

systems include processes for over-the-air firmware upgrades. These processes of necessity

execute with administrator privilege and also have significant ability to control and modify

the installed firmware; if such a process can be compromised, the hacker can exert significant

control over the entire vehicular firmware.

2.9.4 Applicability of Formal Methods

Clearly, the above approaches are purely manual attacks, depending on deep human insight.

It is certainly reasonable to ask why there are no systematic approaches to perform such

hacks in today’s practice. The answer to that question is complex, relating to unavailability

and limited scalability of tools, and difficulty to integrate the tools into the complex security

validation methodology. To illustrate this point, an example of one promising approach,

e.g., formal methods, is taken. Formal methods entail the use of mathematical reasoning to

identify errors or vulnerabilities in design. In principle, it is very attractive since unlike the
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approaches discussed above it can provide a mathematical guarantee on the robustness of a

system component or find corner-case vulnerabilities that are difficult to exercise otherwise.

However, while there has been significant work on the use of formal methods for hardware

and system security [219, 57], the application on automotive system-level security verification

in practice is limited. There are several reasons for this. First, while there is some func-

tional specification, a comprehensive specification of a vehicle functionality at the level of

detail necessary for the applicability of formal methods is lacking. Second, even if available,

such a specification would be extremely complex: even more pertinent, the implementa-

tion of an overall automotive system is extremely complicated with several cross-cutting

modules related to hardware, software, and communication, together with both digital and

analog/mixed-signal components.

Automated formal methods such as model checking, has been used in some targeted appli-

cations for verifying functional safety in individual automotive parts, e.g., individual SoC

designs within an ECU [57], but it is difficult to scale such approaches beyond that level.

Furthermore, a significant amount of collateral is missing at design time, e.g., fuse configu-

rations necessary for ensuring life cycle isolation are not available during the RTL design of

automotive hardware where formal methods could be applicable.

The above is not to discourage the extremely important role formal methods can play in

security. In fact, a greater application would only be welcome. However, for any method-

ology, it is important to understand its shortcomings in order to find potential areas for

improvement. Perhaps one way for formal methods to become applicable is through a better

design management process, e.g., by ensuring all specification and other validation collateral

are available at the time necessary, and models are available at different levels of abstraction

(perhaps through automatic abstraction) to enable applicability of formal methods at the

vehicle level.
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2.10 Security of Automotive Supply Chain

The discussion in this chapter focused on automotive security at the vehicle level. Another

component of automotive security entails vulnerabilities in the complex, rich supply chain

involved in automotive electronics production. The supply chain of automotive electronics

is complex, with several potential vulnerabilities. This section briefly gives a flavor of the

challenges involved for the sake of completeness of the presentation. For further details, the

reader is referred to a recent chapter [218] that exclusively addresses this subject.

Consider an electronic part developed for an automotive system. Typically, it would be

developed by some electronic part vendor, and go through several tiers of part suppliers,

eventually to an automotive manufacturer who would integrate the part into an automobile.

Each player in this process can introduce several sensitive assets to the part. These include

cryptographic keys, Digital Rights Management (DRM) keys (for infotainment parts), pro-

prietary firmware, etc. [219]. Furthermore, each player in the supply chain can also include

rogue or malicious agents, e.g., a rogue employee, a malicious CAD tool, or even an untrusted

foundry. It is critical to ensure that the system is robust against attacks by such players.

Supply chain security has been an active topic of research in the hardware security commu-

nity, with several excellent treatises [261, 33, 192, 34]. The security threats considered in the

literature include Trojan insertions, IP piracy, cloning, counterfeit ICs, and overproduction,

among others. All of these threats carry over to the automotive systems as well. However,

automotive systems carry their own supply chain challenges. In particular, assets should

be protected, not only after the system is in-field but also when it is with the subsequent

players in the supply chain.

1. Assets introduced by the vendor should not be accessible to suppliers, automotive

manufacturers, or end-users.
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2. Assets introduced by a supplier or automotive manufacturer should not be accessible

to any other party, including the original vendor.

3. All assets should be protected against side-channel attacks (e.g., voltage, temperature,

or clock glitch attacks).

4. Customer and third-party software should be protected against unauthorized access.

To exacerbate the problem, note that a part may return to the original part vendor, e.g.,

after a field return. At this point, the part includes assets from all subsequent players in the

supply chain which must be protected from the vendor. Additional sources of complexity

arise from the fact that assets may be sprinkled across different parts, and cross-cut hardware,

firmware, and software; furthermore, calls are not statically provisioned but may be created

on the fly as the system executes. Finally, note that test and debug interfaces add to the

vulnerabilities.

These interfaces provide the user with structured access to internal architectural and design

features (e.g., scan chain, various design-for-debug features, etc.) for functional verification,

manufacturing tests, and other related activities. Since these activities entail observability of

internal states of the design (and consequently of assets stored), a key challenge is to ensure

the testability of the part while preventing unauthorized access to assets. Finally, note that

once a part moves from one player to another in the supply chain (referred to as a change in

the “life cycle”), asset protection is adjusted through a configuration of fuses. On the other

hand, fuse programming is performed through the use of the debug interface. This creates a

circular dependency between the ability to program through this interface and the effect of

the programming on the interface (e.g., a life cycle change may change the way the debug

interface is accessed).

Addressing the problems above in today’s practice is primarily manual, based on the expertise

of experienced architects and designers. However, with the growing complexity of automotive
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electronics, this practice is getting increasingly difficult to implement, with numerous bugs

and vulnerabilities found late in production or even after deployment. Currently, the industry

is exploring trust provisioning schemes to address this problem at the architecture level: the

idea in which assets are provisioned by various stake-holders through a specific, centralized

trust model.

The trust model is typically defined by the supplier of the part who is also responsible

for the architecture that enables various stake-holders to insert assets at different life cycle

stages. The provisioning mechanism guarantees that (1) a service that does not need an

asset does not get access to it, and (2) access and update to each asset satisfies the trust

model. However, the approach is in infancy and its viability is not currently well understood.

Furthermore, validation schemes have been explored to validate fuse configurations to ensure

life cycle isolation, e.g., through formal methods.

2.11 Summary

This chapter has provided a summary and taxonomy of security challenges in current and

emergent vehicles. Because the area is vast, the goal of this chapter is to provide a structure

to the plethora of attacks that are known today and the defenses that have been considered

for such attacks. This is a contribution to the ITS security community as a useful starting

point for researchers and practitioners in the area.

Of course, the attack surface will increase significantly as we move towards self-driving,

autonomous vehicles. Nevertheless, they are coming soon, e.g., major companies such as

Waymo and Uber are moving towards launching close to 100,000 self-driving cars with Level

4 automation in various urban cities by 2021-22. The test vehicles are being deployed

in different scenarios and have driven several millions of miles to cover the corner cases
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[168]. They will include advanced sensors such as Lidar, radar, etc. and multiple cameras.

The computational resources needed for a self-driving car are also significantly higher to

accommodate the processing of large amounts of sensor data. This, in turn, necessitates

modifications to the conventional firmware and software running on the underlying ECUs.

Additionally, there will be a paradigm shift from cars being viewed only as production

vehicles to widespread use as autonomous ride-sharing vehicles [161].

It is unknown how all these issues will truly affect the security of these vehicles. Furthermore,

the increased connectivity of vehicles and infrastructure will broaden the potential attack

surface significantly. The implementation of 5G and 802.11p connectivity enables unforeseen

adversarial attacks not just on vehicles, but on infrastructure, traffic, and any Internet-

connected systems. The security of V2X communication has not been studied in-depth, and

regrettably, the industry currently does not consider security a priority for V2X development.

Since V2X technology is in its infancy, it would be prudent for researchers to focus on methods

to verify the security of vehicular communication systems before they become ubiquitous.

In spite of the above, it is not all “doom and gloom”. There are certain unique characteristic

features of a ride-sharing autonomous vehicle that are inherently beneficial for security [44].

For instance, the communication modules are highly customized to be locked down as there

is no requirement for providing different user interfaces through Bluetooth, Web browsers,

etc., unlike the production vehicles. In particular, the head unit comprising of the telematics

is no longer required in a ride-sharing vehicle, and the OBD-II port can also be locked in

a non-standard location. Finally, there is a certain amount of obscurity in the architecture

which makes it difficult for the user to gain significant access to the vehicle, extract the

firmware, and test for exploits. Nevertheless, the security of these vehicles is a critical threat

and it is crucial to comprehend, analyze, and mitigate security challenges in such vehicles.
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Chapter 3

Security Analysis of Fixed Time

Connected Traffic Control Systems

3.1 Introduction

3.1.1 Motivation

In recent years, it has been found that modern traffic control wireless networks are vulnerable

to sensor tampering and cyber attacks due to a lack of attention in their security (no attack

detection/prevention, weak or no encryption/authentication) during the manufacturing and

installation processes [47, 96]. Besides experimental studies, there are real attacks such as

the train control network hack by a Polish teen in 2008 causing fthe trams to derail [170] and

the insider attacks on the traffic control network at a major Los Angeles intersection [286].

Although at first glance these security weaknesses are fixable and may appear to not rep-

resent all traffic control systems, it is generally agreed upon that some present and future

vulnerabilities cannot be prevented because these systems require long life times, have com-
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plicated software-upgrading methods, and are becoming more interconnected with other

devices and the Internet each day [164, 302]. In fact, in 2014, a whopping 15000+ existing

wireless devices (sensors and controller) deployed across 45 U.S. states and 10 countries were

found to be potentially vulnerable to exploits that could lead to remote modifications of

traffic timing control. Despite such a serious finding, the sensor’s vendor ignored the report

at the time. Such a negative reaction clearly demonstrates the high chance of existence of

exploitable vulnerabilities in similar and/or other devices in traffic control systems [46].

The objectives of attackers may vary, but in general they involve some form of congestion

since they are prevented from forcing the system into an unsafe state to directly cause acci-

dents (due to hardware fail-safes against remote modifications or easy detection of physical

tampering). An attacker may be a person with a personal vendetta who wants to slow

down the travel time of their enemy/enemies, or perhaps one or more members of a com-

pany/organization that desire to reduce traffic for their benefits and/or increase it against

competitors. They may even be a recreational hacker interested in causing trouble for fun

or a malicious one determined to cause havoc for major cities.

Existing works on ITS security include case studies on traffic control wireless networks [96,

47], connected and autonomous cars [79, 264, 55, 52, 121, 284], ride-sharing applications [298]

and sensors in freeway traffic control systems [222, 223]. Works [96, 47] have demonstrated

that networked traffic systems are vulnerable to a variety of cyber attacks. Other works [95,

164, 223, 55, 241] attempt to quantify cyber-physical impacts of traffic control cyber-attacks

and also attempt to solve for optimal attacks. Shoukry et al. (2018) also tries to design a

traffic network that is resilient to Sybil (fake car) attacks. These works demonstrate that

attacks on traffic control systems should not be underestimated and that it is critical to

research how to formalize these attacks and their impacts. Tools should be developed to

effectively aid traffic designers and engineers in the secure design and maintenance of these

systems.
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Figure 3.1: Motivational example of the potential effects (congestion in one or both direc-
tions) due to malicious modifications on traffic signal control settings of ITS.

3.1.2 Motivational Example

Figure 3.1 illustrates a motivational example where a fixed-timing traffic controller is hacked

and the malicious entity modifies the signal control settings (this is explained more in Sec-

tion 3.3). The network model is composed of two intersecting one-way roads, where cars on

one road can only cross the intersection when it is their respective signal phase (two signal

phases). The modifications include a reduction of green time for the first phase and an

increase for the second phase. This attack causes congestion, a reduction in average speed

and traffic flow (like that in the right side of Figure 3.1), and eventually gridlock, where the

average traffic flow is equal to zero. If a traffic management agency detects the changes after

several cycles and reverts the system settings to how they originally were, the long-term

impact of the attack may still remain if the attacker carefully chose the modifications and

attack timing.

3.1.3 Research Challenges and Contributions

To model similar attacks to the one in the motivational example, related works [55, 95, 164]

have implemented existing traffic network and behavior models such as the Cell Transmission

Model (CTM) [68] and the single queue model-based network model [274]. Still, most of these
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models contain limited analytical properties, miss certain behaviors, and are challenging to

use for larger grid networks (e.g., Manhattan grid networks). To address these challenges,

the system model proposed in [89] is used. This system model includes the Link Queue

Model (LQM) [135, 267] and Double Ring Road Network. The system model may be used

to perform analysis of traffic network state properties (e.g., periodicity, stability) and to

efficiently compute performance metrics (e.g., timing, flow) for different configurations of

traffic networks, control parameters and attack models.

Regarding the differences between this work and aforementioned related transportation sys-

tem security works: 1) they typically use different metrics (e.g., average waiting time, average

queue lengths, or average speed) , 2) they use different traffic network models and dynamics,

3) the system model is uniquely suitable for studying stability properties of states of general

networks, and 4) the attack models have a low overhead cost associated with simulations

due to the modeling choices [135].

The attack modeling methodology focuses on two control system objectives and one perfor-

mance metric that an attacker may target: 1) response time, 2) equilibrium system states

(NFD), 3) system state stability. One category of attacks isolates the response time as a

target and either reduces or increases it according to the stability of the state and its av-

erage network flow. Another attack category targets and exploits the state stability itself

by modifying the signal settings in a certain manner. Once the signal settings are changed,

the system may potentially exit its current state and enter undesirable states. Of primary

interest for us is how an attacker may direct the system from a state with high average

asymptotic network flow to a state with a lower flow or gridlock behavior (asymptotic zero

average network flow).

The methodology does have its shortcomings, including that the traffic model is macroscopic

rather than microscopic, that it assumes periodicity for certain states, that it is not able to

observe all the possible state-related situations, and that it is not currently able to approxi-
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mate phenomena such as lane changing. However, despite these shortcomings, the work faces

and overcomes several research challenges: 1) determining how, which, and to what extent

the controller settings may be attacked, 2) identifying potentially vulnerable system states

using periodicity and stability properties from the traffic network models and dynamics, 3)

creating attack models that are meaningful (e.g., challenging to detect and/or detrimental

to the the average network flow) from both the exploitable control settings and potentially

vulnerable states, and 4) simulating and experimenting the attack models and demonstrating

their usefulness. While the comparison between the work and other commercial car-following

simulation tools, such as SUMO [31], might be helpful, these tools and corresponding car-

following models suffer from their own weaknesses (e.g., randomness, complexity) and lack

of analytical properties. Thus, this chapter instead aims to serve as a foundation for more

rigorous security analysis methodologies for transportation systems and may be compared

and integrated with such commercial simulation tools in other works.
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Figure 3.2: The proposed security analysis methodology and its role in the traffic manage-
ment chain.

The contributions and order of contents of the methodology presented in this chapter are

outlined as follows:

1. defining the Double Ring Road and Link Queue Model, and how Density Evolution Or-

bits, Poincare Maps, and Network Fundamental Diagrams may be derived from them

(Section 3.2),

2. providing an overview of attack vectors for fixed-time traffic control systems with wireless
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communication capability (Section 3.3),

3. using analytical insights to identify vulnerable states (reducing the state space) and to

develop attack models as functions of the traffic network state and control settings (Sec-

tion 3.4).

4. simulating the attack models and evaluating their impacts in terms of metrics that are

unique and “directly related to the decision-making and objectives of traffic control” [200]

(Section 3.5).

As shown in Figure 3.2, it is envisioned that this methodology will be useful in the fu-

ture as part of the traffic management chain to develop (design-time) and maintain (run-

time) a provably secure ITS. Where a system is provably secure if it is secure by de-

sign/construction [86]: given an attacker model where the attacker has access to the system

and a specified amount of computational resources, the basic security requirements may

still be met [154, 98, 225]. In design-time, the methodology may be built upon to choose

optimal static control settings for a given traffic network under performance and security

expectations. For real-time, efficient strategies may be implemented in response to detection

of unexpected attacks to return the system to a state with a more favorable behavior.

3.2 System Model

One may use the Link Queue Model (LQM) to formulate traffic flows in various network

levels. This chapter discusses how it may be used in the context of a single ring road

network, a double ring road network, and Manhattan-like grid networks.
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Background and Related Work

There are several differences between the LQM and models from other works. LQM is able

to capture a relationship between the turning ratios, the signal settings, and the initial den-

sities in the form of an NFD derived from stationary/fixed states. Only few other works

have considered the turning ratios and signal settings and few works studied multivalued-

ness (multiple possible flows for a given average density), but even then, these works lack

definitions in what potential stationary states are and they lack studies on state stability

properties. Works that did recognize the existence of potential stationary states and stability

properties lacked in efficiency.

A similar model to the LQM is the Link Transmission Model (LTM) but there are several

differences between them. First, the LQM is based on the link’s average density, rather

than just the number of vehicles over each link. Second, the LQM assumes that the network

has an average density that remains constant. And third, the link/road density in the

LQM is directly related to supply and demand ordinary differential equations. On the other

hand, the LTM uses delayed differential equations as functions of in- and out-fluxes. These

delayed differential equations make the LTM infinite-dimensional and not as mathematically

tractable as traditional link-based models. Lastly, unlike most other models, the LQM with

the Double Ring Road Network Model or grid network can incorporate both signal settings

and route choice behaviors and through it, different NFDs for different combinations of them

may be derived (whereas NFDs derived from other models only depend on one of or none of

these). In addition, before the LQM and analytical work in [89], it was still unclear as to

how many stationary states there are in a signalized Double Ring Road Network and what

their stability properties are with respect to the signal settings, turning ratios, and initial

densities.

Besides the LTM, another related model is the Cell Transmission Model (CTM), which
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estimates the traffic at each cell in a link rather than the entire link. However, the Cell

Transmission Model (CTM) with signalized Double Ring Road used an infinite-dimensional

dynamical system due to the kinematic wave model and therefore it is very challenging to

solve traffic statics and dynamics. In previous work [135], all these models were qualitatively

compared and the comparisons indicate that the LQM is the most efficient in terms of both

time and memory. This is because the number of state variables needed to be computed

is the number of link densities for LQM; whereas LTM requires two computations and the

tracking of older flux values per time step and the CTM requires tracking values per each

cell in the link.

The LQM introduced in [135] may be a useful tool for solving freeway and arterial traffic

control and observation problems. This is shown by some of its applications published in

major research journals such as: Point Queue Models [136], variable speed limit control of a

lane-drop bottleneck [133, 137], signalized grid network analysis and control [89], and urban

traffic estimation for real-world settings [103].

3.2.1 Single Ring Road and Lab Test-Bed

In a Japanese research experiment where different numbers of drivers drove vehicles within a

single ring road, it was observed that there were specific numbers of vehicles that would lead

to a change in network behavior within the context of average network flow. These numbers

of vehicles are generally denoted as critical densities. For example, as the number of vehicles

increased past a critical density, a traffic jam would occur after some time despite no presence

of a bottleneck [251]. Within the context of a single ring road model, the LQM also reflects

similar behaviors as the Japanese experiment [141]. In order to emulate more realistic traffic

behaviors like those in the Japanese experiment, a lab test-bed of robotic vehicles following

each other on a single ring road is implemented (Figure 3.3). The robotic vehicles use the
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Optimal Velocity Model (OVM) car-following algorithm based on information from their

sensors (cameras) and parameters (e.g., permissible distances). Some testing results of the

model presented in Table 3.1 matched the behaviors observed in [251]. As the LQM also

models this type of behavior, the robotic vehicle experiment was a step above simulation to

importantly show how it could model realistic scenarios.

Figure 3.3: A setup of the test-bed in [141] for a large Single Ring Road model with length
4824 cm and 11 robotic vehicles.

Ring Road 
Size (cm)

Number of 
Cars 

Average Speed 
(cm/s)

Shockwave 
Speed (cm/s)

2376 ≥ 5 14.5 11

2376 < 5 ≥ 20 none

4389 ≥ 7 15.5 11.5

4389 < 7 ≥ 20 none

4824 ≥ 12 21 12

4824 < 12 28 none

Table 3.1: Testing results of single road model testbed.
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Unfortunately, the LQM and single road model is not able to capture more interesting

behaviors of a traffic network with turning movements. Thus, this work uses a more expanded

version of the LQM along with a double ring road network model to cope with such turning

movements. To emulate this developed model along with the rest of the attack models in

this work, the test-bed is repeatable and may be built upon to do so.

3.2.2 Summary of Traffic Control Settings and System Model

Variables

To help the readers follow the chapter, readers may refer to this section for definitions of

used traffic control settings and system variables.

• T refers to the traffic signal cycle time (seconds).

• πiT ∈ (0, 1), i ∈ {1, 2} refers to the effective green time (seconds) where πi refers to

the effective green time ratio for phase i.

• tL = T −
∑
πiT refers to the total lost time tL (seconds) within the cycle (seconds),

which is the sum of yellow and red times, and the time that was not effectively used

by vehicles to cross the intersection.

• ξi ∈ (0, 1), i ∈ {1, 2} refers to the retaining ratio of vehicles in ring i.

• L refers to the length of the ring road (miles).

• kj is equal to 150 vehicles per mile and refers to traffic jam density.

• k refers to the average density in the network (vehicles per mile), k ∈ [0, kj].

• k∗i refers to a fixed system state where the density of ring i will be the same value after

a full cycle, ki ∈ [0, kj].
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• kc refers to the critical density and is approximately
kj
5

(vehicles per mile).

• q0 refers to the overall average traffic flow (vehicles per hour).

• Rp,k1 refers to the interval that k1 satisfies for a given DEO region Rp

• Rp,k refers to the interval that k satisfies for a given DEO region Rp

• Rp refers to the tuple of the intervals, (Rp,k1 ,Rp,k).

• R refers to the set of all Rp, such that p ∈ [1, 8] as shown in Figure 3.6 (9 and 10 are

ignored).

• A DEO is a sequence of visited (k1, k) regions over a single cycle. DEOs of states are

represented as (p1, p2) | p1 ∈ [1, 4] and p2 ∈ [5, 8].

3.2.3 Double Ring Road Network

The Double Ring Road Network model of a homogeneous symmetric one-way road intersec-

tion is made up of two ring roads that are connected with each other. Larger symmetric

one-way road grid networks may also be abstracted with this model (see Figure 3.4). Further-

more, asymmetric and complex networks may also be decomposed into multiple symmetric

one-way road grid networks. Additionally, each 2x2 one-way road network is actually similar

to a single two-way intersection and an entire traffic network may be converted accordingly.

Therefore, this network model and the LQM is applicable for all Urban Traffic Control

systems (UTC) [89].

Each ring road has length L = 0.25 in miles (mi) and Ring 1 corresponds to South-North

roads while Ring 2 corresponds to East-West roads. The connection point of the ring roads

helps model turning cars at intersections. This model is based on the concept that the
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1-ξ2 1-ξ1

Ring 1 Ring 2

Manhattan Grid Network Link Queue Model and
 Grid Network

Link Queue Model and
Double Ring Road Network

Figure 3.4: Flow of abstracting an actual grid network (like in Manhattan) to Double Ring
Road Network and Link Queue Model.

network will reach a periodic state after a long time, which means that the network’s outflow

is equal to the network’s inflow.

1-ξ2

1-
ξ 1ξ 1

ξ2
ξ2ξ1

1-ξ2 1-ξ1

Ring 1 Ring 2

Figure 3.5: A signalized one-way intersection and corresponding abstracted Double Ring
Road Network model. ξi is the retaining ratio that corresponds to either the N-S or E-W
roads in the network model.

In this model, there are two signal phases corresponding to each ring road’s turn. Therefore,

both the roads and signal phases are identified by i ∈ [1, 2]. In each signal phase, there is

an effective green time πiT in seconds, where πi is the effective green time ratio and T is

the total cycle time. The signal regulation is handled by the indicator functions δ1(t) and

δ2(t) in Equations 3.1-3.2. In the first phase, cars from the first ring are moving across the

intersection and the cars from the second must wait. The opposite is true for the second

phase. In addition to the effective green times, there are also lost times, tL, per each phase
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such that 2tL = T − (π1 +π2)T . Therefore, it is not required that π1 +π2 = 1. The lost time

includes the start-up lost time (caused by vehicles’ reactions and limited accelerations when

signals turn green) and the clearance lost time (caused by wasted yellow and red times).

δ1(t;T, tL, π1) =


1for t ∈ [nT, nT + π1T ],

n ∈ N0

0otherwise

 (3.1)

δ2(t;T, tL, π1) =


1for t ∈ [nT + tL + π1T,

(n+ 1)T − tL], n ∈ N0

0otherwise

 (3.2)

Each ring also has a retaining ratio ξi(t) and turning ratio 1− ξi(t) to specify how many cars

remain on the same ring road or turn, respectively. For analytical purposes these retaining

ratios are fixed and therefore ξi is the notation from now on. ki(t) is the average density

in vehicles per mile (vpm) in ring i over a cycle, and k (vpm) is the total average density

in the network. When either or both rings have density equal to the traffic jam density,

i.e., ki(t) = kj, then gridlock occurs. Note that, ki(t) is considered as a variable over time

since k is constant. Furthermore, if one knows k1(t) and k, one may easily derive k2(t). See

Figure 3.5 for a closer visualization of how an intersection is abstracted by the Double Ring

Road Network.
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3.2.4 Link Queue Model

Behavior Modeling and Formulation

Let Si in vehicles per hour (vph) denote the amount of supply traffic flow for the downstream

link and Di (vph) denote the amount of demand traffic flow from the upstream link. Both

Si and Di are constrained by a critical density kc and are directly related to the traffic influx

fi(t) (vph) and outflux gi(t) (vph) of the ring roads. The outfluxes are restricted by the

demands of the upstream links and the supplies of the downstream links. The definitions

for Si and Di (Equations 3.3 and 3.4) are derived from the empirical triangular traffic flow

diagram in Equation 6 from [89] and are functions of the densities in each ring.

Di(t) = Q(min{ki(t), kc}) =

 vfki, ki(t) ∈ [0, kc]

C, ki(t) ∈ [kc, kj]

 (3.3)

Si(t) = Q(max{ki(t), kc}) =

 C, ki(t) ∈ [0, kc]

C(kj−ki)
kj−kc , ki(t) ∈ [kc, kj]

 (3.4)

where C = vfkc is the maximum average flow known as the capacity, vf is the free flow

speed at 60mph, ki(t) is the average density in ring i over a cycle, and k is the total average

density in the network.
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Functions for the in-fluxes fi(t) and out-fluxes gi(t) may be derived from S and D:

g1(t) = δ1(t)min{D1(t),
S1(t)

ξ1(t)
,

S2(t)

1− ξ1(t)
} (3.5a)

g2(t) = δ2(t)min{D2(t),
S2(t)

ξ2(t)
,

S1(t)

1− ξ2(t)
} (3.5b)

f1(t) = g1(t)ξ1(t) + g2(t)(1− ξ2(t)) (3.5c)

f2(t) = g1(t)(1− ξ1(t)) + g2(t)ξ2(t) (3.5d)

The nonlinear ordinary differential equation dk1(t)
dt

may be derived from the above equations

(see Equation 3.6). dk1(t)
dt

will be used to compute the evolution of the ring densities over

time with respect to the signal settings. Further, from g1(t) and g2(t), one may calculate

an important metric in traffic engineering: the asymptotic average network flow q(t) (see

Equation 3.7). q(t) is bounded by C = vfkc = 900vph where the traffic is moving at free

flow vf . Note that it is generally computational heavy to evaluate the integrals of g1 and g2.

dk1(t)

dt
=

1

L
(f1(t)− g1(t)) = −(1− ξ1)

L
g1(t) +

(1− ξ2)

L
g2(t) (3.6)
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q(t) =

∫ t
s=t−T g1(s)ds+

∫ t
s=t−T g2(s)ds

2T
(3.7)

3.2.5 System States, Density Evolution Orbits, and Poincare Maps

Using the Double Ring Road Network model and LQM, a system state may be represented

by a tuple (k1(t), k), where k1(t) is the current density of the first ring road and k the

overall average density (from which k2(t) may be easily derived). A more macroscopic state

representation can be made with a Density Evolution Orbit (DEO). A DEO is a sequence

(k1, k) regions visited in a single cycle. It can be attained via analytical insights from the ring

road densities and signal settings or derived from simulations. There were 10 unique (k1, k)

regions with unique traffic behaviors, dk1(t)
dt

detected in a previous work ( [89]). Regions 1-4

correspond to behaviors in phase 1 (δ1 = 1) and regions 5-8 correspond to behaviors in phase

2 (δ2 = 1). Regions 9 and 10 correspond to the times between each phase when no vehicles

are moving.

The DEO regions specify just how filled the two rings are and, therefore, the entire network.

It is important to know how much density is allocated to each ring at the start because it

may correspond to an average asymptotic network flow (if it is a fixed state). The basic

idea is that the more symmetric the two ring densities are, the higher the average network

flow, while the more asymmetric is it, the lower the average network flow. These regions

may therefore serve as a guideline to identify which states are vulnerable and what signal

settings must be modified to successfully cause an attack. To identify these regions, for

each phase an analysis is performed on the influence of changes in D and S with respect

to different relationships between k1, k2, k, kc and kj on the behavior function dk1(t)
dt

. For

instance, relationships such as k1 > kc and D1 = C < S1

ξ1
means that there is a separation
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between Region 1 and Region 2 at k1 = kc because when k1 < kc, the behavior function will

change.

Initial states that only visit one region in each phase, and therefore denote their DEOs as

(p1, p2) where p1 ∈ [1, 4] and p2 ∈ [5, 8]. In Figure 3.6 depicts an example of a DEO over

regions in the (k1, k) space. Table 3.2 provides bounds and behaviors per each region. From

now on, the set of all region boundaries is denoted as R and an individual region as p ∈ [1, 10]

with boundaries for k1 and k in Rp ∈ R.

Figure 3.6: Example of Density Evolution Orbit of (k1, k) over one cycle.

From the initial states, signal settings, and DEOs, one may compute Poincare Maps to

analyze traffic network state properties. A Poincare Map [262] is a function P that maps

an initial ring density value k1(t) to a ring density value on the nth cycle k1(t+ nT ) and is

made up of smaller Poincare Maps for each phase transition. In cases where there is high

periodicity such that k1(t) = k1(t + nT ) for n ∈ N, k1(t) is referred to as a fixed state k∗1

with respect to the system signal settings. Potential fixed states where only one region of

the (k1, k) space is visited during each phase were identified in the previous work. These

fixed states (k∗1, k) are of primary focus and are represented by their DEOs.
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Region
(p)

Signal Phase Indi-
cators (δ1(t), δ2(t))

Conditions (Rp,k1 , Rp,k)
dk1

dt

1 (1, 0)
0 < k1 < kc,

k1

2
≤ k ≤ kj

2
−

((1−ξ)kj−(2−ξ1)kc)k1

2kc

−(1−ξ1)
L

D1

2 (1, 0)
kc ≤ k1 < kj − ξ1(kj − kc),
k1

2
≤ k ≤ ξ1kj+(1−ξ1)kc+k1

2

−(1−ξ1)
L

C

3 (1, 0)
kj − ξ1(kj − kc) ≤ k1 ≤ kj,
k1

2
≤ k ≤ 2ξ1−1

2ξ1
kj + k1

2ξ1

−(1−ξ1)
L

S1

ξ1

4 (1, 0)

0 < k1 < kj, max{kj
2
−

[(1−ξ1)kj−(2−ξ1)kc]k1

2kc
,
ξ1kj+(1−ξ1)kc+k1

2
,

2ξ1−1
2ξ1

kj + k1

2ξ1
} < k ≤ kj+k1

2

−(1−ξ1)
L

S1

1−ξ1

5 (0, 1)
0 ≤ k1 ≤ kj,

k1

2
≤ k ≤

min{k1+kc
2
, k1

2
+

kc(kj−k1)

2(1−ξ2)(kj−kc)
}

(1−ξ2)
L

D2

6 (0, 1)
0 ≤ k1 ≤ kj−(1−ξ2)(kj−kc),
k1+kc

2
< k ≤ kj+k1−ξ2(kj−kc)

2

(1−ξ2)
L

C

7 (0, 1)

0 ≤ k1 ≤ kj,

max{kj+k1−ξ2(kj−kc)

2
,

(1−2ξ2)kj+k1

2(1−ξ2)
} <

k ≤ k1+kj
2

(1−ξ2)
L

S2

ξ2

8 (0, 1)

kj − (1− ξ2)(kj − kc) < k1 ≤
kj,

k1

2
+

kc(kj−k1)

2(1−ξ2)(kj−kc)
< k <

(1−2ξ2)kj+k1

2(1−ξ2)

(1−ξ2)
L

S2

1−ξ2

9 (0, 0)
and transition from
(δ1(t), δ2(t)) = (1, 0)

0

10 (0, 0)
and transition from
(δ1(t), δ2(t)) = (0, 1),

0

Table 3.2: Boundary conditions for region Rp = Rp,k1 , Rp,k where Rp ∈ R that make up a
Density Evolution Orbit (DEO)
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When the network is in gridlock, it means that one or both of the rings is full (kj). If

the network is gridlocked, it is only possible for (4, 7) or (3, 8) to be the current DEO and

they are both fixed for any ξ ∈ (0, 1). The possible DEOs that have fixed states when the

network is not gridlocked are:

• (1, 5), (1, 7), (2, 6), (3, 5), and (3, 7) for 0.5 < ξ < 1;

• (1, 5), (2, 6), and (4, 8) for 0 < ξ < 0.5;

• (1, 5), (2, 6), (4, 7), and (3, 8) for ξ = 0.5

With fixed states, the computation of the asymptotic average network flow q(t) can be ap-

proximated and redefined with q(k) as t→∞ instead (see Equation 3.8). This is important

as may then map each pair of k∗1 = k1(nT ), n ∈ N0 and k to an average asymptotic traffic

flow q. In turn, this mapping allows us to analytically derive an approximate closed-form

formula for a Macroscopic/Network Fundamental Diagram (MFD/NFD), which is useful in

practice.

q(k; k∗1) = 2

∫ t
s=t−T g1(s)ds

2T
≈ g1(k∗1) + g1(k1(nT + πT ))

2
(3.8)

Different signal settings are derived for different fixed states (examples are provided in Fig-

ure 3.7. The characteristics in the NFDs were consistent with those from previous literature

but new ones existed too. Particularly, there were multiple possible flows (i.e., multivalued-

ness) for some density values and branches with different stability properties. This means

that for the same average density, there are two possible values for the average network flow

and potential to change signal settings to sway a system from an unfavorable state with low

average network flow to a state with higher average network flow. Note, however, that the
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opposite is of interest for an attacker. Branches represent many possible fixed states, where

each fixed state has a stability property.

To analyze the stability properties of fixed states, the network model and Poincare Maps

may be combined. It is important to be able to analyze the stability properties of states

to understand which ones are undesirable/desirable and critical for proper traffic control.

Unstable fixed states are the most vulnerable ones such that even a small perturbation (e.g.,

from random noise or changes to signal settings) will completely change the system behavior.

Lyapunov stable fixed states can handle perturbations up to a certain limit while asymptotic

stable fixed states are able to handle any perturbations as long as the signal settings remain

the same. Having these properties in mind, potentially vulnerable states are identified and

attack impacts on control settings with respect to these states are evaluated.

3.3 Attack Surface

In traffic control networks such as those in Michigan [96], Seattle, New York, and Washington

DC [46], wireless technologies are assisting fixed-time traffic control systems by connecting

traffic controllers with loop detectors, nearby controllers, traffic management agencies, and

vehicles. However, as mentioned, these wireless networks are prone to having or eventu-

ally having security vulnerabilities. There are three primary approaches of access (two via

exploiting wireless network vulnerabilities) that an attacker can take to modify the signal

timing plan. In this section, attack vectors are discussed for how this could be done for each

access approach.
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Figure 3.7: Poincare Map-based approximate NFDs when π1 = π2 = π for various retaining
ratios, ξ = ξ1 = ξ2. In Figure a, 0.5 < ξ < 1, in Figure b, 0 < ξ < 0.5, and in Figure c,
ξ = 0.5.

3.3.1 Physical/Direct Access

An attacker could open up the traffic controller box (cabinet) to tamper with the equipment

and modify any control setting (even remove the fail-safe equipment and cause an all-green

light configuration). Obviously, this kind of attack would catch a lot of attention (e.g.,

video camera detection, suspicious activity reports) and is therefore not particularly a viable

method for attackers.
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controller access (most likely remotely), Step 3) The attacker now has authorized access to
update the traffic signal cycle at will (under realistic constraints), Step 4) The updates will
cause one or more detrimental impacts on the average and asymptotic traffic behavior.

3.3.2 Indirect Access

Vehicle detectors and On-Board Units (OBUs) were found to be vulnerable to hacking and

could be used for spoofing attacks [55]. Thus, the spoofing attack (e.g., deceiving the con-

troller about existence of cars) would indirectly cause a modification to the signal timing

plan at an intersection. Such an attack would have merit for adaptive timing control systems

because of the instant impact. For fixed-timing control systems, the attack would have an

effect on the decision-making of the traffic management agency and may lead to an update of

a less-than-optimal signal timing plan. However, the difference between the attack start time
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and the response time will reduce the effectiveness of such an attack on fixed-time control

systems.

3.3.3 Remote Access

This section will detail how an attacker may directly modify the timing plan via wireless

communication. In order to perform a remote access attack to the traffic controller, an at-

tacker must first obtain access into the wireless network of the traffic control system. Cerrudo

(2014) and hena et al. (2014) observed through their experiments that there is a tendency

for poor or nonexistent security in traffic controller wireless networks. This is because of

either the carelessness or insufficient knowledge of controller installers and manufacturers.

Although vendors of these vulnerable controllers were kept private in these works, Cerrudo

(2014) studied controllers that were distributed in USA and 10 other countries while Ghena

et al. (2014) studied controllers from a different vendor deployed in Michigan.

Let us take the controllers that Ghena et al. (2014) studied as an example on how an

attacker may gain access. First, an attacker would need a radio wireless card matching the

same frequency as that of the controller (in this case, 5.8GHz or 900MHz). Then, they would

need to implement the same network protocol, which they can discover via social engineering

attack or a reverse engineering attack (slightly more complicated if frequency hopping is

implemented, but still feasible), and gain access to the private network by exploiting the

security vulnerabilities (e.g., weak encryption keys, passwords). A traffic controller network

for a specific intersection could then be accessed more than half a mile away. They could

also attempt to use a drone to perform a mobile attack. Either way, the connectivity range

is attractive for attackers who wish to remain undetected throughout the lifetime of the

attack [95].
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Modifying Traffic Signal Settings

Having access into the private controller network implies access to all other controllers on

the same network. However, even if an attacker had access to a traffic control system, due

to hardware-based solutions (malfunction management units) they cannot force unsafe signal

combinations (e.g., green-green or red-red) [96, 269]. Nevertheless, the attackers would still

be able to modify the scheduling of traffic signals or force a blinking red phase (but the latter

is easily detectable).

Continuing with the previous example, modifying the traffic signal settings could be done

via two methods after gaining network access: 1) sending memory modification commands

to the debug port in the controller’s VxWorks OS or 2) using remote control commands

provided in the National Transportation Communications for ITS Protocol (NCTIP) 1202.

The VxWorks debug port issue may have been patched, but the remote control attack

vector remains. Remote control commands include malicious logic statements, activating

any button on the controller, or modifying light timings (shorten or lengthen phase times).

Since all the controllers are connected in a one-hop manner to their neighbors, an attacker

may perform a small or large scale attack depending on their resources and objectives.

Attaining System State Knowledge

With or without access to the wireless network, the attacker may easily attain knowledge

about the current state of the system, which includes the current timing plan configuration

and the physical state of the intersection (i.e., densities and DEO). If they had no access to the

network, the attacker can easily use their own sensors (e.g., phone, camera) or observations

because the traffic intersection is in a public space. While if they did have access, they can

use the measurements from existing loop detectors and/or cameras. One may also assume

that, with the introduction of more technology (i.e., image processing, smarter sensors) it
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will be even easier to accurately estimate the current system state.

Attack Timing

Despite the different possible roles, it is assumed that the attacker does not desire to be

easily detected. This means that their attacks may be subtle yet may have profound long-

term effects on the system behavior. Fixed timing signal plans are regularly updated (even

hourly) to address traffic demands or for reasons such as major traffic changes, time of day,

and inspections. If the attacker can modify the signal timings around the same time that

the timing plan is regularly updated or quickly reverse their modifications after a short time,

the changes will not be trivially detectable. Even if detected, it may be too late (response

time varies considerably [269]), as the impact from an attack may already have forced the

system en route to a targeted state, despite reversed settings by the agency.

After gaining some level of access the attacker can perform an attack on the integrity (i.e.,

the signal timing) and consequently the availability (i.e., traffic flow, control response time)

of the traffic control system. For a graphic overview on the steps an attacker would take

discussed in this section, please refer to Figure 3.8. Note that it is general enough to consider

the different potential controller exploits discussed in this section. To assess the impacts of

such attacks, attack models are defined, potentially vulnerable states are identified, and

attack impacts are evaluated.

3.4 Attack Modeling & Impact Analysis

An attack model consists of the system model (LQM simplified as first DEOs and then

Poincare Maps for analytical purposes) and attacks on various system control parameters

through vulnerability exploits in the aforementioned attack surface. In a sense, an attack

73



model is similar to a closed-loop control system model but where the attacks are anti-controls.

In this section, by using the Density Evolution Orbits (DEOs) and Network Fundamental

Diagrams (NFDs) in Section 3.2.5, potential initial and final (targeted) state tuples derive

average network flow attack impacts from the Poincare Map-based NFDs that are most

desirable for an attacker. Then, along with the behavior differential equations in Section

3.2.4 and limitations of the attacker in Section 3.3, attacks on the controller settings to

achieve these impacts are devised.

The general attack model is defined as: AM(M,x0,∆) =



Convergence Time Impact: tconv,∆, (tconv,∆ − tconv),

for DEO∆ = DEO0 and π1,∆ = π2,∆

Asymptotic Average Flow Impact: q∆, (q∆ − q0)

for DEO∆ 6= DEO0 and π1,∆ 6= π2,∆


First, inputs are defined for the AM. The system model M is a vector of the following: NW ,

ki(t), k, πi, δi(t), ξi(t), Di(t), Si(t), fi(t), gi(t) | i ∈ {1, 2}) where the network variable NW

is a tuple with the number of intersections with link length L and the initial cycle length

T (see Section 3.2 for definitions of the other variables). The initial system state x0 can be

defined in terms of the original traffic control settings and initial traffic densities of each road

before the start of the attack. The traffic control settings at time t0 include π1, π2, and T .

Traffic densities are k1(t0), k2(t0), and k.

An intelligent attacker is considered, whose objective is to force the system into a targeted

density evolution behavior via modifying control parameters. The variable ∆ is a tuple

of the modifications and their timings that the attacker plans to perform: the new cycle

length, T∆; the new effective green time ratios π1,∆ and π2,∆; the starting time of the attack

tstart, the duration of the attack t∆ and ending time of the attack tstart + t∆ (when the
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modifications return to normal), and the ending time of the simulation/measurements tfinish

s.t. tfinish ≥ tstart + t∆; the starting state of attack x0 with DEO0 and time t0, and ending

state of attack x∆ with DEO∆ at time tfinish.

In this chapter, it is assumed that only one type of signal setting (green time ratios, cy-

cle length) will have nonzero modifications during an attack. Modifying the allocations of

green time or modifying the cycle length itself will directly affect the effective green time

ratios. Modifications on these settings are only studied because, despite having the ability

to modify multiple other parameters, an attacker would be extremely interested in a low

number and amount of modifications to destabilize the system. Furthermore, modifications

to the retaining ratios are not considered (which could be changed through route guidance

application exploits) in this chapter. Although combinations of parameter modifications are

not considered in these attacks, the attack strategies discussed in this work are simple yet

may cause serious impacts on the traffic network. However, one may argue that an attacker

would be most interested in the simplest changes to create a sufficient amount of havoc.

Additionally, this work is a foundational basis to other works that tackle research problems

such as: deriving the most effective attack or analyzing and understanding the effects of

modifying several different parameters at the same time.

There are two types of attack behavior categories for AM that will be studied in this sec-

tion. The first category - Non-State-Changing - speeds up or slows down the system’s

convergence to a fixed state behavior (especially the gridlock state). The second category -

State-Changing - causes one or several state change(s) and reduces the asymptotic average

flow. For Non-State-Changing attacks, the new time at which the system will converge to

its expected stationary behavior is denoted as tconv,∆ and the original convergence time is

tconv. Thus, the impact is tconv,∆ - tconv, where tconv depends on the designer-based range

of permissible performance metrics (e.g., densities, asymptotic average flow-rate). For both

attack categories, in particular State-Changing attacks, another impact is difference in av-
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erage flow rates, q∆− q0, which can be predicted from the initial and final DEOs (if known)

for states, x0 and x∆.

3.4.1 Non-State-Changing Attacks

Non-state-changing attacks will not theoretically change the DEOs of fixed states if the

attacker chooses to modify the cycle length or the green time ratios such that π1,∆ = π2,∆ =

π∆. Instead these modifications will cause the expected asymptotic or stationary behavior of

the state to be reached at a different time tconv,∆ instead of the original expected time tconv.

Original settings are assumed to be π1 = π2 = π 6= π∆. In the following sections, attacks

are considered to speed up the convergence of asymptotic stable gridlock states. Recall from

Figure 3.7 that asymptotic stable gridlock states are states with DEO of either (3, 8) or (4,

7). Thus, a designer and an attacker would be strongly interested in identifying when the

system is in a state with one of these DEOs.

Gridlock Speed-Up Attack When DEO0 = DEO∆ = (3, 8)

Given π = π1 = π2, ξ > 0.5, k1(0), k and DEO0 = DEO∆ = (3, 8), an attack with

π∆ such that π∆ = π1,∆ = π2,∆ > π will create a new convergence time t∆,conv such that

t∆,conv < tconv. For a DEO of (3, 8), that eventually k1 will reach kj given the signal

settings from the previous work. The Poincare Map equation corresponding to this DEO

is k1(nT ) = kj(1 − e(γ2−γ3)πnT ) + k1(t)e(γ2−γ3)πnT where γ2 = ((1 − ξ1)kc)/Lξ1(kj − kc) and

γ3 = vfkc/L(kj − kC). Since the exponent includes the green time ratio and since λ > 0,

then it is easy to see that with values of π∆ such that π∆ > π, the rate of density growth

will increase and therefore lead to k1,∆(tstart + t∆) > k1(tstart + t∆) where k1,∆ is the ring

road density when there is an attack while k1 is the normal expected density without attack.

Because of this, even if the growth rate returns to normal after attack completion, the system
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will still more quickly converge to the limit, i.e., tconv,∆ < tconv. Using the same logic, similar

impacts will occur when the attacker modifies the cycle length such that T∆ > T .

In Figure 3.9, convergence time impacts of this attack model are demonstrated for different

π∆ where tStart = 1T and t∆ = 10T . Poincare Map settings include: L = .25, π = 0.3,

ξ = .75, k1(0) = 120, and k = 75. When T = 90s, the maximum impact logically occurs for

π∆ = 0.5 and is tconv − tconv,∆ = 20T − 13T = 7T . Hence, there is a gridlock convergence

speed up of 20T/13T = 1.53. This means that the agency has 7T less time to detect and

respond with setting changes to guide the system to a favorable state instead.

Although it appears that the system reaches the steady state value around nearly the same

time, the biggest concern should be that even just a few cycles of reduced convergence time

may be highly costly for drivers and the traffic agency. This is because the later the reaction

of the traffic control system authorities, the more pronounced the effects of the attack and

the more difficult it is to reverse the attack. In addition to looking at just the asymptotic

limit, it is important to note the trajectory of traffic behavior from start to finish and how

there are pronounced effects before the asymptotic limit is reached. Furthermore, these

figures describe an example where the attack was for a finite duration (10 cycles) and not

from start to finish. If the attack was performed the entire time, it would be clear that the

convergence would be even more rapid.

Gridlock Speed-Up Attack When DEO0 = DEO∆ = (4, 7)

For DEO0 = DEO∆ = (4, 7) when ξ > 0.5, eventually k2 will reach kj and therefore k1

will eventually reach 2k − kj. Similar to the previous case, the Poincare Map equation for

an initial state with this DEO can be used to compute how much more quickly the system

reaches gridlock, tconv,∆ ≤ tconv, when π∆ > π or T∆ > T .
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Figure 3.9: Graphs of Poincare Maps for k1 with π = 0.3, ξ = 0.75 and initial states with
DEO = (3, 8) where π1,∆ = π2,∆ ∈ {0.4, 0.5}

3.4.2 State-Changing Attacks

For state-changing attacks, the modified green time ratios will satisfy π1,∆ 6= π2,∆. When

π1,∆ and π2,∆ are unequal, it is difficult to predict the density growth and intermediary

states may be non-fixed states. Therefore, analytical or numerical solutions may not only be

relied upon and the model should be simulated to prove and define an attack impact on the
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asymptotic average network flow. However, one may still reduce the complexity of attack

impact estimation for state-changing attacks. This may be achieved by identifying states

with DEO0 that are vulnerable to attacks with target DEO∆ through an “estimation” of

the direction of the growth of (k1, k) from the sum of the exponential coefficients in the

Poincare Map equations. Let λ in Equation 3.9 be the sum of these exponential coefficients.

If λ is zero, then the system is in a possibly fixed state. If λ is nonzero, the density evolution

is nonzero and k1 is either constantly increasing or decreasing.

λ(k1, k) = Ap2k1 +Bp2 + Ap1k1 +Bp1 (3.9)

where p1 ∈ [1, 4] & p2 ∈ [5, 8] and A and B are exponential coefficients corresponding to the

region-based definitions of the differential equation dk1

dt
(which has been derived and defined

in previous work)

Given the attack model, one may identify if an initial state is vulnerable if the direction of

density evolution leans toward the regions of the targeted DEO, DEO∆. Therefore, given an

initial state x0 with a DEO0, the direction of growth is studied under malicious modifications

with an updated version of λ denoted as λ∆ in Equation 3.10. Note that an attack on one

type of parameters is only considered (either both green time ratios or the cycle length).

λ(k1, k)∆ = (Ap2k1 +Bp2)π2,∆T∆ + (Ap1k1 +Bp1)π1,∆T∆ (3.10)

where p1 ∈ [1, 4] & p2 ∈ [5, 8]

Given DEO0 and π1,∆ and π2,∆, all region boundaries R, Poincare Maps, and NFDs for

ξ = 0.5 and π1 = π2 = π (see Figure 3.7), λ∆ may be used to discover potentially vulnerable
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states with DEOs of interest to an attacker. As an example, two types of initial DEOs

of interest for an attacker are discovered. These DEOs are (2, 6) and (4, 8). These initial

DEOs correspond to “possible stationary” states according to the Poincare-Map based NFDs.

States with DEO of (2, 6) have k1 and k values that satisfy R3 and R8 when ξ = 0.5 but

not when ξ 6= 0.5. Similarly, initial states with DEO0 = (4, 8) share common ranges

of k1 and k values with regions R3, R8, R4 and R7. Hence, for demonstration purposes,

states that are potentially vulnerable to State-Changing attacks are described: 1) DEO0 =

(2, 6) and DEO∆ = (3, 8), and 2) DEO0 = (4, 8) and DEO∆ ∈ {(4, 7), (3, 8)}. For all

potentially vulnerable initial states, one may analytically estimate and infer some insights

from the attack impact q∆ − q0 from the initial (DEO0) and targeted (DEO∆) DEOs, as

q(k)DEO0− q(k)DEO∆
using the NFDs. However, since the attack impact is also a function of

k1, simulation is required to compute the actual k1 at the end of the attack at time tstart+t∆.

Scenario When DEO0 = (2, 6) and DEO∆ = (3, 8)

Given x0 = (k1(0), k) with DEO0 of (2, 6) and ξ1 = ξ2 = ξ = 0.5. From the definitions of

the region boundaries, it is clear that k1 must increase for a change in DEO from (2, 6) to (3,

8) as long as k satisfies the boundaries of k for all regions R2, R3, R6, R8. For this scenario

to be successful, λ∆ > 0 for the DEO of x(t) must be satisfied so that (k1, k) will increase

and move toward a state with DEO of (3, 8) according to the region boundary definitions

in the analytical studies. In the initial state with DEO0 = (2, 6), it is notable that λ = 0

since it is considered a stationary Lyapunov stable state. Thus, if π1,∆ < π2,∆ then λ∆ will

be greater than zero.
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Scenario When DEO0 = (4, 8) and DEO∆ ∈ {(4, 7), (3, 8)}

When the initial DEO is (4, 8) and k1 = k for stability and k satisfies the boundaries of (4, 7)

or (3, 8), an attack may be successful as long as π1,∆ > π2,∆ and ξ ≤ 0.5 for DEO∆ = (4, 7)

or π1,∆ < π2,∆ for DEO∆ = (3, 8). This idea can also be extracted from similar logic to that

in the previous section.

3.5 Experimental Results

The validity of each attack model will be confirmed by simulation with different levels of

complexity.1 First, LQM and the Double Ring Road Network model are used. Then, going

up a level of complexity, the impacts of the same attacks on a symmetric one-way grid

network model of multiple intersections are compared. For the experiments, T = 30s and

T = 90s for various runs, and L = .25 and tfinish = 20T . The update time step is set to

0.05s. Table 3.4 contains information on the range and number of initial states tested for

each attack model. DEO0 ∈ [(3, 8), (4, 7)] correspond to Non-State-Changing attacks and

DEO0 ∈ [(2, 6), (4, 8)] correspond to State-Changing attacks.

3.5.1 LQM with Double Ring Road Network

Non-State-Changing Attacks on Asymptotic Gridlock States

To validate the analytical observations in Section 3.4.1, the attacks are simulated with the

LQM and Double Ring Road Network. Below are figures describing the impacts of different

modified green time ratios on the asymptotic stable gridlock states under the constraint that

π1,∆ = π2,∆ and the DEO does not change. The following two cases where π∆ = π1,∆ =

1All simulation code for this section is provided in https://github.com/AICPS/LQM traffic sec official.
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π2,∆ ∈ {0.4, 0.5} are considered: 1) tstart = 2T and tstart + t∆ = 7T (Figures 3.10a-3.10b), 2)

tstart = 1T and tstart + t∆ = 11T (Figures 3.10c-3.10d).

As can be seen in Figures 3.10a-3.10b, for an attack with tstart = 2T and t∆ = 5T with

π∆ = 0.5, the approximate average impact is tconv,∆ − tconv = 20T − 17T = −3T (1.17

convergence speedup) for both DEOs. In Figures 3.10c-3.10d, tstart = 1T and t∆ = 10T .

When π∆ = 0.5, the impact is −6T (1.4 convergence speedup) for initial states with DEO =

(4, 7) and −7T (1.5 convergence speedup) for initial states with DEO = (3, 8). The sudden

yet temporary rise in flow for attacks on initial states with DEO = (3, 8) is possibly due to

order of phases (ring 1 first) and the increase in green time. As this is just a motivational

case study, more severe impacts may occur from longer-lasting or earlier-starting attacks.

Additionally, combinations of different attack categories may add up to more detrimental

impacts.

Having an effective green time ratio of 0.3 may be deemed as unrealistic in practice since

this would mean for a cycle length T=90s, the lost time tlost would be 18s and each effective

green time would be 27s. Although this satisfies the minimum green time and maximum

green time constraints for a traffic signal cycle of 90s, this would be quite unrealistic in

practice since a lot of time would be wasted for just waiting. Therefore, a closer-to-realistic

case of 13.5s for each lost time is considered where the effective green time ratios would then

be 0.35 for both phases and 9s for each lost time for effective green time ratios of 0.4. Thus,

when the attacker gains access, when the system is in an asymptotic gridlock state with

DEO = (3, 8) or (4, 7), they have the option of increasing the cycle length or decreasing the

lost time to accelerate the convergence to gridlock (since the effective green time ratios are

increased as a result). However, they are still constrained by the minimum lost time, which

is about 3s per phase. Thus, the most the attacker can force the effective green time ratios

for T=90s would be about 0.48 where 43s would be the green time for each phase.

In Figure 3.11, the simulation results for this situation for ξ = 0.75, π=0.35, π∆ = 0.48,
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Figure 3.10: Non-state-changing attack simulations for LQM and Double Ring Road Network
with tfinish = 20T , π = 0.3, ξ = 0.75, π∆ = π1,∆ = π2,∆ ∈ {0.4, 0.5}.
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tstart = 1T and t∆ = 10T , thus showing that the attack is very capable of reducing the

control response time for the system engineers. One may see that the line corresponding

to no attack hits very close to gridlock (less than 0.5 average flow-rate) at around 16T and

the attack line hits very close to gridlock at 11T in the figure. This means the convergence

speed-up is 16T/11T, which is approximately 1.5x. If the initial effective green time ratios

is set to 0.4, the initial convergence time is around 15T and the behavior is quite close to

when they are initially 0.35.

Although demonstrated and studied in previous work, some results are provided for when

the retaining ratios are chosen randomly from a range of values under the studied non-state

changing attack model. For the non-state-changing attack model, a retaining ratio of 0.75

is assumed in the simulations. In the following results, a random retaining ratio is chosen

from the range of [0.51-0.99] for each ring (common in practice and in reality as well [224]).

In Figures 3.12 and 3.13, the effects of having asymmetric and random retaining ratios for

each ring (ξ1 = 0.901, ξ2 = 0.813 and ξ1 = 0.571, ξ2 = 0.945) are observed on the system and

attack modeling behaviors. It may be observed that the overall behaviors are similar to the

results in the previous graphs despite the random and unequal retaining ratios. Note, there

are some clear unique behaviors for the simulations regarding ξ1 = 0.571 and ξ2 = 0.945 for

DEO∆ = (3, 8) because the difference between ξ1 and ξ2 is large and the larger retaining

ratio is for the less congested ring (ring 2). Thus it will take a longer time to converge to

the asymptotic limit. Results for other identified vulnerable states provide similar insights

and confirm that as long as the retaining ratios are within the specified range of [0.51-0.99],

the attack model is applicable.

State-Changing Attacks on Initial Stationary States

In Figure 3.14a, the initial states have a DEO of (2, 6) and the initial settings are π = π1 =

π2 = 0.5, T = 90s. The attack parameters include (π1,∆, π2,∆) ∈ {(0.4, 0.6), (0.35, 0.65), (0.3, 0.7)}
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Figure 3.11: Non-State-Changing Attack Model Simulations with higher and more realistic
initial effective green time ratio π=0.35 and modified effective green time ratio π∆=0.48.
These effective green time ratios are more realistic because the lost times are more reason-
able per cycle. Acceleration of convergence time and reduction of control response time is
apparent here just as it is in previous simulations.
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Figure 3.12: Non-State-Changing Attack Model Simulations with Randomly Selected and
Asymmetric Retaining Ratios, ξ1 = 0.571 and ξ2 = 0.945. For a targeted DEO∆ = (3, 8),
the initial state is (k1, k) = (144, 84) and for a targeted DEO∆ = (4, 7), the initial state is
(k1, k) = (15, 76).
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Figure 3.13: Non-State-Changing Attack Model Simulations with Randomly Selected and
Asymmetric Retaining Ratios ξ1= 0.901 and ξ2= 0.813. For a targeted DEO∆ = (3, 8),
the initial state is (k1, k) = (144, 84) and for a targeted DEO∆ = (4, 7), the initial state is
(k1, k) = (15, 76).
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(b) Attacks on three initial states with DEO = (4, 8).

Figure 3.14: Simulations with LQM and Double Ring Road Network of state-changing at-
tacks. Attack timing settings are tstart = 2T and t∆ = 5T .
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where tstart = 2T , t∆ = 5T , and tstart+∆ = 7T . In Figure 3.14b, the initial states have a

DEO of (4, 8) with same initial signal settings and simulation settings as above.

Notice that the overall impacts are greater on initial states with DEOs of (4, 8) rather than

attacks on those with (2, 6). This is because of the order of phases and that π1,∆ < π2,∆.

If π1,∆ > π2,∆ instead, the effectiveness of increasing the duration and modifications would

be reversed. To give a better idea on the impacts of these state-changing attacks, Table 3.3

is referred. The rows correspond to the different combinations of initial states, DEOs, and

attack timing settings while the columns refer to different modifications. From just a few

cycles of modified green time ratios, an attack can vary from 37% to a 99% drop in average

flow.

Attack Modifications

Initial State and 
Timing 

Parameters

π(1,Δ), π(2,Δ)= 
0.4, 0.6

π(1,Δ), π(2,Δ)=  
0.35, 0.65

π(1,Δ), π(2,Δ)=  
0.3, 0.7

DEO0 = (2, 6)
tstart , tΔ = 2T, 5T

-334.45
42%

-543.34
68%

-655.31
83%

DEO0 = (2, 6)
tstart , tΔ = 1T, 11T

-691.15
37%

-767.35
66%

-786.59
81%

DEO0 = (4, 8)
tstart , tΔ = 2T, 5T

-256.29
45%

-399.25
70%

-475.87
83%

DEO0 = (4, 8)
tstart , tΔ = 1T, 11T

-500.41
86%

-552.56
97%

-565.73
99%

Table 3.3: Average impact metric q∆ − q0 (in vph) and average drop in flow (in percentage)
for the considered State-Changing Attack models (ξ = 0.5, π = 0.5, DEO∆ = (3, 8)).

3.5.2 LQM with Grid Network

The same attacks in Section 3.2.3 are evaluated using LQM and a grid network (like that in

Figure 3.4) where each ring number corresponds to each direction (E-W and N-S) at each

intersection and cars leaving the network are added back to their respective entrances to
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DEO of Initial State
(π=0.5 & T=90s)

Number of Tested Initial States and 
Range of (k1, k) Values 

DEO0 = (2, 6)
ξ=0.5

100
(72, 75) – (90, 84)

DEO0 = (4, 8)
ξ=0.5

310
(91, 85) – (150, 150)

DEO0 = (3, 8)
ξ=0.75

1520
(2, 76) – (148, 149)

DEO0 = (4, 7)
ξ=0.75

1471
(118, 76) – (150, 149)

Table 3.4: Experimental Setup: Number of different initial states according to range of
density values (k1, k) values per each type of pair of DEO and turning ratio combination
studied in the attack models (both Non-State Changing and State-Changing).

maintain the overall density (more details are in [134, 89]).

The grid network simulation results for the 4x4 grid network (with 32 links) are not provided

since the results from the Double Ring Road Network and the grid network simulations on

average are similar to each other with above 95% accuracy. The similarity was computed

via the L1 norm and by using the grid network simulation results as the nominal values.

The LQM is also simulated with a larger 6x6 grid network with 72 links and simulation

results are shown in Figure 3.15 for an initial density (k1, k) = (144, 84) (same initial state

as results in Figures 3.12 and 3.13). The top graph refers to simulations when the link

retaining ratios are randomly selected (e.g., ξi ∈ [0.51, 0.99]) at the beginning but remain

the same throughout the simulation, and the bottom graph refers to simulations when they

are equal to 0.75 (e.g., ξ=0.75) using π = 0.35 and π∆ = 0.48). For this case study, it is

clear that from the top graph, the average grid network flow is slightly less than the average

Double Ring Road Network flow. From the bottom graph, one may observe that the overall

grid network average flow is higher (almost double) for random retaining ratios with respect
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to the Double Ring Road simulation data. It is clear that the randomness of retaining ratios

will have a significant effect on the understanding of traffic behaviors. Importantly, however,

is that no matter the retaining ratio settings, the expected asymptotic behavior of the grid

network simulations match that of the Double Ring Road Network, matching the analysis

of possibly fixed asymptotic gridlock states.

Lastly, the attack impact on the convergence time is similar despite the different network

models and retaining ratios. With respect to the Double Ring Road Network when ξ =

0.75, the attack impact is tconv − tconv,∆ =16T-12T=4T and 16T/12T = 1.3x convergence

speedup. With respect to the grid network when ξ = 0.75 for each link, the attack impact

is tconv − tconv,∆ = 15T-12T=3T and 15T/12T = 1.25x speed up, which is quite close to

1.3x! And finally, when ξ ∈ [0.51, 0.99] for each link in the grid network, the attack impact

is tconv − tconv,∆ = 22T-18T=4T and 22T/18T = 1.2x speedup! Thus, although the exact

times of the convergence is different for the grid network with random retaining ratios per

each link, the actual impact on the convergence is similar (10% average distance between

each other and same overall behaviors) for all three cases, showing the value of the attack

models and their analysis.

It is true, however, that the dependencies and connections are definitely not negligible and

some subtle behaviors in a grid network with microscopic modeling behaviors and/or other

more dynamic road networks may be missed. The Double Ring Road Network Model ab-

stracts the grid network well since both models follow the same inflow and outflow definitions

for the intersections of roads and because the grid network is assumed to be a closed network

with periodic boundary conditions. A noticeable difference is that certain unstable traffic

behavior patterns may not be observable in the grid network simulations. This means that

Poincare Maps are not always usable to clearly define the unstable state traffic behaviors

in experiments or practice. Nevertheless, in experiments or in practice, one may use the

defined DEOs to identify if a state is potentially in an unstable state or not, providing the
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Figure 3.15: Non-State-Changing Attack Simulation Result Comparisons Between Double
Ring Road Network and 6x6 Grid Network. Top: Grid Network with All Link Retaining
Ratios ξ = 0.75. Bottom: Grid Network with Randomized Link Retaining Ratios ξ ∈
[0.51, 0.99].
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possibility to detect or analyze the impact of a potential attack.

In the previous work [89, 88], it has been shown that the results of simulating LQM with

the double ring road and those with the grid network are still quite similar for when sym-

metric retaining ratios are assumed, signal settings and initial densities. Yet when these are

randomized throughout the grid network, only some slight differences have been discovered

in the analytical results (e.g., with lower average densities, the grid network will converge to

gridlock with random retaining ratios).

Compared to other system and attack models, the models offer unique insights with respect

to overall average network behaviors. It is built from simpler differential equations and

even from Poincare Maps, which are extremely challenging to derive in traffic modeling

theory. Through them, novel traffic network behaviors and insights within the context of a

methodology for attack modeling and analysis on connected fixed time traffic control systems

have been discovered. Through this work, more rigorous ITS security models, analysis and

design methods, and simulation tools may be developed to ensure the security and safety of

promising ITS use cases.

3.6 Summary

This chapter presented a methodology to model attacks on connected fixed-timing traffic

control systems and evaluate their impacts on traffic networks such as grid networks in

Manhattan. The methodology is built upon the Link Queue Model (LQM) which is an

abstracted form of the Cell Transmission Model (CTM). However, it remains as accurate

and more efficient to simulate than the CTM. For certain settings, Poincare Maps can be

analytically and numerically derived to quickly estimate the performance of the system

given the initial state and settings. Otherwise, the LQM and Double Ring Road Network
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are used to simulate either non state-changing or state-changing attacks on intersections or

grid networks and evaluate their impacts. A simple attack that modified the green time

ratios from (0.5, 0.5) to (0.35, 0.65) for 5 cycles could potentially cause an average drop in

flow rate of 66%. Under certain settings, the attack could even cause a 99% drop in average

flow (gridlock)!

Lastly, the proposed attack modeling and impact analysis methodology can easily be built

upon with more complex attacks (e.g., combinations of small changes, turning ratio mod-

ifications) and metrics (e.g., deviation from optimal state). In turn, these attacks may be

used as part of a security analysis tool to come up with a robust and resilient traffic control

system design. In such a traffic control system, attack detection and mitigation may be

possible through additional computing devices and sensors integrated with control logic that

can predict or identify a potential attack at any given moment.
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Chapter 4

Attack Modeling Methodology and

Taxonomy for Intelligent

Transportation Systems

4.1 Introduction and Related Work

Massive deployment of embedded systems including various sensors, on-board and road-side

computing units, wireless communication among vehicles and infrastructure, and intelligent

algorithms are changing the transportation sector [74, 150, 77, 23, 200]. Due to these tech-

nologies, engineers are able to provide autonomy and connectivity in transportation control

systems. Therefore, this new paradigm, known as Intelligent Transportation Systems (ITS),

is bringing new opportunities to solve transportation system challenges regarding traffic con-

gestion, energy waste, vehicle emissions, and traffic accidents [267]. Today, advanced sensors

and wireless vehicular communication (V2X) enable advanced algorithms for traffic manage-

ment such as autonomous control, Connected Adaptive Cruise Control (CACC), collision
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detection and avoidance, Advisory Speed Limit (ASL), route guidance, and more [118].

As discussed in works [48, 113, 148, 11, 117], with these newer technologies come unforeseen

safety and security concerns. Some of these concerns were recently revealed when traffic

controllers used in almost all of the states in the US were found to be remotely hackable

and controllable by an attacker [46, 48]. In addition to traffic control systems, connected

autonomous vehicles provide many security and safety concerns, where effects of attacks on

the peripherals or the Electronic Controller Units (ECUs) may cause congestion, but more

importantly may endanger passengers and passersby [264, 79, 210, 263].

4.2 Overview and Contributions

This chapter presents a novel attack modeling methodology and taxonomy regarding po-

tentially targeted components in an ITS. In addition, unique attack impact metrics and

evaluations with different car-following models and simulation tools are provided use case of

a V2X Advisory Speed Limit control application - which has never before been studied in

terms of security, nor thoroughly implemented/studied in general. Implementations of an

ITS application simulation may vary substantially and therefore establishing a foundation

to do so is timely and critical in this rapidly developing technological age. Nevertheless,

although the context of the chapter is with respect to ASL, the methods and approaches

may be applied to other ITS use cases with other parameters as well.

The following items will be the order of contents of this chapter and also the summary of

the contributions:

• Design and implementation of an ITS use case known as V2X Advisory Speed Limit

control.
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• Usage of two different simulation architectures composed of the Ring Road Network

Model with 1) Newell’s Car-Following Model with Bounded Acceleration (BA-Newell

Model) and Matlab and 2) Intelligent Driver Model and Veins.

• Meaningful performance and attack impact metrics that may be transferable in differ-

ent use cases, car-following models, and simulation tools.

• Creation of attacker and attack modeling taxonomy to serve as a guide for ITS security

analysis.

• Evaluation of attack impact metrics using various attacker profiles, attack types, and

timing parameters.

• Providing open source code (https://github.com/AICPS/ITSAttackModeling/ ) for both

of the architectures to allow others in the ITS community to utilize or improve upon

the work.

4.3 ITS Attack Modeling Literature Review

With respect to attack modeling in traffic control systems and connected vehicles, past

studies have studied attacks on unique use cases and network models [55, 95, 164]. In

contrast, the Single Ring Road Network Model is used for its simplicity and ability to

abstract more complex network and system models. The attack vectors proposed in these

works are the same as those in the past studies, aka, the methods to exploit vulnerabilities

for an attacker to gain access in order to inject their attack. These vectors may target various

components and subsystems of the ever-growing ITS. Further, an attack vector on one such

component/subsystem will tend to lead to effects on other components/subsystems due to

the connectivity between them. More interesting to us in this work, is how those attack
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vectors may be used to modify the control variables of an ITS application to achieve various

objectives depending on attacker profiles, timing, attacker budgets, and attack costs.

Historically, ASL has been performed using only physical signs on the road to help reduce

speeds. With the advent and adoption of V2X and 5G, traffic management applications like

ASL will be strongly improved. In the paradigm of ITS, ASL is one of the key upcoming

applications whose impacts have not yet been analytically or experimentally studied in terms

of security [200]. ASL focuses on taking information from induction loop sensors and the

connected vehicles arriving to an intersection from upstream to then advise the connected

vehicles the maximum velocity (vasl) that they should follow. The maximum velocity, vasl, is

computed so that each vehicle will always (ideally) arrive to the intersection at the green time.

When a majority of vehicles follow such velocities for a certain stretch of road, the average

amount of waiting time in a trip (e.g. from one end of the road to past the intersection) is

drastically reduced.

Car-Following 
Model

Single Ring Road 
Network and 

Traffic Control

Attack Vectors, 
Attacker Model 

and Attack 
Methods

V2X Advisory 
Speed Limit (ASL)

Attack Impact Analysis via 
Network Fundamental 
Diagrams (NFDs) and 
Average Waiting Time

q

k

q

k

Attack

NFD:

Waiting 
Time:

k k

Figure 4.1: Methodology overview. The dashed red arrows correspond to the points of pos-
sible attack injections and the solid black arrows are the dependencies between the models.
The Car-Following Model and ASL blocks may be switched with equivalent components to
evaluate other models and ITS applications. Here, q is the average network flow in veh/s
and k is the average vehicle density in veh/m).
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4.4 Threat Modeling of an ITS

4.4.1 Attack Vectors

Many embedded systems within the subsystems of ITS typically have several vulnerabilities

that may be exploited remotely once wireless communication is introduced to them, e.g.,

Dedicated Short-Range Communications (DSRC/IEEE 802.11p), Wireless Access in Vehic-

ular Communications (WAVE/IEEE 1609), cellular (4G, 5G), Bluetooth [241, 222, 154, 95,

96, 47]. Besides this, attackers can directly alter the software in internal vehicular hardware,

such as Electronic Controller Units (ECUs), via the On-Board Diagnostic (OBD) port and

infotainment system [52, 53]. Additionally, peripherals such as sensors including induc-

tion loop detectors, tire speed (Hall effect) sensors, GPS sensor/GNSS receivers may all be

targeted for manipulation or spoofing [210, 47, 125, 239, 235].

These all may be exploited to perform an attack that will impact the average network flow

and waiting time. The attacker may vary from a teenager performing hacks for fun [170],

to an angry employee [286], to terrorist organizations. Attacker objectives may vary from

slowing down traffic for a single vehicle to macroscopic scale traffic congestion. Although

the work in this chapter is at a macroscopic scale, if desired, the attack models and impact

metrics may be configured to focus on an individual vehicle or a smaller subgroup of vehicles.

4.4.2 Attaining System State Knowledge

With or without access to the wireless network, the attacker may attain knowledge about the

current state of the system,such as the current timing plan configuration, the physical state of

the intersection, or vehicle speeds and positions. Without network access, the attacker may

easily use off-the-shelf equipment (e.g., RADAR, Infrared, wireless magetometers, acoustic
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sensors) or their observations because the traffic intersection is in a public space. With access,

they may use the measurements from existing vehicle and system sensors. It is also assumed

that, with the introduction of more technology (i.e., image processing, smarter sensors), it

will be even easier to accurately estimate the current system state. Works [96, 47, 46]

describe in more detail how these are possible in a realistic setting.

4.5 System Modeling

As mentioned, two alternate architectures are created to implement the attacker and attack

models with and to evaluate the usefulness of the impact metrics.

4.5.1 Traffic Network Model

In both architectural implementations, the Single Ring Road Network Model is used because

of its effectiveness in deriving a realistic metric representing the average performance of the

traffic network model (whether just a single junction or an entire grid network). In [251],

researchers experimented and studied traffic behavior using a single ring road. From their

studies, they observed that after certain numbers of vehicles (i.e., called critical densities),

the asymptotic traffic behavior changes despite no existing bottleneck in the road. Studies

have shown that observed behaviors regarding this model match with empirical studies on

actual traffic as well [251, 141, 68].

Figure 3.3 presents a real-life experimental setup of the model using robotic cars equipped

with sensors and Arduino boards [141]. The logic used by these robots based on the sensors

is called the Optimal Velocity Model (OVM) and is similar to car-following logic used in

this chapter. Despite the inaccuracies of the sensors and imperfect execution of the code,

the experimental results from this work positively emulated the empirical and theoretical
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results from previous studies and may be used for experimentation of car-following models

and connected vehicle-based control algorithms.

4.6 V2X Advisory Speed Limit (ASL)

In general, the speed limit and maximum speed is defined as the free flow speed, vf = 15 m/s.

However with V2X ASL, the traffic control system takes information from induction loop

sensors and connected vehicles to compute advisory speed limits (vasl) for each connected

vehicle instead. This will ideally permit vehicles to arrive at the intersection when the

light is green or yellow, rather than at a red light. Hence, ASL substantially reduces the

average waiting time aka stopping time, improves the overall average network flow-rate, and

subsequently lowers environmental costs from greenhouse gas emissions and even improves

driver attitudes [267].

DSRC Range where 
Advisory Speed Limit,  
Vasl, is max velocity for 

connected cars

Induction 
Loop Sensor

Intersection

Non-DSRC Range 
where Free Flow 
Speed, Vf, is max 

velocity

Connected

Figure 4.2: Single Ring Road Network Model and ASL control system. Vehicles will receive
ASL velocities via DSRC to avoid arriving at the intersection during the red time and to
reduce overall waiting time.
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was not implemented, vehicles would arrive at the red times and cause other vehicles to wait
until the light turns green.

4.6.1 Vehicles That Have Not Received Advisory Speed Limit

For each connected vehicle n that comes into the communication range, the traffic controller

will receive the vehicle’s velocity and position information and compute and transmit a

unique ASL, vasl(t, n) to it. This vasl(t, n) replaces vf throughout the remainder of the trip

through the road (until it reaches the intersection) of a connected vehicle that received it.

Vehicles without wireless communication will update their positions and velocities using the

car-following position and velocity update equations with vf as the maximum speed. Unlike

the connected vehicles using ASL, the non-connected vehicles will typically end up hitting a

red light and therefore cause other vehicles behind them to wait until the next green light. In

simulations, how many vehicles will be connected or not may be chosen based on a Market

Penetration Rate (MPR ∈ [0, 1]) variable, but for now MPR = 1 is used.

Because ∆n = 1 is used, ∆t = τ∆n = 1.5 >> t̄comm, and therefore it is assumed that all
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packets will have a minimum static one-way trip delay of tcomm = ∆t. When vehicles arrive

at L − LDSRC , that is the first time they are able to begin the ASL procedure. The traffic

control system receives the vehicles’ Basic Safety Messages (BSMs) [150, 77, 23] and replies

to them with unique ASL messages containing vasl (as represented by Figure 4.2). When the

traffic controller receives a BSM from a vehicle n, it will compute that vehicle’s estimated

time of arrival to the intersection, ti(t, n), based on the number of detected vehicles that are

in front, vif(t, n) (using a loop sensor positioned at L−LDSRC m on the road). Then, with

the kinematics data from the nth vehicle’s BSM and vif(t, n), the controller will compute

ti(t, n) using the following equation:

ti(t, n) = min(t+
L1 − x̃(t, n)

vf
, t+

vif(t, n)

sr
) (4.1)

where sr = 1800/3600 vehicles per second is the typical intersection service rate.

Afterward, vasl may be computed using the expected arrival time (ti) of a vehicle using

Equation 4.2.

vasl(t, n) =

min(vf ,
L1 − x̃(t, n)

ti(t, n)− t
)

where x̃(t, n) = x(t− tcomm, n) + xerr+

v(t− tcomm, n)t̃comm

(4.2)

where parameter and variable names and definitions are provided in Table 4.1.

4.6.2 Vehicles That Have Received an Advisory Speed Limit

Vehicles that have received their first ASL velocity may/may not need to update their ASL

velocity based on the current state of the roads and traffic junction.

104



Cycle Length (T ) 60s

Green Time (G) 24 s

Yellow and All-Red Time (Y ) 6 s

Red Time (R) 30s

Effective Green Time Ratio (π) 0.5

Simulation Time (tsim) 1200 s

Free Flow Velocity (Vf ) 15 m/s

Road Length (L) 900 m

Intersection Length (Lint) 10 m

Length of Road Before Intersection (L1) 890 m

DSRC Range (LDSRC) 300 m

Induction Loop Sensor Position (L− LDSRC) 600 m

Jam Distance (ρ) 7 m

Vehicle Length 5 m

Minimum Headway Gap 2 m

Time Gap (τ) 1.5 s

Vehicle Step (∆n) 1

Time Step (∆t) τ∆n = 1.5s

Critical Density 1 (kc,1) 15 veh/m

Critical Density 2 (kc,2) 76/L veh/m

Capacity Critical Density (kc) 31/L veh/m

Capacity Flow of BA-Newell Model (C = kcvf) .508 veh/s

Capacity Flow of Intelligent Driver Model (CIDM) .4 veh/s

Jam Density (kj) 128/L veh/m

Shock Wave Velocity (w) 4.67 m/s

Average Network Flow (q) 0-C

Waiting Time Ratio (rwait) [0,1]

Number of Vehicles (N) 0-kjL

Vehicles in Front (vif) 0-vifmax

Maximum Number of Vehicles in Front (vifmax) LDSRC/ρ

Estimated Intersection Arrival Time (ti) [t, tsim]

GPS Error xerr [-5, 5] m

DSRC Delay Mean tcomm max(∆t, 0.1s)

Market Penetration Rate (MPR) 1.0

Table 4.1: System Model Variables and Parameters
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If the expected arrival time ti(t, n) is greater than current time step t, the traffic controller

will send the vehicle an updated vasl according to the vehicle’s positional information in the

latest BSM (see Equation 4.3).

vn,asl = min(vf ,
L1 − x(t, n)

ti(t, n)− t
) (4.3)

When a vehicle’s expected arrival time ti(t, n) is less than or equal to t, its arrival time ti(t, n)

must be updated. First, the maximum velocity is reset back to vf , then its new intersection

arrival time is re-estimated with it. The new arrival time is computed as follows:

ti(t, n) = t+
L1 − x(t, n)

vf
(4.4)

Any time that the newly computed arrival time ti(t, n) might be within the red signal phase,

the traffic control system detects it, recomputes it so that it is equal to the start of the

next green time, and sends out a new vasl based on it. The formula to do so is shown in

Equation 4.5.

ti(t, n) = ti(t, n) + T −mod(ti(t, n), T ) (4.5)

where mod(a, b) is the modulus function equivalent to a modulus b.

Note that there are various ways that V2X ASL may be implemented and this is one of

them. In fact, before the work in this chapter, there are no other works that have utilized
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this kind of ASL, which attempts to maximize the usage of V2X to reduce overall waiting

time and improve traffic flow.

4.6.3 Architecture 1: Matlab and Newell’s Car-Following Model

with Bounded Acceleration

In Architecture 1, the entire implementation is written in Matlab [2] and therefore full control

over the car-following model, the network model, the signal settings, and vehicle behaviors

is provided. However, the implementation lacks realistic wireless communication networking

(links, packets, etc.) and physical channel modeling that Architecture 2 has. Additionally,

it does not consist of detailed sensor definitions (e.g., induction loops) or visualizations.

In Matlab, Newell’s Car-Following Model with Bounded Acceleration (the BA-Newell model)

is implemented, which is relatively simple, has thorough analytical properties, and safety

guarantees (unlike more commonly used car-following models) [139, 138]. In this model,

vehicles abide by a bounded acceleration but there is no bounded deceleration. Signal settings

and model settings are provided in Table 4.1. A 100% aggressive vehicle population is

considered, where each vehicle decides to go through the intersection if they are able to do

so at their current velocity [138].

4.6.4 Architecture 2: Veins and Intelligent Driver Car-Following

Model

For the second architecture, a renowned ITS simulation tool called Veins [248, 249] is used.

Veins is an open-source ITS simulation tool that integrates its own V2X network stack

implemented within the communication network simulation tool OMNeT++ [275, 276] with

the traffic network, car-following, and vehicle simulation tool SUMO [31]. Via SUMO’s
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Traffic Controller Interface (TraCI), Veins (programmed in OMNeT++) may access various

parameters and variables of SUMO. Since the wireless communication considers aspects such

as delay and fading in realistic environments and because SUMO is a dedicated and well-

developed tool for traffic simulation, Veins is a valuable tool for the purposes to test an

ASL use case and the novel attack models. However, in addition to subtle elements that

both SUMO and OMNeT++ have (such as randomness in car following and messaging,

collision detection and teleportation), it suffers from its incredible complexity and daunting

documentation for those outside of the traffic modeling study field.

Timing Plan, 
Detector Data and 

Position/Speed 
Estimates

Advisory Speed 
Limit Computation 
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Attack 
Models

TraCI
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V2X ASL Application

OMNeT++ Network Simulation

SUMO

T
ra

C
I

In
te

rf
a

ce

Figure 4.4: Architecture 2 comprising of SUMO (car-following and traffic network simulator)
and OMNeT++ (communication simulator) connected with Veins Framework through the
TraCI (Traffic Controller Interface) API. The ITS use case, V2X Advisory Speed Limit, and
the Attacker/Attack Models are implemented within Veins.

A traffic network is designed and developed that emulates both a realistic single junction

arterial network and the behavior of the Single Ring Road Network. Since Veins does not

include the BA-Newell Model, the popular Intelligent Driver Model (IDM) with δ = 32 is

used instead (to make it closer to the BA-Newell Model’s behaviors) [266]. The IDM capacity

(CIDM ≈ 0.4) differs from that of the Triangular Fundamental Diagram (C ≈ 0.5), which

the BA-Newell Model follows [266], and thus the q values must be normalized with CIDM

and use a 2.5 s / veh saturation headway (aka Service Rate) for the ASL update methods.
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4.7 Attacker and Attack Modeling Methodology

4.7.1 Targeted Components and Control Variables

Considering the ITS components used in V2X ASL helps narrow down the possible data-

based variables that the attackers may target to reduce and reverse ASL effects. Sensor-

based attacks are of primary focus, but the variables also be attacked via a tampered OBU

or spoofed BSMs under certain circumstances.

Vehicle to Infrastructure (V2I) Communication Channel

The variable of interest for this medium is the transmission delay itself, tcomm, leading to

the ITS in using an incorrect position or velocity.

Induction Loop Sensor

The expected arrival time, ti(t, n), will be adversely affected an incorrectly detected number

of vehicles in front of a vehicle, vif , due to physical tampering or packet spoofing.

GPS sensor / GNSS receiver

An exploit on a vulnerable GPS sensor/GNSS receiver that targets the variable of interest

x̃.
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Speed / Hall Effect Sensor

Hall effect sensors are located on vehicle tires that are used to measure speeds. Hence, the

velocity value, v, that is computed by the vehicle and transmitted to the traffic control

system may be targeted and perturbed.

Traffic Controller

Last, but not least, the vasl itself may be modified through exploitation of a traffic controller

itself. Since the overall effects from changing vasl through indirect attacks on other mentioned

components may be observed and it is more obvious to observe a direct change to vasl, it is

left out of this work.

4.7.2 Performance Metrics

Average Network Flow Impact

A Network Fundamental Diagram (NFD) maps an asymptotic average network flow q (prod-

uct of average network density k and average network velocity v̄) with a current traffic state

(number of vehicles N or average density k) and is useful in practice for traffic engineers

and traffic control systems because they may be quickly used to estimate the current traffic

control system performance.

To compute an NFD, the combined car-following and network model with the ITS use case

must be simulated for several cycles to compute q corresponding to each defined N , with

step ∆N = 10 veh. A simulation of 1200 seconds is quick, yet sufficient enough, to compute

q = v̄(N/L), where v̄ is the space-mean velocity for all N vehicles on road of L length. Of

notable importance, is how q compares to the capacity, C. And thus, from hereon after,
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q/C will be used to evaluate the traffic flows and have a better understanding of the system

performance.

To compute the attack impact on the average network flow involves taking the difference

between the q̂/C after the attack and the original q/C for the same corresponding number

of vehicles N (i.e., q̂∆ = q−q̂
C

). Another useful property is the trend of the attack impact,

and thus the Rate of Change (RoC) is computed between two consecutive vehicle counts of

the average network flow impact as ˆRoCq∆ = q̂(N2)∆−q̂(N1)∆

N2−N1

Average Waiting Time Ratio Impact

A relative Average Waiting Time Ratio rwait is also calculated. It is the ratio of average

time steps that v < 0.1m/s out of the average trip duration time steps of all vehicles

in the network (N), rather than the more frequently used absolute Waiting Time (total

time that v < 0.1m/s). More uniquely, rwait consists of normalization using the Average

Waiting Time Ratio when there is no ASL, denoted as rwait,No ASL, of the corresponding

architecture. This is so that a fairer comparison between the two architectures may be

made1. The Average Waiting Time Ratio is rwait = (twait/t̄wait)/rwait,No ASL and the impact

on the Average Waiting Time Ratio from an attack is r̂wait∆ = r̂wait − rwait.

The Waiting Time Attack Impact is computed by taking the difference of the metric before

and after attack for the same corresponding number of vehicles N (e.g., r̂wait∆ = r̂wait −

rwait). The RoC of the normalized waiting time impact also serves as a metric: ˆRoCwait∆ =

r̂wait∆(N2)−r̂wait∆(N1)
N2−N1

.
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Table 4.2: Configurations for Attacker Profile, σ̂. Note that the defined variable perturbation
ranges (σ̂min, σ̂max) for each attacker profile are meant to serve as guides. They may be
easily altered to fit a certain system design or attack analysis objective.
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4.7.3 Attacker Profiles

The Attacker Profile function is denoted with σ̂. Its main purpose is to define the limits to

the actual perturbation value α̂. In Table 4.2,the characteristics of three different possible

attacker profiles stealthy, moderate, extreme, are provided.

A stealthy attacker has the objective of keeping their risk of being detected low by subtly

injecting attacks with small α̂ values that appear to be slightly extreme faults. As expected,

such injections may not necessarily create a profound detrimental impact on the system.

However, the longer and more frequent the attacks are, the more likely the overall application

performance will asymptotically degrade on average. A moderate attacker injects riskier

attacks, albeit still difficult to detect, to make a dent into the overall performance at a faster

rate. An extreme attacker has no concern for risk and will (if budget permits) inject a highly

noticeable perturbation to their targeted system components/variables. Finally, if desired,

an attacker denoted as unrestrained may use the full range of the variable perturbation. The

attacker profile primarily ensures that the attack perturbation values satisfy the pre-defined

constraints of that profile. It is assumed that there are no constraints on the budget for

the attacker. However, it can be incorporated with cost requirements as coefficients and

additional functions in the attacker and attack models so that more complex attacks may

be studied.

4.7.4 Attack Modeling

The attack models defined in this work are comprised of Attack Values and Attack Timing.

Both Attack Values and Attack Timing may be defined as either static or random. However,

Attack Timing also includes additional periodicity elements if desired.

1When a corresponding waiting time ratio for the no ASL case is less than %10.0, this work opts to not
use it for normalization and simply take the difference for the impact. Hence values may seem much larger
compared to other ones.
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Attack Value

In Static attacks, the perturbation value remains the same. On the other hand, the Random

attacks will continuously choose a perturbation value at random (by default, via uniform

probability distribution) in the range [σ̂min, σ̂max] defined by the Attacker Profile, σ̂.

Attack Timing

The attack timing is defined using the following variables: time vector
−→
t , attack time

vector
−→
t̂ , attack frequency f̂t, vehicle vector at current time −→n , vector of targeted vehicles

−→
n̂ , vehicles attacked at current time f̂n, attack time period T̂ , time between periodic attacks

φ̂.

For static timing, the f̂t may equal 1/T̂ ; however, all attacks may optionally have random

timing in both the time and vehicle domains. With respect to random timing, f̂t and f̂n are

probabilities used to represent probabilistic events. At denotes the event that there is an

attack during time t and An denotes that there is an attack on vehicle n. Let P (At) = f̂t,

P (An|At) = f̂n, P (Ãt) = 1− f̂t and P (Ãn|At) = 1− f̂n. As An is dependent on At, to know

the full probability of an attack on vehicle n at time t (e.g. P (At ∩ An)), it is necessary to

compute P (At)P (An|At). Therefore, P (At ∩ An) = P (At)P (An|At) = f̂tf̂n and P (At ∩ Ãn)

= P (At)P (Ãn|At) = f̂t(1− f̂n). Note that P (Ãt ∩ An) = 0.0 and P (Ãt ∩ Ãn) = 0.0.

Having these probabilistic events, one may combine them with the perturbation value to

determine if there will be a perturbation or not at the current time and for the targeted

vehicle. This is denoted with the expression: if (At ∩ An), then α̂(var[i](t, n)) remains

unchanged; else, α̂(var[i](t, n)) = 0. Thus, only if the events At and An are both successful

with probability P (At ∩ An) = ftfn, then the overall value will be a perturbed value, else

it will not be. As these events are probabilistic, one may use any kind of probabilistic
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Table 4.3: Configurations for various Attack Models. An Attack Model may either have
static/random α̂ values and may have static/periodic/ random timing. Note: If the attack
is chosen to be aperiodic, the attack time period will be the duration of the attack instead.

distribution suitable to their system/attacker/attack model design. In fact, the probability

distribution may even be directly associated with a defined attacker time budget and/or

attack costs.

4.7.5 Combined Attacker and Attack Model

Combining the Attacker Profile σ̂ with Attack Model α̂, γ̂(var[i], t, n) is obtained (a visual

representation of what the time and vehicle-based function γ̂(var[i], t, n) would look like is

in Figure 4.5). After vehicle n sends a message of its kinematics, the final attacked ASL

velocity vasl that the RSU will send to the vehicle at time t is defined as the following:

v̂asl(t, n) =min(vf ,

L1 − x̂(t− t̂comm) + x̂err + v̂(t− t̂comm)t̃comm

(t̂i(t, n)− t)
)

(4.6)

where for each variable var, there is a ˆvar[i](t, n) = var[i](t, n) + γ̂(var[i], t, n).
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Figure 4.5: A Visual Representation of the Combined Attacker and Attack Modeling Time
and Vehicle Domain-based Function, γ̂ for an Extreme Attacker with Static Attack Value
and Random Attack Timing.

4.8 Experimental Results

This subsection summarizes and provides analyses on some experimental results2. For the

purposes of data visibility, low simulation time overhead (Veins), and to primarily observe

and identify trends, results for each N in the following set of vehicle numbers: {0, 10, 20,

..., 110, 120, 128} are provided. Hence, ∆N is 10 veh, except for the last step (128-120=8

veh). However, the code is readily available and may be used to obtain results for any real

number N within [0, 128].

Before the discussion of the attack-related results, the results when ASL is implemented and

there is no attack are analyzed (see Figure 4.6). From now on, Architecture 1 is denoted with

Matlab and a yellow line with ”x”-like markers. Architecture 2 is denoted with Veins and

2Videos on several of the Veins attack modeling simulations are provided in
https://sites.google.com/uci.edu/itsattackmodelingresearch/home/v2x-advisory-speed-limit?authuser=0
and source code is on https://github.com/AICPS/ITSAttackModeling/ to help readers better follow the
chapter and to serve as tools for the ITS community.
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Figure 4.6: Simulation Results of Both Architectures for ASL and No Attack.
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(a) (b)

(c) (d)

(e)
(f)

(g) (h)

Figure 4.7: Simulation Results of Stealthy Attacker, Random Attack Value
α̂(v(t))), and Static Aperiodic Timing.
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(a) (b)

(c) (d)

(e)
(f)

(g) (h)

Figure 4.8: Simulation Results of Moderate Attacker, Random Attack Value
for α̂(tcomm), and Static Aperiodic Timing for Entire Simulation, but Random
Vehicle Attack Probability φ̂ = 0.4.
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(a) (b)

(c) (d)

(e)
(f)

(g) (h)

Figure 4.9: Simulation Results of Moderate Attacker with Static Attack Value
α̂ = 60m, and Static Periodic Timing of Attack Period T̂ = 30s and Offset
φ̂ = 30s.
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(a) (b)

(c) (d)

(e) (f)

(g)
(h)

Figure 4.10: Simulation Results of Moderate Attacker, Attack Value α̂(vif) =
−21 veh, and Aperiodic Timing.
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(a) (b)

(c) (d)

(e) (f)

(g)
(h)

Figure 4.11: Simulation Results of Extreme Attacker, Random Attack Value
for α̂(x), and Random Attack Time Probability f̂t = 0.8, with Random

Attacked Vehicle Probability f̂n = 0.5.
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a blue line with diamond markers. Notice the similarity between the trend-lines in all the

figures. It is interesting to note that ASL acts as a sort of bounded deceleration, which the

BA-Newell Model lacks. Hence, although the two car-following models are fundamentally

different, the results match up closely when normalized. In contrast, when there is no ASL

(not provided), there is up to 30-50% difference in Average Waiting Time Ratios for the

region of saturated densities.

The attack modeling metric results (all in percentage) are shown in Figures 4.7 to 4.11 for

various types of attacker profiles and attack types. Exhaustive results are not provided be-

cause there are many possible attack configurations. It is also important to note that the

values should not always be taken at face value; instead, one may infer valuable information

from the plotted 3rd degree polynomial trend lines. Through simple observations, the NFD

and Waiting graphs (a and e) and their RoC graphs (b and f) are the most similar for the two

architectures, and their trend lines match up quite closely. Additionally, although the impact

metric graphs (c and g) do not align as well in several cases (mostly due to car-following

differences), their RoC counterparts (d and h) do, with average distances across all examples

ranging from 1.8-3.5% for for ˆRoCq∆ and 3.3-9.6% for ˆRoCwait∆, and standard deviation

ranges, 1.7-3.5% and 3.0-8.7%, respectively. Interestingly, in Figure 4.11, exceptional simi-

larity is observed between the two architectures across the board. Most likely this is due to

the attacker model being an extreme one resulting in more prominent effects. Overall, the

results support the claim that the trends are transferable despite the fundamental differences

in simulation tools, network designs, and car-following models in the architectures.

In addition to the fundamental architectural differences, the discrepancies between the values

may be a result of the randomness embedded within the ASL application or within the attack

models. There are extreme variations in the range N ∈ [20−90] (some of the largest impacts

occur in graphs c and g within each figure) because this is where the network is the most

dynamic and vulnerable (i.e., the overall network behavior may range from complete free-
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flow to congestion), compared to the network densities on the opposite sides of the spectrum

3. Further, it is observed that the value of γ̂(var[i], t, n) may actually incur an opposite effect

on the system than what the attacker would have intended (e.g., a positive γ̂ may force the

system to actually help the vehicle make the green time faster or perhaps the effects will

help out highly congested traffic densities more than normal ASL). Thus, to cope with this,

one may program the attack model to dynamically change the sign of γ or stop the attack on

a vehicle or time step to make the impact desirable for an attacker. For example, when the

average density is within a certain range (such as the oversaturated densities where N >≈ 90

in Figure 4.7) or when the attack may actually help out the vehicle have less waiting time

based on the current phase.

More intelligent attack models may be constructed from the inferences made from these

basic examples. For example, attacks that are permutations and combinations of other ones;

attacks that smartly make use of the timing and network state (average density, leader’s

position, etc.); attacks that incorporate budgets and costs, etc. As the V2X ASL is an ITS

use case, other use cases dedicated to improve average speed and average waiting time may

also be subject to similar adverse impacts. On the other hand, inferences to improve the

security of the system may be made as well. For example, note that the saturated densities

(N ∈ [10, 90] in Figure 4.7) appear to be the most vulnerable. Hence, more resources may be

dedicated to protect the ITS when its current average density is in this range. Besides the

ITS use case design implementation, other parameters such as aggressiveness, connectivity,

and sensor locations may all be studied to improve an ITS’ security level as well. Theoretical

and practical security solutions may be implemented and evaluated (in terms of overhead

and performance improvement) too. Using the methodology, taxonomy, metrics, and tools,

all these aforementioned ideas are made possible, especially for those interested in ITS and

not from cyber- and system-security related fields.

3The impact metric values for some lower densities are not normalized since they would be divided by a
less than 1.0 number and therefore appear to be much different than the rest. Nonetheless, since the trends
are of more interest, this does not negatively impact the results.
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4.9 Summary

In this chapter, a methodology and taxonomy are presented to model, simulate, and mean-

ingfully evaluate the exposure and impacts of ITS use cases, such as Advisory Speed Limit

control, to attacks. Two distinct architectures and tools are constructed to simulate the

models and evaluate the metrics. It was observed that there is consistency and transferabil-

ity across the results. The methodology may serve as a framework for more intricate and

interesting attacks to evaluate the security of an ITS design. For example, it may be useful

for integrating security regarding other challenging components of ITS such as networking

or IoT. One such integral subcomponent of IoT devices that is often overlooked in security

is the battery system. For this reason, the next chapter will tackle this challenge in more

detail and discuss battery system security within the IoT of ITS.
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Chapter 5

Battery System Security in the

Internet of Things - An ITS

Perspective

5.1 Introduction

In our economy, all types of batteries play important roles to help drive various types of

systems that are part of the Internet of Things (IoT). The IoT includes systems that are

interconnected with each other and their environments via software, hardware, sensors, ac-

tuators, and network connectivity. Some examples of IoT include cyber-physical systems

(CPS) and mobile systems. Mission-critical CPS used in transportation, manufacturing,

power grid, military and more all require batteries with high energy density and power den-

sity to ensure long-time safety and functionality. Mobile systems primarily require small,

yet high energy density batteries that do not easily lose capacity for the satisfaction of con-

sumers. The Li-Ion battery is one type of battery that fits these conditions and is garnering
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a huge amount of attention. According to the Department of Energy (DOE), by 2020, the

global Li-Ion battery market is expected to quadruple [72]. It is even predicted that by

2024, the market for Electrical Vehicles will increase up to approximately $270 billion with

an average price of $30 thousand. Tesla alone is expected to consume over 2 billion highly

efficient Li-Ion cells by the end of 2017 [144]. It will be a significant challenge in the near

future to ensure that these and other types of batteries are trustworthy and functional.

These batteries are generally prone to thermal runway as a result of improper charging/discharging

procedures, of defective materials, and/or of environmental effects. As battery manufactur-

ers aim to pack more energy into smaller batteries, the risk and danger of using them

increase. For this reason, safety circuits and battery management systems play particularly

crucial roles in preventing such explosions. In addition to safety, however, certain security

requirements must be guaranteed to users of battery-operated systems. These requirements

include confidentiality, integrity, availability, and authenticity [111, 25]. In the case that an

unexpected attack occurs, the system should also have detection, recovery, and resilience

methods. Often, the battery is overlooked in the security analysis of these systems, but

rather looked at in other types of system analysis (e.g., efficiency). This section addresses

the lack of battery security analysis works by identifying and evaluating different attack

vectors from different system layers. Attacks that initiate from one layer and affect other

layers are called ”cross-layer attacks”, as coined in [22]. The battery system is detailed in

Figure 5.1, where it is abstracted with three layers: the Application Layer, the Battery

Management System (BMS) Layer, and the Physical Layer. Since these layers are

interconnected, the attackers may develop more sophisticated attack vectors from simpler

ones.

The challenges at the physical layer are safety and security ones: integrity, availability,

authenticity. Given the size of the battery market, it is no surprise that there are bat-

tery counterfeiters. Counterfeiters aim to profit from undermining the high quality battery
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Figure 5.1: Overview on battery system and security issues.

market by creating their own low-quality batteries or reusing older ones. In addition to

counterfeit, there exist replacement/swapping and tampering attacks that also breach the

security requirements. One layer up is the BMS layer, which ranges from a simple subsystem

(only sensors) to a complex one (with sensors, models, and learning techniques). The BMS is

able to estimate and predict the battery state to make decisions for functionality, efficiency,

and safety. Unfortunately, potential security risks come with such features. If any mali-

cious entity is able to gain direct or indirect control over a BMS, they will have the power

to weaken or damage the overall system by controlling the battery-related protocols. The

security concerns here correspond to availability and integrity. Lastly, the application layer

may prove to be another avenue for attackers to gain access to the battery system. Cyber-

Physical Systems (CPSs) and mobile systems are used as case studies for this layer and the

potential security risks of attackers leveraging software to directly or indirectly negatively
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affect the battery are discussed. The application layer of the battery system is susceptible

to security attacks which affect the availability, integrity, and confidentiality of the overall

system.

This section describes and evaluates the security issues of battery systems in IoT and is

organized as follows: Subsection 2 will discuss the potential attack vectors on the battery

system within the physical layer, the BMS layer, and the application layer. Subsection

3 will discuss approaches and challenges of related works on battery system security and

safety. Finally, Subsection 4 discusses a proposed solution for some of the battery security

issues discussed in this chapter.

5.2 Battery System Security Issues

5.2.1 Physical Layer

The physical layer of a battery system includes the battery cells, the surrounding circuitry,

and the connections with the Battery Management System (BMS). The battery cells have

certain limits (lower and upper voltage/current bounds) and demonstrate specific behavior

towards different power requests. The BMS and the circuity components (e.g., fuses) are

responsible for monitoring the battery cells and protecting them from overvoltage, under-

voltage, overcurrent, overloading, and also overheating. See Figure 5.2 for an abstracted

model of the physical layer of a battery system.

The behavior of the battery cells may be modeled and described using an equivalent electric

circuit model [191, 236, 280]; the battery cell is modeled as a variable-voltage power supply in

series with an internal resistance. The ratio of the available charge to the battery capacity

is represented by State-of-Charge (SoC) which changes over time as the battery is under
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Figure 5.2: Physical layer of battery system.

utilization. The open-circuit voltage (VOC) of the battery (the variable voltage power supply)

and the battery internal resistance (Rb) depend on the SoC value. Therefore, the current

going through the battery (Ib) and the terminal voltage of the battery (Vb) significantly

depends on the battery power (Pb) and the battery parameters. Moreover, the battery cells

generate internal heat while charging or discharging and changes the battery temperature in

a positive feedback manner. The heat generated is caused by the power loss due to internal

resistance or the entropy change in the ions [145, 236]. The amount of the generated heat

is also dependent on the battery power and other parameters. It needs to be noted that the

environment conditions such as ambient temperature and packaging heat dissipation factor

influence this behavior as well.

Typically, the BMS implemented on a microcontroller unit utilizes the sensors connected

to the battery cells in order to gather the values of the above-mentioned variables (e.g.,

current, voltage, and temperature). These values are then filtered out to remove the noise,

for instance by using a Kalman Filter [119], and to estimate the battery state and prevent

safety-threatening operations. However, the overall safe operation of the BMS depends on

having the right knowledge of the battery parameters. For instance, an unsafe operation may
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occur if the battery parameters such as control limits and modeling variables are different

or get changed from what the BMS knows. This may happen by any attack on the battery

or BMS, which will be explained further.

5.2.2 Attack Model

The effects of supplying a counterfeit battery into a system may severely affect the avail-

ability, integrity and authenticity of the system. It may also result in economic costs

for both battery system manufacturers (due to warranty claims) and consumers (repair-

ing/resupplying) [76]. This is due to not only a possible lack of safety circuitry in battery

packs but also the cheap materials and manufacturing process used in making the coun-

terfeit batteries [93, 165]. Counterfeiters also resell degraded batteries that are dangerous

to use and more difficult to detect. The potential cost of using counterfeit batteries rises

with lower quality authentication schemes (e.g., none, form factors, barcode, radio frequency

identification), while the cost of preventing counterfeit batteries rises with higher quality au-

thentication schemes (e.g., hashing, cryptography) [273]. Figure 5.3 depicts the counterfeit

security issues.

Figure 5.3: Counterfeit security issues.

Generally, a battery is manufactured and sent to the CPS manufacturer through shipping by
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third-party distributors. However, the received batteries on the CPS manufacturer side may

not be authentic because a man-in-the-middle attacker replaced them, or the manufacturer

deliberately sent fake batteries. The attack model involves an attacker who wishes to modify

the authentic battery or replace it with counterfeit at any stage in the supply chain, to

either profit from selling cheaper batteries, or to intentionally put others at risk. A real-

case scenario occurred when a Simi Valley CEO sold counterfeit batteries worth more than

$2.6 million to the U.S. Department of Defense, who used them in the critical systems

on submarines and aircraft carriers [270]. Because the batteries had been covered with

counterfeit labels of the approved manufacturers and had spoofed form factors, they were

used before eventually being detected.

In another example, in 2009, the customs authorities from an airport in Germany found

counterfeit mobile phone batteries branded as Siemens, despite Siemens stopping its mobile

phone business many years ago. These batteries turned out to have no protection circuitry

and were easily ignitable if they came into contact with water [76]. There have been several

incidents that indicate the risks of using either counterfeit or faulty batteries: The Sam-

sung Galaxy 7 case [65]; cellphones bursting into flames [156, 265]; battery explosions in

self-balancing scooters known as “hoverboards” [195]; Li-Ion batteries catching on fire in

Boeing 787 Dreamliner [198]; and a Tesla car catching on fire within just 5 minutes of being

used [20]. In some of these incidents, the sources state that it is unknown whether or not the

batteries were counterfeit. This provides additional motivation to determine the authenticity

of batteries to prevent such scenarios.

Another attack may occur during offline or runtime (when the user is using a battery-

operated system) where an attacker could tamper with the safety circuitry on the battery

pack and/or replace existing batteries with lower-quality/faulty ones to cause system failures.

An example would be replacing batteries in systems to cause inefficiency, missed deadlines or

safety risks. An attacker could even replace backup batteries used for emergency situations
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(e.g., during power outage). In one use-case, researchers on Unmanned Aerial Vehicles

(UAVs) are looking toward automated battery replacement to expand UAV operation in

areas too risky for humans [255]. However, with less human-in-the-loop interaction in the

battery supply chain, there is a potential vulnerability where enemies or other attackers may

replace batteries at the battery supply location. In another case, if attackers may capture a

UAV by making it appear that it fell down due to a glitch (such as in the Iran-U.S. RQ-170

incident in 2011 [205, 90]) they may be able to replace the UAV’s battery or tamper with

its battery pack circuit before releasing it again. The battery swapping threat also exists for

the Electrical Vehicle and Electric Scooter. Electrical Vehicle (Tesla) and Scooter (Gogoro)

manufacturers are planning to create battery swapping stations to help ease range anxiety

issues for users [287]. On top of rechargeable battery systems, it needs to be noted that

the threat model also includes battery swapping for longer-lasting non-rechargeable battery

systems in IoT devices. Such a threat exists if one assumes that the attacker has a sufficient

level of physical access to the battery during system runtime. The attacker may then be able

to replace an IoT device’s battery with a shorter-lasting one or a defective one. As these

systems are generally expected to last a long time to ensure a high level of availability for

many systems, the battery swapping attack could cause a major breach in availability and

cause a “domino effect” on the availability of other dependent systems. It is clear that if a

legitimate battery was swapped, the security of the system and the safety of the user may

be seriously threatened. One may generalize counterfeit, replacement, and tampering as a

single attack model, as shown in Figure 5.4.

5.2.3 Battery Management System Layer

The BMS may be any system that manages the battery [19]. As discussed, overcharging and

deep discharging may damage batteries by shortening their lifetime and even cause more

hazardous situations. This requires the adoption of a proper BMS to maintain the states
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Figure 5.4: Abstract attack model on batteries.

Figure 5.5: Framework of software and hardware of BMS.

of each cell of the battery within its safe and reliable operating range. In addition to its

primary functionality of battery protection, a BMS should estimate the battery status in

order to predict the actual amount of energy that may still be delivered to the load [43].
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The battery could be a single cell, battery module, or battery pack and could be rechargeable

or non-rechargeable. The system could manage the battery by monitoring the battery, esti-

mating the battery state, protecting the battery, reporting the data, balancing it, etc [178].

A BMS may include any of the following functions [19]: monitoring; protecting; estimating;

maximizing; and/or reporting the battery state to users and/or external devices.

5.2.4 BMS Functions

Battery management is mandatory for Li-ion batteries to ensure energy availability and

lifetime, and the safety of the energy storage system. To do these, a BMS must at least

do the following [19]: Prevent overvoltage/undervoltage; prevent overheating; prevent low

temperatures; and prevent the overcharging/undercharging. The basic framework of software

and hardware in the BMS is shown in Figure 5.5 [178]. The BMS would have inputs such as:

a main circuit current sensor and a voltage sensor to measure the main current and voltage;

temperature sensors to measure the temperature of the cells, the temperature outside the

battery box,and maybe also the temperature at the battery coolant inlet and outlet; general

analog inputs from sensors of specific applications; and general digital inputs like charging

allowed/banned, etc.

The BMS would have outputs to modules such as: a thermal management module (including

a fan and/or electric heater); a balancing module (including a capacitor with switch array and

dissipation resistance) to do the battery equalization; voltage safety management (including

a main circuit contactor and battery module contactor); general digital outputs (e.g., display

of battery status, charging indicator, failure alarm); and a communication module. Also the

BMS would have the internal power supply module and global clock module, and it may

have the charging system and man-machine interface module.
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5.2.5 Attack Model

The BMS is a combinational structure of hardware and software that interacts with the

application layer, and affects and controls the battery system’s physical layer with state

estimation/prediction, parameter detection, safety control, charge control, battery equaliza-

tion, information storage and so on. It makes a BMS a powerful tool, which if vulnerable,

could be used by adversaries to attain valuable information and control all BMS functions,

including ignoring critical battery conditions and tolerating high voltages and currents, to

damage the battery and even to ignite a fire [229]. Actually, without proper protection on

the safety and security of the BMS, the more functional a BMS is, the more vulnerable a

battery system could be, as the adversary may manipulate more behavior of the battery and

get more information.

The BMS hardware is comprised of sensors, actuators, and controllers. Integrated Circuit

(IC) counterfeiting and/or tampering may happen in many phases of the BMS supply chain,

including IC manufacturing, system manufacturing and integration. They may affect the

availability, integrity and authenticity of the battery system in different ways. For instance,

degraded ICs that are recycled, remarked, out-of-spec or defective will not only lead to eco-

nomic loss but also cause functional downgrading and even system damage [105]. Tampering

may either be on the die level (“hardware Trojan”) or package level. The malicious or af-

fected circuitry due to tampering may act as a silicon time bomb where the BMS will start

behaving differently (such as draining or aging the battery) under certain conditions, or act

as a backdoor where secret information from the system may be sent out to an adversary.

The BMS software is comprised of the programs in the controllers and firmware in all the

ICs. The software of a BMS may be tampered either during IC manufacturing or system

integration. Given simplistic security measures such as a deterministic password, an attacker

may gain direct access to the BMS’s firmware [187]. Moreover, cross-layer attacks initiated
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from the application layer may affect the BMS layer, which makes it possible to replace

the BMS software remotely through Bluetooth, Wi-Fi, etc. In attacks targeting availability,

malicious software could be injected to change the normal behavior of battery and control

the charging, equalization of the battery, etc. In attacks targeting confidentiality, critical

data stored in the BMS, such as SOC, SOH, accumulated charge and so on, may leak to the

adversary due to malware inserted in BMS. Attackers may leverage the BMS functionalities

to conduct more sophisticated attacks, as shown in the following section.

5.2.6 Application Layer - An ITS Perspective

Attack Classification In battery security, the attacks may be broadly classified based on

the security objectives and action characteristics. Similarly, the mobile battery and cyber-

physical system attacks via the application layer may be classified into three categories

depending on the adversary’s intention to damage or disrupt availability, integrity, and con-

fidentiality of the critical functions and information within the system. The various types of

battery attacks include overcharging, draining, information leaking, and illegally modifying

user sensitive information exchanged by data network, mobile and cyber-physical system

applications, and the battery management system.

• Attacks on Availability: Attacks targeting availability are also called denial of

service attacks. The action characteristics of these attacks include attempts to disrupt

the battery service availability of the system which may lead to detrimental effects on

the system.

• Attacks on Integrity: The action characteristics of attacks on integrity include

deliberate attempts to modify or disrupt the device battery functionality or information

exchanged by data networks, battery management systems, and the system.
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• Attacks on Confidentiality: This kind of attacks may be defined as the attempts

to leak unauthorized information about the user or the overall system through attacks

on the battery system.

5.2.7 Safety Critical Cyber-Physical System Applications - Elec-

tric Vehicle (EV) as Use-Case

This section takes a look at the security of ITS with respect to battery-operated subsystems,

particularly EVs. These systems are constantly in motion and have processing capabilities

for highly interacting with the physical environment in a feedback manner to control certain

functions. They highly depend on batteries to perform their autonomous, mission-critical,

and/or safety-critical functions. These systems require high quality batteries with strict

constraints, such as high energy density, and accurate BMSs to ensure that the batteries will

not fail or cause catastrophe in their runtime environments, which could lead to financial loss,

physical damage, and even human injuries or casualties. Some examples of these systems

include Electrical Vehicles (EVs), Solar-Powered Management Systems (SPMS), Unmanned

Aerial Vehicles (UAV) and Autonomous Underwater Vehicles (AUV), and spacecraft systems.

Because each system is uniquely designed for different application purposes, it is apparent

that they have both unique and common battery system security challenges.

Electric Vehicles (EVs) carry a large amount of batteries packed together to sustain varying

demands over time and to guarantee a sufficient driving range for consumers [278, 279]. An

EV may have BMSs at the cell, the module, and the pack levels. These BMSs are then

connected with each other via an internal may bus and with external electronic control units

(ECUs) of the vehicle via an external may bus. ECUs are connected with each other via

different intra-network protocols and technologies (e.g., MOST, LIN, CAN, FlexRay and

Ethernet designed for various objectives (e.g., safety, efficiency, etc).
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Figure 5.6: Abstracted battery system attack model on electrical vehicle.

As discussed in Chapter 2, with access to the intra-network, it turns out that it is highly

viable for an attacker to exploit and conduct a wide variety of attacks on the automotive sys-

tem. In addition to those aforementioned attacks, they may perform most of the BMS-layer

attacks (discussed more in detail in Section 5.2.3). The intra-network may be accessible to

attackers via malware or malicious websites that applications may stumble upon through dif-

ferent communication mediums, such as telematics, Dynamic Short Range Communication

(DSRC) used in vehicle to vehicle or vehicle to infrastructure communication (V2X), Blue-

tooth, Wi-Fi, and USB cable [53]. However, it may be possible to implement indirect attacks

on the battery system via unique application layer features, such as by disabling the regenera-

tive braking system or by altering the Heating-Ventilation-Air-Conditioning (HVAC) system

without the passenger noticing. These attacks end up draining the batteries and there-

fore affect their availability, and in turn, affect the EV availability to the users. Another

sophisticated attack may include draining the EV battery by spoofing sensor information

sent to ECUs via the intra-network [130] or by future V2X features such as data transfer

for entertainment or personal use. Sensor information is crucial to the efficiency and safety

guarantees that EVs should provide [15, 281]. Examples of sensor information are: the GPS

location, proximity data, path information, velocity and relative velocity, and tire pressure.

EVs can also potentially present greater risks than combustion vehicles during accidents as
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shown by NHTSA crash tests in 2011, in which the Chevrolet Volt EV caught on fire twice,

prompting the NHTSA to open an investigation into the vehicle’s fire risk [73]. Furthermore,

the widespread adoption of rapid charging technology (such as Tesla Superchargers) places

even greater stress on EV batteries, requiring active cooling, dynamic charge rate based

on cell temperature, and robust cell-balancing to ensure safe rapid charging. However, in

the case that these safety measures fail, the results can be disastrous. For example, in

two separate incidents in 2016 and 2019, a Tesla vehicle caught fire while plugged into a

Supercharger station [162, 163]. Both fires were attributed to short circuits in the vehicles’

electrical systems.

The aforementioned examples demonstrate that EV battery technology’s complex architec-

ture and high risk-factor present a large attack surface. The high impact of battery failures

makes this subsystem an attractive target for attackers and presents a significant risk to EV

owners. Since the battery management system is usually connected to the CAN-bus and

several groups have already demonstrated cyber-physical attacks on EVs [5, 6, 122, 8, 149],

it is only a matter of time before exploits targeting vulnerabilities of the battery subsystem

are revealed.

Attacks Targeting Availability Lithium-ion batteries have various failure modes rang-

ing from reduced battery life/performance to complete battery failure and thermal runaway.

The former failure modes can be triggered via excessive cell cycling, charging past 100%

capacity, or malicious tampering of vehicle loads such as manipulating HVAC settings, dis-

abling regenerative braking, or disabling the discharge limiter to deep discharge the battery.

Complex, new EV control systems that use machine learning and artificial intelligence to

improve efficiency such as that proposed by Lin et al. [172] are potential attack vectors to

manipulate the battery subsystem and drivetrain of the vehicle. Several groups have shown

that machine learning models are highly vulnerable to adversarial attacks [159, 80], mean-
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ing that machine learning-based control systems can potentially be leveraged to attack the

battery subsystem and result in these failure modes.

Thermal runaway can be induced via a combination of factors including a high charging rate,

poor cooling system performance, and internal or external short circuits. This failure mode

is most likely to occur with rapid-charging devices as the high power output of the chargers

increases battery cell temperatures significantly and requires complex thermal management

in the vehicle. Some fast-charging systems require vehicles to run active cooling systems

while charging to ensure battery temperatures do not reach critical levels. Despite these

safety measures, the commands controlling charge rate and active cooling are usually sent

via in-vehicle networks, such as CAN.

In Section 2.5, there were various depictions of how attackers can gain access to in-vehicle

networks; in this scenario, an attacker with access to the network could potentially manip-

ulate bus traffic to induce thermal runaway (potentially less difficult to detect than other

manipulations). Although many battery subsystems have physical safety measures to prevent

thermal runaway such as thermally-triggered fuses, these measures are usually irreversible,

meaning attacks that induce these conditions can cause permanent damage to a battery pack

and compromise its availability.

In addition to vehicle battery packs, battery subsystems are prevalent in sensors, mobile de-

vices, and future V2IoT devices. In general, battery subsystems consist of three layers: ap-

plication, battery management, and physical. Per each layer, the attack vectors used to gain

access may vary and actual exploits may target the confidentiality, integrity/authentication,

and availability of the battery subsystem and/or other connected subsystems [177]. Due to

the need for low-cost production, battery subsystems tend to be lacking in security across

all three layers [67].

At the application layer, attack vectors for battery subsystem attacks involve wireless com-
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munication (e.g., vehicular, remote battery management [258]), sensors, telematics, info-

tainment, EV charging station cables, wireless charging [181], and in-vehicle network ports.

The primary attack vector for the battery management and physical layers is the automo-

tive battery supply chain, which consists of many steps that are prone to various exploits

(eg, manufacturing, transportation, swapping, recycling). Vulnerabilities in the latter lay-

ers include weak software security/hardware, leading to access to the battery management

software or the battery circuit.

Attacks Targeting Integrity and Confidentiality Attacks that target the integrity and

confidentiality of a system may also be done via the application layer of battery-operated

CPSs. These attacks may focus on stealthily forging data of the battery to confuse the

system or the user, or by obtaining critical information about the system or the user via

the behavior of the battery. For example, supposing an attacker has access to the history

of the EV battery usage (achievable by having access to the On-Board Unit or the BMS via

the intra-network), the attacker may extract critical information such as the driver’s habits

and location. However, with knowledge of the habits and location of a driver, an attacker

may eventually conduct a bigger breach in the driver’s privacy. On the other hand, an

attacker may use the access of the may bus of the EV to do an integrity attack by displaying

incorrect information about the battery state (e.g., State of Charge (SOC) and State of

Health (SOH)) to the user. As a result, the consequences for this attack could be that the

attacker unknowingly damages the vehicle or ends up stranded in the middle of a trip with

a discharged or unusable battery.

Attacks on confidentiality (via probes or in-vehicle network-based attacks) typically record

data related to battery usage to infer user behavior patterns or user location information.

Integrity/authentication exploits utilize attack vectors, such as the CAN-bus, to modify

charging/discharging protocols (eg, replay, spoofing, message tampering, battery circuit

142



tampering) to disturb battery functionality and/or the functionality of battery-dependent

components [106]. Finally, availability exploits (via network-based attacks or battery cir-

cuit tampering) attempt to reduce or cut off energy provision to the components needing

it [140, 84].

5.2.8 Mobile Applications

The omnipresence of mobile data services and applications expose mobile device batteries

to novel security risks. The attackers may exploit unique vulnerabilities in mobile networks,

applications, device resources, and network interconnectivity. As battery security challenges

mostly arise from cyber-physical attacks launched in conjunction with malicious applications,

it is essential to comprehend the potential risks of batteries emanating from the application

layer. In general, the attacks via mobile applications are orchestrated by exploiting multi-

ple layers of a mobile device and the communication network. An illustration of possible

attacks on mobile battery spanning over multiple layers of communication network, mobile

applications, and device resources is depicted by Figure 5.7. For instance, if the adversary

launches a benign looking malware that is downloaded by the users unknowingly via Wi-

Fi, Bluetooth or the other mediums, the malware may deliberately and secretively exploit

the battery power (deemed as primary resource in context of battery security) or another

resource like a processor, storage, camera, microphone, GPS, accelerometer etc. to disrupt

the proper functionality of the device’s battery system.

Taxonomy of Battery System Attacks Figure 5.8 is provided to summarize the various

types of attacks on battery systems that were discussed. Each attack may target one or

more layers and has a set of action characteristics that are manifested into the system.

An adversary may exploit one or more of the following mediums to perform their attacks:

physical access; sensors; software/hardware; and communication channels.
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Figure 5.7: Abstracted battery system attack model on mobile devices.

Figure 5.8: Taxonomy of battery system attacks.
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5.3 Existing and Proposed Solutions

5.3.1 Existing Solutions

Physical and BMS Layers: Down to the physical layer, there are traditional safety

circuits used to prevent the battery or the overall system to go into an unstable state.

However, it may be observed that such safety circuits may be tampered with in counterfeit

battery packs. For battery counterfeit, some solutions are form factors, barcoding, radio fre-

quency identification (RFID), and hashing/cryptography (e.g., SHA-1/HMAC, KEELOQ,

XTEA) [273]. Evidently, the form factors, barcoding, RFID and (some) cryptographic solu-

tions suffer from lack of entropy and therefore are typically easily replicated. On the other

hand, although stronger cryptographic solutions may potentially solve these problems, typ-

ically their inputs are deterministic (simple keys from the manufacturer of the battery) and

therefore may lead to a lack of security [187, 199]. Furthermore, they may add a non-trivial

cost to the battery pack [66].

Application Layer Many intrusion detection methodologies have been developed over

the years to detect and thwart battery exhaustion DoS attacks on mobile computers and

smart phones. Nash et al. [197] developed an Intrusion Detection System (IDS) Framework

to mitigate the impact of battery depletion DoS attacks in mobile devices and laptops.

Jacoby et al. [131] proposed a Battery-based Intrusion Detection System (B-BID) to prevent

the exploitation of battery power via DoS attacks. Moyers et al. [194] developed a hybrid

scheme named Multi-Vector Portable Intrusion Detection System (MVP-IDS) that monitors

the host-based device instantaneous current (IC) and traffic signatures. The framework

recognizes any significant change in the instantaneous current of the device and correlates it

to the anomaly or increase in Wi-Fi or Bluetooth traffic
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Application layer security should incorporate features to prevent both static and dynamic

attacks. To address the static attacks (i.e. the attempts to maliciously modify installed

operating system properties and applications) authentication and secure operation verifica-

tion of executable code and applications is required. As for dynamic attacks that attempt

to maliciously inject malwares or run contents from an insecure source, the security meth-

ods should be capable of detecting anomalous deviation in operation, power consumption,

communication patterns, etc. from the system software’s typical executing path of normal

behavior. Sensor attacks may be preventable with more reliable sensor fusion techniques and

anti-spoofing methods [112]. Following this concept, the next section will detail a proposed

solution that takes physical characteristics of the batteries and converts them into a unique

fingerprint for secure authentication.

5.4 A Proposed Physics-Based Battery Fingerprint and

Authentication Scheme for ITS Devices

5.4.1 Introduction

Existing solutions for physical battery safety typically deal with identifying or predicting

the state of the battery on the BMS to take safety precautionary measures. These solutions

include both diagnostic and prognostic approaches e.g. with Kalman filter, particle filter,

neural networks, parametric modeling, mapping, etc [231]. Through the use of the diagnostic

and prognostic approaches on the BMS, it may be possible to derive a cost-effective and

secure authentication solution for the physical security of the battery. Specifically it may be

possible to derive a unique signature from the battery’s physical features to authenticate the

battery to detect/prevent counterfeit, swapping, and tampering. There are several sources

which suggest that each battery has unique features [27, 237], but there are no related works
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on using them for the purpose of authentication.

Battery cells implemented in devices within IoT devices of the ITS ecosystem and other CPS

are manufactured differently according to the application and design constraints. Moreover,

their physical and chemical characteristics are unique in part because of the imperfections

in the manufacturing process, where no two batteries are the exact same [237]. In fact,

the battery features (e.g., internal resistance) have high variation from cell to cell under

the same manufacturer and different manufacturers by 10-15% [27, 237]. Since counterfeit

battery cells are manufactured differently from the original ones, their behavior may become

significantly distinguishable in terms of voltage-current, thermal, and aging characteristics.

Hence, the unique behavior of each battery cell may help in fingerprinting and authenticating

the original battery cells and eliminating the counterfeit ones.

5.4.2 Related Work

Battery Management Systems (BMS) are implemented to evaluate the current state of the

battery at run time using the generic manufacturer-provided models and measurements

of the battery’s voltage, current, temperature, and State-of-Charge (SoC). However, BMS

face the challenge of precise computation of a state of the battery because of the generic

battery models and therefore must have high thresholds for detecting unsafe states (such as

overheating or overcharging). If the battery’s precise characteristics are known, the online

estimation may improve the functionality and safety of the ITS.

Moreover, existing battery authentication schemes are based on form factors, fixed ID, and

challenge-response (highest cost), e.g., CRC or SHA1-HMAC [273]. The state-of-the-art

schemes can be compromised via different techniques such as spoofing the form factors,

RFIDs, or random number generator challenge-response. Furthermore, to implement such

authentication schemes, additional hardware may be necessary to be embedded onto the
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battery pack (e.g., microcontrollers). For instance, the hardware chip and the integrated

circuit that run the SHA-1 authentication scheme for battery cells can cost upto $2 [186,

66]. Hence, these solutions utilizing encryption or random number generation become less

acceptable than the more traditional methods such as form factors or barcodes.

Exploiting physical variation to improve security has been leveraged in many security schemes

in order to generate secret keys or unique identities [252, 227]. Moreover, the random physical

variation of the wireless channel has been exploited to generate cryptographic symmetric keys

for indoor, outdoor, and automotive wireless networks [184, 297, 285]. Furthermore, using

biological features (e.g., iris, joints of a hand, thumbprint, and DNA) for authentication has

been proposed [26]. Recently, high entropy signatures from the intrinsic impedance variation

within the PCB has been used for its authentication [301].

In order to provide a novel battery security and authentication scheme solution with low

overhead and high entropy fingerprinting, the exploitation of the measurable physical features

of battery cells is proposed. The solution is applicable not just to IoT devices within ITS

but also to other CPS.

Problem and Research Challenges

In summary, the design of battery security and authentication schemes for safety of ITS

devices poses the following major challenges:

1. Estimation accuracy of the behavioral battery model used for the BMS and security

schemes.

2. State-of-the-art schemes are at risk of being easily compromised due to their general

security features.

3. Cost and complexity of implementing the schemes on the embedded system and circuit

of the battery cells.
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Novel Contributions and Overview of Concepts

The above-mentioned challenges are addressed with the following components of the physics-

based battery security and authentication scheme:

1. Physics-Based Fingerprinting (Section 5.4.3): in which the behavior of a battery cell

during charge/discharge cycles (Section 5.4.3) is monitored and its features (Section 5.4.3)

are extracted as the battery fingerprint (see Figure 3.2).

2. Authentication Scheme (Section 5.4.4): that measures the features of the cur-

rent battery and authenticates whether it is the original battery or it has been re-

placed/tampered (counterfeit). An experimental test-bed on real battery cells from Pana-

sonic/LG is presented and a demonstration of the discharge temperature as the source

of the fingerprinting is provided, indicating the potential applicability of this solution

(Section 5.4.5).

5.4.3 Battery Fingerprinting

The following proposed methods assume the attack model in Section 5.2.5 (see Figure 5.4).

In order to eliminate battery attacks and resolve the challenges of counterfeit, both quality

testing and authentication methods have been developed. Main concerns for authentication

by battery manufacturers include: 1) the size of the required embedded system; 2) the

complexity of the algorithm and the required memory/computation power; and 3) cost of

implementing the design.

Fingerprinting will be the responsibility of the battery manufacturer. Depending on the

power consumption of the application, the battery may come in the form of a cell, module,

or pack. However, the fingerprinting scheme is orthogonal to any type of battery. For

fingerprinting, a data-driven (sensor measurement-based) modeling technique which requires
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the manufacturer to perform several standard tests on the battery. The resulting models are

stored in the embedded system accessible by the CPS. These models will be integrated into

the BMS in order to be used along with measurements to authenticate the battery.

Charge/Discharge Cycles

For a given battery (or battery pack), multiple charge and discharge cycles are conducted

by the battery manufacturer. Multiple battery operating variables during the cycles are

monitored to model the behavior of the battery and extract the features.

The standard charging scheme of a battery is shown in Figure 5.9. The battery is first

charged using constant current (CC) until the maximum voltage of the battery. Then, it is

charged using the constant voltage (CV) maintaining the maximum voltage of the battery

until it fully charges.

Figure 5.9: CC-CV charging scheme of a battery.

The battery is charged using the constant current of 0.5C up to the maximum voltage.

Afterwards, the battery is immediately discharged with the same rate of 0.5C to the min-

imum voltage. To reduce the amount of total time to extract the features of the battery,

the constant voltage charging phase is skipped which can take approximately one additional
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hour. The C rate is the discharge rate in which the battery depletes in one hour. The initial

temperature is the fixed room temperature (22◦C). For instance, using four NCR18650B

battery cells connected in series, the charge/discharge rate, maximum voltage, and mini-

mum voltage are 1.67A, 16.8V, and 12V, respectively. By charging the battery up to the

maximum voltage using the constant current, almost 80% of the battery capacity is charged

according the battery datasheet. During the charge/discharge cycles, the voltage, current,

and temperature values are measured and saved. Since there might be noise in the measured

sensor values, moving average filter is applied. The voltage and current data will be used

for evaluating the internal resistance of the battery.

The battery temperature affects the battery capacity and the voltage-current relationship.

Since an active battery thermal management is mostly not available (especially at run time),

the battery temperature cannot be maintained properly. However, due to the battery’s in-

ternal resistance and capacity, the uncontrollable temperature can help in creating a unique

fingerprint for it (higher entropy). Moreover, in order to extract the thermal features and

correct the influence of the battery temperature, the battery is charged and discharged for

various temperatures. To find out a temperature correction model, the battery is charged

until the its temperature reached certain value (e.g., 28◦C, 29◦C, or 30◦C) around the max-

imum voltage. It needs to be noted that the maximum voltage limitation is enforced to

avoid over-charging. After reaching the required temperature, the battery is immediately

discharged to the minimum voltage.

Feature Extraction

The unique behavior of the battery needs to be evaluated and modeled for the fingerprint-

ing. Four time-series arrays are generated during each charge/discharge cycle: 1) charging

voltage (cv), 2) charging temperature (ct), 3) discharging voltage (dv), and 4) discharging

temperature (dt).
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These four time-series arrays have different lengths due to the different initial capacities

of the battery. Hence, in the pre-processing step, the smallest length of the time-series

arrays is evaluated. All the arrays are cut and shifted to match the length for fair feature

extraction and comparison in the later steps. The shifting of the time-series arrays improves

the accuracy of the algorithm.

After gathering and pre-processing the data, the fingerprinting step is performed. In this

step, there are two parts of classification and feature extraction. A given time-series of data

(cycle) is classified based on its four features: 1) minimum, 2) maximum, 3) average, and

4) standard deviation. The cycles of the same battery which have almost the same features

are classified into the same class. Hence, there will be a set of classes C of size |C|, where

Cv
i : v ∈ {cv, dv, ct, dt} corresponds to a class containing all the cycles having almost the

same features (within a threshold defined by the standard deviation feature).

For each class Cv
i for variable v, a model M(Cv

i ) is created by extracting two types of

feature vectors: magnitude (|x|) and rate of change (dx/dt). In the first feature vector,

the mean magnitude is taken across all curves, stored in matrix X, that fall under Cv,i:

(AvgMagnitude = |X|). Then, in a similar way, the averaged rate of change value is com-

puted across all curves, over groups of size, Gsize: (AvgRoC = (X(t+Gsize)−X(t))/Gsize).

Additionally, standard deviations are taken over the values to compute lower and upper

threshold vectors, Thrlo and Thrhi, where Thrlo(M(Cv,i)) = M(Cv,i - α*std(M(Cv,i)) and

Thrhi(M(Cv,i)) = M(Cv,i - α*std(M(Cv,i)).

Each rate of change value serves as a unique feature for the Ci and will be used for authen-

ticating a battery pack (explained further in following section). Additionally, the standard

deviations will be used to compute upper and lower thresholds (Thrlower and Thrupper) for

the authentication step.

152



5.4.4 Proposed Authentication Scheme

Given any battery pack, the proposed authentication scheme will first follow similar steps

as in the fingerprinting section. In either the designer or user side, the battery pack will be

charged and then discharged with constant .2C rate and have its voltage and temperature

measured at regular intervals. The resulting charging/discharging voltage and temperature

curves for the current cycle, j, are labeled as cvj, dvj, ctj, dtj, respectively, and are shifted and

filtered (median filter for temperature, and average filter for voltage) for fairer comparison

and reduction of noise. According to the maximum, average and standard deviation values

of each voltage and temperature curve, the curves are classified based on classes in C. If

there is a curve that does not match any class, then that curve is considered as invalid and

unusable for authentication.

Having classified each curve of cycle, j, of each variable, v, in Cv,i, feature extraction is then

performed over the curves. As mentioned in the previous step, there are two primary features

that are extracted along the curve: rate of change (AvgRoC = (vj(t+Gsize)−vj(t))/Gsize)

and magnitude (AvgMagnitude = |vj(t)|). An authentication step is performed for each

profile by comparing these features with those in the model, M(Cv,i) , corresponding to the

class Cv,i and corresponding thresholds, Thrupper(Cv,i) and Thrlower(Cv,i). If each feature is

between the thresholds, then it is considered as an authenticated feature.

After comparison of all features of a single curve, total authenticity may be evaluated as

authenticity, by dividing the number of authenticated features (auth feat) by the total

number of features (total feat). If the overall authenticity is above a specific threshold,

Thrauth, then the tested battery pack is considered as an authentic one, otherwise it is not.

To improve the accuracy, the authentication mechanism can use several cycles of data to

calculate the overall authenticity. This type of scheme is mostly suitable for the designer

stage (where there are more resources to perform the measurements) rather than the more
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constricted runtime stage (where battery authentication should not require more than one

cycle).

Algorithm 1: Physics-Based Battery Fingerprinting Algorithm

Input: Authentic Battery Measurement Vectors: v
Input: Group Size: Gsize
Input: Threshold Parameter: α
Input: Classification Parameter: β
Output: Classes: C
Output: Generated Fingerprint Models: M
Output: Upper Thresholds: ThrHi
Output: Lower Thresholds: ThrLo

1 foreach 0 <= i < Length(v) do
2 vi = Filter(vi)
3 tempC = med(vi),min(vi),max(vi), avg(vi), std(vi)
4 // Add index of this measurement curve to closest matching class based on β
5 AddClass(C, tempC, i, β)

6 foreach i < Length(C) do
7 // Compute magnitude or rate of change features from all curves corresponding

to each class
8 ind = Ci
9 AvgMagnitudes = mean(vind)

10 AvgRoC = mean(vind(t+Gsize)− vind(t))
11 // Compute upper and lower thresholds for each feature based on variance
12 ThrHi,ThrLo = computeThr(vind)
13 Mi = [AvgMagnitudes, AvgRoC, ThrHi, ThrLo]

14 return M ;
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5.4.5 Battery Fingerprinting Experimentation

Experimental Setup

In order to conduct experiments and analyze the battery security and authentication scheme,

a real battery test bed is set up as shown in Figure 5.10. The battery test bed setup comprises

of: 1) a variable DC load (BK Precision 8514); 2) a variable DC power supply (Instek PSB-

2400L2); 3) constant DC power supply; 4) multiple temperature sensors (LM35-DZ); and

5) up to four battery cells (Panasonic NCR18650B, LG HG2, SunLabz 18650B) (used in

EVs such as those produced by Tesla). The requests for transmission of power (current) to

the battery cells and the reception of sensor values (e.g., voltage, current, and temperature)

are handled by Python functions. The functions utilize a serial communication between the

computer and the devices in order to send commands and read values.

Figure 5.10: Experimental battery test bed.

The charging and discharging cycles (see Section 5.4.3) are managed by controllers imple-

mented in MATLAB [2] through Python functions. Furthermore, the techniques and algo-
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rithms explained in Section 5.4.3 and 5.4.4 are implemented in MATLAB and leverage the

saved data.

Proof of Concept

For a simple proof of concept, charge/discharge cycles were performed for seven different

individual Panasonic batteries using the aforementioned test bed (instead of packs of four

batteries). Features are extracted and converted from these cycles into threshold curves from

the gathered sensor data. Out of the various threshold curves, the Discharge Temperature

(dt) curves stood out the most. Figure 5.11 demonstrates the dt-based threshold curves

(Class Upper and Lower Thresholds), as well as the extracted feature curves when the battery

is authentic (a Panasonic battery) or fake (an LG battery). Notice how the Authentic Battery

curve fits between the two threshold curves nicely, but the Fake Battery curve begins to break

out from the region after the 700th sample or so. It was found that features extracted from

the other sensor values did not appear to show as much promise regarding uniqueness. Hence,

there is substantial room for research on discovering which physical characteristics (such as

internal resistance) to use for fingerprinting and which features to extract from them.

It is important to note that both the fingerprinting method and authentication scheme are

incomplete and they serve as a conceptual basis for other improved and advanced authenti-

cation schemes. However, this proof of concept demonstrates some promise that it might be

feasible. Research challenges for improving the proposed solution include proper technology

and sophisticated methods to gather information on the battery’s physical characteristics,

and ensuring that the fingerprinting and authentication mechanisms are tolerant to variation

due to environmental factors and aging. More advanced methods such as particle filters and

other offline/online feature extraction and classification machine learning techniques may

assist in creating a solution for these challenges.
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Figure 5.11: Proof of concept demonstrating that the extracted Discharge Temperature
features from the Authentic (Panasonic NCR18650B) battery fits within the discharging
temperature behavior fingerprint thresholds (based on Panasonic), whereas the ones from
the Fake (LG H2) battery do not. Horizontal axis corresponds to discharge temperature
sensor data samples gathered over the discharging time period.

5.5 Summary

To summarize, a comprehensive review and cross-layer security analysis of battery systems

in the Internet of Things is presented with respect to ITS. Existing solutions tend to be

ad-hoc and restricted to specific attack scenarios. A comprehensive security framework for

battery systems in IoT devices within the ITS ecosystem comprising of cross-layer security

analysis capability is required to prevent rising threats. In order to develop a holistic method

to thwart battery attacks and prevent battery counterfeiting, the hardware, software and

firmware should work independently and in conjunction with each other.

Finally, a novel physics-based battery security scheme is proposed to improve the security

and safety of the IoT devices against battery attacks. In this scheme, the manufacturer

generates a unique fingerprint of the battery out of extracted features from gathered sensor

data during charging/discharging. Then, to assure that the battery has not been tampered

with or swapped, another entity may authenticate the battery using the aforementioned
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fingerprint. This is one example and serves as a potential direction on how battery system

security with respect to IoT may be improved.
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Chapter 6

Conclusion

This dissertation has presented and addressed the following research challenges in the domain

of Intelligent Transportation System (ITS) security: the need for a more thorough coverage

of security challenges and existing solutions, the need for useful methodologies and tools for

modeling and analyzing the impact of attacks and defenses, and the need for more effective

security solutions to help prevent known and unforeseen attacks. The methodologies and

tools in this dissertation focus on known ITS use cases, but they may serve as a foundation

on how to study ITS security and deal with its challenges as both complexity and number

of ITS use cases grow.

Other researchers, designers, and engineers may follow in similar steps provided in this

dissertation to identify and define novel ITS security challenges, come up with ITS security

modeling/analysis methods and tools for all related parties to benefit from, and design novel

solutions. Such research will strengthen the ITS research community because it will be

in more tune with the ongoing and unforeseen difficulties that ITS industry and national

governments face. Following this, unique and powerful ITS solutions and architectures for

both security and non-security purposes may be developed.
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