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The cell-free DNA methylome captures
distinctions between localized and
metastatic prostate tumors

Sujun Chen 1,2,3,18, Jessica Petricca1,2,18, Wenbin Ye 1,4,5,18, Jiansheng Guan1,6,
Yong Zeng1, Nicholas Cheng2, Linsey Gong 1,2, Shu Yi Shen 1, Junjie T. Hua7,8,
Megan Crumbaker9, Michael Fraser1, Stanley Liu 2,10,11, Scott V. Bratman 1,2,
Theodorus van der Kwast 2,12, Trevor Pugh 1,2, Anthony M. Joshua 12,
Daniel D. De Carvalho1,2, Kim N. Chi13, Philip Awadalla 14, Guoli Ji4,5 ,
Felix Feng 7,8,15,16 , Alexander W. Wyatt 17 & Housheng Hansen He 1,2

Metastatic prostate cancer remains a major clinical challenge and metastatic
lesions are highly heterogeneous and difficult to biopsy. Liquid biopsy pro-
vides opportunities to gain insights into the underlying biology. Here, using
the highly sensitive enrichment-based sequencing technology, we provide
analysis of 60 and 175 plasma DNA methylomes from patients with localized
and metastatic prostate cancer, respectively. We show that the cell-free DNA
methylome can capture variations beyond the tumor. A global hypermethy-
lation in metastatic samples is observed, coupled with hypomethylation in the
pericentromeric regions. Hypermethylation at the promoter of a glucocorti-
coid receptor gene NR3C1 is associated with a decreased immune signature.
The cell-free DNA methylome is reflective of clinical outcomes and can dis-
tinguish different disease types with 0.989 prediction accuracy. Finally, we
show the ability of predicting copy number alterations from the data, pro-
viding opportunities for joint genetic and epigenetic analysis on limited bio-
logical samples.

Prostate cancer (PCa) poses a significant clinical burden as the second
most common malignancy in men and the third most common cause
of cancer-related death worldwide1. While most localized PCa can be
cured, the 5-year survival rate for patients presenting with metastatic

disease is as low as 30%2. In recent years, there has been an increased
incidence rate for metastatic cases3. Androgen deprivation therapy
(ADT) treatment is the standard of care for patients with advanced or
metastatic disease. However, despite initial effectiveness, most
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patients progress to metastatic castration-resistant prostate cancer
(mCRPC) shortly, and eventually, almost all will die from it. CRPC cells
grow independently of testosterone stimulation by developing
mechanisms to constitutively activate the androgen signalingpathway.
Development and application of the more potent, second-generation
androgen signaling inhibitors (ASI) like enzalutamide and abiraterone
acetate were able to provide additional survival benefits for CRPC
patients and are increasingly applied in the earlier lines of treatment
for advanced disease4–8. However, drug resistance will ultimately
develop, and these agents fail to suppress tumor progression. There is
thus an urgent need to improve our understanding and treatment
of mCRPC.

Biopsy for mCRPC lesions is challenging, even more so when
trying to obtain sufficient materials formolecular analysis9. Analysis of
circulating tumor DNA (ctDNA) in liquid biopsies has shown potential
as aminimally invasive and accurate diseasemonitoring tool10,11. ctDNA
refers to the component of total cell-free DNA (cfDNA) that is derived
from tumor cells circulating in the bloodstream. It has been demon-
strated that quantification of ctDNA canprovide information on tumor
burden, metastasis, and treatment response12. Of interest, in mCRPC,
ctDNA has been shown to reflect the genomic profiles of tumor or
metastatic lesions, and epigenetic characteristics such as methylation
status can reflect tumor burden and subtypes13–15. Despite these
advantages, genome-wide cfDNA methylome profiles of mCRPC in
large-scale clinical cohorts are still lacking. Recently, the development
of cell-free methylated DNA immunoprecipitation coupled with next-
generation sequencing (cfMeDIP-seq) presents an effective approach
for the analysis of cfDNA methylomes16. This approach allows for
sensitive detection of ctDNA from minute quantities of cfDNA and is
more cost-effective compared to genome-wide bisulfite-based
methods17–19.

Here, we analyze the cell-free methylome of 60 localized and 175
metastatic samples with the cfMeDIP-seq technology. The global
methylome captures variations reflective of the heterogeneous disease
biology. We further show that the cell-free methylome can distinguish
different disease statuswith high accuracy, highlighting its potential as a
minimally invasive strategy for diseasemonitoring and prognostication.

Results
A genome-wide analysis of plasma DNA methylome in localized
and metastatic PCa
To gain a deeper understanding of the cfDNA methylation profile
changes during PCa progression, we curated a total of 133 plasma
samples, including 30 and 103 plasma samples from patients with
primary andmCRPC, respectively (Fig. 1A, Supplementary Data 1). The
localized tumor plasma sampleswere collected as part of the Canadian
Prostate Cancer Genome Network (CPC-GENE, CPC for short)
project20, while the mCRPC cases were sampled from three well-
curated cohorts ofmetastatic PCa (Fig. 1A): (1) 67 plasma samples from
a randomized phase II clinical trial (NCT02125357) comparing the
sequential use of abiraterone and enzalutamide on first-line mCRPC11

at Vancouver Prostate Centre (VPC). (2) 14 plasma samples were col-
lected from three patients over the course of an enzalutamide treat-
ment trial (Barrier). (3) 22 plasma samples frompatients enrolled in the
West Coast Prostate Cancer Dream Team (WCDT) study21. For the VPC
andWCDT cohorts, we profiled 47 and 11 samples collected at the time
of enrollment (baseline); 30 and 11 samples uponPSAprogression after
targeted AR inhibition treatment (progression), respectively (Fig. 1A).
Barrier cohort consisted of samples collected at baseline and along the
treatment course (Fig. 1A, Supplementary Data 1). Together, the
datasets here form a comprehensive representation of PCa, particu-
larly for metastatic castration-resistant lesions. Furthermore, mCRPC
samples from the VPC cohort has cfDNA sequencing profiled, and the
CPC (localized) and WCDT (mCRPC) cohorts have multi-omics

sequencing data available for matched tissues in previous studies
(Supplementary Data 1)11,21–25, providing unique opportunities for
integrative analysis.

Methylated DNA fragments from all plasma samples were pre-
cipitated and subjected to paired-end DNA sequencing as described
before26 (Methods). We obtained a median of 63 million reads, cov-
ering over 60% of the genome, and showed enrichment of CpGs
(Methods) between 1.59 and 2.19 fold (SupplementaryData 1).We used
the previously described binning strategy16 to quantify the data in
300bp non-overlapping bins and reduced our analysis to the 337,420
non-low bins (Methods, Supplementary Data 2). In general, there is a
higher correlation between samples collected from the same patients
at different timepoints (baseline or progression) (Supplementary
Fig. 1A), suggesting higher inter-patient variations. We further com-
pared the cell-free methylome with previous tissue whole-genome
bisulfite sequencing (WGBS) profiles21 from theWCDTcohortusing the
top 10,000 most variable bins. Despite differences in sequencing
technologies, a significantly higher correlation was observed between
the matched tissue and cell-free methylomes, with the median Pear-
son’s r for matched samples being 0.37 compared to −0.02 for
unmatched samples (Fig. 1B–D).

cfMeDIP data captures variations from tumor and TME
To understand the source of data variations, we examined major
clinical covariates by fitting linear regression models for individual
bins using the 67 mCRPC samples from the VPC cohort (Supplemen-
tary Fig. 1B–E). Adjusted R squared was used to measure the propor-
tion of variation explainedbydifferent covariates for each non-lowbin.
For less than one-fifth (19.63%) of the bins, variations in methylation
signal showed a weak to moderate correlation (adjusted R squared
>0.2) with ctDNA fraction (%ctDNA)11, and for only 3.45%of the regions
%ctDNA has a moderate to high correlation (adjusted R squared >0.5)
(Supplementary Fig. 1B). This is different from previous targeted
methylation analysis on plasmaDNA formCRPC samples,where tumor
fraction was identified as the major determinant of variation15. The
previous analysis focused on the CpG sites covered by the Roche
probes and left a large proportion of the methylome uncharacterized
(Supplementary Fig. 1F): 75.4% of the non-low bins in our study were
not covered.We reasoned that the unbiased cfMeDIP strategywas able
to provide genome-wide methylome analysis reflective of a more
comprehensive source of variation.

We next investigated other available clinical factors, including
age, lactate dehydrogenase (LDH) and alkaline phosphatase (ALP)
levels. Serum LDH and ALP levels measure groups of enzymes that
catalyze glycolysis and phosphate esters, respectively. LDH levels are
associated with the outcomes in mCRPC and are related to visceral
diseases such as liver metastasis27–29. Bone-specific ALP is expressed
on the surface of osteoblasts and is commonly upregulated in can-
cers originating or spreading to the bone30. Indeed, while age barely
contributes, ALP level explains the variations to a weak to moderate
degree for 2.41% of the bins and is a moderate to high contributor for
a smaller fraction (0.3%) (Supplementary Fig. 1C, D). Interestingly,
more bins (23.77%) are explained to a weak to moderate degree by
LDH level than %ctDNA (19.63%) (Supplementary Fig. 1B, E), with
17.56% of the bins explained by LDH independent of %ctDNA varia-
tion (Supplementary Fig. 1G). These bins distributed differently
across the genome: bins explained to aweak tomoderate degreeby%
ctDNA are enriched in CpG islands and promoter regions while
depleted in shelves (cpg_inter) and intergenic regions (Fig. 1E).
Meanwhile a sharp contrast was observed for bins explained to a
weak to moderate degree by LDH independently (Fig. 1E). Together,
the amount of variation explained by ALP and LDH, but not %ctDNA,
is potentially reflective of variations related to changes in the tumor
microenvironment (TME).
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cfMeDIP data capture fragmentation profile changes in
the cfDNA
We next extended the analysis to include all four cohorts. The global
methylation pattern was able to provide a general separation between
the localized andmetastaticdata (Fig. 1F),with severalmCRPC samples
having low to undetectable %ctDNA clustered closer to the primary
cancer cohort (Supplementary Fig. 1H, I). Previous studies reported
that tumor-derived cfDNA has a shorter length compared to healthy
controls31,32, we thus analyzed the cfDNA fragment size in the four
cohorts. Significant shorter fragment size was observed in mCRPC
samples compared to that of localized samples (Fig. 1G). In addition,
the fragment size is significantly negatively associated (Pearson’s
r = −0.43,p value = 2.8 × 10−4) with%ctDNA inmCRPC samples from the
VPC cohort (Fig. 1H). Together, these suggest a higher %ctDNA in the
metastasis compared to localized patient blood, corroborating pre-
vious observations31. While previous studies of total cfDNA showed

significant enrichment of fragments below 150bp in patient
samples33–35, size distribution difference in our data mainly occurred
longer than 150bp (Supplementary Fig. 1J). We reasoned that methy-
lated ctDNA could have different fragment lengths, and differences in
experimental approaches may also contribute to such disparity.
Nevertheless, our analysis showed that cfMeDIP-seq can capture
fragment length difference qualitatively. As expected, the estimated
fragment size distribution is significantly associated with both overall
and progression-free survival (PFS, Fig. 1I, J). Besides the length dif-
ference, cancers are shown to have more variation in their cfDNA
length36. Indeed, when we examine the fragmentation profile in 5-Mb
bins across the genome (Methods), a higher standard deviation was
observed in the metastatic cohorts (Fig. 1K). Differences in fragment
length and fragmentation can further distinguish our localized sam-
ples from the healthy controls (HC) cfMeDIP-seq profiles reported
previously32 (Supplementary Fig. 1K, L).
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Cell-free 5mCprofiling reveals widespread hyper-methylation in
metastatic samples
We next compared the cell-free methylation profiles between the CPC
(localized) and VPC (metastatic) samples with age control (Methods).
Widespread hypermethylation in metastatic tumors was observed
(Fig. 2A) and we detected 7.6 times (19,048 hyper vs. 2493 hypo)more
differentially methylated regions (DMRs) with increased methylation
than decreased. Meanwhile, previously reported hypomethylation
sites in patient tumors showed consistent lower methylation in the
metastatic samples37, corroborating the validity of our analysis (Sup-
plementary Fig. 2A). Global methylation on promoters of tumor sup-
pressor genes showed significantly higher methylation in mCRPCs
(Supplementary Fig. 2B), whereas only moderate differences were
observed for oncogenes38,39 (Supplementary Fig. 2C). Indeed, DNA
methylation is observed as a common mechanism for transcriptional
regulation for tumor suppressors but not protooncogenes40. The
detected DMRs also showed consistent deregulation in the Barrier and
WCDTcohorts (Supplementary Fig. 2D), highlighting the robustnessof
the detected methylation changes. These robust DMRs can stratify
patients into different risk groups: A ratio score dividing hyper-DMRs
by hypo-DMRs is significantly associated with both overall and PFS
(Supplementary Fig. 2E, F).

In contrast to the significant positive correlation between hyper-
DMRs and %ctDNA in the VPC cohorts (Fig. 2B), hypo-DMRs show no
correlation (Fig. 2C). Both hyper- and hypo- DMRs are enriched in CpG
islands and shores but depleted in shelf and open sea regions (Fig. 2D,
E), with the former, also enriched in gene promoters. Genome occu-
pancy of important transcription factors (TF) shows differential
enrichment patterns in hyper- and hypo- DMRs (Supplementary
Fig. 2G, H). Specifically, top hits enriched in hyper-DMRs are tran-
scriptional suppressive factors like SUZ12 and EZH2, while for hypo-
DMRs, activating factors like TRIM24 and CREB1 are the most
enriched41,42. AR binding is enriched in both sets of DMRs, consistent
with the recognition of its dual roles in transcriptional regulation43,44.

Pericentromeric regions are preferentially hypo-methylated in
metastatic samples
While hyper-DMRs are enriched in regulatory regions like the pro-
moters, hypo-DMRs are not (Fig. 2D, E). Upon further investigation, we
found hypo-DMRs to be specifically enriched in the repeat regions
(Fig. 2F). For better characterization of the repeat signal, we utilized a
peak calling strategy to quantify the methylation signal (Methods,
Supplementary Data 2). Among the most enriched repeat types in

hypomethylated peaks is GAATGn, the classic satellite DNA frequently
found in pericentromeric regions45 (Fig. 2G). Indeed, differentially
methylated peakswithin the pericentromeric regions (1Mb around the
annotated centromere gaps) show considerably reduced signals in
metastatic samples (Fig. 2H–J). We compared tissue WGBS data from
two previous studies and observed a similar pattern21,46 (Fig. 2K, Sup-
plementary Fig. 2I). In addition, a more noticeable reduction between
the benign tissue and the primary tumor samples was observed, sug-
gesting progressive loss of methylation for pericentromeric regions
along the PCa development trajectory.

Methylation level atNR3C1promoter associateswith differential
disease outcome
An outlier DMR showing the highest fold change (Fig. 2A) is located in
the promoter region of the gene NR3C1 (Fig. 3A), which encodes glu-
cocorticoid receptor (GR). The methylation level at this site (referred
to as GR-DMRhereafter) shows a borderline positive correlationwith%
ctDNA (Fig. 3B), and the high fold change is likely driven by the few
samples with exceptionally high methylation in the VPC cohort. We
examined cfMeDIP-seq data of the isolated peripheral blood leuko-
cytes from 20 healthy donors in a recent study and no signal was
detected in this site32, suggesting cancer-specific methylation on GR-
DMR. Higher methylation level at GR-DMR in localized tumors from
the Cancer Genome Atlas (TCGA), the Chinese Prostate Cancer Gen-
ome and Epigenome Atlas (CPGEA) and the CPC cohorts22,46,47 are
associated with worse outcomes (Fig. 3C, D, Supplementary Fig. 3A),
while a reverse association was observed in the metastatic cohort
(Fig. 3E). Associations with survival are not significant in the VPC
(mCRPC) cfMeDIP-seq data (Supplementary Fig. 3B, C), likely due to
small sample size. Expression levels of the GR gene only showed a
moderate negative correlation with methylation levels at GR-DMR
(Supplementary Fig. 3D–G). Moreover, direct GR RNA abundance
showed no significant survival association except in the CPGEA cohort
(Supplementary Fig. 3H–K), suggesting the existence of different
regulatory mechanisms of GR expression.

To understand how the methylation changes at GR-DMR affect
disease outcome, we performed differential gene expression analysis
comparing samples with high and low GR-DMR methylation levels.
Considering the relatively low number of samples with high GR-DMR
methylation in the localizedCPCcohort (Supplementary Fig. F3E), we
focused on the remaining three datasets (Supplementary Fig. 3L–N).
Enrichment analysis showed that downregulated genes in the
hypermethylation group are significantly associated with immune-

Fig. 1 | cfMeDIP data capture cell-free DNA methylation and fragmentation
changes in localized vs.mCRPCpatient plasma samples. A Sampling schematics
for the threemCRPC cohorts. Numbers in parentheses indicate the total number of
samples in given cohorts. For the Vancouver Prostate Cancer (VPC) andWest Coast
DreamTeam (WCDT) cohorts, each column represents a sampling strategy, and the
number above shows the number of patients subjected to the indicated sampling
strategy. For the Barrier cohort, each column represents a different time point and
each row represents a patient. B baseline, C1/C2 treatment cycle 1/2; M2/3/4/5, 2/3/
4/5 months post C2; EoT, end of the trial. B Pairwise sample correlation between
tissue WGBS and cfMeDIP data in the WCDT cohort, matched samples collected
from the same patient were compared with the others. P value = 1.1 × 10−6 (two-
sidedMann–Whitney U test). Box plots represent median values and 0.25 and 0.75
quantiles. Whiskers represent 1.5× interquartile range (IQR). X = 272 and 17 inde-
pendent observations for the “No (matched)” and “Yes (unmatched)” groups,
respectively. Scatterplot showing the top 10,000most variable bins in tissueWGBS
and cfMeDIP data for patient DBT-222 C) and DBT-149 (D). E Enrichment in dif-
ferent genomic locations for bins that are well explained by%ctDNA, LDH, and LDH
independent of %ctDNA. (Delta) R squared of 0.2 is used as a cutoff to filter for
regions that are well explained by the indicated variable. Fisher’s exact test was
used to calculate p value and odds ratio. F Three-dimensional representation of
samples according to the principal component analysis (PCA) for the four cohorts

using the top 10,000most variable bins.G Ratio of longer cfDNA fragments across
the cohorts. Two-sided Mann–Whitney U test was used to calculate pairwise p
values between localized samples from the CPC and mCRPC samples from the
Barrier, VPC, WCDT cohorts, respectively. Color code is the same as used in F. Box
plots representmedian values and 0.25 and 0.75 quantiles. Whiskers represent 1.5×
interquartile range (IQR). X = 30, 14, 67, and 22 independent experiments for the
CPC, Barrier, VPC, andWCDT cohorts, respectively.H Pearson correlationof longer
fragment ratio and ctDNA fraction (%ctDNA) in mCRPC samples from the VPC
cohorts. P value was calculated using a two-sided t test. Purple line represents a
fitted linear model of the data and shading around the fitted line represents 0.95
confidence interval (CI). Association of samples with shorter or longer fragment
sizes with overall survival (I) and progression-free survival (J). Median value of
the longer fragment ratio (0.3933) was used to dichotomize samples into two
groups.KDistribution of the standard deviation of fragment ratio within a sample.
Two-sided Mann–Whitney U test was used to calculate pairwise P values between
localized samples from the CPC andmCRPC samples from the Barrier, VPC, WCDT
cohorts, respectively. Color code same as used in F. Box plots represent median
values and 0.25 and 0.75 quantiles. Whiskers represent 1.5× IQR. X = 30, 14, 67, and
22 independent experiments for the CPC, Barrier, VPC, and WCDT cohorts,
respectively. Source data for 1B, 1F–H, and 1K are provided as a Source Data file.
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related terms, including “antigen processing and presentation”
(Fig. 3F–H). Such enrichment is observed in both the localized and
mCRPC cohorts, suggesting potential immune regulatory roles rela-
ted to GR-DMR methylation. Top terms enriched in the upregulated
genes in the CPGEA cohort are all cell cycle-related (Supplementary
Fig. 3O). Although not significant, these cell cycle-related genes show

the trend of upregulation in the TCGA cohort (Supplementary
Fig. 3P), consistent with the worse outcome associated with high GR-
DMR methylation observed in primary tumors (Supplementary
Fig. 3C, D). In contrast, such upregulation is not observed in the
WCDT cohort (Supplementary Fig. 3P), suggesting a trend of
switching from cell cycle regulatory roles in primary tumors to a
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dominant immune regulation in metastatic cases for the GR-DMR
methylation.

Cell-free DNA methylome distinguish metastatic from localized
samples with high accuracy
We next sought to create a machine-learning predictor distinguishing
localized and metastatic tumors using the methylation profiles. To
increase the sample size, we sequenced an additional 72 samples from

the VPC cohort (VPC-V), and 30 samples from patients with localized
tumor samples from the Ontario Health Study (OHS) cohort (Fig. 4A,
Supplementary Fig. 4A). To avoid potential bias caused by the imbal-
anced classification in our samples, we randomly select equal numbers
(21 for each) of localized and metastatic samples from the respective
cohorts and use them as a training set (Fig. 4A). Feature selection was
then performed on the training set: differential methylation analysis
was performed and the top 150 hyper- and hypo- DMRs were selected.

Fig. 2 | cfMeDIP reveals widespread hypermethylation and preferential repeat
hypomethylation in metastatic samples. A Volcano plot of differentially
methylated regions (DMRs) was identified comparing metastatic and localized
prostate cancer. A total of 2493 and 19,048 hypo and hyper DMRs were identified,
respectively. Pearson correlation between themeanmethylation levels of hyper (B)
and hypo (C) DMRs and %ctDNA. P value was calculated using t test. Blue line
represents a fitted linear model of the data and shading around the fitted line
represents 0.95 CI. Genomic distribution of hyper- (D) and hypo- (E) DMRs.
F Contingency table showing the distribution of repeat and the hypo-DMRs. Two-
sided fisher’s exact test was used to calculate p value and odds ratio (OR).
G Frequencyof repeat types overlappedwith downregulated peaks.HDifferentially

methylated peaks located within the 1Mb regions flanking the centromere. CPC
Canadian Prostate Cancer Genome Network cohort. I Example showing signal
distribution around the pericentromeric region in chromosome 2. The Y axis
showed the normalized signal per million reads (SPMR) from MACS (v2.2.5). Mean
methylation levels for differential peaks shown in H for cfMeDIP-seq (J) and WGBS
(K) data. Box plots represent median values and 0.25 and 0.75 quantiles. Whiskers
represent 1.5× IQR. X = 30, and 67 independent experiments for the CPC and VPC
cohorts, respectively in J. X = 194, 194, and 100 independent experiments for the
Benign, Primary, andMets groups, respectively, inK. Sourcedata for F2B-C and2J-K
are provided as a Source Data file.

Fig. 3 |Differentialmethylation inGRgene associates its altered role inmCRPC.
A Schematics illustrating GR gene (NR2C1) and its different isoforms. Blue bar
indicates the identified outlier DMR. B Pearson correlation between GR site
methylation level and %ctDNA in VPC cohort. P value was calculated using two-
sided t test. Blue line represents a fitted linear model of the data and shading
around the fitted line represents 0.95 CI. Association between GR site methylation
and disease outcome in the Cancer GenomeAtlas (TCGA) (C), the Chinese Prostate

Cancer Genome and Epigenome Atlas (CPGEA) (D) andWCDT (E) cohorts. Logrank
test was used to calculate p values. X = 216 and 221, 22 and 24, 49, and 48 for high
and low-risk groups for C–E, respectively. Gene ontology (GO) analysis shows the
enrichment of Biological Process (BP) for genes downregulated in high GR-DMR
methylation groups in TCGA (F), CPGEA (G), and WCDT (H) cohorts. Source data
for F3B are provided as a Source Data file.
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A random forest classifier was then built using the selected features
and evaluated on the remaining dataset (testing set). This process was
repeated 50 times and the performances were summarized (Fig. 4A–C,
Supplementary Fig. 4B).

The predictor yielded a median area under the curve value of 1,
with a very high median accuracy of 0.989 on the testing datasets
(Fig. 4B, Supplementary Fig. 4B, C). All the localized samples were
correctly classified, with only 10 out of the 175metastatic samples ever
misclassified across the 50 repeats (Fig. 4C). It is worth noting most
samples with very low %ctDNA (<2%) were correctly classified, high-
lighting the sensitivity of DNA methylation in detecting samples with
lower load of genetic alterations (Fig. 4C). We further applied our
predictors to the 20 healthy controls from the previous study32. Sig-
nificant probability distribution difference from the localized samples
was observed (Supplementary Fig. 4C), suggesting the potential of
discriminating between early-stage disease and healthy controls using
cfMeDIP-seq data.

Cell-free DNA methylome can predict large-scale genetic
variations
Sequencing information obtained from cfMeDIP-seq data can reflect
genetic changes and enable copy number alteration (CNA) analysis.
Similar to RNA-seq data, enrichment-based cfMeDIP data also has
uneven coverage caused by differentmethylation levels when used for
CNA analysis. We thus adapted the CNA inference tool for RNA-seq to
the analysis of cfMeDIP-seq data48 (Methods). Overall, CNA coverage is
significantly higher in VPC (Fig. 5A), consistent with the notion of
higher %ctDNA associated with metastatic samples. Indeed, CNA cov-
erage showed a significant positive correlationwith %ctDNA in the VPC
cohorts (Fig. 5B, Supplementary Fig. 5A). We next examined the CNA
changes in detail for individual genes assayed by panel sequencing
from a previous study11 and high concordance was observed (Fig. 5C,
Supplementary Fig. 5B). In regions that were misclassified as CNA
neutral, a significantly lower degree of CNA was observed

(Supplementary Fig. 5C). Very few depletions (9) were misclassified as
amplifications and even fewer amplifications (3) were misclassified as
depletions. Majority of the CNA neutral regions were correctly pre-
dicted, with 4% misclassification (154/3835) (Supplementary Fig. 5C).
Together, these resulted in an overall accuracy of 0.86 for CNA pre-
diction (Table 1). When considering only regions with CNA change, a
0.975 accuracy was achieved (Supplementary Fig. 5D). We then
extended the analysis to the VPC-V. Only a moderate correlation
between the predicted CNA coverage and %ctDNA (Supplementary
Fig. 5E) was observed, likely due to the reduced sensitivity caused by
the lower range of %ctDNA (0-44%,mean ~7.33%) compared to the VPC
cohort (0–88.90%, mean ~38.46%). Still, high overall accuracy of 0.92
was achieved in these samples of lower genetic alteration load (Sup-
plementary Fig. 5F, G). Similarly, misclassified regions have sig-
nificantly lower CNA degree (Supplementary Fig. 5F) and the high
proportion of correctly predicted neutral regions contributed to the
overall high prediction accuracy (Supplementary Fig. 5G). Taken
together, we showed that cfMeDIP-seq data can be used to reliably
predict sample CNA.

Discussion
In this work, we provide a genome-wide methylation analysis using
the cell-free DNA isolated from the plasma of patients with localized
and metastatic PCa. While the cfDNA methylation profile has been
extensively studied using targeted analysis for early-stage, non-
metastatic PCa10,49, evaluation in the advanced, metastatic disease at
the genome scale is still sparse10,49. The mCRPC samples were col-
lected from three independent studies. Using a subset of the data, we
built a predictor to distinguish localized from metastatic samples
that can be generalized to the remaining dataset. We achieved con-
sistent high prediction accuracy on the three independent cohorts,
suggesting that the methylation profiles are indeed capturing com-
mon features shared among mCRPCs. Considering the highly het-
erogeneous nature of mCRPCs, such consistent and highly sensitive
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performance is of particular interest and suggests potential clinical
utility, such as early detection of oligometastasis. Oligometastatic
disease is increasingly recognized as an independent state with low-
volume metastasis50. Here, we show the ability of the cfDNA methy-
lome in detecting metastasis with very low to undetectable levels of
genetic alterations, a characteristic likely shared with oligometas-
tasis. Specialized effort is needed to explore and directly validate its
utility in such cases.

We observe pervasive hypermethylation in metastasis compared
to localized PCa. The preponderance of hypermethylation in mCRPC
compared with localized samples may be disease-specific, as a pro-
portional amount of hypo and hyper DMRs has been observed in
pancreatic cancer, while preponderant hyper DMRs were observed in
head and neck squamous carcinoma, with the same cfMeDIP-seq
method16,32. These sites were enriched in gene promoters, CpG islands,
and shores, sharing the same feature of frequent hypermethylation
observed in the early stage of PCa37,51, suggesting progressive

maintenance of dysregulated DNA methylation. Such noticeably
higher number of hypermethylation sites seemingly contradict pre-
vious observations of global hypomethylation in metastatic PCa37,51.
Several factors might contribute to these observed differences: (1)
Most early studies assess the global methylation changes by analyzing
the total methylated DNA and the results might not reflect changes at
individual sites. (2) Different analytical methods might also result in
paradoxical observations: while a meta-analysis showed that hypo-
methylation is associatedwith PCa51, amore recent pan-cancer analysis
identified more hypermethylated sites52. (3) Complexity of the cfDNA
origin in plasma can further contribute to the observed disparities.
Compared to metastasis, localized cancers are known to have lower
ctDNA fraction, thus comparisons of plasma samples are likely to
simultaneously capture differences between normal and tumorous
tissues. Despite the overall consistency observed between tissue and
cell-free methylomes, such disparities highlighted the need to directly
analyze the cell-free methylomes.

In contrast to hyper-DMR, we observed no correlation between
theoverall hypo-DMRmethylation and%ctDNA, suggestingnon-tumor
source, such as TME, of such variations. Tumor grows in a specialized
microenvironment and induces extensive remodeling, including
changes in their DNA methylation profiles, in the surrounding non-
cancerous cells. These changes in the TME may in turn alter the cell-
free methylome53. Indeed, we identified sites that are correlated with
ALP and DHL, indicators associated with diseases residing in different
environments, potentially reflective of TME-derived changes. Future
effort is needed to dissect the cell sources of tumor-associated cell-
free methylome changes.
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from cfMeDIP-seq data for the top 10 samples with the highest CNA coverage.
Source data for F5A-B are provided as a Source Data file.

Table 1 | The performance and accuracy of CNA prediction in
mCRPC samples from the VPC cohort

Precision Specificity Sensitivity F1

Gain 0.66 0.98 0.53 0.59

Neutral 0.88 0.49 0.96 0.92

Loss 0.82 0.99 0.44 0.58

Mean 0.79 0.82 0.65 0.70

Accuracy 0.86
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The enrichment ofMHC-I immunegene signature inGR-DMRhigh
patients and the inverse association with survival in localized and
metastatic PCa are intriguing. While glucocorticoids are frequently
prescribed as co-medication for the treatment of solid tumors
including PCa, recent studies showed that high GR expression was
associated with worse outcome in mCRPC54,55. It is worth noting that
when investigating the association between GR-DMRmethylation and
%ctDNA, the signals seem to be derived from different distributions,
suggesting the existence of multiple subtypes. Such mixture can also
be the combined result of the tumor and non-tumorTME components,
as tumor cells are able to alter the DNAmethylation profile of the TME,
which can further change the cfDNA methylome56,57. Dissecting the
cells of origin of GR-DMR methylation can help shed light upon its
underlying functional mechanisms. Moreover, we only observed
moderate negative correlation in GR-DMR methylation and GR gene
expression, whether the GR-DMR function through mediating GR
transcription warrants further investigation.

Hypomethylated sites identified in this study are enriched in
repeat and particularly pericentromeric regions. While global hypo-
methylation of repeat classes like LINE1 elements in cancer is com-
monly acknowledged, pericentromeric DNA sequences are less
investigated. Pericentromeric DNA hypomethylation in other solid
tumors like breast cancer and melanoma has been associated with
chromosome instability58,59, in line with the increased genomic
instability observed inmetastatic PCa. Analysis of theDNAmethylation
in pericentromeric regions had been focused on sequences in chro-
mosome 1, while we showed here such hypomethylation can encom-
pass most chromosomes and is more prevalent than previously
realized. Additional effort is needed to understand the functional
implication of these epigenetic dysregulations.

In summary, we identified consistent methylation changes and
created classifiers that can distinguish between localized and meta-
static samples with high accuracy. The results presented multiple
insights into the disease biology and demonstrated the biomarker
potential for detecting metastatic lesions with a minimally invasive,
highly sensitive, and cost-effective strategy.

Methods
This work complies with all relevant ethical regulations. All patients
provided informed written consent and all samples were obtained
upon approval of the institutional ethics committee and Research
Ethics Board at the University Health Network (UHN) and the Uni-
versity of British Columbia (UBC), with compliance with all relevant
ethical regulations. CPC and Barrier samples were retrieved from the
UHN GU Biobank (REB file numbers: 11-0024(CPC) and 13-7122(Bar-
rier)). VPC cfDNA from plasma was retrieved from the Vancouver
Prostate Centre (VPC), UBC (REB file number: H18-00944). The WCDT
cfDNA samples were retrieved from the University of California San
Francisco (UCSF). The OHS samples were retrieved from the Ontario
Institute for Cancer Research (OICR).

Contact for reagent and resource sharing
Further information and requests for resources should be directed
to and will be fulfilled by Lead Contact, Housheng Hansen He
(hansenhe@uhnresearch.ca).

Experimental models and subject details
Method details
Cell-free DNA isolation from plasma. Peripheral blood was collected
from cancer patients using EDTA anticoagulant tubes. Plasma samples
were isolated fromwhole blood using the UHN Biobank centrifugation
protocol and stored at the UHN Biobank. 500 µl–1ml plasma aliquots
retrieved from the Biobank were immediately stored at −80 °C for
short-termuse. The cfDNAwas isolated fromplasmausing theQIAamp
Circulating Nucleic Acid Kit (Qiagen) according to the manufacturer’s

protocol and quantified by Qubit (Thermo Fisher Scientific) before
use. Within each experimental batch, samples were randomized by
disease status and performed blinded during cfMeDIP-seq wet-lab
processing.

Cell-free methylated DNA immunoprecipitation and sequencing.
To prepare cfMeDIP libraries for sequencing, the original cfMeDIP-seq
protocol was used16 on 5 ng of input cfDNA per sample. First, the
samples underwent library preparation using Kapa HyperPrep Kit
(Kapa Biosystems) for end-repair and A-tailing, following the manu-
facturer’s instructions. Samples were then ligated to 0.181uM of NEB-
Next adaptor (NEBNext Multiplex Oligos for Illumina kit, New England
Biolabs) by incubating at 20 °C for 20mins. The DNAwas then purified
with AMPure XP beads (Beckman Coulter). The library was then
digested using USER enzyme (New England Biolabs) and then purified
with Qiagen MinElute PCR purification kit (MinElute columns).

The prepared libraries were then combined with 95 ng of filler
DNA (λ phage), and then MeDIP was performed using the Diagenode
MagMeDIP kit (C02010021) using a previously published protocol26.
The filler DNA consists of a mixture of unmethylated and in vitro
methylated λ amplicons of different CpG densities: 1 CpG site, 5 CpG
sites, 10 CpG sites, 15 CpG sites, and 20 CpG sites; all similar in size to
cfDNA. This filler DNA ensures a constant ratio of antibody to input
DNA andminimizes non-specific binding by the antibody and prevents
cfDNA loss due to binding to plasticware. Once the prepared library
and filler DNAwere combined, 0.3 ng of controlmethylated and0.3 ng
of control unmethylated Arabidopsis thaliana DNA and the buffers
from the MagMeDIP kit were added, as per the manufacturer’s
instructions. The mixture was heated to 95 °C for 10min, then imme-
diately placed on ice for 10mins. Each sample was partitioned into two
0.2ml PCR tubes: one for 10% input control (7.9 µl) and the other for
the sample to be subjected to immunoprecipitation (79 µl). The
included 5mCmonoclonal antibody (C15200081) from the MagMeDIP
kit was diluted to 1:15 before adding it to the immunoprecipitation
sample. MagMeDIP magnetic beads were then washed 2× with pre-
pared buffers from the kit and added to the sample before incubation
at 4 °C for 17 h with rotation. The samples were purified using the
Diagenode iPure Kit v2 (C03010015) and eluted in 50 µl of buffer C.

Quality control 1 (QC1) wasperformedby qPCR to detect recovery
of the spiked-in methylated and unmethylated A. thaliana DNA. The
recovery of methylated A. thaliana DNA should be >20%, unmethy-
lated A. thaliana DNA should be <1% (relative to the input control and
adjusted to input control being 10% of the overall sample), and the
specificity of the reaction should be >99% (1−[recovery of spike-in
unmethylated DNA/ recovery of spike-in methylated DNA] × 100) to
proceed. The PCR cycle number for library amplification was deter-
mined by qPCR (QC2) and should be <15 cycles to proceed, and the
samples were amplified using Kapa HiFi Hotstart Mastermix and
NEBNext multiplex oligos, added to a final concentration of 0.3uM.
The final libraries were amplified as follows: activation at 95 °C for
3min, # cycles: 98 °C for 20 s, 65 °C for 15 s, and 72 °C for 30 s, and a
final extension of 72 °C for 1min. The amplified libraries were purified
using MinElute columns, then size selected to remove adaptor dimers
by either using 3% Nusieve GTG agarose gel and subsequent get cut-
ting, or Pippin Prep (Sage Science) following the manufacturer’s
instructions. All the final libraries were then checked at TapeStation
(Agilent) for library concentration, correct sizing, then pooled with six
other cfMeDIP samples with different NEBNext barcodes. The pool of
seven samples (per lane) was sequenced at 150bp paired-end on Illu-
mina HiSeq X ten.

Publicly available data. The TCGA prostate adenocarcinoma (PRAD)
450Kmethylation data (hg19 based) were downloaded from the TCGA
Data Portal (https://tcga-data.nci.nih.gov/tcga/), including 50 normal
tissue and 489 primary tumor samples. Associated clinical data and
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normalized gene expression were also obtained. The CPC-GENE
(Canadian Prostate Cancer Genome Network) 450K methylation data
from 286 patients with localized prostate adenocarcinoma, matching
normalized gene expression and clinic information (hg19 based) were
obtained from the previous publication22. Processed whole-genome
bisulfite sequencing (WGBS, hg38-based), RNA-seq, and clinical data
for 194 Asian patients with localized tumors and matched healthy tis-
suewereobtained fromCPGEA46, theChineseProstateCancerGenome
and Epigenome Atlas (http://www.cpgea.com). Processed WGBS and
matched RNA-seq data (hg38-based) for 100 WCDT mCRPC (West
Coast DreamTeam,metastatic castration-resistant PCa) were obtained
from the previous publication21. The WGBS data from WCDT and
CPGEA cohorts were converted tomethylation values for the same 300
bins used in cfMeDIP-seq data analysis. Methylation value was defined
as the total number of methylated counts divided by the total number
of (methylated and unmethylated) counts in this 300bp region. The
hg38 genome coordinates were converted to hg19 using liftOver
(v1.10.0) R package with a chain file retrieved from the USCS genome
browser (https://genome.ucsc.edu/).

Genes (CTAG1B, TSPY1, MAGEA3, and PAGE1) with promoter
hypomethylation in PCawere obtained from theprevious publication37.
A total of 136 PCa driver genes were obtained from previous publica-
tions and DriverDBv3, consisting of 57 oncogenes and 79 tumor sup-
pressor genes38,39. Bins within the promoter region (1 kb upstream of
TSS) of these genes were compared in the cfMeDIP-seq data.

Quantification and statistical analysis. Statistical analyzes were per-
formed using R statistical environment (v3.6.1) (R Core Team, 2019).
All tests were two-sided unless otherwise specified. The type of test
method used for statistical analysis was specified in the text where the
results were described and details for the test were explained in the
relevant figure legend and method section.

Sequencingdatapreprocessing. Humangenome (hg19/GRCh37)was
downloaded from the University of California Santa Cruz (UCSC) gen-
ome browser (https://genome.ucsc.edu/). The quality of raw reads was
assessed using FastQC60 (v0.11.5) and MultiQC61 (v0.8). Trim Galore
(v0.5.0, https://github.com/FelixKrueger/TrimGalore) (“--phred33
--stringency 3 --length 20 -e 0.1”) was used to remove adapters and trim
poor-quality sequencing reads. After trimming, the reads were aligned
to the human reference genome using BWA62 (v0.7.15) with default
parameters. SAMtools63 (v1.3.1) with default settings was used to con-
vert SamtoBamformat,filter outduplicates, sort and index thefiles and
provide mapping statistics for the output. For paired-end data, we fil-
tered for properly paired alignments using SAMtools63 (“-h -f 2 -F 512”).

Fragment size analysis. The fragment sizes for each sample were
calculated using the CollecInsertSizeMetrics function from Picard
(v2.6.0) (https://github.com/broadinstitute/picard) on the sorted bam
files, setting the minimum percentage option to 0.5. The longer frag-
ment ratio was defined as the proportion of the number of reads from
170 bp to 210 bp to the number of reads from100bp to 210 bp.

For fragmentation profiles, customized scripts from previous
study36 (http:github.com/Cancer-Genomics/delfi_scripts) were applied
on sorted bam files to calculate fragment ratios in 5-Mb bins.

Calculation of DMRs. DMRs between metastatic (67 VPC cohort
samples) and localized (30 CPC cohort samples) PCa were identified
using DESeq264 (v1.24.0) while controlling for age differences. Before
detecting DMRs, the count generated by MEDIPS65 (v1.34.0) was first
converted into reads per kilobase per million mapped reads (RPKM)
using the total number of reads as the library size. Only bins with
higher than 5 RPKM in at least one sample across all PCa samples were
retained (non-low coverage bins). The raw counts of these non-low
coverage bins were used as input for DESeq264. Bins with Benjamini-

Hochberg adjusted p-value <0.05 and absolute fold change greater
than 2 were nominated as DMRs.

DMRs annotation and enrichment analysis. The genomic annota-
tions of DMRs were obtained using the R packages annotatr66 (v1.12.1),
TxDb.Hsapiens.UCSC.hg19.knownGene (v3.2.2) and org.Hs.eg.db
(v3.10.0) from Bioconductor67,68. ChIP-seq data for important TFs were
collected from the gene expression omnibus (GEO) (Supplementary
Data 4). Customized annotation using the TF ChIP-seq data was per-
formed using GenomicRanges69 (v1.38.0). To assess whether DMRs are
enriched or depleted in the annotated regions, adjacent regions of
DMRs were first merged using the ‘reduce’ function of
GenomicRanges69. Association analysis was then performed by
regioneR70 (v1.16.2) with a permutation test (1000 iterations). The
33,740 300bp non-low bins were used as background regions. P value
of 0.05 was used as a cutoff for significance.

Differential gene expression analysis between high and low GR-
DMR methylation groups. The most noticeable hyper-DMR site
(chr5:142782301-142782600, referred to as “GR-DMR”) in metastasis
compared to localized plasma samples is in the promoter of GR (also
known as NR3C1) gene. To investigate the transcriptional effect of this
site, we used public datasets from the TCGA, CPGEA, CPC, and WCDT
cohorts20,21,46,47. Considering that this site has low coverage in most of
the samples from these cohorts, the top 10 samples with the highest
and lowest methylation values were selected for comparison. Samples
were grouped into GR-high and GR-low groups according to methy-
lation levels on the GR site, and differentially expressed genes (DEGs)
were determined using matched RNA-seq data. The DEGs were iden-
tified using DESeq2 (v1.24.0)64 with --FDR =0.05, --log2FC = 1”.

For the 450K DNA methylation array from TCGA PRAD and CPC
cohorts22, the beta value of the CpG site overlapping with this DMR
region was regarded as the methylation signal of this region. The sche-
matics of the GR gene were plotted using the R package Gviz (v1.30.3).

Gene enrichment analysis. Gene enrichment analysis was performed
using TCGAbiolinks71 (v2.14.0) with an FDR of 0.01 as cutoff. For DEGs
from tissue RNA-seq data, the upregulated and downregulated genes
were analyzed separately in the functions or pathways enrichment
analysis. For DMRs from plasma cfMeDIP-seq data, genes with DMRs
located within the 5Kb upstream of transcription start sites were used.

Predicting CNAs using plasma cfMeDIP data. To assess the ability of
cfMeDIP-seq data on determining CNA events of the data,
the CaSpER48 (v0.1.0) R package was used for analysis. Briefly, CaSpER
first preforms data smooth on three different length scale. CNA
detection was then performed by taking into account both the three-
scale smoothed DNA methylation signals and whole-genome allelic
shift profiles inferred from plasma cfMeDIP-seq data. On each scale: 1
CNA states (gain, loss, or neutral) were assigned using Hidden Markov
Model (HMM). 2 The genome-wide allelic shift profiles were estimated
using Gaussian mixture model to correct CNA predictions with rela-
tively low evidence of methylation signals. In our analysis, localized
samples from the CPC cohort were used as reference. The final con-
sistent CNA calls were defined as CNA identified by at least six times
from all pairwise scale comparisons. For the VPC cohort, inferred CNA
states were compared to the gold standard calls from panel sequen-
cing obtained previously11.

Machine learning for diagnostic classification. To evaluate the per-
formance for diagnostic tumor classification based on plasma cfMe-
DIP-seq, we randomly selected an equal number of unique samples
from the localized and mCRPC cohorts as training sets and use the
remaining unique patients different from training sets as testing sets.
For mCRPC samples from the Barrier and WCDT cohorts, 3 out of 14
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and 19 out of 22 unique samples were used, respectively. Feature
selection andmodel construction were performed in training sets, and
themodel performancewas evaluated in testing sets. Briefly, to reduce
the impact of technical factors, first, the methylated values were cor-
rected and normalized using sva72 (v3.32.1) and DESeq264 (v1.24.0),
considering sequencing batch as a confounder. Second, DMRs
between localized and metastatic patients from the training set were
identified using DESeq264 (v1.24.0) as described above. Third, the top
150 hyper-DMRs and hypo-DMRs were then selected by measuring
information gain and used to build a classification model using ran-
domForest (v4.6.14) (https://www.stat.berkeley.edu/~breiman/
RandomForests/). Finally, the performance of the randomForest clas-
sifier was evaluated on the testing set. The AUROC (area under the
receiver operating characteristics) curves were estimated using the
probability from the random forest model and used for visualization.
This procedure was repeated 50 times.

Performance assessment. We used several evaluation metrics to
assess the classification performance of localized and metastatic PCa,
including sensitivity (1), specificity (2), precision (3), accuracy (4), and
F1 score (5). These indicators were also employed in the evaluation of
CNA prediction by cfMeDIP-seq profiles.

Sensitivity =TP=ðTP+ FNÞ ð1Þ

Specificity =TN=ðTN+FPÞ ð2Þ

Precision=TP=ðTP+FPÞ ð3Þ

Accuracy= ðTP+TNÞ=ðTP+TN+FP+FNÞ ð4Þ

F1 score = 2TP=ð2TP+ FP+FNÞ ð5Þ
TP stands for true positive, TN for true negative, FP for false

positive, and FN for false negative. Sensitivity (also known as Recall)
indicates the fraction of positive patients that are correctly predicted.
Specificity (also known as Selectivity) indicates the fraction of negative
patients that are correctly predicted. Precision indicates the fraction of
correctly identified positive patients to the total identified positive
patients. Accuracy indicated the fraction of correctly identified
patients to the total observed patients. F1 score is a comprehensive
indicator calculated by combining precision and sensitivity, with a
higher score representing better performance. AUROC curve was cal-
culated using the R package ROCR (v1.07)73.

Survival analysis. Kaplan–Meier plots were created using survival
(v3.1.8) and survminer (v0.4.6), in which p value of survival between
two groups was calculated using a log-rank test (cutoff p value = 0.05).
For overall DMRanalysis, wefirst calculated a hyper:hypoDMR ratio by
dividing the mean methylated values of all hyper-DMRs by the mean
methylated value of all hypo-DMRs. mCRPC samples from the VPC
cohort were then split into high and low according to themedian ratio
(0.9786). For the fragment analysis, the fragment value was defined as
the fragment ratio of the number of reads from 170bp to 210 bp to the
number reads from 100bp to 210 bp. Patients were classified into
shorter or longer fragment groups based on the median value of the
fragment ratio. For GR-DMR-related analysis, we divided the patients
into high GR-methylated and low GR-methylated groups according to
the median value of the GR-DMR methylation. A similar analysis was
performed for mRNA expression between patients with high and low
GR gene expression.

The overall survival (OS) and PFS survival were used for the
metastatic samples from the VPC cohort, and the OS also was used for

the metastatic samples from the WCDT cohort. The biochemical
recurrence-free survival was used for the localized samples from CPC
and CPGEA cohorts. The clinic endpoints of recurrence-free survival
were used for the 498 TCGA samples.

Repeat region analysis. To analyze repeat regions, we used a peak
strategy to summarize cfMeDIP-seq data signal. We first filtered bam
files using samtools (v1.3.1) to obtain high-quality primary alignments
(-F 1804). Next, we used the MACS74 (v2.2.5) “callpeak” function to
generate narrowPeak on all samples with --SPMR parameter to gen-
erate a normalized pileup file. Pileup files from the peak calling step
were converted to bigWig files using the ucsctools (v378). Peak files
from all samples were merged to create a peak catalog. Mean signal
intensities were summarized for each of the intervals in the peak cat-
alog using bwtool (v1.0) from sample bigWig files.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The rawcfMeDIP-seq data generated in this study havebeen deposited
in the European Genome-Phenome Archive (EGA) database under the
study accession code EGAS00001005522 and the dataset accession
codes EGAD00001007972, EGAD00001008711, EGAD00001008712,
EGAD00001008713, EGAD00001008737. The raw data are available
under restricted access due to them containing identifying informa-
tion that could compromise patient privacy. Access canbe obtainedby
contacting the data access committee listed on the EGA page and
according to the EGA guideline. There are no restrictions on data
access application. Applications will be reviewedmonthly, and once all
patient privacy and data transfer documents are completed; we will
notify EGA within two-weeks to allow data downloading. Immediately
upon receipt of our notification, EGA will create an account for the
applicant to download data and the timeframe to download data will
be in accordance with EGA guidance. The processed bin level raw
count data are provided in Supplementary Data 2 on Open Science
Framework (OFS, https://osf.io/97tqk/); normalized peak level inten-
sity is available in SupplementaryData 3 onOFS (https://osf.io/97tqk/).
Source data are provided with this paper. The human hg19 reference
genome and the chain file for liftOver was downloaded from the UCSC
genome browser (https://hgdownload.soe.ucsc.edu/goldenPath/hg19/
bigZips/genes/ and https://hgdownload.soe.ucsc.edu/goldenPath/
hg38/liftOver/). The public panel gene analysis data for the VPC
cohort used in this study are available in the EGA database under
accession code EGAS0000100311323. The publicly available data from
the CPC cohort used in this study are available in the EGA database
under accession code EGAS0000100090020,22,24. Thepublicly available
data from the CPGEA cohort used in this study are available in the
National Genomics Data Center (NGDC) under the accession code
PRJCA001124, and the processed data can be accessed at: http://www.
cpgea.com46. The publicly available data from the WCDT cohort used
in this study are available in the database of Genotypes and Pheno-
types (dbGAP) under the accession code phs001648, and the pro-
cessed data can be accessed at: http://davidquigley.com/prostate.
html21. The publicly available data TCGA data used in this study are
available in the Broad Institute FireBrowse portal (http://firebrowse.
org/?cohort=PRAD)47. Three genes with promoter hypomethylation in
prostate cancer were obtained from a previous report37. A list of 136
prostate cancer driver genes was obtained fromprevious publication38

and database DriverDBv339 (http://driverdb.tms.cmu.edu.tw/api/get_
source_file?type=txt&cate=Cancer&symbol=250005866&tab=
summary&file=summary_tab.txt). The remaining data are available
within the Article, Supplementary Information, or Source Data
file. Source data are provided with this paper.
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Code availability
All R packages used are available online as described in the method
section. Customized code for data processing and visualization can be
accessed on github: https://github.com/nikou123456/cfMeDIP_PCa.
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