UCLA

Department of Statistics Papers

Title

Accelerated Failure Time Regression Model with a Regression Model of Surviving
Fraction: An Application to the Analysis of RPermanent EmploymentS in Japan

Permalink
https://escholarship.org/uc/item/44028274
Author

Kazuo Yamaguchi

Publication Date
2011-10-24

eScholarship.org Powered by the California Diqital Library

University of California


https://escholarship.org/uc/item/44028274
https://escholarship.org
http://www.cdlib.org/

Accelerated Failure-Time Regression Models
With a Regression Model of Surviving Fraction:
An Application to the Analysis of

“Permanent Employment” in Japan

KAZUO YAMAGUCHI*

Accelerated failure-time regression models with an additional regression model for the surviving fraction are proposed for the analysis
of events that may never occur, regardless of censoring, for some people in the population risk set. The models attempt to estimate
simultaneously the effects of covariates on the acceleration/deceleration of the timing of a given event and the surviving fraction;
that is, the proportion of the population for which the event never occurs. The extended family of the generalized Gamma distribution
is used for the accelerated failure-time regression model; the logistic function is used for the regression model of the surviving fraction.
The models are applied to the data of interfirm job mobility in Japan to assess variability in “permanent employment” among white
collar and blue collar employees in firms of different sizes, independent from their variability in the timing of interfirm job separations.

KEY WORDS: Accelerated failure time; Generalized gamma model; Job mobility; Permanent employment; Surviving fraction.

Hazard rate models can reflect two distinct factors asso-
ciated with high/low hazard rates: (1) acceleration/deceler-
ation in the timing of the event and (2) high/low limiting
survival probability. The limiting survival probability implies
the limiting value of the survivor function when time goes
to infinity. A nonzero limiting survival probability often is
called a surviving fraction (Miller 1981). Although we never
can observe subjects up to time infinity, the assumption of
a nonzero limiting survival probability seems consistent with
the characteristics of empirical data for many life events.
Some specific parametric functions with a nonzero limiting
survival probability have been shown to fit the data of mar-
riage, divorce, or occupational mobility better than repre-
sentative parametric functions with a zero limiting survival
probability (Diekmann and Mitter 1983, 1984; Diekmann
1989; Hernes 1972; Wu 1990).

Most parametric hazard rate models implicitly assume a
zero limiting survival probability. On the other hand, pro-
portional hazards models based on Cox’s partial likelihood
method are compatible with nonzero limiting survival prob-
abilities, because the unspecified baseline hazard function
can take a value of O for any time ¢ at which the event does
not occur in the sample. In analyses based on the propor-
tional hazards and related hazard rate models, however, the
interpretations of high/low hazard rates often are ambiguous
or arbitrary regarding the distinction between timing and
limiting survival probability of the event’s occurrence.

For example, for an event experienced by most people in
the population risk set, such as marriage, a higher hazard
rate generally is interpreted as an advancement or acceler-
ation of timing with respect to age; a lower hazard rate is
interpreted as a postponement or deceleration. On the other
hand, for events not experienced by a fairly large proportion
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of people in the population risk set, such as divorce or the
birth of a second child, a higher hazard rate usually is inter-
preted as a higher lifetime probability for the occurrence of
the event rather than an acceleration in the timing of the
event.

However, alternative interpretations of high/low hazard
rates can be given for both situations. For example, blacks
have lower rates of marriage than whites not because they
marry later, but rather because they are less likely to marry
(Bennett et al., 1989; Schoen and Kluegel 1988; Spanier
1983). Similarly, an early age of first childbirth predicts not
only a higher lifetime probability of having a second child
(Millman and Hendershot 1980), but also a shorter interval
between the first and second births (Marini and Hodsdon
1981).

Proportional hazards models do not permit an useful
parametric distinction between the effects of covariates on
the timing of the event and the effects of covariates on the
limiting survival probability of the event. Unlike proportional
hazards models, accelerated failure-time models assume that
high/low hazard rates result solely from acceleration/decel-
eration in the timing of the event. They also typically assume
a zero limiting survival probability. Although the assumption
of a zero limiting survival probability is unrealistic for many
life events, the fact that their parameters only govern accel-
eration/deceleration and do not affect the limiting survival
probability makes it possible to modify and extend these
models to include another set of parameters governing the
limiting survival probability. The modification is made by
(1) introducing a surviving fraction into the accelerated fail-
ure-time models and (2) applying the logistic regression
model for the surviving fraction.

An important point here is that although both the accel-
erated failure-time model and the proportional hazard model
can include a surviving fraction, the surviving fraction be-
comes independent of other parameters only for the former
model. For the accelerated failure time model that satisfies

© 1992 American Statistical Association
Journal of the American Statistical Association
June 1992, Vol. 87, No. 4418, Applications and Case Studies

284



Yamaguchi: Failure-Time and Surviving-Fraction Regressions

S(z, 0) = So(0), where S(¢, 0) is the survivor function, S(co,
6) is independent of parameter 6 regardless whether Sp(c0)
= 0 or not. However, for the proportional hazard model that
satisfies S(¢, 6) = So(t)?, S(o0, ¢) is not independent of 6 unless
So(e0) =

The regression model for the surviving fraction was de-
scribed by Farewell (1977) and Miller (1981) for the expo-
nential model without covariates. In this paper, the regression
model is extended to a general class of accelerated failure-
time models with covariates. Thus, the modified model in-
corporates variability in both timing and limiting survival
probability and, through a pair of regression equations, per-
mits separate predictors to be identified simultaneously for
both timing and limiting survival probability.

One sociological topic for which the distinction between
timing and limiting survival probability is important is the
assessment of “permanent employment” or “lifetime em-
ployment” in Japan. Two distinct conceptualizations of per-
manent employment exist: One refers to the management
practices of firms and the other to the tenure of employees.
In the first concept, permanent employment may imply that
some Japanese firms employ only people who have just
graduated from school and that they never fire or lay off
employees (Abegglen 1958; Dore 1973). The second concept,
may imply that employees tend to work for their first em-
ployer until retirement (Cole 1972; Tominaga 1964), which
is similar to the concept of employees’ “life-time commit-
ment” to their firms (Marsh and Mannari 1971). This article
deals with the latter concept.

Permanent employment can be studied as a theoretical
concern (i.e., regarding why it exists) and also as an empirical
concern (i.e., regarding the extent to which it exists); this
article is concerned primarily with the latter concern. Pre-
vious studies that assessed the extent of permanent employ-
ment in Japan analyzed the rate of interfirm job mobility
(Cheng 1988; Cole 1979; Cole and Siegel 1980; Taira 1962;
Tominaga 1964; Tsuzuki 1989). A major limitation in these
studies was a lack of separation between the two ‘“compo-
nents” responsible for the low rates of interfirm job mobility;
late timing of job separations and a high surviving fraction.
Generally, the interpretation given to a low rate of interfirm
job separations is that employees in a given category of firms
have a high tendency to remain in their firms. A low rate,
however, may reflect a long duration in the firm before leav-
ing. This article eliminates the ambiguity of interpretation
by using new models that simultaneously identify the pre-
dictors of high-versus-low limiting probability of remaining
in the same firm and the predictors of early-versus-late timing
of interfirm job separations. An interfirm job separation is
defined as a voluntary or involuntary separation from the
employer, excluding retirement.

1. MODELS

Let Tand Y = log(T) be random variables for failure time
and the logarithm of failure time. Let f{y) be the conditional
pdf of Y, given that the event occurs, and let g(y) be the
unconditional pdf of Y. We assume a positive surviving frac-
tion p. It follows that
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(1

Then the survivor function corresponding to g(y), S,(»),
can be expressed using the survivor function corresponding
to f(»), Sy(2), as follows:

S = (1 = p)S;») + p. 2

For the conditional pdf of "= exp(Y), we assume a general
class of accelerated failure time models, namely, the extended
family of generalized Gamma models. [Alternately, for Y
= log(T), we assume the extended family of generalized log-
Gamma models.] The generalized Gamma model was in-
troduced by Stacy (1962) and extended by Prentice (1974).
The extended family of generalized Gamma models, de-
scribed in detail by Lawless (1982) and Kalbfleisch and
Prentice (1980), includes exponential, Weibull, reciprocal
Weibull, log-normal, and Gamma as its special cases. Ap-
plying the extended family to failure-time data is now a stan-
dard SAS procedure—procedure LIFEREG in the SAS sta-
tistical package (SAS Institute 1985).

The extended family of generalized Gamma models has
considerable flexibility in capturing the characteristics in the
distribution of 7. The shape of the survivor function becomes
even more flexible by introducing the surviving fraction p
in Formula (2). Further, using the extended family rather
than just the generalized Gamma model has certain advan-
tages. For instance, the generalized Gamma model reflects
only negatively skewed pdf for log(T’), but the extended fam-
ily can reflect both positively skewed and negatively skewed
pdf for log(T’). Empirical distributions of the pdf for the log-
arithm of employment duration usually reveal positive
skewness.

The error term for the generalized Gamma regression
model for the conditional pdf of y = log(T) follows the gen-
eralized log-Gamma distribution such that

= X8 + oz, 3)

where X is the covariate vector, 8 = (8;, ..., B, is the
parameter vector, ¢ is the scale parameter, and z has the
standard log-Gamma distribution with shape parameter k
such that:

—1/2

I‘(k)

exp(Vkz — ke?")  when 0 <k < a0

flz; k) =

———>exp(—2z%/2)  when k = c. 4)

T @ )”

The extended family is obtained by replacing parameter

k by parameter A = k~'/* and allowing both positive and
negative values of \. Its pdf then becomes

flz; N = I‘g\\ |2) W) Zexp[\ 2 (Az — e*)]  when A #0
(2 1)1/2 exp(—z%/2) when A = 0. 5)

We also need to specify the functional form for the de-
pendence of the surviving fraction p on covariates X. To do
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so, the logit model suggested by Farewell (1977) and Miller
(1981) is employed:

p = exp(X'a)/[1 + exp(X'a)], (6)

where a = (¢, . . . , a,) is the parameter vector.

In this article, we apply two types of models. The first
type, models with a constant surviving fraction, assumes a
single constant value for p with p = 0 as a special case. The
second type, models with heterogeneous surviving fractions,
assumes in Formula (6) the same set of covariates used for
the model of log(7") in Formula (3) with a separate set of
parameters—that is, a (#8)—as their coefficients.

The log-likelihood function for the ith observation of Y
= log(T') for the generalized log-Gamma model modified by
the introduction of surviving fractions becomes:

lOg Li(aa ﬂ, a, k)
= §;[log(1 — p(e@)) + log f(z;; k, B, o) — log ]
+ (1 = d)log[(1 — p(a))Q(k, ke + p(a)] (7)

for 0 < k < oo. Here z; = [log(T;) — XiB]/o; 6; = 1 if T} is
an observation of failure time, and §; = 0 if T; is an obser-
vation of censoring time; f(z; k, 8, o) is given by Formula
(4), and Q(k, a) is the incomplete gamma integral
© k-1
ok o= [ ®)

For k = oo or A = 0, we simply need to replace Q(k,
ke**) by the normal integral from z; to infinity. For the
extended family with a positive A, we need to replace k by
A2 in Formula (7). For a negative \, we obtain the corre-
sponding log-likelihood function by replacing (a) f(z; &, 8,
o) by fl=z; X%, B, o) and (b) Q(k, ke®") by [1 — Q(\2,
A"2¢%*)] in Formula (7).

Generally, a good estimate of the surviving fraction is ob-
tained when ample data for the end of the normal risk period
are available. It follows that a mechanical application of the
model could pose a problem. In the analysis of first marriages
based on cross-sectional data, for example, the sample should
include a sufficient number of people whose ages are over
the normal period of risk, such as over age 40. Applying the
model to a sample of young people (such as those age 30 or
younger) would present a problem, because the data do not
provide any direct observation of survival probabilities
around the end of the normal risk period. Hence, the esti-
mated values of p will depend heavily on (a) fitting a partic-
ular parametric function—the extended family of the gen-
eralized Gamma—to the observed survivor function for
young ages and (b) the capacity of this parametric distribution
to extrapolate the survivor function for older ages. Such an
extrapolation will not be accurate in many cases, however.

The model introduced here implicitly assumes two latent
subpopulations: one with zero risk of having the event and
the other with a nonzero risk subject to the generalized
Gamma model. In the model, the proportion of the latent
subpopulation with zero risk in the total population is fixed
and equal to the surviving fraction p. Although the assump-
tion of a time-invariant proportion of the latent population
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with zero risk may not hold true empirically, the estimate
of p always reflects the “empirical surviving fraction” ex-
pected from the shape of the empirical survivor function
around the end of normal period of risk.

2. METHODS

Parameter estimation for the extended family of the gen-
eralized Gamma model was described in detail by Lawless
(1982). This procedure is modified here to incorporate the
simultaneous estimation of parameters for the surviving
fraction. First, the maximum likelihood estimates for pa-
rameters «, 3, and log(o) are obtained for each fixed value
of A, using the Newton—-Raphson algorithm. Then, the search
for the value of A that maximizes the log-likelihood function
is made. The calculation of the incomplete Gamma integral
is based on the formula of a series development presented
by Abramowitz and Stegun (1972, p. 262).

One problem exists in comparing parameters for models
that introduce surviving fractions as a logistic function of
covariates. Because the estimate of surviving fraction p may
approach 0 for some categories of nominal covariates, the
estimates of certain parameters thereby approach minus in-
finity, and, further, their standard errors approach infinity
more rapidly than these parameter estimates approach minus
infinity. Although we still can attain the convergence of es-
timates for other parameters and the log-likelihood in such
situations, the significance of parameter estimates that ap-
proach minus infinity is lost asymptotically. Hence the dif-
ference between a parameter with an estimate of minus in-
finity and another parameter is tested with a one-degree-of-
freedom likelihood ratio test, instead of the test based on the
variance-covariance matrix of parameter estimates. The
likelihood ratio test compares the model that imposes the
identity of two parameters with the model that does not make
this imposition.

Model selection is based primarily on the Bayesian infor-
mation criterion (BIC) introduced by Raftery (1986). This
statistic for comparing models among exponential families
was initially advocated by Schwarz (1978). Raftery (1986)
showed its general usefulness in selecting among models for
contingency tables, and Heckman and Walker (1987) rec-
ommended its use for selecting among models for duration
data. Although Raftery’s version uses the saturated model
for comparison, here BIC is calculated using the constant
rate model for comparison:

BIC = L? — (np)log(N), &)

where L? is the likelihood ratio chi-squared statistic (with
respect to the likelihood function of Y = log(T’) for the sig-
nificance test of parameters in the model against the constant
rate model, np is the number of parameters that the tested
model adds to the constant rate model, and NV is the number
of observations. The model that maximizes BIC is the best
model among those compared.

3. DATA AND HYPOTHESES

The data for the analyses presented in this article come
from the 1975 Social Stratification and Mobility Survey in
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Japan, whose major results were edited by Tominaga (1979).
Cheng (1988), Grusky (1983), and Yamaguchi (1987) also
used this data set to analyze job shift patterns, status attain-
ment, and intergenerational occupational mobility. The sur-
vey collected work history data from a national representative
sample in Japan. Because the timing of job separations was
coded by the age of occurrence rather than by the year and
month of occurrence, the failure-time data are somewhat
crude. Nevertheless, this survey provides the only publicly
available data of complete work histories in Japan.

The present analysis is based on a sample of nonfarm
male employees age 20-64 in 1975. The dependent variable
is the log-duration of the first full-time employment after
the completion of schooling. The following variables are em-
ployed as predictors for the timing of interfirm job separa-
tions and the surviving fraction: (a) a six-category scheme
for firm size (private firms with 1-4 employees, 5-29 em-
ployees, 30-299 employees, 300-999 employees, and 1,000
or more employees, and government) and (b) the distinction
between white collar and blue collar occupations. These two
variables are selected because of their centrality in previous
research (Cheng 1988; Cole 1979; Koike 1983a,b; Tominaga
1964; Tsuzuki 1989).

Firm size has been used in previous research as the major
correlate of interfirm job mobility and age-wage profiles in
Japan (Cheng 1988; Cole 1979; Hashimoto 1990; Koike
1983a,b; Tan 1980; Tominaga 1964; Tsuzuki 1989). Theo-
retically, permanent employment with the seniority-based
wage system found in large Japanese firms is considered as
a functional alternative to the internal labor market (Cole
1973; Sumitani 1974a,b) found in some American firms to
retain workers with firm specific skills (Doeringer and Piore
1971). To the extent that internal labor markets are associated
with large firms, we expect firm size to have a positive effect
on the surviving fraction of interfirm job separations. Hence
we expect:

Hypothesis 1. As firm size becomes larger, the surviving
fraction will be larger.

Employees in small firms, who have lower salaries or
wages, security, and fringe benefits (Koike 1983b; Steven
1983), are expected to have a higher probability of finding
better jobs in other firms. This is especially true when em-
ployees are young, because labor markets are less rigid re-
garding their job mobility. Hence, employees in small firms
have a significantly higher relative frequency of interfirm job
separations than do employees in larger firms, especially
when the duration of their first employment is short. Thus
we expect:

Hypothesis 2. As firm size becomes smaller, the timing
of interfirm job separation will be more accelerated, given
that job separation occurs.

Although government and large private firms are known
for the wide practice of permanent employment (Cole 1979;
Yamaguchi 1983), the government is known to have a larger
salary return for tenure. This salary schedule is characterized
by a smaller salary at the beginning of employment and a
larger salary (including retirement allowance) at the end of
employment (Yamaguchi 1983). Compared with employees
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of large private firms, government workers who leave their
jobs have less to lose in terms of salary in the beginning and
more to lose later. Hence we expect:

Hypothesis 3. Compared to employees of large private
firms, government employees will have an accelerated timing
of interfirm job separation, given that job separation occurs.

However, the extent of permanent employment as em-
ployees’ tendency to work for their employer until retirement
may not be different between the two groups of firms, because
both groups typically have permanent employment policies.
In other words, the surviving fraction can be the same in
government and large private firms.

The importance of the distinction between white collar
and blue collar employees has been documented in previous
studies of job mobility (e.g., Cheng 1988; Tominaga 1964)
and age-wage profiles (Koike 1983a,b). Studies of large
manufacturing firms (Abegglen 1958; Dore 1973) found
permanent employment policies applied equally to white
collar and blue collar workers. However, studies of job mo-
bility found differences between white collar and blue collar
employees regarding the rate of interfirm job separations
(Cheng 1988; Tominaga 1964). We shall examine whether
differences between white collar and blue collar workers tend
to reflect differences in the tendency to remain in the same
firm “permanently” or differences in the timing of job sep-
arations.

The raw data used for the analysis are given in Table 1.
All the results from the application of models presented in
subsequent tables can be reproduced from this table. The
duration data represent the difference between the age of the
first full-time employment and either the age of the first in-
terfirm job separation, for those who had a separation, or
the age at the time of the survey for censored cases. Age
differences greater than 30 are treated as censored at the 31st
year, because interfirm job separations after more than 30
years of employment tend to involve retirement and the data
do not distinguish retirement from other voluntary job sep-
arations. By setting the 31st year of employment as an ad-
ditional censoring time, we effectively can eliminate the con-
founding of retirement with occurrences of the event. This
is necessary because many large private firms had early re-
tirement policies during the time period covered in this study,
such as mandatory retirement at age 55 (Cole 1979; Koike
1983a). This strategy may not seem workable for subjects
entering full-time employment at an older age (age 26 or
over), who may retire before serving 30 years in their firms.
Only 1.3% of subjects in the risk set, however, had a late first
employment and left their firms before the survey date; fur-
ther, the oldest age of departure among them was 50, still
too early for a retirement.

Some cases have a duration value of 0, occurring when
subjects left their employers at the same age as they were
hired. Because duration values of 0 generate a problem, two
alternative treatments are tested. The first treatment is to
add 1 to all duration values. The second treatment is to assign
the expected value of duration to cases with 0 duration ac-
cording to (a) certain assumptions about the distribution of
entries into the risk set and (b) the assumption of a uniform
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Table 1. Number of Events and Censored Observations by Firm Size, Occupation, and the Difference Between the Age at Entry Into the First Job
and Age at the Occurrence of First Interfirm Job Separation/Censoring: Employed Med Age 20-64 in 1975

Number of censored Number of censored
Number of events observations Number of events observations
Firm size® Firm size® Firm size® Firm size®
Age
difference 1 2 3 4 5 6 1.2 3 4 5 6 17 2 3 4 5 6 1.2 3 4 5 6
|. White collar workers Il. Blue collar workers
2 3 1 5 4 7 3 2
18 8 18 13 13
14 5 31 9 19
16 13 19 15 19
16 15 13
1 15 12
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NOTE: N =1731.

* Number of employees: 1: 1-4; 2: 5-29; 3: 30-299; 4: 300-999; 5: 1,000 and over; 6: Government.
® The number of cases censored because they have reached the upper limit of the 30-year duration period.

distribution of events during the age of employment. The
first method generated a substantially larger log-likelihood
than did the second method for each tested model, indicating
a greater probability of predicting the observed data according
to BIC. For this reason, the following analyses use Y
= log[(age difference) + 1] for the observation of log(T).

4. ANALYSES

First, 12 models are tested. Then an additional model
(which turned out to be the best model) is also tested. The
first 12 models represent combinations of (a) two parametric
types (log-normal and generalized Gamma), (b) three types
of surviving fractions (zero surviving fraction, a positive
constant surviving fraction, and heterogeneous surviving
fractions that depend on covariates), and (c) two types of
covariate effects (main effects of firm size and occupation,
and both main and interaction effects of firm size and oc-
cupation). The results for the log-normal model among spe-
cial cases of the extended family of the generalized Gamma
model are presented, because this model is equivalent to the
linear regression model of censored log-duration data with

a normally distributed error term. In the following, the ex-
tended family of the generalized Gamma model is referred
to simply as the generalized Gamma model. Table 2 presents
the likelihood ratio chi-squared statistic, degrees of freedom,
and BIC for the 13 models.

The results show that, according to BIC, the generalized
Gamma model that hypothesizes the main effects of co-
variates on both the timing and the surviving fraction (i.e.,
Model I-3G) is the best model among the first 12 models).
It is worthwhile to note that this new model—which intro-
duces heterogeneous surviving fractions—greatly improves
the fit of the corresponding accelerated failure-time model
(Model I-3G compared with Model I-1G) in terms of both
likelihood ratio test and BIC.

The interaction effects between firm size and occupation
are significant according to the likelihood ratio test at the
.01 level (Model II-3G versus. Model I-3G), but make the
BIC value smaller. Model 1I-3G, which introduces full in-
teraction effects of occupation and firm size, makes the BIC
statistic smaller in part because it uses 10 parameters to
characterize the interaction effects. Results from Model
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Table 2. Comparison of Models

L2e np® BIC
I. Models with only main effects of firm size and occupation
1. Models with a zero surviving fraction
L. Log-normal 428.92 7 376.72
G. Generalized Gamma 515.00 8 455.35
2. Models with a constant nonzero surviving fraction
L. Log-normal 494.04 8 434.38
G. Generalized Gamma 518.18 9 451.07
3. Models with heterogeneous surviving fractions
L. Log-normal 595.74 14 491.35
G. Generalized Gamma 620.94 15 509.09

IIl. Models with full interaction effects of firm size and occupation
1. Models with zero surviving fraction

L. Log-normal 445.60 12 356.12

G. Generalized Gamma 521.58 13 424 64
2. Models with a constant nonzero surviving fraction

L. Log-normal 506.80 13 409.87

G. Generalized Gamma 526.10 14 421.71
3. Models with heterogeneous surviving fraction

L. Log-normal 626.14 24 44719

G. Generalized Gamma 645.86 25 459.45

lll. Additional Models
Model I-3G plus an interaction effect, [blue collar work]
X [firms with 30-299 and 300-999 employees and government],
on the surviving fraction

628.88 16 509.58

NOTE: N =1,731.

* Likelihood-ratio chi-squared compared with the constant rate model regarding the likelihood
function of Y = log(T). The log-likelihood of the constant rate model is —2,313.68.

® The number of parameters added to the constant rate model.

II-3G (not reported), however, suggest a specific pattern of
interaction effects in the regression on surviving fraction.
This pattern is tested by introducing one parameter to Model
I-3G. As shown in Table 2, the 13th model thus formulated
(Model III) improves the fit of Model I-3G in terms of both
likelihood ratio test and BIC. It becomes the best of the 13
models according to both comparison criteria. The added
single parameter explains about one-third of the chi-squared
difference between Models I-3G and II-3G.

The absolute fit of Model III with the data cannot be easily
tested. But a fair extent of agreement exists between the sur-
vivor function estimated from Model III and the survivor
function estimated nonparametrically by the Kaplan-Meier
product limit method. The former estimate of the survivor
function lies consistently within the 95% confidence interval
of the Kaplan-Meier estimate for most covariates’ values,
although the Kaplan-Meier estimates for the survivor func-
tion are less smooth. Figure 1 presents a typical example of
this situation for the category of white collar workers in firms
with 1,000 or more employees. Figure 1 presents the Kaplan—
Meier estimate of the survivor function, the upper and lower
95% confidence limits, and survivor functions estimated by
Models I1I and I-1G. The graph shows that the estimate from
the generalized Gamma model without the surviving fraction
(i-e., Model I-1G) falls outside the confidence interval of the
Kaplan—Meier estimate for a significant range of employment
duration, but the estimate from Model III falls consistently
within the interval.
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Table 3 presents parameter estimates from Models I-1G,
I-3G, and III and, for comparison, the results from the pro-
portional hazards models based on Cox’s partial likelihood
method.

The results from Model III (the best-fitting model) and
Model I-3G show that both firm size and occupation affect
the surviving fraction much more strongly than they affect
acceleration/deceleration in the timing of job separations.
In fact, the occupation effect on acceleration/deceleration of
the timing of job separations is statistically insignificant. On
the other hand, the results from these two models indicate
that blue collar workers have a significantly larger lifetime
probability of an interfirm job separation than do white collar
workers. The interaction effect of Model III further indicates
that this tendency is especially strong for workers employed
in government, in private firms with 30-299 employees, and
in private firms with 300-999 employees.

In contrast, the results from both the generalized Gamma
model without the surviving fraction (Model I-1G) and the
Cox model are less informative, even though they both con-
sistently reveal that smaller firms and blue collar occupations
are associated with shorter duration of employment. Param-
eter estimates in the Cox model change signs, because positive
effects on hazard rates imply shorter duration. The Cox
model does not separate the effects of covariates on the sur-
viving fraction from those on acceleration/deceleration.
Model I-1G assumes a zero limiting survival probability and
therefore erroneously attributes all the effects of covariates
to differences in the acceleration/deceleration of the timing
of job separations.

Table 4 presents results from Model III regarding differ-
ences in the timing and the surviving fraction among firms
of different sizes. The significance test for differences between
firm-size effects is based on the variance-covariance matrix
of parameter estimates, except for differences that include
minus infinity as a parameter estimate. For the latter cases,
a one-degree-of-freedom likelihood ratio test is used by com-
paring Model III against the model that imposes each par-

Survival Probability
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13 S5 7 9 11 131517 19 21 23 25 27 29 31
Years of Employment + 1

Figure 1. Estimated Survivor Functions. White Collar, Firms with 1,000+
Employees. + = Kaplan-Meier; V = Lower 95% C.L.; A = Upper 95% C.
L.; ® = Model Iil; m = Model I-1G.
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Table 3. Parameter Estimates From Selected Models
Model I-1G Model I-3G Model Ill Cox’s model
b b/s.e. b b/s.e. b b/s.e. b b/s.e.
Shape parameter (\)® —1.063 —.625 —.631 (N.A)
Log (scale parameter) .023 (1.0) -.172 (-5.7) -.167 (-5.3) (N.A))
1. Parameters for covariates on log (duration)
A. Intercept 2.122 (34.4) 1.815 (24.5) 1.808 (24.4) (N.A)
B. Firm size (versus 1,000+)
1-4 —.548 (—5.6) —-.240 (—2.6) —.236 (—2.5) .868 (7.6)
5-29 —.409 (—5.5) -.149 (—1.9) —.150 (—1.9) .687 (7.4)
30-299 —.347 (—4.6) -.174 (—-2.1) —.143 (-1.7) .486 (5.5)
300-999 —-.381 (—4.1) —-.257 (—2.6) -.251 (—2.5) 479 4.1)
government -.210 (—-2.4) -.176 (-1.7) -177 (-1.8) .281 (2.4)
C. Blue collar (versus white collar)
-.220 (—4.2) —.080 (—1.5) -.077 (—1.5) .351 (5.4)
2. Parameters for covariates on surviving fractions
A. Intercept — —.154 (—.8) -.379 (—1.8) (N.A)
B. Firm size (versus 1,000+)
1-4 — [-ool® —.09 [—ool® (—.09 (N.A)
5-29 — —2.466 (—3.6) —2.362 (-3.8) (N.A)
30-299 — -1.015 (—3.5) —-.753 (-2.2) (N.A)
300-399 — —.667 (-2.1) —-.183 (=.5) (N.A)
government — —.418 (-1.7) -111 (—.4) (N.A)
C. Blue collar (versus white collar)
— -1.120 (—4.8) —.597 (—2.1) (N.A)
D. Interaction: [blue collar]#*[30-999 + government]
— — —1.425 (-2.2) (N.A)

NOTE: Coeff./s.e. in parentheses.

* The standard error of the shape parameter is not estimated. See the method section in the text.

® The coefficient asymptotically goes to —co.
¢ The ratio, coeff./s.e., asymptotically goes to 0.

ticular hypothesized equality. For white collar workers, the
hypotheses tested by the likelihood ratio test include hy-
potheses oy = a; for i = 2, i = 3,i =4 and i = 5 and
hypothesis a; = 0. Some hypotheses for blue collar workers
are identical to those for white collar workers, and others
include hypotheses o) = a; + a; fori = 3,i=4,and i = 5,
where a; represents the parameter for the interaction effect
described in 2D of Table 3.

The results in Table 4 show that, with respect to timing,
significant differences exist only between the largest private
firms with 1,000 or more employees and all other firms; the
latter has an accelerated timing of interfirm job separations
compared to the former. This finding is consistent with hy-
pothesis H3, which posits an accelerated timing of job sep-
aration for government workers compared to that for em-
ployees of large private firms. It partially supports hypothesis
H2, which posits an accelerated timing of job separations
for smaller firms.

As for differences in the surviving fraction, the results in
Table 4 indicate that among white collar workers, firms of
different sizes are clustered into three groups: (1) the group
with the highest surviving fraction, which includes govern-
ment and large private firms with 300-999 or 1,000 or more
employees; (2) the group with a middle-level surviving frac-
tion, which includes medium-sized firms with 30-299 em-
ployees; and (3) the group with the lowest surviving fraction,

which includes small firms with 1-4 or 5-29 employees. This
finding supports hypothesis H1, which posits a positive effect
of firm size on the surviving fraction.

Among blue collar workers, significant differences in sur-
viving fraction exist only between the largest private firms
and other firms, with the former having a significantly larger
surviving fraction. Hence the results for blue collar workers
only partially support hypothesis H1. Table 5 presents the
expected values of surviving fractions based on Model III,
which clearly indicate three levels of surviving fractions for
white collar workers and two levels for blue collar workers.
For each group of workers, the lowest level of the surviving
fraction is not significantly different from 0, as shown in
Table 4. Descriptions of higher levels of surviving fractions
are included in the summary of findings presented in the
following section.

5. SUMMARY AND DISCUSSION

Using the new models yields the following findings for the
analysis of interfirm job mobility in Japan:

1. Among white collar workers, the surviving fraction is
about 36-41% for government and large private firms with
300 or more employees and about 24% for medium-sized
firms. It follows that for white collar workers, a tendency for
permanent employment exists in a wide range of relatively
large firms.
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Table 4. Pairwise Comparisons of Parameter Estimates Between
Employees of Different Firm Sizes Based on Model Il
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Table 5. Estimated Surviving Fraction From Model Ill
by Firm Size and Occupation

Comparisons Comparisons of «
of B parameters
parameters

—————  White collar Blue collar

All employees employees employees
1-4 vs. 5-29 —.086 [-o0]® [—o0]®
1-4 vs. 30-299 —-.093 [—oo]***2 [-]?
1-4 vs. 300-999 .015 [—o0]***2 [-0]®
1-4 vs. govern. —.059 [—o0]***2 [-o]?
1-4 vs. 1,000+ —-.236* [—oo]***2 [—oo]***®
5-29 vs. 30-299 -.007 —1.589* —.184
5-29 vs. 300-999 101 —-2179** —.754
5-29 vs. govern. .026 —2.251*** —.826
5-29 vs. 1,000+ —.150t —2.362*** —2.362***
30-299 vs. 300-999 .108 —-.570 -.570
30-299 vs. govern. .034 —.642% —.642t
30-299 vs. 1000+ —.143% —.753* —-2.178***
300-999 vs. govern. .034 -.072 -.072
300-999 vs. 1,000+ -.251* -.183 —1.608**
govern. vs. 1,000+ 177t -111 —1.536*

NOTE: ***p<.001;**p<.01;"p<.05tp<.10

* The significance level is based on the one-degree-of-freedom likefihood ratio test that compares
Model! lll with the model that imposes the parametric equality of relevant two effects. (See text
for details.)

2. Among blue collar workers, the surviving fraction is
about 27% for private firms with 1,000 or more employees
and is not significantly larger than 0 for other firms. It follows
that for blue collar workers, a tendency for permanent em-
ployment exists only for employees in the largest private
firms and that this tendency is weaker than that for white
collar workers in government and large private firms.

3. Controlling for differences in the surviving fraction,
the effects of firm size on the acceleration/deceleration of
timing are weak. Significant differences are found only be-
tween employees of the largest private firms and those of all
other firms, with the latter group having a relatively accel-
erated timing of job separation. This may be due to a higher
starting salary for employees in the largest private firms as
compared to that of employees in other firms.

4. Controlling for firm size, white collar workers have a
significantly larger surviving fraction than do blue collar
workers, especially for government and private firms with
30-999 employees.

5. Controlling for differences in surviving fraction and
firm size, there is no difference in the timing of job separa-
tions between white collar and blue collar workers.

Extending the accelerated failure time regression model
by introducing a regression model of surviving fractions has
advantages and disadvantages compared to proportional
hazards and related hazard rate regression models. The major
advantage is that we can distinguish the effects of covariates
on the timing of occurrence and on the lifetime probability
of occurrence. As demonstrated in the summary findings
described in the previous paragraphs, the new model provides
substantive insights into the duration data that cannot be
gained—at least in as definite and parsimonious a way as is
done here—by using other models.

The application presented in this article also shows that
parameter estimates governing the surviving fraction are

Firm size White collar Blue collar
1-4 .000 .000
5-29 .061 .034
30-299 244 .041
300-999 .363 .070
1,000+ .406 274
Government .380 .075

largely independent of those governing acceleration/decel-
eration. Table 6 presents correlations between the two sets
of parameter estimates derived from the variance—covariance
matrix of parameter estimates from Model I-3G, which uses
the same set of covariates for « and § parameters. The neg-
ative correlation between the estimates of «; and §; in the
diagonal cells of Table 6 shows that a larger (smaller) estimate
for «; will be compensated for to some extent by making the
estimate of (8; smaller (larger). Even for the pair with the
largest absolute value of correlation, however, one can ex-
plain less than 12% [.118 = .343?] of the variability of the
other.

The new model has several major disadvantages as com-
pared to the proportional hazards model, however. First,
like accelerated failure-time models, the modified models
introduced in this article cannot use time-dependent co-
variates. Second, even though the generalized Gamma model
is relatively flexible in capturing the shape of hazard and
surviving functions, with the addition of the surviving frac-
tion making it even more flexible, the modeling of time de-
pendence is still much more flexible in the proportional haz-
ards and related hazard rate regression models. Therefore,
the chance of achieving a good fit of models with data is
higher for the latter models. Finally, the models introduced
in this article require a richer data set in terms of information
about the survivor function near the end of the normal period
of risk.

Given these disadvantages of the new models compared
to the proportional hazards and related hazard rate regression
models, the former models will not become a substitute for
the latter models in most empirical situations. But when the
key issues involve the distinction between timing and lifetime
probability of occurrence and the effects of time-independent
covariates on these outcomes, the models introduced in this
article can be very useful.

Table 6. Correlations Between Two Sets of Parameter Estimates

Based on Model I-3G?®
oy oy ag oy Qs Qg
B4 .000® .015 -.103 -.130 —.145 103
B2 .000° —.245 —.148 -.154 -179 .055
Bs .000°® —.049 -.343 —.143 -.173 .026
Ba .000°® -.019 -.109 -.325 -.129 .100
Bs .000° —.006 -.101 -.108 —.292 .052
Be .000° .043 .021 .063 —.040 —.245

* Subscripts indicate for both « and 8: 1: 1-4 employees (versus 1,000+); 2: 5-29 employees;
3: 30-299 employees; 4: 300-999 employees; 5: government; 6: blue collar (versus white collar).
b The estimate asymptotically goes to 0.
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On the other hand, the models introduced in this article
can be considered improvements of accelerated failure-time
models. Although representative accelerated failure-time
models can be applied using SAS-LIFEREG, they carry a
built-in assumption of a zero limiting survival probability.
But because this assumption may not be realistic in the anal-
ysis of most life events, except for death, these models likely
will have a poor fit with data (Wu 1990). On the other hand,
for any given accelerated failure-time model, we always can
test whether the additional regression model for the surviving
fraction improves the fit. If it does, then we not only obtain
a better fitting model but also gain deeper and more accurate
insights into the data.

[Received December 1989. Revised October 1991.]

REFERENCES

Abegglen, J. (1958), The Japanese Factory, New York: Free Press.

Abramowitz, M., and Stegun, 1. A. (1972), Handbook of Mathematical
Functions with Formulas, Graphs, and Mathematical Tables; Washington
DC: U.S. Government Printing Office.

Bennett, N. G., Bloom, D. E., and Craig, P. H. (1989), “The Divergence of
Black and White Marriage Patterns,” American Journal of Sociology, 95,
692-722.

Cheng, M. T. (1988), “Job Shift Patterns of the Japanese Male Labor Force,”
unpublished Ph.D. dissertation, University of California, Los Angeles,
Department of Sociology.

Cole, R. E. (1972), “Permanent Employment in Japan: Facts and Fantasies,”
Industrial and Labor Relations Review, 26, 615-630.

(1973), “Functional Alternatives and Economic Development: An

Empirical Example of Permanent Employment in Japan,” American So-

ciological Review, 38, 424-438.

(1979), Work, Mobility, and Participation: A Comparative Study of
American and Japanese Industry. Berkeley: University of California Press.

Cole, R. E., and Siegel, P. (1980), “Alternative Job-Changing Patterns: A
Detroit-Yokohama Comparison,” Paper presented at the Japan-United
States Conference on Social Stratification and Mobility, Honolulu, Hawaii.

Diekmann, A. (1989), “Diffusion and Survival Models for the Process of
Entry Into Marriage,” Journal of Mathematical Sociology, 14, 31-44.

Diekmann, A., and Mitter, P. (1983), “The ‘Sickle-Hypothesis’> A Time-
Dependent Poisson Model With Applications to Deviant Behavior and
Occupational Mobility,” Journal of Mathematical Sociology, 9, 85-101.

(1984), “A Comparison of the ‘Sickle Function’ With Alternative
Stochastic Models of Divorce Rates,” in Stochastic Modeling of Social
Processes, eds. A. Diekmann and P. Mitter, New York: Academic Press,
pp. 123-153.

Doeringer, P. B., and Piore, M. J. (1971), Internal Labor Market and Man-
power Analysis. Lexington, MA: Lexington Books.

Dore, R. P. (1973), British Factory—Japanese Factory: Origins of National
Diversity in Industrial Relations, Berkeley, CA: University of California
Press.

Farewell, V. T. (1977), “A Model for a Binary Variable with Time-Censored
Observations,” Biometrika, 64, 43-46.

Grusky, D. B. (1983), “Industrialization and the Status Attainment Process:
The Thesis of Industrialization Reconsidered,” American Sociological
Review, 48, 494-506.

Hashimoto, M. (1990). The Japanese Labor Market in a Comparative Per-
spective with the United States. Kalamazoo, MI: W. E. Upjohn Institute.

Heckman, J. J., and Walker, J. R. (1987), “Using Goodness of Fit and Other
Criteria to Choose Among Competing Duration Models: A Case Study

Journal of the American Statistical Association, June 1992

of Hutterite Data,” in Sociological Methodology 1987, ed. C. C. Clogg,
Washington DC: American Sociological Association, pp. 205-246.

Hernes, G. (1972), “The Process of Entry into Marriage,” American Socio-
logical Review, 37, 173-182.

Kalbfleisch, J. D., and Prentice, R. L. (1980), The Statistical Analysis of
Failure Time Data, New York: John Wiley.

Koike, K. (1983a), “Internal Labor Markets: Workers in Large Firms,” in
Contemporary Industrial Relations in Japan, ed. T. Shirai, Madison, WI:
University of Wisconsin Press, pp. 29-62.

(1983b), “Workers in Small Firms and Women in Industry,” in
Contemporary Industrial Relations in Japan, ed. T. Shirai, Madison, WI:
University of Wisconsin Press, pp. 89-116.

Lawless, J. F. (1982), Statistical Models and Methods for Lifetime Data,
New York: John Wiley.

Marini, M. M., and Hodsdon, P. (1981), “Effects of the Timing of Marriage
and the First Birth on the Spacing of Subsequent Births,” Demography,
18, 529-548.

Marsh, R., and Mannari, H. (1971), “Lifetime Commitment in Japan: Roles,
Norms, and Values,” American Journal of Sociology, 76, 795-812.

Miller, R. G. (1981), Survival Analysis, New York: John Wiley.

Millman, S. R., and Hendershot, G. E. (1980), “Early Fertility and Lifetime
Fertility,” Family Planning Perspectives, 12, 139-140, 145-149.

Prentice, R. L. (1974), “A Log-Gamma Model and Its Maximum Likelihood
Estimation,” Biometrika, 61, 539-544.

Raftery, A. E. (1986), “A Note on Bayes Factors for Log-Linear Contingency
Table Models With Vague Prior Information,” Journal of the Royal Sta-
tistical Society, Ser. B, 48, 249-250.

SAS Institute (1985), SAS User’s Guide: Statistics (Version 5) Cary, NC:
Author.

Schoen, R., and Kluegel, J. R. (1988), “Changing Pattern of First Marriage
in the United States,” Demography, 22, 265-279.

Schwarz, G. (1978), “Estimating the Dimension of a Model,” The Annals
of Statistics, 6, 461-464.

Spanier, G. B. (1983), “Married and Unmarried Cohabitation in the United
States,” Journal of Marriage and the Family, 45, 277-288.

Stacy, E. W. (1962), “A Generalization of the Gamma Distribution,” The
Annals of Mathematical Statistics, 33, 1187-1192.

Steven, R. (1983), Classes in Contemporary Japan, Cambridge, U.K.: Cam-
bridge University Press.

Sumitani, M. (1974a), “Nihonteki Roshi Kankei no Saikento, Jo [Japanese
Labor-Management Relations Revisited—Part I],” Nihon Rodo Kyokai
Zasshi [The Journal of the Japanese Labor Association), 185, 2-16.

(1974b), “Nihonteki Roshi Kankei no Saikento, Ge [Japanese Labor-
Management Relations Revisited—Part II],” Nihon Rodo Kyokai Zasshi
[The Journal of the Japanese Labor Association), 187, 2-11.

Taira, K. (1962), “Characteristics of Japanese Labor Markets,” Economic
Development and Cultural Change, 10, 150-168.

Tan, H. W. (1980), “Human Capital and Technical Change: A Study of
Wage Differentials in Japanese Manufacturing,” unpublished Ph.D. dis-
sertation, Yale University, Department of Economics.

Tominaga, K. (1964), “Hinon Shakai to Rodo Ido [Japanese Society and
Labor Mobility],” in Gijutsu Kakushin to Ningen no Mondai [Techno-
logical Development and Human Problems), ed. K. Odaka, Tokyo, Japan:
Diamond Press, pp. 277-306.

Tsuzuki, K. (1989), “Shokureki Kenkyu ni Okeru Ido to Jikan [Career Mo-
bility as a Dynamic Process],” Sociological Theory and Methods, 4, 25-
40.

Wuy, L. L. (1990), “Simple Graphical Goodness-of-Fit Test for Hazard Rate
Models,” in Event History Analysis in Life Course Research, eds. K. U.
Mayer and N. B. Tuma, Madison, WI: University of Wisconsin Press,
pp. 109-117.

Yamaguchi, K. (1987), “Models for Comparing Mobility Tables: Toward
Parsimony and Substance,” American Sociological Review, 52, 482-494.

Yamaguchi, K. (1983), “The Public Sector: Civil Servants,” in Contemporary
Industrial Relations in Japan, ed. T. Shirai, Madison, WI: University of
Wisconsin Press, pp. 295-312.






