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ABSTRACT OF THE THESIS 

 

Characterization of the Charge-Trap Transistor  

for Analog In-Memory Computing 

 

by 

 

Siyun Qiao 

Master of Science in Electrical and Computer Engineering 

University of California, Los Angeles, 2022 

Professor Subramanian Srikantes Iyer, Chair 

 

 

Charge-trap transistor (CTT) is a novel non-volatile memory (NVM) technology 

suitable for both digital and analog applications. In this thesis, we focus on the 

optimization of CTT to be used as an analog NVM memory element for vector-

matrix multiplication for artificial neural network inference. Three important aspects 

of CTT operation are identified and evaluated. First, we investigate noise-induced 

fluctuation during read operation both before and after a programming event. Results 

show that fluctuation of CTT has an insignificant impact on its operation. Second, 

data encoding precision is studied and characterized. We develop a new 
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programming protocol to improve encoding accuracy and compare it with the 

previous scheme. Furthermore, we focus on characterizing the long-term retention 

of CTT devices. Experiments are performed to characterize retention at both room 

temperature (RT) and 85℃ conditions. We then optimize the programming protocol 

to improve retention characteristics. 
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Chapter 1 

Introduction 

1.1 Motivation of the Work 

 Over the last few decades, the development of artificial intelligence has been in the 

spotlight for almost every application. In particular, machine learning (ML), a heavily data 

driven method for analytical model construction, attracts the most attention of researchers and 

developers around the globe [1-2]. As one of the major branches of ML algorithms, artificial 

neural networks (ANN) are well-known for their excellent performance in tasks such as image 

recognition, computer vision, voice recognition, natural language processing, etc. Compared 

to conventional computer algorithms which are primarily based on mathematical induction and 

derivation, ANNs mimic the structure the human brain, where the function of a brain neuron 

is modeled by a nonlinear activation function and the synapse between two different neurons 

by a value, or a weight [3]. Figure 1 (adapted from [4]) can serve as a demonstration of ANN.  

 ANN leverages the fact that data processing is done near where the weights are stored 

in the model. This means computation happens near or within the memory. However, most 

modern computers feature the von Neumann architecture with separate processing and 

memory modules. Every time a calculation needs to be performed the processing module sends 

an instruction to the memory module to fetch the desired data. After the calculation is done, 

results need to be returned to the memory and stored. This results in significant latency and 

power consumption when it comes to ANN inferencing and is believed not to be the way the 

human brain processes information [3].  
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To realize ANN in hardware, it is of great interest to engineer a system that somewhat 

resembles the way human brains process information and is capable of doing computation 

inside the memory itself. This type of system can be very advantageous to be applied to 

applications that require high throughput, low latency, and low power consumption. At the 

Center for Heterogeneous Integration and Performance Scaling (CHIPS) at UCLA, a 

technology called charge trap transistor (CTT) is being developed to be the fundamental 

building block of such systems. 

 

 

Fig.1-1: (a) the structure of a single neuron; (b) the function of the neuron is modeled by an 

activation function; (c) the connection between two neurons is called a synapse; (d) artificial neural 

network that models the basic structure of the brain. [4] 
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1.2 Fundamentals of Charge-Trap Transistor 

 Charge trap transistor (CTT) is a CMOS approach that takes advantage of the charge 

trapping properties of the inherent vacancies in the HfOx gate dielectric. The charge trapping 

effects can be enhanced through a process called self-heating, by which the large drain current-

induced heat raises device ambient temperature and subsequently creates more defects in the 

gate dielectric. Charge carriers are prone to be trapped in these defects which in turn alters the 

threshold voltage.  

 The technology used in this work as a CTT device is GlobalFoundries 22FDX, which 

is based on the fully depleted silicon on insulator (FD-SOI) structure and adopts HfO2 as the 

high-k gate oxide layer. Figure 2 shows the schematic of such a device. 

    

Fig.1-2: Schematic representation of GF 22FDX technology 

 

Threshold voltage of a CTT device can be both increased and decreased. To increase 

the threshold voltage, a program (PRG) operation is performed, where high drain-to-source 

and gate-to-source voltage bias conditions are applied. Resulting high channel current 

generates enough heat to raise the ambient temperature such that charge carriers are more 

likely to be trapped in the generated defects compared to nominal bias conditions. On the other 
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hand, an erase (ERS) operation is performed to reduce the threshold voltage. Negative gate-

to-source voltage bias is applied while keeping source and drain grounded. The reverse electric 

field partially erases the trapped charge. Figure 3 shows the schematics for both PRG and ERS 

operations.  

              

       (a)                (b) 

Fig.1-3: (a) PRG operation; (b) ERS operation 
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1.3 Charge-Trap Transistor for Analog In-memory Computing 

 The nature of charge trapping dictates that CTT can be used as an analog memory 

device. The fundamental minimum resolution is given by the amount of threshold voltage 

change of one charge carrier trapped or de-trapped. In practice, however, it is unlikely to reach 

this level of resolution. This is similar to modern Flash memory, where a single memory device 

can have multiple states instead of just “0” or “1” [5-7].  

 Operation of ANNs heavily rely on multiplication and accumulation, or MAC. An input to 

a neuron is first multiplied by the weight on its connection to the next neuron, then added by the 

products of all the other inputs and their corresponding connections to the same next neuron, as 

indicated in fig.1 (b). This MAC operation can be fully realized by CTT-based array structure. 

 

 

Fig.1-4: CTT-based analog in-memory computing scheme 
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 After data is encoded into the CTT in the form of threshold voltage or, in turn, 

conductance, computation can be done by leveraging the physics laws. First of all, Eq.1 

exhibits that multiplication can be performed using Ohm’s law, where inputs are represented 

by the time period the gate and drain voltages (which are held constant) are applied and weights 

by the currents (which are the product of voltage and conductance). Second, all the charge that 

is passed through the line of connection is summed and accumulated onto a capacitor, as given 

by Eq.2. This process is again illustrated by fig.4, where the CTT-based analog in-memory 

computing scheme is shown. Note that the differential twin-cell structure is adopted in this 

case to represent both positive and negative numbers.  

𝑄𝑜𝑢𝑡,𝑠𝑢𝑏 = 𝑡𝑖𝑛𝑝𝑢𝑡 × 𝐼𝑤𝑒𝑖𝑔ℎ𝑡  = 𝑡𝑖𝑛𝑝𝑢𝑡 × (𝑉𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 × 𝐺𝑐ℎ𝑎𝑛𝑛𝑒𝑙) … Eq.1 

𝑄𝑜𝑢𝑡,𝑡𝑜𝑡𝑎𝑙 = 𝑄𝑜𝑢𝑡,𝑠𝑢𝑏1 + 𝑄𝑜𝑢𝑡,𝑠𝑢𝑏2+. . . +𝑄𝑜𝑢𝑡,𝑠𝑢𝑏𝑁… Eq.2 
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1.4 Organization of the Work 

 This work aims to provide a thorough investigation of the CTT as a novel non-volatile 

memory (NVM) device for analog compute-in-memory applications. Specifically, three 

aspects of the CTT are discussed in detail: noise-induced variation, programming accuracy, 

and retention characteristics.  

The rest of this paper is organized as follows. Chapter 2 discusses noise-induced 

fluctuation in CTT. Chapter 3 focuses on studying programming accuracy. Chapter 4 mainly 

characterizes the CTT retention at room temperature and high temperature environments. 
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Chapter 2 

Characterization of Noise-induced Variation 

2.1 Overview 

 As discussed in Chapter 1, weights of an ANN are encoded as channel conductance of 

CTT devices by modifying threshold voltage, which are then represented by drain current 

readouts with constant drain and gate voltage biases. Therefore, it is desirable that current 

outputs remain stable during ‘read’ operation and are immune to noise. There are many factors 

that can influence the stability of the current output of a device. First of all, it is unclear if a 

virgin device (devices that have not been unprogrammed) would have less current fluctuation 

compared to a programmed device, considering that the PRG operation physically introduces 

defects to the gate dielectric thus making it more susceptible to noise. In addition, the extent 

to which the device is programmed can also bring an impact. On the other hand, the time at 

which measurements are made can be another variable. For example, current read right after 

versus sometime after PRG may result in different fluctuation levels. Systematic investigation 

is needed to study the impact of each variable.  
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2.2 Origins of Noise 

 Two most widely recognized sources of noise are low-frequency noise (LFN), also 

commonly referred to as 1/f noise or flicker noise, and random telegraph noise (RTN). 

Publications in [8-9] discuss the potential mechanism of LFN and suggest that LFN is largely 

related to the Si-SiO2 traps. In the case of RTN, it is more likely to occur when defects in the 

bulk of the oxide layer constantly trap and de-trap charge carriers [10-12]. In the structure of 

GF 22FDX devices, the thin SiO2 interface layer can introduce interface traps near the Si 

channel, where the bulk HfO2 layer can introduce trapping sites for RTN behaviors.  
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2.3 Design of Experiments 

2.3.1 Impact of Programming on Device Noise 

 To study how devices of different programming levels can change the output current 

fluctuation, three groups of devices are selected with each group having three devices. Table 

1 summarizes this experiment. All devices are read out with drain and gate voltage at 200mV 

and programmed using a technique called pulsed gate voltage ramp sweep (PVRS) to speed 

up the PRG process while enabling finer control [13]. Gate and drain voltage pulses are 

controlled at ~500us. Each device is sampled at 1Hz for 5 minutes. Current fluctuation is 

measured by finding the average and standard deviation of the sampled current values and 

dividing the two. Measurements are done immediately after programming ends. The only 

variable that is held different among the three groups is ΔIread. Devices in group 1 are 

unprogrammed, so ΔIread = 0nA. ΔIread of devices in group 2 is controlled to be ~200nA, while 

group 3 has ~700nA ΔIread. It is worth noting that programming stops when ΔIread of each 

device is past its target value. Since no fine-tune programming techniques are used in this case, 

it is difficult to achieve the exact desired ΔIread. Nevertheless, this should not affect the outcome 

of this experiment as the differences between three groups are large enough to ignore 

programming error. 
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Table 2-1: DOE to investigate the impact of programming on device noise level 

 

2.3.2 Impact of Time of Measurements on Device Noise 

 To study the effect of time of measurements on device noise, previous DOE can again 

be utilized by continuing measuring the same devices at different time points. Specifically, 

200 hours and 400 hours after the devices are programmed are chosen for measurements. The 

outcome of this experiment will be compared to that of table 1, namely the fluctuation level 

right after programming, to help investigate whether device noise is a function of time. Table 

2 summarizes the DOE of this experiment.  

 

Table 2-2: DOE for impact of time of measurements 
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2.4 Results and Discussion 

 Experiments are conducted and the results are shown in the following tables. The 

average values of standard deviation-over-average are calculated for each experimental group. 

As can be seen in table 3, all three groups have very similar levels of fluctuation despite 

different levels of initial programming. In addition, there is no clear trend that shows more 

device programming leads to more/less fluctuation. This indicates that device programming is 

irrelevant to noise-induced current output variation. 

In addition, table 4 shows that current fluctuation is unlikely to be a function of time 

after programming ends. There is no clear correlation that can be identified to demonstrate that 

noise-induced fluctuation changes as time increases.  

 Results from these two sets of experiments are particularly encouraging when it comes 

to applying CTT as a non-volatile memory device for weight storage for analog in-memory 

computing applications, due to the fact that stable current outputs are very much desired for 

minimal impact on system noise. Moreover, the invariance of noise over time makes system 

modeling possible because of the predictability of device current output. Similar levels of 

fluctuation are reported for Flash memory, which are considered as a mature NVM technology 

[14].  



13 

 

Table 2-3: Results of fluctuation of different programming levels 

 

 

 

Table 2-4: Results of fluctuation of different time of measurements 
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Chapter 3 

Characterization of Programming Accuracy 

3.1 Overview 

 Data encoding methodology is among the most important topics of study and research 

for any multibit/analog memory technology. Contrary to traditional digital memory where only 

two states, namely “0” and “1”, can be represented, multibit memory can have a memory 

window that is large enough to include multiple different states within one single cell. Analog 

memory can even have an infinite number of states in theory, but in practice it is usually limited 

by the accuracy at which the data can be encoded.  

 A typical example of multibit memory is Flash memory. In the early 2000s, the 

introduction of Mirrorbit technology by Spansion became one of the first 2-bit-per-cell NOR 

Flash memory which remains to be among the most attractive NOR Flash technologies even 

today [15]. It differs from the conventional floating gate based Flash memory in that it uses a 

nitride layer for charge storage. The long channel structure and the channel hot electron (CHE) 

injection method used for programming enables the device to be programmed individually on 

both its source end and drain end. This effectively gives the device the ability to hold four 

individual states, or 2 bits equivalently. More recent developments of Flash involve triple-level 

cell (TLC) [7] and quadruple-level cell (QLC) [6], which correspond to 3-bit-per-cell or 8 

states, or 4-bit-per-cell or 16 states, respectively.  
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 The key to having such a large number of states within a single cell lies in the ability 

to encode each state accurately. The failure to do so can cause significant overlap of different 

states and thus bit error [16]. This becomes even more important when it comes to analog 

memory because of its continuous nature of states. In this chapter, a data encoding scheme for 

CTT with fine-tuning capability is introduced. Average numbers of programming pulses for 

different accuracy requirements are obtained. Corresponding programming time per cell is 

estimated.  
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3.2 Previous Work 

 Previously developed CTT data encoding scheme is shown in fig.5. Since the twin-cell 

structure is adopted to represent signed data, the differential nature of this is used for data 

encoding. Essentially, the difference between two cells’ current is the encoded data, so if this 

difference is larger than the target, it is suppressed by programming the “true” device; if this 

difference is less than the target, it is increased by programming the “complementary” device. 

This scheme does not use ERS pulses to fine-tune the state of the cell. However, due to the 

fact that PRG operation involves hot carrier injection to a certain degree, it is inherently harder 

to control compared to ERS. In addition, being able to target specific states in a device 

accurately makes it easier for large scale characterization, which can be beneficial for system 

level analysis. Therefore, a new data encoding scheme with fine-tune capabilities is desired. 

 

 

Fig. 3-1: Previous CTT programming scheme 

 

 In terms of characterization of programming accuracy, an assumption that there is a 

normal error distribution model that can be applied to all devices regardless of target state has 
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been made. In other words, devices programmed to 500nA follow the same error distribution 

compared to the ones programmed to 5nA. Based on this assumption, experiments have been 

conducted to collect data for model construction. Fig. 6 (obtained from [8]) shows the 

distribution of device state versus target. However, because this experiment intentionally 

ignores the variability of device states, it is unclear whether error distribution can also be a 

function of device states. Therefore, it is valuable to further investigate this issue to potentially 

build a more accurate error distribution model.  

      

Fig. 3-2: CTT error distribution assuming consistent distribution regardless of target states 
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3.3 New Programming Scheme with Fine-tune Capability 

 To develop a new data encoding scheme with fine-tune capability, a combination of 

PRG and ERS pulses need to be used. First, only program pulses are applied to the target 

device until the current readout drops below the target level by a certain amount. This is given 

by how much the device is desired to be over-programmed to ensure enough room for fine-

tuning. Model parameters are constantly updated depending on the state of programming. 

Then, the fine-tuning process begins with a sequence of ERS and PRG pulses. The 

programming event would be terminated when the current readout sits within the upper and 

lower bounds of the target. The scheme is shown in fig.7. Fig.8 provides an example of 

programming an as-fabricated CTT device following the scheme with the target level set to 

200nA. The nonlinear and relatively large drop in device current during consecutive PRG 

pulses indicates that it is difficult to program the device to a precise target using only PRG 

pulses. During the fine-tuning stage, device current changes at a much slower rate compared 

to the previous case, which is very beneficial for fine-tuning. The combination of both makes 

it possible to accelerate the device programming process without compromising accuracy. 

However, it is inevitable that there is a trade-off between accuracy and speed. Higher 

programming accuracy (e.g., error is <3%) would statistically require more fine-tune steps 

which increases the total programming time.  
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Fig. 3-3: New programming scheme with fine-tune capability 

       

Fig. 3-4: Write-verify demonstrated with 3% accuracy. 7 200us-long programming pulses and 3 

1.6ms -long erase pulses are applied. Erase pulses exhibit smaller current steps compared to 

programming 
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3.4 Trade-off Between Programming Accuracy and Speed 

 To test the new data encoding scheme, two experiments are planned and conducted. 

For each experiment, a total of 30 devices are randomly selected grouped into 6 sets, with each 

set containing 5 devices to be programmed to a specific target level. For PRG, a constant 1.2V 

is applied to the drain, and the gate voltage is ramped from 1.5V with an increment of 50mV 

with source grounded. For ERS, the gate voltage is ramped from -1.5V with an increment of -

50mV with drain and source being grounded. Both PRG and ERS pulses are 500us long. All 

devices in the first experiment have 1% programming accuracy, meaning programming stops 

when the current readout converges within ±1% of the target. All devices in the second 

experiment have 5% accuracy. 

 Results from experiment one and two are shown in table 5 and table 6, respectively. In 

both experiments, with lower target levels, more pulses are needed to reach the preset accuracy. 

This is expected since the lower the target level, the more charge needs to be trapped in the 

dielectric, therefore the more programming pulses. By comparing experiment one and two, it 

can be observed that lower accuracy (5%) requires fewer number of pulses to reach 

convergence. This is, again, within the expectation because lower programming accuracy 

requires less fine-tune process to achieve the target range, thus shorter programming time or 

faster speed. 
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 Set 1 Set 2 Set 3 Set 4 Set 5 Set 6 

Target 

(nA) 
600 400 200 100 50 20 

# of 

Devices 
5 5 5 5 5 5 

Target 

Accu. 
1% 1% 1% 1% 1% 1% 

Avg. # of 

Pulse 
13.4 17 25.4 22.4 23.2 24.2 

Avg. Time 

(ms) 
6.7 8.5 12.7 11.2 11.6 12.1 

 

Table 3-1: Results of experiment one with target accuracy set to 1% 

 

 

 Set 1 Set 2 Set 3 Set 4 Set 5 Set 6 

Target 

(nA) 
600 400 200 100 50 20 

# of 

Devices 
5 5 5 5 5 5 

Target 

Accu. 
5% 5% 5% 5% 5% 5% 

Avg. # of 

Pulse 
6.2 7.4 9.6 11.4 13.2 14.6 

Avg. Time 

(ms) 
3.1 3.7 4.8 5.7 6.6 7.3 

 

Table 3-2: Results of experiment two with target accuracy set to 5% 
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3.5 Distribution of States After Programming as a Function of Target 

Levels 

 As mentioned earlier in this chapter, the assumption made previously suggests that CTT 

state distribution after programming follows a uniform distribution model and is irrelevant to 

target states. In order to verify if this is a valid assumption, a total of 480 devices have been 

randomly assigned to six different target state levels (100, 200, ..., 600nA) with each level 

having 80 devices. Device programming is done following the new scheme discussed in 3.3, 

with 2V drain bias and gate voltage ramping from 1.5V to 2.5V for PRG pulses (200μs/pulse), 

and with 1.4V source/drain bias and gate ramping from -0.4V to -1.4V for ERS 

pulses(1.6ms/pulse). Programming stops when measured current is within 3% error of the 

target. After all cells are programmed, a voltage burn-in is performed (discussed in more detail 

in Chapter 4). The distribution of states and the fitted normal distribution curves are shown in 

fig. 9.  

 From fig. 9, it can be observed that 1) state distribution is inconsistent with six different 

targets, 2) distributions are wider at higher target levels, and 3) although all devices are 

programmed such that each individual cell should have less than 3% error, the distribution 

exhibits that larger error terms exist.  
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Fig. 3-5: A total of 480 devices are programmed to 6 different target levels (100,200,…,600nA). 

Each device is programmed to 3% within the target. 

 

 First of all, since all devices are programmed in array macros, neighboring cells are 

half-selected when a target cell is being programmed. Fig. 10 demonstrates this effect during 

PRG operation. When the target cell (circled in red) is programmed, all the cells in the same 

row (WL) see the same gate to source voltage bias (1.5-2.5V) which can cause partial PRG 

effect. All the cells in the same column also see the same drain to gate bias (2V) considering 

the unselected rows have 0V gate bias, which can cause partial ERS effect due to the reverse 

vertical field. Cells in an array experience these half-select effects numerous times before the 

entire array has been programmed. This is likely to be the major cause for the wide distribution 

of states after programming provided that the error of each cell is controlled to be less than or 

equal to 3%.  
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Fig. 3-6: Neighboring cell half-selection demonstration during PRG operation 

 

The obtained distributions can be fitted to normal distribution curves and calculate the 

mean drift and standard deviation for each target level. Fig. 11 plots the data points of mean 

drift and standard deviation as a function of target level. Two quadratic curves are fitted to the 

data points. It is easy to see that both the mean drift and the standard deviation become worse 

as the target level goes up. However, the mean drift tends to deteriorate faster at higher target 

levels while the standard deviation tends to plateau.  
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Fig. 3-7: Data points of mean drift and standard deviation of normal distribution curves for each 

target level. Quadratic curves are fitted to the data points. 

 

 Using this distribution model, the programming error for CTT can be approximated as 

a function of target cell current. The bit resolution, or equivalent number of bits (ENOBs), can 

consequently be modeled. Fig. 12 plots the estimated distribution given 2, 3, 4, and 5-bit 

resolution per device. It can be seen that devices can have distinct state distributions up to 3-

bit/cell, and overlaps between states start to become noticeable at 4-bit. Resolution at 5-bit 

shows significant state overlapping. 

 

 

Fig. 3-8: Modeled ENOBs per CTT based on programming distributions obtained in fig. 3-5 and fig. 

3-7. Fitted mean drift and standard deviations are used. 
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Chapter 4 

Characterization of Device Retention 

4.1 Overview 

 In general, retention characteristics of non-volatile memory devices are among the most 

significant device properties to be studied and evaluated. For digital applications, retention 

loss is measured as the data loss rate. For example, for Flash memory, the drift of the threshold 

voltage is monitored over time as a representation of data loss [9]. Although requirements for 

device retention may vary between different applications (automobile[10], biosensing[11]), in 

general more than 10 years retention at 85℃ is desired for digital applications. In the case of 

analog non-volatile memory, coming up with a standard can be more difficult because there is 

no representation of discrete levels in analog. However, similar characterization techniques 

can be utilized to observe the change in cell state over time.  

This chapter starts by discussing CTT retention characteristics at room temperature. 

Then it proceeds to investigate the impact of different bias conditions used during 

programming on device retention at elevated ambient temperature, after which retention 

characteristics at 85℃ are studied. Finally, some limitations as well as the future perspectives 

of the work are discussed.  
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4.2 CTT Retention Characteristics at Room Temperature 

In order to have a better understanding of CTT charge loss mechanism, drain currents 

of the devices under test have been continuously monitored for a long period of time. Fig. 13 

(a) and (b) show examples of two devices being monitored for 20 hours. In both cases, currents 

are sampled every 10 seconds at 200mV gate and drain biases. The device in fig. 13 (a) has 

only been programmed with PRG pulses, so no “erase” is performed. Programming stops 

immediately once the current readout is lower than the target current. The device in fig. 13 (b) 

is programmed with both PRG and ERS pulses to fine-tune the current to be within 3% of the 

target level.  

 

Fig. 4-1: (a) 20hr continuous current measurements of the CTT programmed with only PRG pulses; 

(b) 20hr continuous current measurements of the CTT programmed with both PRG and ERS pulses 

 

 A comparison between the two plots needs to be made to understand the two different 

retention phenomena more in depth. In case (a), the current rises quickly in the first few hours 

after programming, indicating that the charge trapped in low energy sites (shallow traps) are 

getting released, a phenomenon generally recognized as shallow trap relaxation. After the 

relaxation, the current rises slightly with intermittent “jumpy” behaviors. This can be explained 
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by the fact that more stable traps discharge at a slower rate compared to shallow traps with 

occasional re-trapping events. In case (b), the drain current exhibits a completely different 

trend than case (a). Instead of losing the trapped charge resulting in an increase in current, the 

device current remains generally flat across the entire 20-hour measurement period. However, 

noisy fluctuations occur frequently. The ERS pulses can help with getting rid of the charge in 

the shallow traps, which eliminates the initial rapid increase in current. Nevertheless, this 

process somehow has introduced noise into the device which becomes non-ideal for device 

operation in analog compute-in-memory applications. 

 

Fig. 4-2: 18hr continuous measurements on drain current after voltage burn-in 

 

 To reduce the noisy transients, a voltage burn-in method is introduced. After a device 

is programmed, 0.5V bias is applied to both the drain and the gate terminals to induce channel 

current for 20 minutes. Fig. 14 shows another device measured for 18 hours after voltage burn-

in after programmed with both PRG and ERS pulses. Different from fig. 13 (b), the transients 

have been largely eliminated and the noise level in the current is significantly reduced. Thus, 

the voltage burn-in method can be added to be part of the device programming process. Using 
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the same programming/burn-in method as before, a total of six CTT devices are programmed 

to different target levels. Each device is then measured for 10 hours at room temperature. Their 

retention characteristics are shown in fig. 15, exhibiting excellent retention characteristics that 

can be extrapolated to the 10-year mark. 

  

     

Fig. 4-3: Device retention at room temperature 
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4.3 Impact of Programming Voltage on CTT Retention at High 

Temperature 

 Due to the fact that the CTT in GlobalFoundries 22FDX has an ultra thin HfOx/SiO2 

gate dielectric layer, it is reasonable to assume that the trapped charge can be somewhat leaky. 

Previous study on the trapping kinetics of the CTT shows that the self-heating process during 

programming helps with charge retention as trap sites with higher activation time constants 

can be activated with the elevated thermal energy [17 Faraz dissertation]. However, the 

correlation between programming voltage bias, specifically the drain-to-source bias, and 

retention characteristics at high temperature for analog applications, has not been studied 

before.  

 The design of experiments goes as follows. Three sets of devices are randomly selected 

with each set having six devices. All devices are programmed to the same target level, namely 

200nA with the same gate voltage ramp scheme. Devices in set one, two, and three are 

programmed using 1.2V, 1.6V, and 2.0V drain-to-source biases, respectively. All devices are 

baked at 85℃ for 20 hours after programming.  

Results of this experiment are summarized in table 7. After 20 hours at 85℃, it is 

obvious that all devices programmed by 1.2V drain-to-source bias suffer from significant 

charge loss with large variance among devices. The average percentage of the drift gets close 

to 100%, which is extremely non-ideal for analog computing applications. The mean drift 

percentage drops from 82.5 to 50.8 for devices programmed with 1.6V, which is still large 

considering the large change in a relatively short period of time. However, for all devices 

programmed with 2V lateral bias, the mean drift percentage is significantly reduced with much 
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less variance among devices. Fig. 16 plots the normalized mean drift and standard deviation 

of each group. It can be seen that at 2V bias, both mean drift and standard deviation are 

significantly reduced. Therefore, CTT retention characteristics at 85℃ exhibits a strong 

positive correlation with drain-to-source voltage bias used for programming. The higher the 

voltage, the more stable the trapped charge, the better the retention. However, the large drain 

bias in a transistor can accelerate device degradation, in that the increase in the lateral field can 

speed up hot carrier injection rates, making it more vulnerable to reliability issues. 

 

 

Table 4-1: Summary of the experiments with results 
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Fig. 4-4: Normalized group mean drifts and standard deviations with respect to the target level 
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4.4 CTT Retention Characteristics at High Temperature 

 The cell distributions in fig. 9 from Chapter 3 are obtained after performing voltage 

burn-in to all devices in the array. After this process is completed, devices are stored in an 

85℃ environment and measured after 20 hours and 50 hours. Subsequent distributions are 

captured in fig. 17 (a), (b). For the purpose of comparison, the original distribution is given a 

transparent look overlaid by the actual distribution after baking. It can be noticed that although 

the cell distributions in both plots do not precisely overlap with each other, the change is rather 

insignificant. Fig. 18 summarizes the previous information and plots it in a whisker-box plot. 

This shows clear boundaries between the states.  

     

Fig. 4-5: (a) Cell distribution after 20 hours at 85℃; (b) Cell distribution after 50 hours at 85℃ 

 

 Mean drifts and standard deviations of the distributions at T=20hr and T=50hr are also 

obtained from curve fitting. Fig. 19 provides data points and fitted curves of the two metrics 

at T=0, T=20hr, and T=50hr. In general, although the distributions are becoming wider with 

larger mean error as baking time increases, the change is rather insignificant. This is 

encouraging for applying the CTT to most types of analog in-memory compute schemes. 
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Fig. 4-6: Whisker-box plot for T=0, T=20hr, and T=50hr distributions 

 

 

Fig. 4-7: (a) Measured and modeled mean drifts right after programming, after 20 hours at 85℃, and 

after 50 hours at 85℃.  (b) Measured and modeled standard deviation right after programming, after 

20 hours at 85℃, and after 50 hours at 85℃. 
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4.5 Limitations and Future Plans 

 Although the aforementioned results provide valuable insights into the CTT retention 

characteristics at the high temperature condition, they also come with a few limitations that 

need to be addressed carefully. First of all, all studies are done at 85℃. While this may be 

enough for some applications, it does not provide the full picture. Ideally, device retention 

should be characterized at different temperature points, ranging from -40℃ to 150℃. This 

would provide designers a much better view on what type of application CTT is suitable for. 

From a device perspective, it can also offer more insights into trapping and charge loss 

mechanisms. As an example, the CTT may not have as good retention properties at 125℃ as 

at 85℃, which is a desired metric for most automobile applications.  

 Second, baking time is limited to 50 hours, which is not enough for long-term retention 

characterization. Data points should be taken up until 1000 hours to help understand and model 

the cell distribution over time. The number of devices for testing can also be larger so that the 

statistics can be more convincing.  

 Future experiments should carefully address these issues. The design of experiments 

should find a balance between resources needed (time, number of devices, etc.) and the value 

of the potential results. It should also be made clear that the end goal of all experiments is two-

fold: 1) to build statistically meaningful models, and 2) to provide physical insights. 
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Chapter 5 

Summary 

 

 This work aims to provide a comprehensive device characterization of the CTT for 

analog compute-in-memory applications. Three aspects have been discussed in detail: noise-

induced variation, programming accuracy, and retention characteristics.  

 In Chapter 2, it is suspected that device noise is related to the extent of programming 

and time of measurements. Experiments are designed such that variables are isolated from each 

other. From experiments, device noise is found to be consistent regardless of programming or 

when measurements are performed, showing little to no correlation to both variables.  

 In Chapter 3, the existing programming scheme and assumption and related results 

about error distribution are first laid out. A new programming scheme is then proposed to take 

advantage of both PRG and ERS pulses to be able to fine-tune the device level. The assumption 

is also challenged by the experiment which shows the distribution is a function of target states. 

A new distribution model is built based on the test results. 

 In Chapter 4, retention characteristics are first studied on discrete devices, finding the 

best way of programming to achieve better retention with less transients. Then, retention 

properties at room temperature and 85℃ become the focus of the study. Experiments suggest 

that the CTT has excellent retention at room temperature and show insignificant retention loss 

at 85℃. Limitations of the experiments are also discussed.  




