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High-Temporal-Resolution Lung Kinetic Modeling Using
Total-Body Dynamic PET with Time-Delay and Dispersion
Corrections

Yiran Wang1,2, Benjamin A. Spencer1,2, Jeffrey Schmall3, Elizabeth Li2, Ramsey D. Badawi1,2, Terry Jones1,
Simon R. Cherry1,2, and Guobao Wang1

1Department of Radiology, University of California Davis Medical Center, Sacramento, California; 2Department of Biomedical
Engineering, University of California at Davis, Davis, California; and 3United Imaging Healthcare of America, Inc., Houston, Texas

Tracer kinetic modeling in dynamic PET has the potential to improve the
diagnosis, prognosis, and research of lung diseases. The advent of total-
body PET systems with much greater detection sensitivity enables high-
temporal-resolution (HTR) dynamic PET imaging of the lungs. However,
existing models may become insufficient for modeling the HTR data. In
this paper, we investigate the necessity of additional corrections to the
input function for HTR lung kinetic modeling. Methods: Dynamic scans
with HTR frames of as short as 1 s were performed on 13 healthy sub-
jects with a bolus injection of about 370 MBq of 18F-FDG using the uEX-
PLORER total-body PET/CT system. Three kinetic models with and
without time-delay and dispersion corrections were compared for the
quality of lung time–activity curve fitting using the Akaike information
criterion. The impact on quantification of 18F-FDG delivery rate K1, net
influx rate Ki and fractional blood volume vb was assessed. Parameter
identifiability analysis was also performed to evaluate the reliability
of kinetic quantification with respect to noise. Correlation of kinetic
parameters with age was investigated. Results: HTR dynamic imaging
clearly revealed the rapid change in tracer concentration in the lungs and
blood supply (i.e., the right ventricle). The uncorrected input function led
to poor time–activity curve fitting and biased quantification in HTR kinetic
modeling. The fitting was improved by time-delay and dispersion correc-
tions. The proposed model resulted in an approximately 85% decrease
in K1, an approximately 75% increase in Ki , and a more reasonable vb
(�0.14) than the uncorrected model (�0.04). The identifiability analysis
showed that the proposed models had good quantification stability for
K1, Ki, and vb. The vb estimated by the proposed model with simulta-
neous time-delay and dispersion corrections correlated inversely with
age, as would be expected.Conclusion:Corrections to the input func-
tion are important for accurate lung kinetic analysis of HTR dynamic
PET data. The modeling of both delay and dispersion can improve
model fitting and significantly impact quantification of K1, Ki , and vb.
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PET with 18F-FDG or other radiotracers is a promising method
for studying a variety of lung diseases, including lung cancer (1),

acute lung injury (2,3), asthma (4), lung fibrosis (5), and recently
coronavirus disease 2019 (6). The SUV is a traditional semiquanti-
tative measure for evaluating lung 18F-FDG uptake (7,8), whereas
kinetic analysis through compartment modeling (9) has shown the
potential to provide more quantitative tracer kinetics, for example,
the 18F-FDG delivery rate K1 (10), net influx rate Ki (11–15), and
fractional blood volume vb (13,16), to better characterize lung dis-
eases in previous human and animal studies. However, conven-
tional PET scanners have a relatively poor sensitivity and limited
temporal resolution (e.g., 10–40 s/frame) for dynamic imaging,
which in turn affects the performance of lung kinetic quantification.
The advent of the uEXPLORER (United Imaging) total-body PET

and other scanners with a long axial field of view (17–19) has brought
new opportunities to improve lung kinetic modeling by offering a large
axial field of view to cover the entire lungs with improved detection
efficiency, allowing high-temporal-resolution (HTR) imaging, such as
with 1 s or even a subsecond per frame (20,21). The HTR ability is
especially useful for capturing the rapidly changing early phase of
tracer uptake in lung tissues. Meanwhile, image-derived input func-
tions (IDIFs) can also be extracted with HTR from major blood pools
(e.g., ventricles and large blood vessels) for kinetic modeling (21,22).
In this work, we investigate the use of HTR data for lung kinetic
quantification with total-body PET, expecting improvement especially
for those parameters that are sensitive to the early kinetics, such as
18F-FDG K1 and vb.
One challenge with using HTR data is the potential need for

additional corrections for the IDIF. Recent work on total-body PET
kinetic modeling has considered time-delay correction to account
for the difference between the tracer arrival time in a tissue and the
arrival in the blood pool, where the IDIF is extracted (21–23).
However, dispersion (24,25) may also occur when the tracer travels
from the location at which the IDIF is determined to the capillaries
of the lungs. The correction for either time delay or dispersion has
only rarely been investigated in previous studies of lung kinetic
modeling and is usually omitted (2,26–28), partly because of the
limited temporal resolution (e.g., 10 s/frame) of conventional
dynamic PET. Here, we hypothesize that a simultaneous correction
for both the time-delay and dispersion effects is essential for accu-
rate kinetic modeling in HTR dynamic PET imaging of the lungs.

MATERIALS AND METHODS

HTR Dynamic Data Acquisition on uEXPLORER
Thirteen healthy human subjects (age [mean6SD], 49 6 15 y;

weight 82 6 18 kg; 6 men, 7 women) gave written informed consent
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and were scanned on a uEXPLORER total-body PET/CT system (29,30).
The study was approved by the Institutional Review Board at the Univer-
sity of California, Davis. After an ultralow-dose CT scan (140 kVp,
5 mAs), each participant underwent a dynamic 18F-FDG PET scan with
intravenous bolus administration of a dose of approximately 370 MBq.
Total-body PET imaging was performed for 60 min starting immediately
before the injection. The resulting list-mode data were reconstructed into
dynamic images using the vendor-supplied time-of-flight ordered-subset
expectation maximization algorithm with 4 iterations and 20 subsets and a
voxel size of 43434 mm3. The dynamic framing protocol contains 120
frames over 60 min: 6031 s, 3032 s, 6310 s, 6330 s, 123120 s,
and 63300 s; with HTR frames (1–2 s/frame) over the first 2 min. For
each subject, a region of interest (ROI) was placed in the right ventricle to
extract an IDIF CRVðtÞ to represent the pulmonary blood supply, the dom-
inant blood input to the lungs (31,32). Five ROIs were placed in the left
and right lungs (1 in each of the 5 lung lobes) to extract lung time–activity
curves from the dynamic images with diminished effects of motion and
spillover. The 5 lung-ROI time–activity curves were averaged to generate
a global lung time–activity curve �CTðtÞ for each of the 13 subjects. An
additional ROI was also placed in the left ventricle to extract the time–
activity curve CLVðtÞ for the purpose of comparison. In addition to the
HTR time–activity curves, time–activity curves of low temporal resolution
were generated using 10 s/frame for the first 3 min for all the ROIs.

Compartmental Modeling
18F-FDG kinetics in the extravascular lung is described by a

2-tissue irreversible (2Ti) compartmental model (33) and is illustrated
in Figure 1A. Suppose that CpðtÞ is the blood input function and that
Cf ðtÞ and CmðtÞ are the concentration of free and phosphorylated 18F-
FDG in the extravascular lung tissue. We would then have the follow-
ing differential equations to describe the system states:

d
dt

Cf ðtÞ
CmðtÞ

� �
5

2k22k3 0
k3 0

� �
Cf ðtÞ
CmðtÞ

� �
1

K1

0

� �
CpðtÞ, Eq. 1

where K1 (mL/min/cm3) and k2 (/min) indicate the blood-to-tissue
and tissue-to-blood 18F-FDG delivery rate constants, respectively.
k3 (/min) is the 18F-FDG phosphorylation rate constant. This irre-
versible model assumes that the dephosphorylation process is
negligible (i.e., the dephosphorylation rate constant k450) (13).

The 18F-FDG concentration in lung parenchyma, CtðtÞ, is the sum-
mation of the free and the phosphorylated 18F-FDG,

CtðtÞ5Cf ðtÞ1CmðtÞ5Hðt;jÞ �CpðtÞ, Eq. 2

where j5 ½K1, k2, k3�T, � denotes the convolution operation, and
Hðt;jÞ is the impulse response function of the 2Ti model:

Hðt;jÞ5 K1

k21 k3
k31k2e

2ðk2 1k3Þt
� �

: Eq. 3

The measured lung time–activity curve obtained by PET is modeled
by CTðtÞ, a mixture of the blood compartment and the tissue compart-
ment,

CTðtÞ5 ð12vbÞHðt;jÞ �CpðtÞ1vbCwbðtÞ: Eq. 4

CwbðtÞ is the whole blood activity and is usually approximated by
CpðtÞ for 18F-FDG.

Following previous studies (2,34,35), the right ventricle IDIF can
be used for the blood input,

CIDIF
p ðtÞ5CRVðtÞ, Eq. 5

because the pulmonary circulation accounts for most of the total
blood input to the lung (32).

The measured lung time–activity curve �CTðtÞ was fitted with the
model time–activity curve CTðtÞ using a nonlinear least-squares for-
mulation:

ĥ5argmin
h

WRSSðhÞ, WRSSðhÞ5
XM
m51

wm½�CTðtmÞ2CTðtmÞ�2

Eq. 6

whereWRSSðhÞ denotes the weighted residual sum of squares of the
curve fitting. h is the unknown parameter set, h5 ½vb,K1, k2, k3�T. tm
is the time of the m-th frame in a total of M frames, and wm is the
weight for frame m considering the time length and nuclear decay (36):

wm5Dtmexpð2ktmÞ: Eq. 7

Here Dtm is the length of the m-th frame, k5 lnð2Þ
T1=2

is the decay

constant, and the half-life T1=25109:8 min for 18F-FDG. This time-
varying weight was based on our initial studies of model fitting.

Modeling of Time-Delay Effect
Corrections for time delay were seldom considered in previous

studies of lung kinetic modeling (2,26–28) because the delay was usu-
ally only several seconds and tended to be blurred out by conventional
dynamic imaging of limited temporal resolution (e.g., 10 s/frame).
However, the time-delay effect will no longer be concealed with the
HTR measurement (e.g., 1 s/frame) and is likely to affect parameter
quantification if not accounted for.

To model the time-delay effect of the IDIF extracted from the right
ventricle, we include a time-delay parameter tRV (s) in the input func-
tion (Fig. 1B):

CIDIF2T
p ðtÞ5CRVðt2tRVÞ: Eq. 8

The proposed input function model with time-delay correction is
noted as IDIF-T. The time-delay parameter tRV is included in h and
will be jointly estimated with other kinetic parameters during time–
activity curve fitting.

Simultaneous Correction for Dispersion
Dispersion may occur when the tracer travels from the right ventri-

cle to the lung capillaries. Here, we model the actual lung blood input
as the convolution of the measured IDIF with a parameterized disper-
sion function following Iida’s monoexponential form (24,37),

FIGURE 1. (A) Compartmental model of lung kinetics. (B) Proposed
IDIF-T model with correction of time delay in input function. (C) Proposed
IDIF-T-D model with both time-delay and dispersion corrections included.
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CIDIF2T2D
p ðtÞ5CIDIF2T

p ðtÞ � kaexpð2katÞ5CRVðt2tRVÞ � kaexpð2katÞ:
Eq. 9

This input function model is denoted as IDIF-T-D (Fig. 1C), in
which both the dispersion parameter ka (/min) and time delay tRV (s)
are included in h for joint parameter estimation.

Note that here the simultaneous dispersion correction is different
from those explored for brain PET (25). Previous work focused on a
backward dispersion-correction problem (24,25). The measured input
function, such as by arterial blood sampling from the radial artery, is a
dispersed version of the actual input function. Therefore, the disper-
sion needs to be removed from the measured input function. In com-
parison, our work here is a forward dispersion-correction problem.
The actual lung input function is a dispersed version of the measured
IDIF, to which the dispersion needs to be added.

Evaluation of Time–Activity Curve Fit Quality
The Akaike information criterion (AIC) was used to compare the

statistical fit quality of different models (38,39),

AIC5Mln
WRSS

M

� �
1 2N1

2N2 1 2N
M2N21

, Eq. 10

where N is the number of unknown parameters to be optimized in h

and M is the number of dynamic frames. AIC reflects the trade-off
between the goodness of fit and the simplicity of the model and thus
accounts for the difference in the number of parameters that need to
be estimated. A lower AIC value indicates
better fitting quality.

Evaluation of the Impact on Kinetic
Quantification

We evaluated the impact of the corrections
on the quantification of 3 kinetic parameters
of interest: 18F-FDG delivery rate K1, net
influx rate Ki, and fractional blood volume vb.
Ki was calculated from the microparameters:

Ki5
K1k3
k21k3

: Eq. 11

The change in each kinetic parameter by a
given model was reported relative to the param-
eter estimate by the standard IDIF model, and
the reason for the quantification changes was
studied by analyzing the time–activity curve fit-
tings of different models.

Identifiability Analysis of Kinetic
Parameter Estimates

As the proposed models have more para-
meters to estimate than the standard 2Ti
model with the uncorrected IDIF, their kinetic
parameter identifiability may be a concern.
That is because a more complex model is
more likely to be sensitive to random noise
and may have reduced parameter stability. To
evaluate the parameter identifiability, a noisy
lung tissue time–activity curve ~CTðtmÞ was
simulated using a time-varying gaussian
model (40–42):

~CTðtmÞ � NðCT,m, ScdmÞ: Eq. 12

where CT,m is the m-th frame of the noise-
free time–activity curve generated by the
curve fitting of the tested model. Sc is the

scaling factor controlling the noise level and dm is the unscaled
standard deviation given by:

dm5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CT,mexpðktmÞ

Dtm

s
Eq. 13

Sc was estimated using the residual error between the measured �CTðtÞ
and the modeled CTðtÞ using the model that demonstrated the best fitting
by assuming that the fitting error of that model comes mostly from ran-
dom noise. We simulated 500 noisy lung tissue time–activity curve reali-
zations for each ~CTðtÞ and analyzed the bias and noise SD of each
parameter estimate. The analysis was conducted for the 3 models (i.e.,
the IDIF, IDIF-T, and IDIF-T-D) using the HTR data. By summing the
corresponding HTR frames together, the IDIF model using a more con-
ventional low temporal resolution (10 s/frame in the first 3 min) was also
included for comparison.

Correlation of Lung 18F-FDG Kinetics with Age
Aging effects are evident in healthy lungs. Previous human studies

have observed an inverse relationship between age and pulmonary
blood volume (43,44). Therefore, we hypothesize that the vb in the
lungs tends to decrease with aging. Although we do not have longitudi-
nal data on individuals in this study, we aim to explore any association
between the 18F-FDG kinetic parameters and age using the available
healthy subject cohort. We performed the Pearson regression analysis

FIGURE 2. (A) HTR (1 s/frame) total-body 18F-FDG dynamic images of example subject acquired
using uEXPLORER system. (B) Regional time–activity curves extracted from HTR dynamic images.
y-axis on left is for time–activity curves of right ventricle and left ventricle, whereas y-axis on right
is for time–activity curve of lung tissue, which has lower range by factor of 10. (C) Conventional
low-temporal-resolution (10 s/frame) regional time–activity curves. LV 5 left ventricle; RV 5 right
ventricle.
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between age and kinetic parameters. Body mass index was also in-
cluded in the regression to consider potential confounding factors.

Demonstration of Total-Lung Parametric Imaging
In addition to the ROI-based kinetic analysis, we implemented the

proposed kinetic modeling approach voxel by voxel. Parametric images
of different kinetic parameters (e.g., K1, Ki, and vb) were then gener-
ated for the entire lung. Kernel smoothing was applied to both the
dynamic images and the parametric images for noise reduction (23).

RESULTS

Example of HTR Dynamic Images and Time–Activity Curves
Figure 2 shows the acquired HTR total-body dynamic data for a

representative subject. The 18F-FDG dynamics in the very early
phases after injection were captured by the HTR, as illustrated by
the total-body maximum-intensity projections of the SUV image in
the coronal direction (Fig. 2A) and the HTR time–activity curves
(Fig. 2B). To begin, the tracer was injected into a vein in the right
arm before traveling to the right ventricle through the vena cava
(Fig. 2A, 6–7 s of the scan time). The tracer next traveled through
the pulmonary circulation by flowing into the lungs via the pulmo-
nary artery (Fig. 2A, 9–10 s) and flowing out of the lungs to the
left ventricle through the pulmonary veins (Fig. 2A, 14–15 s).
As a comparison, time–activity curves with the conventional

temporal resolution are shown in Figure 2C. With a 10-s temporal
resolution, the time–activity curves have lost much of the informa-
tion about the early-phase 18F-FDG kinetics. Both the shape and
the amplitude of the time–activity curves were distorted and inac-
curate because of the poor temporal resolution.

Model Fitting of Lung Time–Activity Curve
The proposed approaches for modeling the input function can

clearly impact the time–activity curve fitting, as shown by the fitting
results for an example subject in Figure 3A along with the residual
fitting errors in Figure 3B. These figures focus on the early dynamic
phase, given that the late phase is similar among different models.
Without the time-delay correction, the conventional IDIF model
failed to fit the early-phase data even though the time delay is
approximately 3 s (Supplemental Fig. 1A; supplemental materials
are available at http://jnm.snmjournals.org). The dispersion correction
in the IDIF-T-D model further improved the fitting of the first peak
because it accounts for the deformation of the input function caused
by the tracer dispersion effect (Supplemental Fig. 1B). The improved
fitting by the proposed models (IDIF-T and IDIF-T-D) is further
demonstrated by the decreased AIC (Fig. 3C; Table 1). The IDIF-
T-D model achieved the best average AIC across all subjects.

Kinetic Parameter Estimation
The means and SDs of lung kinetic parameters are reported in

Table 2. Figure 4 shows the resulting impact on the quantification
of K1, Ki, and vb.
When the IDIF model without time-delay or dispersion correc-

tion is used, the K1 value of 0.350 6 0.092 mL/min/cm3 seems
unreasonable because of the poor fitting. This further supports that
the direct application of the IDIF without corrections is not appro-
priate for the HTR data. The model IDIF-T was also likely to
overestimate K1 given the poor early-phase fitting. The IDIF-T-D
estimate of K1 is 0.056 6 0.033 mL/min/cm3, with an approxi-
mately 85% decrease compared with the conventional IDIF model.
The IDIF-T-D model estimated vb to be 0.144 6 0.030, much
higher than the estimate obtained with the IDIF (0.042 6 0.022)
and IDIF-T (0.107 6 0.024) models. A previous study showed a

blood fraction of 0.16 in the normal human lungs (13). Thus, the
vb estimates by IDIF and IDIF-T are likely biased, whereas the
estimates by IDIF-T-D are more consistent with the expected vb
values. For Ki quantification, the proposed IDIF-T-D had an aver-
age increase of approximately 75% compared with the conven-
tional IDIF model.
To understand the observed changes in parameter estimation,

we analyzed the predicted activity of individual compartments
(Supplemental Fig. 2). The vascular component vbCpðtÞ was much
increased in the IDIF-T-D model as compared with the IDIF due
to the increased vb estimate. Therefore, the total extravascular
component CtðtÞ was decreased (Eqs. 2 and 4; Supplemental
Fig. 2C), and K1 became smaller accordingly (Eq. 3). In addition,

FIGURE 3. (A) Effects of modeling time delay and dispersion on fitting
of measured lung time–activity curve. (B) Effects on residual error of time–
activity curve fitting. (C) AIC of different models in 13 subjects.

TABLE 1
AIC Values of Different Kinetic Models Averaged from

13 Subjects

Model AIC

IDIF 2,203.2 6 106.6

IDIF-T 1,993.6 6 121.3

IDIF-T-D 1,815.2 6 87.9

TOTAL-BODY PET LUNG KINETIC MODELING � Wang et al. 1157
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Ki was higher in IDIF-T-D than in IDIF because of the increased
CmðtÞ (Supplemental Fig. 2D), which was associated with de-
creased K1 and k2 but increased k3.

Identifiability of Kinetic Parameters
Table 3 shows the absolute value of relative bias and the SD

of kinetic parameter estimates by different models. To clarify, this

analysis is to study the robustness of models against random noise,
whereas the systematic bias introduced by model oversimplifica-
tion (e.g., neglecting the time-delay effect) is not involved. The
HTR IDIF model had a lower bias and SD for K1 and vb, along
with worse Ki estimation, than the low-temporal-resolution IDIF.
Among the HTR cases, both the IDIF-T-D and the IDIF models
have a small bias (,2%) for K1 quantification, whereas the SD
level of the IDIF-T-D (13.6%) was higher than that of the HTR
IDIF (2.4%). The proposed IDIF-T-D model achieved a low bias
(,1%) and a low SD (,3%) for quantifying vb. For Ki, the IDIF-
T-D had bias (0.4%) and SD (6.2%) levels comparable to those of
the HTR IDIF. The time-delay and dispersion parameters tRV and
ka had good identifiability.

Correlation with Age
Figure 5 shows the correlation plots between age and vb esti-

mated by different approaches. For comparison, the result by a tra-
ditional low-temporal-resolution protocol (10 s/frame) is also
included. Neither the vb estimates by the low-temporal-resolution
approach nor the vb estimates by the HTR approaches without
time-delay or dispersion correction showed a statistically signifi-
cant correlation with age (all P . 0.1). In comparison, the vb by
the proposed IDIF-T-D model correlated with age with statistical
significance (r250:45, P50:01Þ. The observed age–vb relation-
ship is consistent with the results reported in previous studies
(43,44) that show aging to be associated with decreased pulmo-
nary blood volume. Neither age nor body mass index correlated
with other kinetic parameters.

Demonstration of Total-Lung Parametric Images
Figure 6A shows the total-lung SUV and multiparametric

images using the proposed IDIF-T-D model for a single subject.
These images are overlaid on the corresponding CT image. The
different parametric images demonstrate complementary spatial
information. Figure 6B further shows the parametric images of vb
for a young subject (aged 26 y) and an old subject (aged 78 y).
The lung vb was much lower in this old subject than in the young
subject. We also noticed that in the parametric images generated
by the IDIF-T-D model, the posterior part of the lungs had a
higher vb than the anterior part, and the posterior lung base had a
higher vb than the apex (Supplemental Fig. 3), which are also
within expectation (45).

DISCUSSION

In this work, we studied the time-delay and dispersion correc-
tions to the IDIF for lung kinetic modeling with HTR. Tradition-
ally, limited by the temporal resolution of dynamic PET imaging,
these corrections were not considered in most existing studies of
pulmonary 18F-FDG kinetics (2,26,46), especially when the focus

TABLE 2
Lung 18F-FDG Kinetic Quantification of K1, vb, Ki, tRV, and ka Using Different Models

Parameter IDIF IDIF-T IDIF-T-D

K1ðmL=min=cm3Þ 0.350 6 0.092 0.190 6 0.066 0.056 6 0.033

vb 0.042 6 0.022 0.107 6 0.024 0.144 6 0.030

KiðmL=min=cm3Þ 0.00034 6 0.00032 0.00072 6 0.00039 0.00060 6 0.00033

tRVðsÞ — 3.2 6 0.5 2.1 6 0.4

kað=minÞ — — 25.8 6 7.1

FIGURE 4. Kinetic parameter estimates by different lung kinetic models
(IDIF, IDIF-T, and IDIF-T-D).
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was on 18F-FDG Ki (2,13), a macroparameter of which the estima-
tion is dominated more by the late-phase dynamic data and is
expected to be less sensitive to these corrections. However, a
model without these corrections resulted in a poor fitting perfor-
mance for the HTR data acquired with total-body PET in this
work (Figs. 3A and 3C).
The proposed approaches to correcting time delay and dispersion

for the IDIF led to much-improved lung time–activity curve fitting
(Figs. 3A and 3B) with much lower AIC values (Table 1). Along
with the improved fitting, the proposed modeling approaches had a
significant impact on kinetic parameter quantification, especially
for K1 and vb (Table 2). This impact can be explained by the
improved estimation of the vascular component in the fitted lung
time–activity curves (Supplemental Fig. 2). We also noted that the
time delay tRV tended to correlate with the inverse of the dispersion

parameter ka (r50:44, P50:14) in the proposed model, as is con-
sistent with the expectation that a longer time delay (larger tRV) is
likely to be accompanied by a larger dispersion (smaller kaÞ.
Although the proposed model is more complex, the identifiability
analysis results suggested the robustness of the proposed model to
random noise (Table 3).
Although there is no ground truth, the vb estimates by the proposed

model are in general more consistent with the literature-reported pul-
monary blood volume values and have led to an improved inverse
correlation with age (Fig. 5). This correlation aligns with previous
findings of decreased pulmonary capillary blood volume with aging
(43,44). The same correlation would be otherwise missed if the con-
ventional IDIF models with or without time-delay correction were
used. Together with the improved time–activity curve fit quality
(Fig. 3), our results here indicate the importance of simultaneous

time-delay and dispersion corrections as com-
pared with no correction or time-delay correc-
tion only (Fig. 5).
It is worth noting that simultaneous correc-

tion for time delay and dispersion was
explored previously in dynamic brain PET
studies (25). However, the method cannot be
directly applied in our work on lung kinetic
modeling because the prior study tackled a
backward dispersion-correction problem that
removes dispersion from the measured input
function (e.g., from the radial artery), whereas
this paper focuses on a forward dispersion-
correction problem that adds dispersion to the
measured IDIF for modeling the actual blood
input. The latter approach is developed in
response to the availability of IDIF in total-
body HTR dynamic PET imaging.
In addition to the use of the right ventricle

for deriving the IDIF, the region of the pul-
monary arteries may be used directly for
their closer location to the lung tissues. Simi-
lar results were obtained using the pulmo-
nary arteries as the input function compared
with using the right ventricle, including the
input function after corrections (Supplemen-
tal Fig. 4A), lung time–activity curve fitting
(Supplemental Fig. 4B), and kinetic para-
meter quantification (Supplemental Table 1),

TABLE 3
Relative Bias (Absolute Value) and SD of Kinetic Parameters in Identifiability Study

Parameter

IDIF, LTR IDIF, HTR IDIF-T, HTR IDIF-T-D, HTR

Bias (%) SD (%) Bias (%) SD (%) Bias (%) SD (%) Bias (%) SD (%)

K1 4.0 9.3 1.3 2.4 6.2 6.4 1.4 13.6

vb 0.8 6.3 0.5 4.8 1.6 2.7 0.1 2.3

Ki 0.9 4.9 2.4 8.6 4.9 5.4 0.4 6.2

tRV — — — — 4.5 0.1 0.4 2.8

ka — — — — — — 1.2 7.2

LTR 5 low temporal resolution.

FIGURE 5. Correlation between subject age and vb using standard IDIF model with 10 s/frame low
temporal resolution (top left), IDIF model with 1 s/frame HTR (top right), IDIF-T model with HTR
(bottom left), and proposed model IDIF-T-D with HTR (bottom right). LTR5 low temporal resolution.
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confirming the benefits of time-delay and dispersion corrections. The
IDIFs from the left and right pulmonary arteries can also be used for
kinetic modeling of individual lungs (Supplemental Table 1). How-
ever, use of the pulmonary arteries for IDIF needs to be done more
carefully because the smaller size may make ROI placement more
challenging to reduce the partial-volume effect.
This work has several limitations. First, the sample size is rela-

tively small as the 13 healthy subjects vary in age and body weight.
Second, subject motion can affect the kinetic quantification results
(47). We tried to minimize the motion effect by carefully placing
the ventricular ROIs to reduce the partial-volume effect of the myo-
cardium. We also drew 5 ROIs in the lung lobes and extracted the
global lung time–activity curve to decrease the respiratory motion
effect and avoid a partial-volume effect from the liver. Third, the
air fraction in the lungs may affect the absolute quantification of K1

and Ki (27,48), but the correction is not included here. It does not,
however, influence the comparison of kinetic models because this
tissue-fraction effect introduces only a scaling factor on K1 and Ki

and can be corrected after kinetic modeling.
Our future work will include a larger subject cohort and apply

the method to study lung diseases, such as coronavirus disease

2019. The kinetic quantification approach can be also used to assess
the lungs in other systemic diseases, for example, cancer and nonal-
coholic fatty liver disease. Motion correction and air fraction cor-
rection will be implemented to optimize the HTR kinetic modeling
and parameter estimation further. Another direction is to model the
dual blood-input function to account for the fraction of tracer deliv-
ery from the bronchial circulation (49). This dual-input effect may
be small in healthy lung tissues but can be significant in lung
tumors (50), which will be explored in a future study.

CONCLUSION

We studied lung kinetic modeling for HTR dynamic PET imag-
ing on the uEXPLORER total-body PET/CT system. Direct appli-
cation of the standard IDIF model resulted in poor time–activity
curve fitting. We developed an approach to jointly correcting the
effects of time delay and dispersion in the IDIF. The proposed
model greatly improved time–activity curve fitting and had a large
impact on lung kinetic quantification. It also improved the correla-
tion of vb with age. Total-body HTR dynamic PET has the potential
to be a sensitive tool for studying healthy lungs and lung diseases.
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KEY POINTS

QUESTION: Is simultaneous correction of time delay and
dispersion essential for high-temporal resolution kinetic modeling
of the lungs in total-body dynamic PET imaging?

PERTINENT FINDINGS: The proposed time-delay and dispersion
corrections can largely improve model fitting and have a significant
impact on lung kinetic quantification, leading to an improved
correlation between age and fractional blood volume vb.

IMPLICATIONS FOR PATIENT CARE: Total-body dynamic PET
with HTR kinetic modeling may offer a sensitive tool to evaluate
the lungs in health and disease.
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