Lawrence Berkeley National Laboratory

Lawrence Berkeley National Laboratory

Title

A multisensor system for detection and characterization of UXO (MM-0437) - Demonstration Report

Permalink

https://escholarship.org/uc/item/43x9970k

Authors

Gasperikova, Erika Smith, J.T. Morrison, H.F. et al.

Publication Date

2006-06-01

DEMONSTRATION REPORT

A MULTISENSOR SYSTEM FOR THE DETECTION AND CHARACTERIZATION OF UXO MM-0437

SITE LOCATION: U.S. ARMY YUMA PROVING GROUND

DEMONSTRATOR: LAWRENCE BERKELEY NATIONAL LABORATORY ONE CYCLOTRON ROAD, MS: 90R1116 BERKELEY, CA 94720

p.o.c. Erika Gasperikova, egasperikova@lbl.gov, 510-486-4930

TECHNOLOGY TYPE/PLATFORM: BUD/CART

JUNE 2006

1. BUD DESCRIPTION

The Berkeley UXO discriminator (BUD) (Figure 1) is a portable Active Electromagnetic (AEM) system for UXO detection and characterization that quickly determines the location, size, and symmetry properties of a suspected UXO. The BUD comprises of three orthogonal transmitters that "illuminate" a target with fields in three independent directions in order to stimulate the three polarization modes that, in general, characterize the target EM response. In addition, the BUD uses eight pairs of differenced receivers for response recording. Eight receiver coils are placed horizontally along the two diagonals of the upper and lower planes of the two horizontal transmitter loops. These receiver coil pairs are located on symmetry lines through the center of the system and each pair sees identical fields during the on-time of the pulse in all of the transmitter coils. They are wired in opposition to produce zero output during the on–time of the pulses in three orthogonal transmitters. Moreover, this configuration dramatically reduces noise in the measurements by canceling the background electromagnetic fields (these fields are uniform over the scale of the receiver array and are consequently nulled by the differencing operation), and by canceling the noise contributed by the tilt of the receivers in the Earth's magnetic field, and greatly enhances receivers sensitivity to the gradients of the target response. The BUD performs target characterization from a single position of the sensor platform above a target.

Figure 1. Berkeley UXO Discriminator (BUD)

BUD was designed to detect and characterize UXO in the 20 mm to 155 mm size range for depths between 0 and 1 m. The relationship between the object size and the depth at which it can be detected is illustrated in Figure 2. This curve was calculated for BUD assuming that the receiver plane is 20 cm above the ground. Figure 2 shows that, for example, BUD can detect and characterize an object with 10 cm diameter down to the depth of 90 cm with depth uncertainty of 10%. Any objects buried at the depth more than 1 m have a low probability of detection. With existing algorithms in the system computer it is not possible to recover the principal polarizabilities of large objects close to the system. Detection of large shallow objects is assured, but at present real time discrimination for shallow objects is not. Post processing of the field data is required for shape discrimination of large shallow targets. Next generation of BUD software will not have this limitation. Successful application of the inversion algorithm that solves for the target parameters is contingent upon resolution of this limitation. At the moment, interpretation software is developed for a single object only. In case of multiple objects the

software indicates the presence of a cluster of objects but is unable to provide characteristics of each individual object.

Figure 2. 10% uncertainty in location as a function of object diameter and depth of the detection for BUD with receivers 20 cm above the ground

2. FIELD SURVEY - YUMA PROVING GROUND

The objective of the Yuma Proving Ground (YPG) Demonstration was to acquire multicomponent data with *BUD* over the Calibration Grid and the Blind Test Grid. The Calibration Grid is 30 m by 40 m area and consists of seventeen lanes and contains 132 UXO objects. The Blind Test Grid is a 1600 square meter area and contains 400 cells, each of which can be occupied by UXO, clutter, or both, or it can be empty. The field test was conducted from May 1, 2006 to May 6, 2006. The Calibration Grid was surveyed with 1 m spacing along the lanes A through K, and with 0.5 m spacing along the lanes L and M. The Blind Test Grid was surveyed with 0.5 m spacing along the lanes, and 1 m spacing between lanes (~3200 measurements).

Figure 3 shows the measurement coverage for both grids.

Figure 3: Measurement coverage over the Calibration and Blind Test Grids at Yuma Proving Ground.

3. DATA PROCESSING AND INTERPRETATION

Raw field data are stored in the binary format. One file is created for one measurement point (station), which includes 8 channels of data for each of three transmitters, GPS and orientation information. Data are then stacked, normalized by a peak transmitter current, differenced with a reference trace (background transient) to remove system response transients, and averaged in logarithmically spaced bins with a half-sine weighting function. The resulting 24 channels of normalized responses are then inverted for candidate object position and principal polarizabilities as a function of time after transmitter shut-off. Data before 140 µs are ignored. For the data from the Blind Test Grid an object identification program matches measured equivalent dipole polarizabilities to a database of previous measurements of equivalent dipole polarizabilities of known objects and identifies a candidate object as the object(s) corresponding to the closest matching curves from the Calibration Grid. This is done by minimizing a robust loss function of the normalized absolute differences (residuals) between the measured values and those in the database weighted inversely by estimated uncertainty in polarizabilities. The database consists of all objects in the Calibration Grid and in the test pit.

Table 1 contains principal polarizabilities as a function of time of all objects from the Calibration Grid (132 entries). When the size-depth requirement (Figure 2) is satisfied, the polarizabilities are independent of the depth and orientation of the object. For large objects close to the system the principal polarizabilities curves vary depending on the orientation of the object. All objects,

except A17 - a 12 pound shotput at the depth of 2.0 m were detected. ROC curve for the Calibration Grid is shown in Figure 4.

Figure 4: ROC curve for the Calibration Grid

Table 2 contains results from the Blind Test Grid. The table contains all the cells for which BUD indicates there is an object present, and a time weighted average signal strength is above $9x10^{-12}$ Vs/A in response to the Bz transmitter or $4.5x10^{-12}$ Vs/A in response to the either Bx or By transmitters, and the response level is not at a minimum compared to 1 meter forward or backwards along the survey line. For each cell that is not empty (228 occupied cells) the table contains a probability of the cell being occupied in column 1, and cell identification in column 2. These probabilities are based on one minus the probability that the given response level would arise from random fluctuations of the background field in the absence of an object. From a total of 400 cells 228 cells or 57% are occupied. Figure 5 shows the probability of the cell being occupied in a graphical form. Cells with black plus symbols are empty. 85.1% from 228 cells

have a probability higher than 90% that the cell is occupied (blue circles), 4.4% have probability between 75% and 90% (green squares), and 10.5% have probability between 30% and 75% (red diamonds). The results given in Table 2 and Figure 5 include objects listed for cells f_02n and f_18n, which are actually 1m off the grid cell centers halfway between f_02 and f_03, and between f_18 and f_19 respectively.

Figure 5: Blind Test Grid detection map

4. CONCLUSIONS

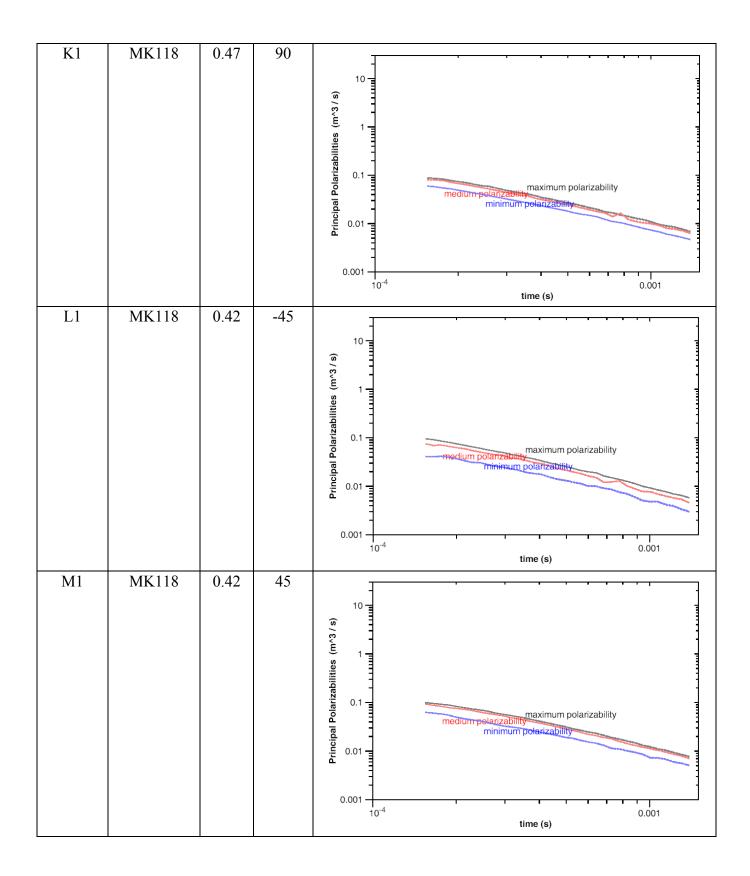
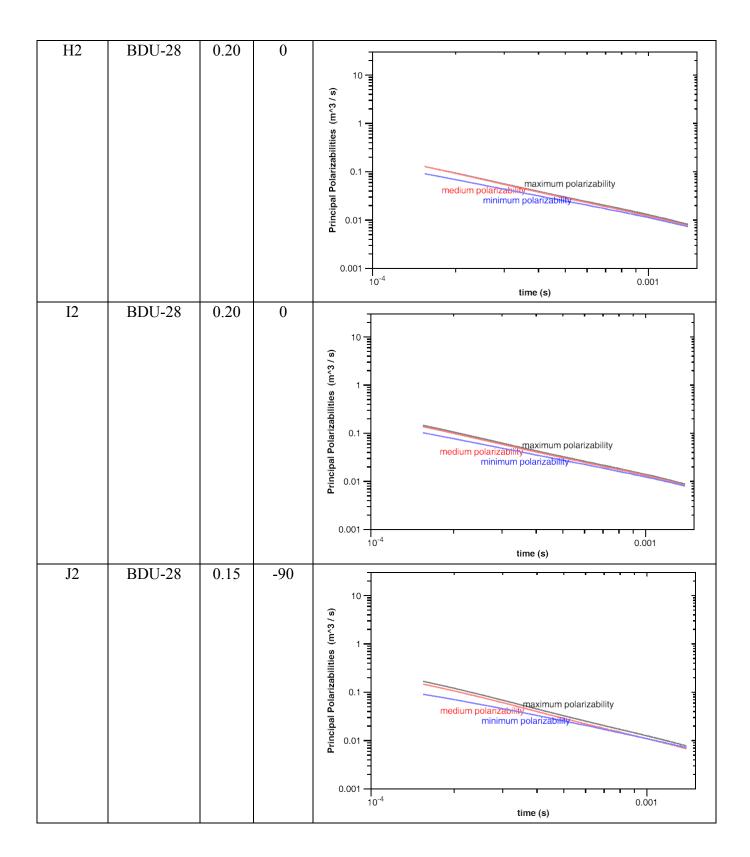

The field survey with BUD at the Yuma Proving Ground was successful. BUD performed extremely well. BUD is easy to use and requires low maintenance - transmitter batteries last for three hours, while acquisition system batteries last for six hours. The system location was recorded with standard GPS with position accuracy about 9 cm. We collected a large amount of multiple-transmitter multiple-receiver data over the Calibration Grid and Blind Test Grid. All data will be available to other researchers upon request. This report contains a table of polarizabilities curves for each object in the Calibration Grid, and detection results from the Blind Test Grid. We will submit another report with discrimination results from the Blind Test Grid after we address current limitations of our software described in Section 1.

 Table 1: Yuma Proving Ground - Calibration Grid

Grid	ID	D 4	Dip	D 1D.1 . 1317.
Location	ID	Depth	Angle	Principal Polarizabilities
A1	M75	0.30	0	Arine (s)
B1	M75	0.30	0	10 maximum polarizability medium polarizability minimum polarizability minimum polarizability minimum polarizability minimum polarizability minimum polarizability
C1	M75	0.15	-90	10 modulities (s) 10 modulities (s) 10 modulities (s)



A2	81mm M374	1.50	0	10 maximum polarizability medium polarizability minimum polarizability 0.001 10-4 time (s)
B2	81mm M374	1.50	0	The contraction of the contracti
C2	81mm M374	0.75	-90	maximum polarizability medium polarizability minimum polarizability minimum polarizability minimum polarizability minimum polarizability minimum polarizability

D2	81mm M374	0.75	90	Doubling (%) (%) (%) (%) (%) (%) (%) (%) (%) (%)
E2	81mm M374	0.67	-45	Buildings (m/3/s) (maximum polarizability medium polarizability minimum polarizability
F2	81mm M374	0.67	45	10 To

K2	BDU-28	0.15	90	
				10 limiting 1 limiting
				0.001 0.001 time (s)
L2	BDU-28	0.14	-45	10 maximum polarizability medium polarizability minimum polarizability minimum polarizability minimum polarizability minimum polarizability
M2	BDU-28	0.14	45	10 maximum polarizability medium polarizability minimum polarizability minimum polarizability minimum polarizability minimum polarizability minimum polarizability

A3	40mm MKII	0.30	0	10 IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
В3	40mm MKII	0.30	0	10 maximum polarizability medium polarizability minimum polarizability minimum polarizability minimum polarizability minimum polarizability minimum polarizability minimum polarizability
C3	40mm MKII	0.22	-90	Time (s) 10

D3	40mm MKII	0.22	90	Buildings (maximum polarizability medium polarizability minimum pola
E3	40mm MKII	0.20	-45	10 To a spillitic spilliti
F3	40mm MKII	0.20	45	Deduction of time (s) The state of the stat

B4	155mm M483A1	1.50	0	The spinitive of the second of
D4	155mm M483A1	1.50	0	The state of the s
F4	155mm M483A1	1.19	-90	Dedicion 1 maximum polarizability minimum polarizability

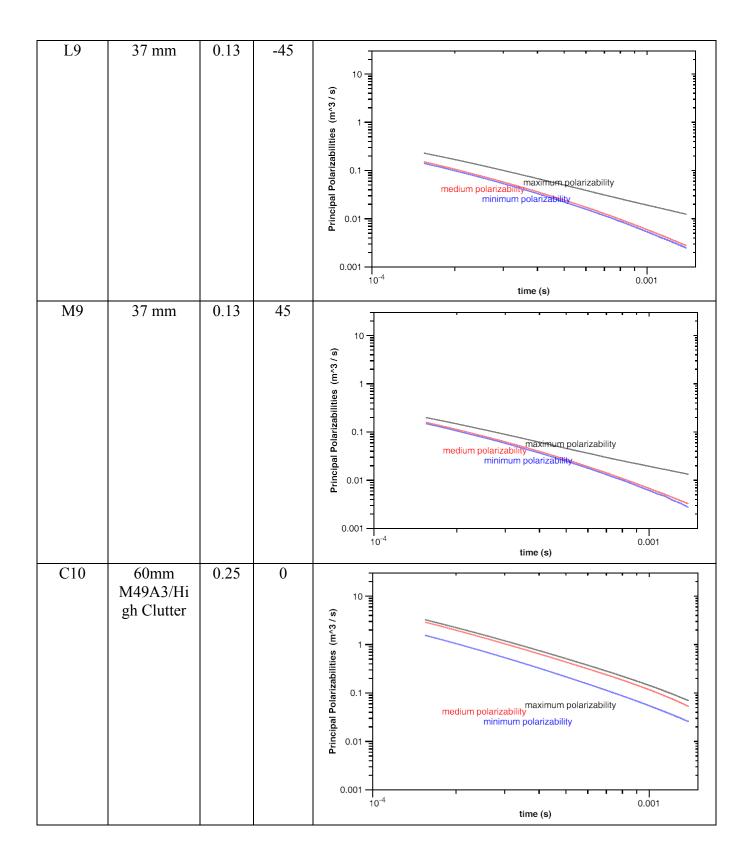
H4	155mm M483A1	1.19	90	The state of the s
J4	155mm M483A1	1.06	-45	The state of the s
L4	155mm M483A1	1.06	45	maximum polarizability medium polarizability minimum polarizability minimum polarizability minimum polarizability minimum polarizability minimum polarizability

B5	105mm M60	0.80	0	The state of the s
D5	105mm M60	0.80	0	10 maximum polarizability medium polarizability minimum polarizability minimum polarizability minimum polarizability minimum polarizability minimum polarizability
F5	105mm M60	0.62	-90	10 maximum polarizability medium polarizability minimum polarizability minimum polarizability minimum polarizability minimum polarizability minimum polarizability

H5	105mm M60	0.62	90	medium polarizability minimum polarizability minimum polarizability minimum polarizability minimum polarizability minimum polarizability
J5	105mm M60	0.55	-45	Doubling and the state of the s
L5	105mm M60	0.55	45	Doubling aximum polarizability medium polarizability minimum polarizability 0.001 10 ⁻⁴ 10

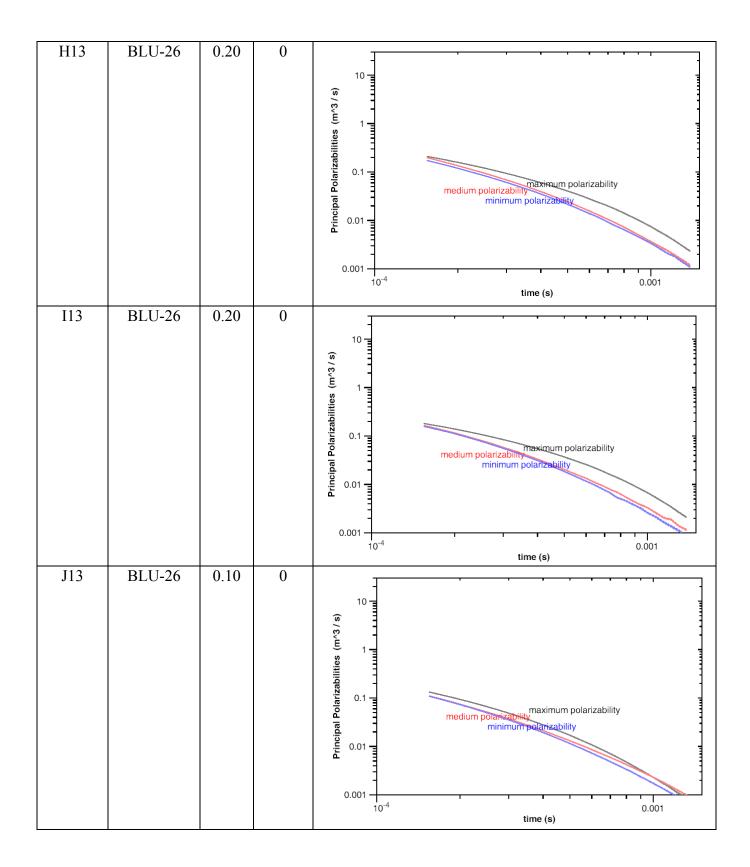
B6	105mm M456 HEAT	0.80	0	medium polarizability minimum polarizability minimum polarizability minimum polarizability minimum polarizability minimum polarizability
D6	105mm M456 HEAT	0.80	0	10 maximum polarizability medium polarizability minimum polarizability 0.01 maximum polarizability minimum polarizability 0.001 minimum polarizability time (s)
F6	105mm M456 HEAT	0.72	-90	medium polarizability medium polarizability minimum polarizability minimum polarizability minimum polarizability minimum polarizability minimum polarizability

Н6	105mm M456 HEAT	0.72	90	Discrete of the control of the contr
J6	105mm M456 HEAT	0.63	-45	nedium polarizability medium polarizability minimum polarizability minimum polarizability minimum polarizability minimum polarizability minimum polarizability
L6	105mm M456 HEAT	0.63	45	maximum polarizability medium polarizability minimum polarizability minimum polarizability minimum polarizability minimum polarizability minimum polarizability


L7	30 cm steel plate	0.5	0	10 To
G8	8# shot	0.20		10 maximum polarizability medium polarizability minimum polarizability minimum polarizability minimum polarizability minimum polarizability minimum polarizability minimum polarizability
G9	8# shot	0.20		10 maximum polarizability medium polarizability minimum polarizability minimum polarizability minimum polarizability minimum polarizability minimum polarizability minimum polarizability

G16	20 GAGE 15cm LOOP	0.25	0	10 — Maximum polarizability maximum polarizability minimum polarizability minimum polarizability minimum polarizability minimum polarizability minimum polarizability
G17	16 GAGE 15cm LOOP	0.25	0	The spanning of the spanning o
Н9	37 mm	0.20	0	The control of time (s) 10 maximum polarizability maximum polarizability minimum polarizab

D10	60mm M49A3/Me dium Clutter	0.25	0	During a spilities (m/3/s) 10 maximum polarizability medium polarizability minimum polarizability minimum polarizability
				10 ⁻⁴ 0.001 time (s)
E10	60mm M49A3/Lo w Clutter	0.25	0	10 modium polarizability medium polarizability minimum polarizability minimum polarizability minimum polarizability minimum polarizability
F10	60mm M49A3/No Clutter	0.25	0	time (s) 10



H11	60mm M49A3	0.91	0	naximum polarizability medium polarizability minimum polarizability
I11	60mm M49A3	0.40	0	Deduction of time (s) Purpose of the control of th
J11	60mm M49A3	0.52	-90	Deduction of time (s) 10

K11	60mm M49A3	0.52	90	maximum polarizability medium polarizability minimum polarizability minimum polarizability minimum polarizability minimum polarizability
L11	60mm M49A3	0.48	-45	medium polarizability medium polarizability minimum polarizability minimum polarizability minimum polarizability minimum polarizability minimum polarizability
M11	60mm M49A3	0.48	45	10 - 10 - 10 - 10 - 10 - 10 - 10 - 10 -

H12	57mm M86	0.91	0	
1112	37mm Woo	0.91		Duincipal Polarizabilities (m/3/s) O.01 maximum polarizability minimum polarizability minimum polarizability minimum polarizability minimum polarizability minimum polarizability minimum polarizability
I12	57mm M86	0.91	0	Duricipal Polarizabilities (m/3/s) 0.1 mildian polarizability minimum polarizability minim
J12	57mm M86	0.49	-90	medium polarizability medium polarizability minimum polarizability minimum polarizability minimum polarizability minimum polarizability

K12	57mm M86	0.49	90	
				10
				0.001
T 10	57 MOC	0.46	4.5	time (s)
L12	57mm M86	0.46	-45	Duicibal Maximum polarizability minimum polarizability
M12	57mm M86	0.46	45	The second of th

H14	40mm M385	0.20	0	The spinitive of the sp
I14	40mm M385	0.20	0	The state of the s
J14	40mm M385	0.14	-90	10 maximum polarizability medium polarizability minimum polarizability ninimum polarizability ninimum polarizability ninimum polarizability ninimum polarizability

K14	40mm M385	0.14	90	10 — Indicate the second of th
L14	40mm M385	0.13	-45	10 maximum polarizability medium polarizability medium polarizability minimum polarizability minimum polarizability minimum polarizability minimum polarizability minimum polarizability minimum polarizability
M14	40mm M385	0.13	45	10 maximum polarizability medium polarizability minimum polarizability minimum polarizability minimum polarizability minimum polarizability minimum polarizability minimum polarizability

H15	20mm M55	0.20	0	The spilities of the state of t
I15	20mm M55	0.20	0	10 modium polarizability medium polarizability minimum polarizability minimum polarizability minimum polarizability minimum polarizability
J15	20mm M55	0.14	-90	10 maximum polarizability medium polarizability minimum polarizability minimum polarizability ninimum polarizability ninimum polarizability ninimum polarizability

H16	20 GAGE 30cm LOOP	0.40	90	The spanning of the state of th
I16	20 GAGE 30cm LOOP	0.25	0	10 maximum polarizability maximum polarizability minimum polarizability minimum polarizability minimum polarizability minimum polarizability minimum polarizability
J16	18 GAGE 15cm LOOP	0.33	90	Time (s)

K16	18 GAGE 15cm LOOP	0.25	0	Drincipal Polarizabilities (m/3 / 8) medium polarizability minimum polarizability minimum polarizability minimum polarizability minimum polarizability minimum polarizability
L16	18 GAGE 30cm LOOP	0.40	90	10 maximum polarizability mednem polarizability mednem polarizability minimum polarizability no.001 10-4 time (s)
M16	18 GAGE 30cm LOOP	0.25	0	10 medium polarizability medium polarizability minimum polarizability minimum polarizability minimum polarizability minimum polarizability minimum polarizability

A17	12# shot	2.00	Duincipal Polarizabilities (m/3/s) medium polarizability minimum polarizability minimum polarizability minimum polarizability minimum polarizability 10-4 time (s)
B17		1.50	Duicipal Polarizability O.01 medium polarizability medium polarizability medium polarizability minimum polarizability ninimum polarizability time (s)
C17	12# shot	1.00	maximum polarizability medium polarizability minimum polarizability minimum polarizability minimum polarizability minimum polarizability

D17	12# shot	0.50		10 maximum polarizability medium polarizability minimum polarizability minimum polarizability minimum polarizability
F16	20 GAGE	0.33	90	10 ⁻⁴ 0.001 time (s)
	15cm LOOP			Double of the control
F17	16 GAGE 15cm LOOP	0.33	90	Duricipal Polarizability medium polarizability minimum polarizability minimum polarizability minimum polarizability minimum polarizability minimum polarizability

H17	16 GAGE 30cm LOOP	0.40	90	Dividing time (s) 10
I17	16 GAGE 30cm LOOP	0.25	0	10 maximum polarizability minimum polarizability
J17	12 GAGE 15cm LOOP	0.33	90	10 modium polarizability minimum polarizability

	1		1	
K17	12 GAGE 15cm LOOP	0.25	0	Principal Polarizabilities (m ³ /3 / s) Maximum polarizability medium polarizability minimum polarizability
				0.001 0.001 time (s)
L17	12 GAGE 30cm LOOP	0.40	90	Dringing 10 maximum polarizability maximum polarizability minimum po
M17	12 GAGE 30cm LOOP	0.25	0	Dring of time (s) Note that the control of the con

 Table 2: Yuma Proving Ground – Blind Test Grid

Probability	Cell Identification
1	btg a 01
1	btg_a_03
1	btg a 04p
1	btg_a_06
1	btg a 08
1	btg_a_12m
1	btg_a_14
1	btg a 15
1	btg a 17
1	btg_a_19
1	btg_b_01
1	btg b 02
1	btg_b_04p
1	btg b 06
1	btg_b_07p
1	btg_b_09
0.6131	btg_b_12
1	btg_b_15
0.6556	btg_b_16
1	btg_b_20
1	btg_c_01
1	btg_c_03
1	btg_c_04
1	btg_c_09
1	btg_c_11
1	btg_c_12
1	btg_c_13m
1	btg_c_17
1	btg_c_18
1	btg_c_19
1	btg_c_20
1	btg_d_01p
1	btg_d_03
1	btg_d_04
1	btg_d_07
0.4961	btg_d_09p
0.5591	btg_d_10p
0.9879	btg_d_11p
1	btg_d_12
1	btg_d_14p
1	btg_d_15
1	btg_d_16

_	T
1	btg_d_18
1	btg_d_19
0.5814	btg_e_01
0.5844	btg_e_02
1	btg_e_03
0.6306	btg_e_05m
1	btg e 08
1	btg_e_10
1	
	btg_e_11
1	btg_e_12
1	btg_e_13
0.9761	btg_e_14
1	btg_e_15
1	btg_e_16
1	btg_e_17
1	btg_e_18
1	btg_e_20p
1	btg_f_01
1	btg_f_02h
1	btg_f_04
1	btg_f_05
1	btg_f_08
1	btg_f_10
=	
1	btg_f_11p
0.9052	btg_f_14
1	btg_f_15
0.9999	btg_f_18h
1	btg_f_20
0.531	btg_g_02
1	btg_g_03
1	btg_g_05
1	btg_g_10
1	btg_g_11
1	btg_g_12
1	btg_g_15
1	btg_g_16
1	btg_g_17
1	btg_g_18
1	btg_h_01
_	
0.9999	btg_h_03m
1	btg_h_04
1	btg_h_05
1	btg_h_12
1	btg_h_13
1	btg_h_14
1	btg_h_20

1	btg_i_01
1	btg_i_02
1	btg_i_04
1	btg_i_05
1	btg_i_07
1	btg_i_10
1	btg_i_11m
1	btg_i_12
1	btg_i_14
1	btg_i_15
1	btg_i_17
1	btg_i_18
1	btg_i_20
1	btg_j_05
1	btg_j_07
1	btg j 09
1	btg_j_10m
0.9364	btg j 11m
1	btg_j_12
0.7599	btg_j_13
1	btg_j_15
1	btg j 17
1	btg_j_19
1	btg j 20
1	btg_k_01
1	btg_k_03
1	btg_k_04
1	btg_k_05
0.5425	btg_k_07
0.9904	btg_k_11
1	btg_k_12
1	btg_k_16
1	btg_k_17
1	btg k 19
0.505	btg_l_02p
1	btg_l_04p
1	btg_1_06
1	btg_l_07
1	btg 1 08
1	btg_l_09
1	btg_l_11
1	btg_l_12p
0.9807	btg_l_16
0.5871	btg_l_17
0.7633	btg_l_19
0.8082	btg_l_20

	
1	btg_m_01
1	btg_m_02
0.7622	btg_m_06
1	btg m 07
1	btg_m_09
1	
	btg_m_11
1	btg_m_12
1	btg_m_13
1	btg_m_14
0.877	btg_m_16
1	btg_m_17
1	btg_m_18
0.7829	btg_m_20
1	btg_n_01
0.7261	btg_n_03
1	btg_n_05
1	btg n 06
1	- = =
	btg_n_09
1	btg_n_13
1	btg_n_14
1	btg_n_16
0.9996	btg_n_17
1	btg_n_19
1	btg_o_01
1	btg_o_02
1	btg_o_04
1	btg_o_05
1	btg_o_06
1	btg_o_08p
1	btg_o_10p
1	btg_o_11p
1	
0.6224	btg_o_14
0.6334	btg_o_15
1	btg_o_18
1	btg_p_01
0.6934	btg_p_02m
0.6001	btg_p_03p
1	btg_p_04
1	btg_p_08
1	btg_p_09
1	btg_p_11
1	btg_p_12
1	btg_p_13
1	btg_p_15
1	
1	btg_p_16
l	btg_p_17

1	btg_p_20
1	btg q 02
1	btg_q_03
0.8878	btg q 04
0.5236	btg_q_05
0.3236	
	btg_q_06p
0.5219	btg_q_07p
1	btg_q_09
1	btg_q_10
1	btg_q_11
0.5923	btg_q_13m
1	btg_q_14
1	btg_q_15
1	btg_q_17
1	btg_q_19
1	btg_q_20
1	btg_r_01
0.9849	btg_r_02
1	btg_r_03
0.4781	btg_r_05m
0.3288	btg_r_06
1	btg_r_07
1	btg_r_08
0.997	btg_r_09
1	btg_r_10
1	btg r 11
0.3466	btg r 14
0.4386	btg_r_16
1	btg_r_18
0.3896	btg_r_20
1	btg_s_04
1	btg_s_05
1	btg_s_13
1	btg_s_16
1	btg_s_17
1	btg_s_20
1	btg_t_01
1	btg_t_03
0.7831	btg_t_04
0.8698	btg_t_06
1	btg_t_07
1	btg_t_08
1	btg_t_10
0.5821	btg_t_10 btg_t_11
0.3821	btg_t_11
1	
1	btg_t_14

1	btg_t_16
1	btg t 17