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Abstract

Prostate biopsy and image-guided treatment procedures are often performed under the guidance 

of ultrasound fused with magnetic resonance images (MRI). Accurate image fusion relies on 

accurate segmentation of the prostate on ultrasound images. Yet, the reduced signal-to-noise 

ratio and artifacts (e.g., speckle and shadowing) in ultrasound images limit the performance 

of automated prostate segmentation techniques and generalizing these methods to new image 

domains is inherently difficult. In this study, we address these challenges by introducing a 

novel 2.5D deep neural network for prostate segmentation on ultrasound images. Our approach 

addresses the limitations of transfer learning and finetuning methods (i.e., drop in performance 

on the original training data when the model weights are updated) by combining a supervised 

domain adaptation technique and a knowledge distillation loss. The knowledge distillation loss 

allows the preservation of previously learned knowledge and reduces the performance drop after 

model finetuning on new datasets. Furthermore, our approach relies on an attention module that 

considers model feature positioning information to improve the segmentation accuracy. We trained 

our model on 764 subjects from one institution and finetuned our model using only ten subjects 
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from subsequent institutions. We analyzed the performance of our method on three large datasets 

encompassing 2067 subjects from three different institutions. Our method achieved an average 

Dice Similarity Coefficient (Dice) of 94.0 ± 0.03 and Hausdorff Distance (HD95) of 2.28 mm 
in an independent set of subjects from the first institution. Moreover, our model generalized well 

in the studies from the other two institutions (Dice: 91.0 ± 0.03; HD95: 3.7 mm and Dice: 82.0 

± 0.03; HD95: 7.1 mm). We introduced an approach that successfully segmented the prostate on 

ultrasound images in a multi-center study, suggesting its clinical potential to facilitate the accurate 

fusion of ultrasound and MRI images to drive biopsy and image-guided treatments.

Keywords

Transrectal Ultrasound; Gland Segmentation; Deep Learning; Prostate MRI; Targeted Biopsy; 
Continual Learning Segmentation

1. Introduction

Prostate cancer is the third most common cancer diagnosed globally and the fifth 

leading cause of cancer-related mortality and morbidity in men (Sung et al., 2021). 

Transrectal ultrasound-guided (TRUS) biopsy procedures are used to diagnose prostate 

cancer (Michalski et al., 2016; Sarkar and Das, 2016). TRUS images show the prostate 

in real-time, allowing urologists to guide the biopsy needle during the procedure. Yet, 

these images have a low signal-to-noise ratio and artifacts (e.g., speckle and shadowing), 

which reduce the ability of clinicians to reliably distinguish cancerous from normal regions. 

Therefore, TRUS-guided biopsy procedures usually involve blind sampling of 12 regions 

throughout the prostate (Harvey et al., 2012). Such blinded systematic biopsy procedures 

sample <1% of the prostate, missing 52% clinically significant cancer (Williams et al., 2022; 

Schimmöller et al., 2016).

To address the inability of TRUS images to reliably show cancer, approaches have 

been developed to fuse magnetic resonance images (MRI) with TRUS images to project 

suspicious lesions from MRI onto TRUS images and target them during biopsy (Tătaru 

et al., 2021; Liau et al., 2019). Fusion requires the registration of MRI and TRUS 

images which is typically done by aligning the prostate boundary. The prostate boundaries 

are usually manually outlined on both MRI and TRUS images by clinical experts, 

usually radiologists for MRI and urologists for TRUS (Tătaru et al., 2021). Prostate 

segmentation on TRUS images could also be useful for other applications, including 

computer-aided diagnosis and targeting cancers using ultrasound images alone.. Accurate 

manual segmentation of the prostate on TRUS images is a tedious, time-consuming task that 

suffers from inter- and intra-observer variability due to the reduced quality of the images. 

Moreover, it is common for the prostate to require segmentation multiple times throughout 

the biopsy procedure to account for motion and tissue changes (Wang et al., 2019).

Methods for automated prostate segmentation on TRUS images hold the potential to 

improve accuracy, reduce inter-reader variability and reduce the time required for manual 

prostate segmentation during clinical procedures. Numerous automated and semi-automated 

algorithms have been presented for prostate segmentation on TRUS images. Some 
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approaches used shape statistics as prior knowledge (Li et al., 2016; Ghose et al., 2012), 

yet required the intervention of an expert user. Other approaches extracted textural features 

from TRUS images and combined them with traditional machine learning methods to 

formulate a classification task (Zhan and Shen, 2006; Yang et al., 2016). These methods 

used hand-crafted features for segmentation, which are inadequate for capturing high-level 

semantic information and failed to deliver accurate segmentation for complex prostate cases.

Deep learning-based methods have achieved high accuracy in medical image segmentation 

tasks compared to non-learning methods (Liu et al., 2020; Azizi et al., 2018; Aldoj et al., 

2020; Vesal et al., 2021), and have already been used for prostate segmentation on TRUS 

images (Anas et al., 2017; Ghavami et al., 2018; van Sloun et al., 2021; Jaouen et al., 

2019; Girum et al., 2020; Wang et al., 2019; Orlando et al., 2020; Lei et al., 2019; Xu 

et al., 2021). Most deep learning-based segmentation methods rely on supervised encoder-

decoder architectures. Some studies incorporated prior shape information as statistical shape 

models to improve the segmentation of challenging regions, e.g., apex and base (Zeng et al., 

2018; Karimi et al., 2019; Yang et al., 2017). Other studies explored temporal information 

of TRUS scans using recurrent neural networks (RNNs) (Anas et al., 2018), attention 

mechanism (Wang et al., 2019) or shadow augmentation (Xu et al., 2021) to improve 

segmentation quality. However, most studies evaluated their methods on a small set of 

patients with data from a single institution and a single manufacturer, thus providing limited 

evidence about generalization across data from other institutions and different imaging 

devices, vendors, and data acquisition parameters (end-firing and side-firing probes).A 

recent study (van Sloun et al., 2021) investigated the use of deep learning models for 

multi-center prostate gland segmentation on TRUS images. The author employed a standard 

UNet architecture to segment the prostate gland. The model was trained and tested on a 

small number of patients from three different institutions (a total of 436 TRUS images 

from 181 men), acquired using only end-fire probes. The reduced training population size 

and homogeneous data possibly limit the generalizability of their approach, particularly in 

ultrasound images acquired with a different type of probe or at a different institution.

Deep learning models often require large amounts of data during training to achieve 

robust and consistent performance across data from multiple institutions. Transfer learning 

or finetuning (Weiss et al., 2016) is one method for improving the generalization of 

segmentation models on new data. The main drawback of classical finetuning approach is 

that it forgets previous knowledge since the model’s weights are being updated (Michieli 

and Zanuttigh, 2019; Cermelli et al., 2020). As a result, the performance deteriorates 

when the newly trained model is tested on the previous data (Michieli and Zanuttigh, 

2019). Knowledge distillation techniques (Wang and Yoon, 2022) have been widely used to 

preserve the high performance of a model when applied to new tasks. It was originally used 

to retain the performance of a complex model when adopting to a smaller network for more 

efficient deployment (Hinton et al., 2015).

Several studies attempted to apply the knowledge distillation technique for a variety of 

objectives in the computer vision and medical domains, including cross-modality learning 

(Tian et al., 2020) (transfer knowledge from one modality to another modality without the 

need of any additional annotations), metric learning (Park et al., 2019; Kim et al., 2021) 
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(map the input feature representations to an embedding space), and network regularization 

(Yun et al., 2020) (enhance the generalization performance of deep neural networks using 

regularization losses). Similarly, approaches based on knowledge distillation have been 

developed for domain adaptation (Meng et al., 2018; Zhou et al., 2020). The domain 

adaptation techniques aim to reduce the gap between two domains, which is similar to the 

domain generalization technique. Moreover, the standard knowledge distillation approaches 

are based on a teacher-student training scheme, where a teacher model first learns the 

task and distills the knowledge to a student model, which is more compact with less 

trainable parameters. Several studies (Meng et al., 2018; Feng et al., 2021; Liang et al., 

2022) attempted to train many teachers models in the source domains and ensemble them 

to distill knowledge into the student approach. However, because these techniques use 

several pretrained teacher models, they are computationally expensive to train. Recently, the 

knowledge distillation technique was further adopted for continual learning tasks to keep the 

network’s responses on the previous tasks unchanged while updating it with new training 

samples (Cermelli et al., 2020). As a result, this helped to reduce the effect of catastrophic 

forgetting after each round of finetuning on a new task and improve the performance.

In this paper, we present an end-to-end deep learning-based segmentation model for prostate 

gland segmentation on TRUS images. We introduce an approach for model generalization 

that utilizes a knowledge distillation loss (Michieli and Zanuttigh, 2019) to mitigate 

“catastrophic forgetting” while applying the model to images from multiple institutions. 

We first train a segmentation model on our large cohort of in-house TRUS images (cohort 

C1, n=764), then finetune the model on subjects from two other institutions (cohorts C2, C3) 

with relatively few annotated examples by transferring information from the first model to 

the subsequent models (Fig. 1).

Our study has three main contributions:

• We introduce a deep learning framework for accurate prostate gland 

segmentation in TRUS images, with the presence of considerable variation 

in intensity and image acquisition parameters. We improve the generalization 

capabilities of our model across data from three institutions.

• To limit the effect of catastrophic forgetting during transfer learning, we adapted 

a training scheme that utilizes knowledge distillation loss during the finetuning 

process on new data.

• Extensive experiments on multi-center data with different ultrasound probes 

demonstrate the proposed approach brings substantial gains over existing 

approaches.

2. Methodology

2.1. Data and cohort description

To develop and validate our prostate gland segmentation algorithm, our study included 

patients from three different institutions. This retrospective chart review study was approved 

by the Institutional Review Board (IRB) of Stanford University. As a chart review of 
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previously collected data, patient consent was waived. The device and clinical characteristics 

of these data cohorts are listed in Table 1. Examples of TRUS images are shown in Fig. 1.

Cohort C1 included 954 men who underwent TRUS-MRI targeted biopsy utilizing the 

Artemis biopsy system (Eigen, Grass Valley, CA) at Stanford. Ultrasound scans were 

carried out using the Hitachi Hi-Vision 5500 7.5 MHz or the Noblus C41V 2-10 MHz 

end-fire ultrasound probe. The 3D scans were obtained by rotating the end-fire probe 200 

degrees around its axis and interpolating to resample the volume to isotropic resolution. The 

prostate gland was segmented by an expert urologist during the TRUS-MRI targeted biopsy 

procedures.

Cohort C2 included 1,161 men who underwent biopsy at the University of California Los 

Angeles (Natarajan et al., 2020; Sonn et al., 2013; Clark et al., 2013). Hitachi Hi-Vision 

5500 7.5 MHz end-fire ultrasound probes were used for ultrasound scanning. The volume 

was resampled with an isotropic resolution by rotating the end-fire probe 200 degrees about 

its axis and interpolating. This cohort is similar to cohort C1 in terms of the ultrasound 

image reconstruction method.

Cohort C3: included TRUS scans acquired from 106 men as part of the SmartTarget Biopsy 

Trial (Ghavami et al., 2018) who underwent targeted transperineal biopsy. For each patient, 

a continuous rotational 3D acquisition was used to acquire 50-120 sagittal slices to cover the 

whole prostate. These images were acquired using side-fire ultrasound probes. Three trained 

biomedical engineering experts segmented the prostate in all images where the prostate 

gland was visible (Ghavami et al., 2018).

2.2. Data Preprocessing

Multiple preprocessing steps were applied to the TRUS images. Bi-linear interpolation was 

used to resample the images to the same spacing (0.25mm × 0.25mm) and to resize to 128 × 

160 pixels, while maintaining the aspect ratio. No resampling was performed on the z-axis, 

and all slices were included in the training. For all studies in the three cohorts, the original 

TRUS pixel intensities (ranging between [0, 255]) were mapped to the 0-1 range using a 

min-max normalization. No cropping was applied as our models seek to both localize and 

segment the prostate. To improve the contrast of the TRUS images, the contrast limited 

adaptive histogram equalization (Pizer et al., 1990) method was used with a default window 

size of 4 × 4 pixels.

Train-test splits: For cohort C1, 764 patients (n=802 TRUS scans) were used for training 

and validation of the models and 190 patients (n=220 TRUS scans) for testing. Of the 

1,151 patients (n=1,761 TRUS scans) in cohort C2, ten patients (n=10 TRUS scans) were 

randomly chosen for finetuning the model, and the rest of the subjects were used for model 

testing. Similarly, for cohort C3 (n= 109 TRUS scans), only ten scans were used to finetune 

the model, as detailed in Table 1. Some patients in cohorts C1 and C2 had multiple TRUS 

studies.

2.2.1. Segmentation Network Architecture—Leveraging multi-scale information 

and boundary region guidance can help the segmentation model extract more discriminative 
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features for robust prostate segmentation, especially given the large variation in the field of 

view and natural variation in prostate shapes. Thereby, we constructed a 2.5D convolutional 

network architecture called Coordination Dilated Residual-UNet (CoordDR-UNet) (Fig. 

2) inspired by (Vesal et al., 2021). The segmentation model G has encoder and decoder 

paths that are connected by a bottleneck block. Every block in the encoder and decoder 

paths has two 2D convolution layers followed by a Rectified Linear Unit (ReLU), batch-

normalization, and a 2D max-pooling layer to reduce the dimensionality of the feature 

maps. A residual connection was introduced to each encoder block to optimize the flow of 

gradients and force the encoder to extract more discriminative features (He et al., 2016). A 

softmax activation function was used in the model’s last layer to generate the probability 

segmentation map of the prostate and background. The bottleneck convolution layers of 

UNet are replaced by dilated convolutions. This allows the model to collect both global and 

local contextual information by expanding the receptive field (Wang and Ji, 2018; Vesal et 

al., 2021). Therefore, we constructed a block of stacked dilated convolutions, the outputs 

of which are summed. To address the issue of gridding artifacts, each subsequent layer 

has complete access to earlier features learned using different dilation rates. In our model 

configuration, we employed four dilated convolutions in the model bottleneck with a dilation 

rate of 1 – 8.

Moreover, our approach relies on attention mechanisms to force the deep learning model 

to pay more attention to the uncertain regions during model back-propagation(Schlemper 

et al., 2019; Hu et al., 2018; Roy et al., 2019), specifically caused by the absence of 

clear boundaries between the prostate and the surrounding tissue. We attached a coordinate 

attention block (CAB) (Hou et al., 2021) to our 2.5D DR-UNet to assist the model in 

improving the expressive power of the learned features. The coordinate attention block takes 

the output of each encoder block as the input Xθ = [x1, x2, …, xN] ∈ ℝℎ × w × n and outputs a 

transformed tensor with augmented representations, i.e., feature maps, Yθ = [y1, y2, …, 

yN]. Here n denotes the number of feature maps for each encoder block. There are two 1D 

global average pooling layers of xθ and yθ to encode each channel along with the horizontal 

and vertical coordinates. Each average pooling concentrates on one coordinate direction and 

combines information from two spatial directions, providing a pair of feature maps that are 

direction-aware (Hu et al., 2018).

2.3. Continual Prostate Gland Segmentation

In supervised domain adaptation or finetuning for semantic segmentation, we are given a set 

of source TRUS images (e.g., from Cohort C1) and their corresponding mask labels in the 

source domain Ds = (Is
i, Ys

i)i = 1
ms , where Is ∈ ℝw × ℎ × 3 is the stack of three consecutive slices in 

the TRUS exam, Ys ∈ ℝw × ℎ × c is the prostate segmentation corresponding to Is, ms is the 

number of source images and c = 2 is the number of labels, i.e., prostate and background. In 

the target site, we are given few labelled images Dt = (It
i)i = 1

mt , where mt is the number of target 

images. Our goal is to train a supervised model on Ds and transfer information from Ds to 

reduce the gap between two domains, and improve segmentation the accuracy on Dt.

We were motivated by the work of (Michieli and Zanuttigh, 2019) to develop a pipeline 

that not only produced good segmentation accuracy for the prostate gland but also reduced 
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the impact of model weight changes during the supervised domain adaptation process. Our 

approach has three steps.

• First, we trained in a supervised fashion the segmentation model Ms that 

segments the prostate in TRUS images using the training data from cohort 

C1, also referred here as Ds (Fig. 3). The input to the model Ms is Is, which 

includes a TRUS slice and two neighboring slices from the 3D TRUS volume to 

construct a three-channel input. The model is trained in a supervised fashion with 

a multi-class loss function. After training, we saved the obtained model weights 

as Ms.

• Second, we trained a new model Mt1 based on Ms that takes as the input the 

TRUS images from cohort C2 (10 annotated cases) for finetuning. Here, the 

input images were fed to both models Mt1 and Ms while the weights for Ms 

were frozen. Our goal was to distill knowledge from the learned model Ms to 

Mt2 by enforcing the consistency of the latent feature space. This was achieved 

by minimizing the distance between z and z′ using knowledge distillation loss 

function as a regularization term along with a supervised segmentation loss 

function.

• For the third step, we repeated step two by creating a new model Mt2 based on 

trained model Mt1, which takes as the input the TRUS images from cohort C3 

(10 annotated cases). In this step, we distill knowledge from learned model Mt1 
to Mt2 similar to step two by minimizing the distance between the latent feature 

space.

2.3.1. Loss functions

Segmentation Loss:  The segmentation model is trained with a soft-Dice loss. To segment a 

TRUS image Is ∈ ℝℎ × w × 3 the output of Softmax layer is two probability maps for classes 

k = 0, 1 (background and prostate) where for each pixel Σc Yn,k = 1. Given the ground-truth 

label Yn,k for that identical pixel, the soft Dice loss is computed as follows:

Lseg(Y, Y) = 1 − 1
K (∑

k

2∑n YnkYnk

∑n Ynk + ∑n Ynk

) (1)

Feature-Space Knowledge Distillation Loss:  Knowledge distillation (Hinton et al., 2015) 

is an efficient technique for transferring knowledge from a well-trained model to a model 

with limited annotated data. It also has been widely used in continual learning frameworks 

(Michieli and Zanuttigh, 2019) when a trained model is updated on a new task that interferes 

with the learned representations on the previous task. We hypothesize that the same 

catastrophic forgetting problem exists for domain generalization across multi-institutional 

data. The Ms model (global model) is updated on a small set of randomly sampled data for 

each cohort at each round, while the cohorts have different distributions from the previous 

round. Therefore, to reduce the impact of model weight changes in the latent feature space 

of Mt1 and Mt2 during finetuning, an L2-norm was applied as a knowledge distillation loss. 
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This regularization loss enforced the model to preserve the previous knowledge and keep the 

latent features space of Mtn the same, where n is the number of available cohorts.

LKDL = ‖E1(z) − E2(z′)‖2
2

∣ Dt ∣ (2)

where z and z′ denotes the latent features computed by model encoder E1 and E2 when a 

TRUS image from cohort C2 or C3 is fed.

The overall loss function for training the whole pipeline is defined as:

LS = Lseg + λLKDL (3)

where λ is the weight that controls the impact of knowledge distillation term during 

optimization.

2.4. Implementation details

The prostate gland segmentation framework was trained in an end-to-end fashion using the 

Adam optimizer with an initial learning rate of η = 10−3 and exponential weight decay α 
= 0.01 for 500 epochs, with a batch size of 64. The momentum parameters for the Adam 

optimizer were set to β1 = 0.9 and β2 = 0.999. The learning rate was reduced on the plateau 

if the validation loss did not improve after every 30 epochs. We used early stopping if no 

reduction in validation loss was seen for 50 epochs. During training, we utilized an online 

data augmentation library (imgAug Jung et al. (2020)) and employed a set of random data 

augmentation for each input image Is ∈ ℝℎ × w × 3. The augmentation includes horizontal/

vertical axis flipping, image scaling with a factor of [0.8, 1.2], Gaussian noise with σ ∈ 
[0.0, 0.3], elastic deformation with the displacement field strength of α ∈ [0.5, 0.35] and 

a displacement field smoothness of σ = 0.25. To evaluate our method, we compared the 

resulting segmentations with the ground-truth masks using several metrics namely Dice 

similarity coefficient (Dice), Hausdorff Distances (HD), and sensitivity. We used the 95th 

percentile of the Hausdorff distances (HD95) between model prediction Y and ground-truth 

mask Y to eliminate the impact of outliers. The paired Student’s t-test was used to assess the 

statistical significance of Dice differences when comparing multiple methods (Nadeau and 

Bengio, 2003).

We used PyTorch 1.7 (Paszke et al., 2019) to develop and train all models. Training took 

around 24 hours on an NVIDIA RTX A6000 GPU with 32GB memory. The code is 

available online at: https://github.com/pimed/TRUSGlandSegmentation

3. Results

Several experiments were carried out to 1) determine the best segmentation model on cohort 

C1-test and 2) identify the best strategy for knowledge transfer during finetuning on data 

from other institutions.
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3.1. Prostate Gland Segmentation

We compared CoordDR-UNet with several well-known segmentation approaches, including 

UNet, Attention-UNet, Nested-UNet, Dilated-residual UNet, and Deep Attentive Features 

Network (DAFNet) (Wang et al., 2019) which is a new approach for 3D segmentation 

of TRUS. All five approaches were trained using their public implementations, and their 

training parameters were adjusted to obtain the best segmentation results. Fig. 4 shows 

four slices of a test set patient in cohort C1 from apex to base (column (a)). It also 

shows comparative performance among the UNet (column (b)), Attention-UNet (column 

(c)), Nested-UNet (column (d)), DAFNet (column (e)) and CoordDR-UNet (column (f)). 

CoordDR-UNet segmented the prostate successfully, with better prediction at the apex and 

the base of the prostate (rows 1,4). Furthermore, for midgland slices (row 2-3), CoordDR-

UNet produced very accurate prostate gland mask predictions compared to other state-of-

the-art methods.

Table 2 summarizes the results for cohort C1-test for all models using several segmentation 

metrics. To speed up volumetric segmentation while minimizing memory requirements and 

incorporating contextual and temporal information for the model, all models were trained 

with a 2.5D input. As seen in Table 2, the 2.5D UNet outperformed the 2D and 3D UNet 

with a Dice score of 0.91 ± 0.07. The surface distance metric, HD95, was also reduced, 

i.e., 3.0 mm for 2.5D UNet vs 4.03 mm for 2D UNet. The performance of Attention-UNet 

and Nested-UNet was similar to that of UNet. DAFNet, which is a recent model specifically 

designed for prostate gland segmentation in 3D TRUS achieved a Dice score of 0.92 ± 0.03 

and HD95 value of 2.87 mm. Our proposed CoordDR-UNet approach, which incorporates 

coordinate attention blocks and dilated convolutions, outperformed other models, with a 

Dice score of 0.94 ± 0.03 and the lowest HD95 score of 2.29 mm compared with the other 

approaches. We will refer to this model as the model Ms. Figure S1 in the supplementary 

material shows the impact of training data size with respect to segmentation accuracy.

To show the benefit of the 2.5D input representations, we also trained the CoordDR-

UNet model with 2D and 3D data representations as input. For the 3D model, the 

standard architecture of CoordDR-UNet was changed by replacing all 2D operations with 

3D operations, including convolution, batch normalization, max-pooling, and upsampling 

layers. Moreover, the 3D TRUS images were downsampled to a fixed size (80 × 160 × 128) 

similar to (Wang et al., 2019). The quantitative results (Table 2) show that CoordDR-UNet 

2.5D outperformed the models trained with 2D and 3D input representations, suggesting 

the benefit of the 2.5D representation. CoordDR-UNet with 2D input achieved a Dice 

score of 0.92 ± 0.03 and HD95 value of 3.29 mm while CoordDR-UNet with 3D input 

obtained a Dice score of 0.92 ± 0.04 and HD95 value of 3.00 mm. Furthermore, Fig. 5 

shows visual comparison between CoordDR-UNet models trained with 2D, 2.5D and 3D 

input representations. One limitation of the 2D segmentation approaches for prostate gland 

segmentation is inconsistency across adjacent slices. The difference between CoordDR-

UNet 2.5D and CoordDR-UNet with 2D and 3D input representations is shown in Fig. 6. 

The 2.5D representation achieved a more accurate segmentation and reduced inconsistencies 

across adjacent slices. The 3D segmentation approach has smoother boundaries, but the 

output is less accurate when compared to the ground-truth masks. These results highlight 
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the benefit of 2.5D representations, which not only produced highly accurate prostate gland 

segmentation but also consistent segmentation across adjacent slices.

For the error analysis, we computed the surface error between model predictions and their 

corresponding ground truth. Fig. 7 shows the 3D visualization of the surface distance 

between the ground-truth and segmentation output by different methods for two test cases 

from the cohort C1-test. Our method consistently achieved accurate and robust segmentation 

covering the whole prostate, including challenging regions such as the apex and base. 

CoordDR-UNet 2.5D had the lowest average HD95 surface distance (2.29 mm) compared 

to other approaches for cohort C1-test data. DAFNet produced a more smooth segmentation 

output because it was trained with 3D input representations. However, it had a higher surface 

distance error (2.87 mm) because the segmentation output is less accurate in comparison to 

ground truth.

3.2. Model performance on independent data

To assess model generalizability, we evaluated our framework on TRUS images from 

cohorts C2 and C3 (Table 3). We considered four different scenarios to demonstrate the 

performance of CoordDR-UNet 2.5D with knowledge distillation. In the first scenario, we 

directly tested the model M1 (trained with data from Cohort C1) on cohorts C2 and C3 

without domain adaptation or finetuning. The model achieved good results on cohort C2 

(Table 3, 3rd row) with a Dice score of 0.89 ± 0.03 (P≤0.05) and HD95 of 4.03 mm. This 

relatively high performance is due to the similar data acquisition and vendor for the TRUS 

images in cohorts C1 and C2. However, the performance of our model M1 on cohort C3 

was poor (Dice score = 0.24 ± 0.29 (P≤0.05)). This reduced performance is likely caused by 

the differences in acquisition, field of view, ultrasound manufacturer, and ultrasound probes 

(side-fire) between cohorts C1 and C2 versus C3 (Fig. 10).

In the second scenario, we obtained ultrasound scans and ground truth from the prostate 

segmentation from ten random subjects in each cohort (C2 and C3). The CoordDR-UNet 

model was trained from scratch (without pretraining) to investigate how the model performs 

with limited annotated data. On cohort C2-test data, this model (Table 3, 4th row) obtained 

a Dice score of 0.71 ± 0.09 and HD95 value of 14.8 mm, which demonstrates a substantial 

performance drop in comparison to the CoordDR-UNet trained on cohort C1 data. This 

is because a model with only ten training samples cannot capture all of the variations in 

the test data since prostate volumes and image quality vary significantly between patients. 

We observed similar results when we utilized only ten examples from cohort C3 to train 

CoordDR-UNet from scratch. Furthermore, the model without pretraining (Table 3, 8th row) 

achieved a Dice score of 0.78 ± 0.14 (P≤0.05) and surface distance of 10.23 mm (HD95) 

on cohort C3-test. Training with only ten TRUS scans from cohort C3 assisted the model 

to somewhat capture the overall prostate shape and geometry compared to only using the 

model Ms which had not seen any data from Cohort C3.

In the third scenario, we performed standard finetuning on CoordDR-UNet with a pretrained 

model and without distillation loss. All the layers in CoordDR-UNet were frozen except the 

last layer (Weiss et al., 2016). On cohort C2-test data, this model obtained a Dice score of 

0.90 ± 0.03 (P≤0.05) and HD95 value of 3.80 mm (Table 3, 5th row). On cohort C3-test 
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data, this model achieved a Dice score of 0.80 ± 0.03 (P≤0.05) and HD95 value of 7.30 mm 
(Table 3, 10th row).

In the fourth scenario, we tested CoordDR-UNet with a pretrained model and knowledge 

distillation loss (Table 3). In the studies from cohort C2-test, the model obtained a Dice 

score of 0.91 ± 0.03 and HD95 value of 3.69 mm (Table 3, 6th row), showing similar 

results with studies on cohort C1-test data. We refer to this model as model Mt1. Moreover, 

CoordDR-UNet + KDL improved the prostate gland segmentation for studies in cohort 

C3-test, achieving a Dice score of 0.82 ± 0.16 (P≤0.05), and HD95 value of 7.13 mm. 

We refer to this model as model Mt2. The quantitative evaluation showed that the CoordDR-

UNet + KDL approach achieved a significantly higher (P≤0.05) Dice score compared to 

the CoordDR-UNet without pretraining and the CoordDR-UNet direct prediction for both 

cohorts (Fig. 8).

Figs. 9-10 display segmentation outputs for the best, average, and worst performing cases 

in cohorts C2-test and C3-test using the different generalization approaches we considered. 

In data from both cohorts, CoordDR-UNet + KDL obtained the most accurate segmentation 

among different training strategies. Fig. 11 shows 3D segmentation results for CoordDR-

UNet on TRUS images from the three cohorts, as well as the corresponding surface distance 

between segmented surfaces and ground truth volumes. These results highlight that the 

proposed method obtained accurate and smooth segmentation surfaces covering the whole 

prostate region for cohorts C1-C2 (columns a-b), but the surface distances are high for the 

test cases in cohort C3 (column c).

3.3. Model performance after finetuning

To evaluate the performance of our method after all iterations of finetuning on cohorts C1, 

C2, and C3. Table S1 in the Supplementary material shows the quantitative results for the 

following three models:

• Ms: model trained using the training data from cohort C1

• Mt1: model Ms, finetuned using 10 TRUS images from cohort C2 using 

CoorDR-UNet and Knowledge Distillation Loss

• Mt2: model Mt1, finetuned using 10 TRUS images from cohort C3 using 

CoorDR-UNet and Knowledge Distillation Loss

When training Mt1 by finetuning Ms with knowledge distillation loss in the 10 cases from 

cohort C2, we tested the model Mt1 on the studies in cohort C2-test and C3-test, but as 

well in studies in cohort C1-test to assess whether the model suffered from catastrophic 

forgetting. Based on the results, the final model (Mt2), even though had a small drop of 

performance on the test studies in cohorts C1 and C2, achieved the overall best performance 

across all three data cohorts with a Dice score of 0.91, 0.88 and 0.82 for the test studies in 

cohorts C1, C2 and C3 (Fig. 12).
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3.4. Ablation Study

Impact of Input Data: We conducted an ablation study and trained the CoordDR-UNet 

2.5D with a different number of slices c ∈ [1, 3, 5, 7] as the input to determine the optimal 

number of neighboring slices. Fig. 13a shows the Dice score on cohort C1-test data for the 

different values of c. The model trained with a single (2D) slice as input and no neighboring 

slices obtained a Dice score of 0.92. However, with three slices as input data, the CoordDR-

UNet 2.5 achieved a Dice score of 0.94. Furthermore, increasing the number of neighboring 

slices in the CoordDR-UNet 2.5 model did not improve the segmentation accuracy and 

slightly decreased the Dice score. Therefore, we trained all 2.5D models with three slices 

as input data. Also, previous work on prostate gland segmentation in MRI (Soerensen et al., 

2021) showed that having a 2.5D model with three adjacent slices is successful in generating 

accurate segmentation on prostate MRI.

Impact of Finetuning Cases: To evaluate the impact of training data size for model 

finetuning and its influence on domain generalization across cohort C2 and C3 test data, 

we conducted experiments by finetuning CoordDR-UNet+KDL with the various number 

of cases I ∈ [0, 2, 4, 6, 8, 10, 12, 14]. Fig. 13b shows the segmentation Dice coefficient 

score of CoordDR-UNet+KDL for cohort C2-test and C3-test. The model fine-tuned with 

two subjects achieved a Dice score of 0.90, and adding more cases, only slightly improved 

the segmentation performance (increase to 0.91). However, finetuning with 10, 12, and 14 

subjects have a similar Dice score of 0.91. These results imply that when TRUS images 

from a new institution are acquired using a similar ultrasound vendor and probe to training 

data, just a few instances are required to achieve satisfactory prostate gland segmentation. 

For cohort C3-test data, finetuning with more data showed a significant improvement in 

Dice score. Since the TRUS images in this cohort are significantly different and acquired 

using a side-fire probe. The model without any finetuning subject achieved a Dice score of 

0.43, however, with adding more cases, the Dice score increased. For instance, the model 

finetuned with 12 subjects achieved a Dice score of 0.84.

Impact of Lambda: To control the influence of knowledge distillation loss during 

finetuning, we used λ as a weight factor. If we set λ = 0, then the model is trained using the 

Classical finetuning scenario with no knowledge distillation. To find out the impact of λ, we 

finetuned CoordDR-UNet+KDL model on cohort C2 training data (10 cases) with various λ 
values. Fig. 13c shows the line-plot and the computed Dice value for a range of λ values [0 

– 1.0]. The value of λ = 0.2 achieved the best Dice value on the test data and increasing the 

λ resulted in a reduction in segmentation accuracy. Therefore, we set the λ = 0.2 for the rest 

of the experiments.

4. Discussion

In this study, we introduced a deep learning model for prostate gland segmentation in 

3D TRUS scans called Coordination Dilated-Residual UNet (CoordDR-UNet), as well as 

a strategy for domain generalization which was tested using TRUS images from three 

different institutions. Our experiments demonstrated that the proposed method accurately 

localized and segmented the prostate gland in the presence of variations in image acquisition 
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parameters and generalized well on data from multiple institutions. These encouraging 

results are attributable to the addition of a coordination attention block in our model that 

increased segmentation accuracy in ambiguous regions (e.g., prostate borders at the apex). 

Moreover, we introduced a model generalization approach for prostate gland segmentation 

in 3D TRUS based on distilling knowledge from previously trained models. The primary 

goal of using the knowledge distillation strategy during finetuning was to reduce the impact 

of catastrophic forgetting, which manifests as a performance loss after each finetuning 

cycle on data from a new center. The experiment results showed (Table 3) that when the 

CoordDR-UNet was finetuned on cohort C3 using the Classical finetuning approach, it 

obtained a Dice score of 0.80 ± 0.03 (P≤0.05) and HD95 value of 7.30 mm, whereas the 

CoordDR-UNet+KDL approach increased the Dice score by 2.0% (0.82 ± 0.16. p≤0.05). 

Similarly, for cohort C2, the CoordDR-UNet+KDL outperformed the Classical finetuning 

approach.

Furthermore, we compared our method with existing segmentation methods. While a direct 

comparison with published results from prior studies was not feasible due to a lack of data 

availability, we trained the prior algorithms on our cohort and designed fair comparative 

experiments. Our proposed model outperformed other models in several evaluation metrics 

(e.g., the boundary distance between the prediction and ground-truth for all cases in the test 

cohorts was on average only 4.37 mm versus 7.9 mm for alternative approaches).

Our proposed generalization framework has both similarities and differences to federated 

learning approaches (Kairouz et al., 2021; Liu et al., 2021). Similar to federated learning, 

we transferred our learned model weights and training code to an institution without 

directly accessing their data. The model was then trained, finetuned, and tested locally, with 

the results being reported back. Yet, unlike federated learning, we did not apply privacy-

preserving techniques, and the weights aggregation was solely based on retraining with new 

data. Further work will involve testing the model on data from additional institutions without 

data sharing.

Our study has four limitations. First, we only segmented the whole prostate gland without 

segmenting the distinct anatomic zones, which have the potential for other tasks beyond 

TRUS-MRI fusion. Second, our study includes images from only two ultrasound vendors. 

Future studies will expand this work to include TRUS scans from other ultrasound vendors. 

Third, while our proposed method achieved encouraging results on the studies in cohort C3-

test, there is still potential for further improvement. Adopting additional data augmentation 

strategies might assist in addressing issues related to variations in field of view and 

ultrasound probes such as side-fire and end-fire. Fourth, the number of samples chosen 

from C2 and C3 (10 patients) to finetune the models can be ablated to find the optimal 

number of patients for better segmentation accuracy.

Our proposed approach for automated prostate segmentation on TRUS images can improve 

clinical workflow in four ways. First, our approach aids in the diagnosis of prostate cancer 

by enabling a better biopsy procedure with more accurately registered MRI-TRUS images 

and therefore possibly better needle targeting during biopsy (the registrations are driven 

by the segmentation of the prostate provided by our approach). The MRI-TRUS fusion 
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step during the targeted biopsy is prone to errors (Das et al., 2020; Avola et al., 2021), 

and registration accuracy is affected by the quality of prostate gland segmentation on 

both TRUS and MR images. Second, our generalizable approach is capable of producing 

high-quality segmentation for a wide range of probes, and it can be integrated into TRUS 

scanners as an alternative method for prostate segmentation. Third, our approach provides 

objective, reproducible, and fast estimates of prostate volume (run-time including pre- and 

post-processing steps: 12 seconds), which has been reported to be operator-dependent, 

difficult to replicate, and less accurate (van Sloun et al., 2021). Fourth, our approach allows 

for better planning of focal treatment to mark the prostate capsule while sparing the tissue 

beyond the prostate.

5. Conclusion

We have introduced an accurate and generalizable approach for prostate segmentation in 

3D transrectal ultrasound images to limit the need for manual segmentation of the prostate 

during targeted biopsy procedures. The proposed deep learning framework outperformed 

state-of-the-art segmentation approaches in accuracy and generalization and was tested on 

data from three institutions. In comparison to traditional approaches that require substantial 

user input and processing time, our pipeline delivered accurate and efficient segmentation 

of the prostate without any user input. The ease of use and speed of our pipeline make 

it appealing for practical deployment to allow direct segmentation of the prostate during 

biopsy or treatment procedures. In the future, we would like to evaluate our method on other 

tasks and imaging modalities, e.g., prostate segmentation in MRI or CT.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1: 
Example of prostate outlines (red) on ultrasound images acquired at three different 

institutions. Note the large variations in prostate shape, contrast, field of view, and the 

presence of artifacts (e.g., inhomogeneous intensity distributions). Moreover, the prostate 

boundary is not always clearly visible or easily distinguishable from the neighboring 

structures (orange arrows).
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Fig. 2: 
Flowchart of the dilated Residual UNet with coordination attention block and 2.5D input 

(128×160 of three neighboring slices used to provide spatial context). The output of the 

model is the probability map of the prostate segmented in the central slice. The attention 

blocks assist the model in reducing uncertainty in prostate borders, which are well known 

to be challenging to segment due to a lack of distinct borders. Is is the input data. E and D 
refers to encoder and decoder blocks. Y is the predicted segmentation output.
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Fig. 3: 
The overall pipeline for continual prostate gland segmentation. The segmentation model 

Ms is trained on cohort C1 in the first step, then the model is finetuned on cohorts C2 

and C3. During optimization, the consistency of the features latent space of Ms and Mt1 is 

maintained by including the L2 norm loss (eq. 2). The same steps are repeated for finetuning 

the model trained on Ms and Mt1 for Mt2 model. E1, E2, D1, D2 are the encoders and 

decoders and z and z′ are the latent space features for the source and target models. Y is the 

ground-truth and Y is the predicted segmentation output.
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Fig. 4: 
Visual comparison of prostate segmentation results produced by different methods for a 

sample patient in cohort C1-test. From left to right are the input TRUS slices (column (a)), 

the UNet 2.5D predictions (column (b)), Attention-UNet 2.5D (column c), Nested-UNet 

2.5D (column (d)), DAFNet (Wang et al., 2019) (column (e)) and our proposed CoordDR-

UNet 2.5D (column (f) for different slices from the apex (top row) to base (bottom row). The 

blue contours show the ground-truth segmentation outlined by an expert urologist.
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Fig. 5: 
Visual comparison of CoordDR-UNet segmentation output with 2D, 3D, and 2.5D as the 

input. Each row shows apex, mid-gland, and base slices from different subjects from the 

cohort C1-test dataset.
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Fig. 6: 
3D visualization of the segmentation results in a TRUS volume. CoordDR-UNet output with 

(a) 2D, (b) 2.5D and (c) 3D representations. The ground-truth mask is shown on a blue 

surface.
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Fig. 7: 
3D visualization of the surface distance (in voxel) between segmented surface and ground 

truth. Each row shows one subject. Different colors represent different surface distances. 

From left to right are (a) ground-truth, (b) UNet 2.5D, (c) Attention-UNet 2.5D, (d) Nested-

UNet 2.5D, (e) DAFNet3D (Wang et al., 2019) and (f) our proposed CoordDR-UNet 2.5D. 

Our method consistently performs well on the whole prostate surface.
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Fig. 8: 
Box plots of Dice measure for the CoordDR-UNet, CoordDR-UNet + W/o pretrained, 

CoordDR-UNet with standard finetuning, and CoordDR-UNet + KDL segmentation 

approaches of cohort C2-test and C3-test. SS: statistically significant (P ≤ 0.05), NS: not 

significant (P > 0.05).
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Fig. 9: 
Visual comparison of segmentation results produced by different methods for three patients 

(best, average, worst) in cohort C2-test. From left to right are the 2D TRUS slices (column 

(a)), CoordDR-UNet 2.5D prediction without finetuning (column (b)), CoordDR-UNet 2.5D 

trained on ten TRUS images without any pretraining (column (c)), and our proposed 

CoordDR-UNet 2.5D finetuned on ten TRUS images with knowledge distillation loss 

(column (d)). Dice and HD95 scores are shown for each patient.
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Fig. 10: 
Visual comparison of segmentation results produced by different methods for three patients 

(best, average, worst) in cohort C3-test. From left to right are the 2D TRUS slices (column 

(a)), CoordDR-UNet 2.5D direct prediction without finetuning (column (b)), CoordDR-

UNet 2.5D trained on ten TRUS images without any pretraining (column (c)), and our 

proposed CoordDR-UNet 2.5D finetuned on ten TRUS images with knowledge distillation 

loss (column (d)). Dice and HD95 scores are also shown for each patient.
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Fig. 11: 
3D visualization of the surface distance (in voxel) between segmented prostate and ground 

truth. Different colors represent different surface distances. The top row shows the ground-

truth surface masks for three different patients from cohort C1-test (a), C2-test (c), and 

C3-Test (b). The bottom row shows the computed HD surface distance between CoordDR-

UNet 2.5D predictions and ground-truth.
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Fig. 12: 
Continual segmentation results for domain generalization. Ms: model trained using the train 

data from cohort C1, Mt1 : model Ms, finetuned using 10 TRUS images from cohort C2, and 

Mt2 : model Mt1, finetuned using 10 TRUS images from cohort C3.
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Fig. 13: 
(a) CoordDR-UNet 2.5 performance with different number of slices on cohort C1-test set. 

(b) CoordDR-UNet + LKD finetuning performance with different number of cases on cohort 

C2-test and C3-test data. (c) CoordDR-UNet + LKD performance with different λ values on 

cohort C2-test data.
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Table 2:

Quantitative comparison results (mean(±std)) between the proposed method and other segmentation methods 

for cohort C1-test dataset. The best results are highlighted in bold. Paired Student’s t-tests showed statistical 

significance (P ≤ 0.05) when comparing the methods with the baseline method 2D UNet. DAFNet: Deep 

Attentive Features Network, DR-UNet: Dilated-Residual UNet, CoordDR-UNet: Coordination Dilated-

Residual UNet, HD95: 95th percentile of the Hausdorff distances.

Evaluation on cohort C1-test (n=220)

Methods Input Dice HD95 [mm] Sensitivity

UNet (Ronneberger et al., 2015)
2D

0.90 (±0.03) 4.03 (±3.52) 0.94 (±0.04)

CoordDR-UNet (proposed) 0.92 (±0.03) 3.29 (±1.45) 0.92 (±0.05)

UNet (Ronneberger et al., 2015)

3D

0.90 (±0.03) 5.21 (±3.52) 0.92 (±0.01)

DAFNet (Wang et al., 2019) 0.92 (±0.03) 2.87 (±1.27) 0.90 (±0.04)

CoordDR-UNet (proposed) 0.92 (±0.04) 3.00 (±1.46) 0.92 (±0.07)

UNet (Ronneberger et al., 2015)

2.5D

0.91 (±0.07) 3.00 (±1.30) 0.91 (±0.08)

Att-UNet (Schlemper et al., 2019) 0.92 (±0.02) 2.75 (±1.16) 0.93 (±0.04)

Nested-Unet (Zhou et al., 2018) 0.91 (±0.04) 3.44 (±1.55) 0.93 (±0.06)

DR-UNet (Vesal et al., 2021) 0.93 (±0.02) 2.34 (±0.92) 0.94 (±0.03)

CoordDR-UNet (proposed) 0.94 (±0.03) 2.29 (±1.45) 0.94 (±0.05)
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Table 3:

Quantitative comparison results (mean(±std)) for different finetuning strategies shown for cohort C2-test and 

C3-test. The best results are highlighted in bold. Paired Student’s t-tests showed statistical significance (P ≤ 

0.05) when comparing the CoordDR-UNet + KDL with no pretraining and direct prediction models. Bolded 

entries represent the best metric in each test set.

Methods Dice HD95 [mm] Sensitivity

Evaluation on cohort C2-test (n= 1,751)

CoordDR-UNet exp1 0.89 (±0.03) 4.03 (±1.62) 0.84 (±0.06)

CoordDR-UNet + w/o pretrained exp2 0.71 (±0.09) 14.8 (±4.60) 0.77 (±0.12)

CoordDR-UNet + Finetuning exp3 0.90 (±0.03) 3.80 (±1.60) 0.87 (±0.05)

CoordDR-UNet + KDL exp4 0.91 (±0.03) 3.69 (±1.49) 0.88 (±0.05)

Evaluation on cohort C3-test (n=96)

CoordDR-UNet exp1 0.24 (±0.29) 14.14 (±11.83) 0.18 (±0.25)

CoordDR-UNet + w/o pretrained exp2 0.78 (±0.14) 10.23 (±6.59) 0.76 (±0.18)

CoordDR-UNet + Finetuning exp3 0.80 (±0.19) 7.30 (±6.21) 0.73 (±0.10)

CoordDR-UNet + KDL exp4 0.82 (±0.16) 7.13 (±6.25) 0.76 (±0.19)
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