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Abstract 

Additive Manufacturing (AM) or 3D printing of metals has been expanding into a variety 

of different industrial sectors due to its many advantages which include but are not limited to 

fabrication of geometrically complex metallic components and minimal material waste. Laser 

Powder Bed Fusion (LPBF) processes are one of the most prominent metal AM technologies of 

the recent years. However, despite its unlimited potential, LPBF process has a chaotic nature 

with complex interactions and dependencies. Therefore, researchers have faced many challenges 

in accurately and efficiently capturing the complex micro-length and time scale phenomena in 

modeling this process through numerical approaches.  

Lack of control of the temperature field in the LPBF process would lead to microstructural, 

surface quality and structural defects during printing. After a comprehensive literature review, 

this research has identified two major categories of thermal modeling approaches for LPBF 

processes. The first group is based on thermo-fluid simulations, also called Computational Fluid 

Dynamics (CFD) simulations that couple fluid dynamics and heat transfer. Due to their high 

computational costs, these high-fidelity models are usually limited to a single or very few 

scanning tracks. The second group of thermal modeling techniques are based on efficient yet 

over-simplified conduction-only models that neglect melt-pool dynamics. Although the 

efficiency of these models makes them suitable for multi-layer modeling, their predictions are 

not accurate and hence would lead to subsequent poorly defined thermo-mechanical and 

microstructure modeling. Therefore, this dissertation develops a novel numerical approach that 

would efficiently account for major micro-scale phenomena in multi-layer simulations of the 

LPBF processes.  
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In this dissertation, a Simplified Multi-scale Modeling (SMM) approach is presented to 

bridge the aforementioned numerical techniques accounting for lower length scale phenomena 

while allowing to conveniently scale up to larger domains for LPBF simulations. The thermal 

component of the SMM approach is the Comprehensive Thermal Model (CTM) which has 

multiple unique features that include numerical implementation of fluid flow effects (namely, 

evaporation, Marangoni convection, and process-induced micro-voids), process and material 

dependent absorptivity, latent heat, and phase transition effects, and temperature-dependent 

thermo-physical properties for bulk and powder material.  

The CTM is shown to be more accurate than a simplified conduction-only thermal model 

and more efficient than computationally expensive CFD simulations. The CTM developed is 

successfully verified through comparison with experimental temperature measurements from 

literature and then used as a computational tool to predict the thermal signature histories, surface 

cooling rates, and melt-pool dimensions for five of the most prominent AM alloys which are 

IN718, IN625, stainless steel 316L, Ti-6Al-4V, and AlSi10Mg. However, the proposed 

framework can also easily be extended to a wide range of alloys provided sufficient information 

is available.  

With its efficiency and accuracy for multi-layer modeling, the SMM can be used as a 

computational experiment for studying process variability and printability of different material 

systems. The presented model could also be used to extract datasets for developing data-driven 

and physics-informed Reduced-Order Models (ROMs) that have better computational 

performance compared to conventional numerical approaches and could serve as a building 

block of a digital twin of the AM process.   
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Chapter 1. Introduction 

Additive Manufacturing (AM) or 3D printing is a manufacturing process that involves 

layer-by-layer fabrication of 3D objects. AM allows for printing parts that are otherwise difficult 

or even impossible to construct using conventional subtractive machining approaches. 

Introduction of metal AM in the late 1980s was made a revolution in the era of manufacturing of 

parts with applications in many industries. With its profound advantages and capabilities, metal 

AM offers an ideal method for printing complex and customized metallic parts with substantial 

precision and control. According to [1], as of 2020, 54% of the metal AM market was possessed 

by Laser Powder Bed Fusion (LPBF) processes which makes the technology the most used metal 

AM technology worldwide.  

Despite its wide popularity, LPBF is a highly complex and chaotic process which makes 

the fabrication of defect-free and high-quality parts an inherently difficult task. Simulating LPBF 

processes, and other metal AM technologies in general, has gained increasing attention from 

academia and industry as a practical way to improve the quality of the printed parts while 

avoiding conducting costly experiments. However, because of its process complexity, accurately 

simulating LPBF processes requires computationally expensive high-fidelity multi-scale multi-

physics modeling to capture micro-length and time scale phenomena during the evolution of the 

material.   

This chapter aims to introduce the challenges and importance of modeling LPBF processes 

as well as how this dissertation contributes to solving such problems (see Sections 1.1 and 1.2). 

Also, to enhance the readability a detailed description of the organization of this dissertation is 

included in Section 1.3.    
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1.1. Motivation and Problem Statement  

An accurate and efficient model of the transient temperature field is the foundation for 

modeling the microstructural evolution of the part and understanding its final properties. 

Moreover, high thermal gradients and cooling rates result in undesired thermal distortions and 

residual stresses that could even lead to crack formation in the fabricated parts. Therefore, 

accurate prediction of the temperature field during LPBF processes is critical as it enables 

preventing several detrimental defects in the printed parts. Predicting the thermomechanical 

response of the material during printing requires coupling the thermal model with a mechanical 

model. 

Traditionally, two main approaches have been used to model the transient temperature 

field during LPBF processes: high-fidelity thermo-fluid models (or Computational Fluid 

Dynamics simulations) and macroscopic conduction-only thermal models. CFD simulations of 

the LPBF process can accurately capture the evolution of the material, from powder to final part, 

as they account for melt-pool fluid dynamics during scanning. These models are undoubtedly 

very accurate and commonly used in characterizing micro-length scale defects. However, 

because of their high computational costs as well as high computer power and memory 

requirements, these models are limited to a single or very few tracks. Therefore, such models are 

impractical in modeling the multi-layer process at the larger scale. On the other hand, existing 

macroscopic thermal simulations of the LPBF process are oversimplified and fail to consider 

major fluid flow effects, such as evaporation, Marangoni convection, and process-induced micro-

voids. 

To address such issues, this dissertation presents a modeling framework that effectively 

and efficiently links high-fidelity CFD simulations and macroscopic models for multi-track 
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multi-layer LPBF processes. The proposed approach is also used as a computational tool to study 

the dependence of the thermal history signatures, surface cooling rates, and melt-pool 

dimensions for some of the common commercially available AM alloys. The predictive 

capabilities of the model are verified through comparison with experimental measurements and 

the potential of the framework to be used for close loop control systems and AM digitalization is 

discussed.   

1.2. Contributions of this Work 

The simplified multi-scale modeling framework developed in this dissertation is based on 

the comprehensive thermal model which is unique in multiple aspects. Firstly, it numerically 

accounts for major fluid flow effects (i.e., evaporation, Marangoni convection, process-induced 

micro-voids) while considering other effects such as process and material dependent 

absorptivity, latent heat, and phase transition effects as well as thermo-physical properties for 

bulk and powder material and heat loss due to radiation and natural convection. In other words, 

the model accounts for major lower length scale phenomena while enabling scaling up to larger 

domains of multi-track multi-layer LPBF simulations. Therefore, the presented thermal model 

serves as a more accurate and efficient alternative for the conventional modeling approaches of 

LPBF processes, i.e. high-fidelity CFD simulations and macroscopic conduction-only thermal 

models. It must be emphasized that implementation of the process-induced micro-voids is a 

novelty in this dissertation that provides a valuable first approximation to high-fidelity 

simulations and has potential to be further investigated in the future studies.  

The accuracy of the proposed model makes it suitable to be used as the basis for 

mechanical and metallurgical coupled problems while the efficiency of the proposed model 

makes it practical in part-scale and structural level simulations. Therefore, the presented thermal 
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model can be effectively used to perform thermo-mechanical and microstructural sequentially 

coupled modeling. Computational efficiency and accuracy of the presented thermal model also 

make it a useful rapid computational tool that can be used to extract datasets from and develop 

process maps or even a reduced-order predictive model using deep learning techniques. A 

convolutional neural network architecture and physics-informed machine learning techniques 

that can be utilized for such purposes are proposed in this dissertation and can be further 

investigated to develop real-time simulation systems and digital twins of the AM process. 

Lastly, a unique contribution of this dissertation is conducting a thorough material 

composition study to investigate the effects of material properties on the thermal history 

signatures, surface cooling rates, and melt-pool dimensions. In particular, multi-layer deposition 

of five of the most common AM alloys (i.e., IN718, IN625, stainless steel 316L, Ti-6Al-4V, and 

AlSi10Mg) are modeled and compared under the same amount of input energy.  

1.3. Organization of This Dissertation 

This dissertation is organized into seven chapters. Chapter 1 (current chapter) introduces 

the problem statement and provides background information about the research problems that 

this dissertation aims to address. Chapter 2 starts with a comprehensive literature review of metal 

AM technologies, continues with the benefits and drawbacks of LPBF processes, and discusses 

existing modeling approaches for predicting the transient temperature field as well as the stress 

state and microstructure evolution. This chapter concludes with a survey of some of the most 

common commercially available simulation packages developed specifically for modeling metal 

AM processes and discusses their capabilities and limitations. 

In Chapter 3, the simplified multi-scale modeling framework, developed in this 

dissertation, is presented and the different aspects of the thermal component of the approach are 
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discussed in detail. This chapter also discusses the simplifying assumptions utilized to increase 

the efficiency of the modeling approach while maintaining its accuracy and predictive 

capabilities. This chapter concludes with a description of how the sequentially coupled thermo-

mechanical model is formulated in this dissertation as well as how reduced-order models can be 

integrated within this framework to increase computational efficiency. Chapter 4 presents and 

discusses the results obtained from multi-layer simulations of the alloys of interest. These results 

include thermal history signatures and peak temperatures, surface cooling rates, and melt-pool 

evolution during the five-layer deposition process. Chapter 5 compares the thermal history 

predictions of the numerical model with temperature measurements from experiments and 

successfully validates the presented thermal model. Chapter 6 discusses the significance of 

accounting for fluid flow effects, as one of the most critical features of the thermal model, for 

temperature and stress field predictions. Finally, Chapter 7 concludes with a summary of the 

current study and potential areas of future research in this field of work.   
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Chapter 2. Literature Review and Gap Analysis 

2.1 Metal Additive Manufacturing Technologies 

Currently, there are numerous metal AM processes. However, these AM processes fall into 

seven major categories, defined by the American Society for Testing and Materials (ASTM): Vat 

Photopolymerization (VP), Material Extrusion (ME), Directed Energy Deposition (DED), 

Material Jetting (MJ), Binder Jetting (BJ), Sheet Lamination (SL), and LPBF [1]. Figure 2.1 

provides a graphical representation of these seven major metal AM technologies and their 

mechanisms.  

Two AM processes of Digital Light Processing (DLP) and Stereolithography (SLA) fall 

under the VP category (both approaches are shown in Figure 2.1Figure 2.1(a)). Both processes 

involve exposing liquid material to light to cure it and turn it into solid material. The difference 

between the two technologies lies in the light source used. In SLA, Ultraviolet (UV) laser is used 

to cure the liquid material whereas in DLP a digital light projector is utilized. These processes 

offer high levels of accuracy and good surface finish. However, they are slow in nature and can 

be used to process a very limited range of materials. Also, it must be mentioned that VP 

processes can be used for printing partially metallic parts only. In other words, to print parts with 

partial metal content, it is essential to use composite resins that include metallic particles. As the 

first commercialized AM process, VP has come a long way to offer high resolution and accuracy 

compared to many of the existing AM processes [2]. In fact, most recently, this technology has 

been utilized to fabricate a wide range of functional materials such as battery active materials 

(e.g. lithium sulfide/carbon composites) [3]. 

ME is a manufacturing process that involves extrusion of melted material, in the form of a 

continuous filament, through a heated extruding nozzle (see Figure 2.1(b)). Fused Deposition 
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Modeling (FDM) and Bound Powder Extrusion (BPE) are two of the metal AM processes in the 

ME category. Due to low raw material waste, this unique AM technology allows for a cost-

efficient production. However, one of the major drawbacks of this technology is its inability to 

print parts with strong mechanical properties. Recent studies have introduced new advancements 

in ME that allow for printing denser parts with better mechanical performance. Additionally, 

careful control and optimization of the process parameters, such as nozzle temperature and infill 

pattern, can significantly improve the quality and mechanical performance of the printed parts 

[4].  

There are multiple processes that lie under the DED category. However, there are two 

distinct groups of DED processes in terms of energy: cold spray and thermal energy. In the cold 

spray process, the material is in the form of fine particles that are added to the substrate with 

sufficient kinetic energy such that a dense layer is created. Conversely, the printing technology 

behind thermal energy process mainly consists of a nozzle that deposits melted material onto the 

substrate (see Figure 2.1(c)). The material can be fed through the nozzle in the form of either 

powder or wire.   

In MJ (as shown in Figure 2.1(d)), the printheads used have numerous inkjet nozzles that 

simultaneously jet or spray photopolymer resin onto the build plate. Then, UV light is applied to 

selectively cure the layer. This allows for printing parts that are geometrically complex and 

difficult to print with other AM processes. MJ also can result in robust properties for the final 

product and provides easy removal of support structures. However, this AM technology is 

limited in materials that can be used as well as the size of the printed parts. In order to produce 

metallic parts using MJ, liquid materials infused with metal nanoparticles should be used. In BJ 

technology (as shown in Figure 2.1(e)), a binder material in liquid state is selectively sprayed on 
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a thin layer of metal powder. This technology is among the fastest AM processes and requires no 

support structure. It also results in minimal distortions, such as warping or shrinking, in the 

printed parts and allows for flexibility in material selection. However, BJ could lead to final parts 

with poor material properties, and it is also generally less accurate than MJ technology.  

As the name suggests, the SL process involves layer by layer stacking and lamination of 

thin sheets of metal material that are cut to the shape of the part’s cross section using laser (as 

shown in Figure 2.1(f)). There are two groups of SL processes: Laminated Object Manufacturing 

(LOM) and Ultrasonic Additive Manufacturing (UAM). In LOM, which is primarily used for 

paper material but rarely for metal sheet, adhesives are used to bond the layers. Metallic parts 

printed using LOM are generally weak and not suitable for robust structural applications. On 

other hand, in UAM, an ultrasonic welding operation is used to bond the sheets. UAM also 

requires additional post-processing to remove excess unbounded material. Another major 

disadvantage of SL technology is its difficulty in printing geometrically complex parts. It also 

has low accuracy and poor surface finish. However, this technology benefits significantly from 

efficiency in manufacturing time and costs.  
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Figure 2.1: Schematic representation of six of the seven major metal AM categories: (a) VP [2], (b) ME 

[4], (c) DED [5], (d) MJ [6], (e) BJ [7], (f) SL [8]. 
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2.2 LPBF Processes 

In LPBF (see Figure 2.2), a layer of powder is deposited on the build platform, or the 

substrate and the powder layer is flattened by a roller. Then, the heat or energy source, which 

could be an electron or laser beam, is reflected through a scanning mirror and selectively melts 

or sinters the powders. Finally, the substrate is lowered by the height of one layer thickness and 

the process is successively repeated until the entire part is constructed. The unfused powder can 

potentially be recycled and reused in subsequent prints. To avoid oxidation, the entire process 

takes place inside a chamber with a shielding gas, such as Argon or Nitrogen. There are four 

variations of LPBF technology which are very similar: Selective Laser Melting (SLM), Electron 

Beam Melting (EBM), Direct Metal Laser Sintering (DMLS), and Direct Metal Laser Melting 

(DMLM). In EBM, a beam of electrons is used to fully melt powders while in SLM, DMLS, and 

DMLM laser is used to fuse metal powder together.  

In LPBF processes, the characteristics of the powder as well as process parameters have a 

significant effect on the quality and mechanical performance of the printed parts. There are over 

one-hundred process parameters in most modern LPBF systems [9]. However, the major ones 

include laser power, powder layer thickness, laser scanning velocity, hatch spacing (i.e., distance 

between successive tracks), and scanning strategy. Powder layer thickness in LPBF processes 

ranges from 20 to 100 µm, with powder particle sizes ranging from 20 to 45 μm [10]. Most 

LPBF machine manufacturers develop sets of optimized process parameters for each powder 

material to produce dense materials, minimize defects, improve surface finish, increase 

efficiency, or produce parts with robust mechanical properties. Since it is not possible to agree 

on a single set of process parameters that are fully optimized to produce the “perfect” part, 
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manufacturers develop general parameters to meet as many priorities and quality requirements as 

possible.  

 

Figure 2.2: Graphical representation of the LPBF system adopted from [11] 

2.2.1 LPBF Advantages 

LPBF processes have numerous advantages which explains their prominence over other 

metal AM technologies in the market. In fact, LPBF processes have recently been used for 

manufacturing production parts as opposed to prototyping purposes only. This has resulted in 

adoption of this technology in producing parts for a variety of industries, including but not 

limited to medical, aerospace, and automobile. One of the major benefits of LPBF is that it 

allows for flexibility in printing highly complex geometries and metallic components, such as 

lightweight freeform structures or lattice structures.  

Moreover, LPBF allows using a broad selection of powder materials and specifically high-

strength super-alloys that are primarily used in aerospace applications and products. The range of 

metal powders that can be processed by LPBF is constantly growing and currently include 

titanium, aluminum, chromium-cobalt, nickel-based super alloys, and a variety of steels which 
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are commercially available in the powder form [10]. Additionally, LPBF offers significant 

reduction in material waste and hence it is categorized among the most sustainable and efficient 

AM technologies.  However, LPBF has several major disadvantages and challenges that are 

discussed in the next section.  

2.2.2 LPBF Drawbacks and Defects 

As discussed in Section 2.2.1, low cost, wide material choice, and low material waste are 

the major advantages of LPBF over other metal AM technologies. However, there are several 

major limitations associated with the process as well. Firstly, LPBF is a relatively slow AM 

process with long build times that are due to the additional time required for preheating of 

powder, recoating step, and cooling off period. Therefore, to increase the printing speed, many of 

the recent LPBF machines utilize multiple lasers. However, addition of lasers increases machine 

cost as well as complexity of the overall system.  

Post processing and heat treatments, such as Hot Isostatic Pressing (HIPing) process, may 

be required to improve the mechanical properties and metallurgical issues of the final LPBF 

parts. The layering in AM processes often leaves a slightly “stepped” or rough surface finish 

which requires post-processing by sanding or blowing to eliminate the roughness. During the 

HIP heat treatment process, high temperatures and high pressures are applied in a HIP furnace 

(pictured in Figure 2.3) to reduce the porosity while densifying the part.  
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Figure 2.3: Schematic of a HIP furnace adopted from [12] 

Despite the significant improvements in LPBF processes, there are several defects 

generated during the process that can be divided into three major categories: microstructural 

defects (such as porosity and undesired microstructure), surface quality defects (such as 

roughness from instabilities and balling effect), and structural defects (such as residual stresses) 

[13,14]. These defects are depicted in Figure 2.4. Formation of pores is commonly observed in 

LPBF components and is categorized into three groups: lack-of-fusion pores, keyhole-induced 

pores, and gas-induced pores. Lack-of-fusion pores occur due to incomplete melting as a result 

of insufficient energy and are typically thin and irregular in shape[15]. On the other hand, high 

energy input causes keyhole-induced pores as the metal vaporizes and a slender vapor cavity 

(i.e., keyhole) becomes trapped. Lastly, small spherical gas-induced pores can occur due to 
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entrapment of shielding gas and vaporized elements during the LPBF process [16,17]. This is 

discussed in more detail in Section 3.1.7. 

Another detrimental defect in LPBF processes is the balling phenomenon which happens 

due to the tendency of the melt-pool to shrink (or ball up) under the action of surface tension to 

reduce free energy. The balling effect could hinder the quality and performance of the printed 

object through increasing surface roughness as well as introducing pores into the micro-structure 

of the printed part. Due to the complex physical and chemical interactions between the laser and 

the powders, balling phenomenon is very complicated to model. The balling effect has been 

found to happen for two main reasons: formation of coarse balls due to inadequate laser energy 

input to cause melting of powders and formation of balls due to Rayleigh instability of the melt-

pool under high scanning speeds. However, other factors, such as the contamination resulting in 

a layer of oxide that reduces surface energy of the substrate and causes poor wettability, are also 

crucial in causing the balling behavior [18]. In addition to the balling effect, melt-pool 

instabilities and spattering also can lead to low surface finish quality and high surface roughness 

during LPBF processes.  

Lastly, one of the major drawbacks of metal AM technologies are residual stresses and 

thermal distortions. Residual stresses could lead to crack formation in the fabricated parts and are 

caused by the localized heat source that produces high thermal gradients. Undesired thermal 

stresses could cause failure both during and after printing the part [19]. It must also be mentioned 

that LPBF defects are interdependent such that if high surface roughness or porosity exist, the 

stress distribution could change and that could lead to local stress concentration which creates 

crack initiation sites. In short, lack of control of the temperature field during LPBF can lead to 

many of the aforementioned defects appearing in different scales in the printed parts. Therefore, 
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in order to minimize such defects, it is essential to understand, predict, and also control the 

temperature field during the printing process. Section 2.3 aims to thoroughly discuss the existing 

modeling approaches for LPBF processes and the associated advantages and disadvantages of 

these different methods.  

 

Figure 2.4: Major defects generated during LPBF processes: (a) [13], (b) [14], (c) [15], (d) [18], (e) [19] 

2.3 Conventional Approaches in Numerical Modeling of LPBF Processes 

LPBF processes have a chaotic nature that could easily lead to defects if process 

parameters are not chosen cautiously. The multi-scale AM process involves complex micro time 

and length scale physical phenomena (as pictured in Figure 2.5) , including spattering, laser 

absorption, diffusive and radiative heat conduction in the melt-pool and in the powder, 

evaporation, capillary effects, and many more. Therefore, accurate simulation of the LPBF 

process requires conducting sophisticated multi-scale multi-physics numerical modeling to 

predict defects and investigate the effect of process parameters on the final part.  
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Figure 2.5: Schematic representation of physical phenomena happing during LPBF at different length 

and time scales adopted from [20] 

There are two main categories of thermal modeling approaches for LPBF processes. The 

first group, discussed in Section 2.3.1, is based on simplified conduction-only thermal models 

that neglect fluid flow effects and perform Finite Element Analysis (FEA) on a continuum 

domain with effective powder properties. And the second group, discussed in Section 2.3.2, is 

based on high-fidelity yet computationally intensive thermo-fluid simulations that account for 

fluid flow effects and specifically the convection in the melt-pool for small-scale simulations. In 

order to mitigate or control residual stresses and consequent part distortion, it is essential to link 

the transient temperature field to thermal strains and investigate the thermo-mechanical behavior 

of parts during printing.  

The existing coupled thermo-mechanical models have been reviewed and presented in 

Section 2.3.3. The existing approaches in modeling the microstructure evolution have also been 

discussed in Section 2.3.4. Specific aspects of a numerical model of the LPBF process, such as 

heat source modeling, heat absorption modeling, and definition of material properties for powder 

and bulk material have also been reviewed in Sections 2.3.5, 2.3.6, and 2.3.7, respectively.  
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In addition to numerical models, a literature review has also been carried out in Section 

2.3.8 to identify the state-of-the-art data-driven and physics-informed reduced-order models for 

AM processes. Data-driven reduced-order models are based on machine learning approaches 

involving training based on a set of data, which are either extracted from physics-based 

simulations or obtained from experimental measurements and has the potential to be used for 

near-real-time prediction and AI-assisted defect control for the AM process. Lastly, Section 2.3.9 

reviews some of the existing commercially available software that have been specifically 

developed for modeling metal AM processes.   

2.3.1 Conduction-only Thermal Models 

A significant number of existing thermal simulations assume a continuum domain with 

effective powder properties and have utilized FEA to investigate temperature field evolution 

during the LPBF process. Multiple critical review papers discuss existing conduction-only 

thermal models for LPBF processes [21,22]. In the earlier days, most of such simulations were 

focused on heat conduction models for single-track LPBF processes only [23,24]. To increase 

practicality of these models for actual LPBF processes, conduction-only heat transfer models 

were then extended to multi-track [25,26] and multi-layer [27] simulations.  

Figure 2.6(a) presents thermal field predictions obtained by Hu et al. from 3D FEA using 

ANSYS for five-layer deposition of AlSi10Mg alloy during LPBF process. Due to their 

efficiency in structural level modeling, conduction-only thermal models have been 

predominantly used in coupled thermo-mechanical analysis for the LPBF process. However, 

these simplified thermal models characterize physical phenomena at the macro scale and neglect 

melt-pool dynamics which leads to inaccurate predictions of the temperature field.  
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2.3.2 Thermo-fluid Models  

Fluid flow has been ignored in the vast majority of existing thermal modeling studies for 

LPBF processes, but several recent numerical models coupled heat transfer with fluid flow for 

single-layer simulations. These micro-scale models incorporate effects of Marangoni convection 

and other interfacial phenomena to increase the accuracy of the predictions as well as the 

computational cost of the simulations. To avoid additional computational load, some CFD 

simulations assume a flat and rigid liquid-gas interface and hence do not resolve dynamic 

interfacial fluctuations [28]. On the other hand, other models track the liquid-gas interface using 

the Volume of Fluid surface-tracking method [29], Level Set method [30], a combined approach 

[31], or other interface-tracking methods. From interface-tracking CFD simulations, it is also 

possible to predict and study process-induced micro-void formation and their dispersion 

parameters, such as volume fraction, size and shape for single-track LPBF [32].  

Additionally, high-fidelity thermo-fluid models can be used with or without powder 

packing simulations such as Discrete Element Methods [33]. The majority of the existing CFD 

simulations are for fundamentally homogeneous models and hence to break away from this 

homogeneity, powder-packing simulations were developed. By considering geometry, size, and 

distribution of powder particles, these models make the powder bed behave non-uniformly and 

account for the granularity of the process. Therefore, these fine-scale models would give realistic 

results while being more computationally demanding compared to thermo-fluid models without 

powder packing.  

Due to the intensive computational costs, there exists very few multi-track yet multi-layer 

CFD simulations in literature [34,35]. In other words, the convection of liquid metal in the melt-

pool during LPBF is often neglected in multi-track and multi-layer simulations. Figure 2.6(b) 
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represents results of a transient thermo-fluid simulation for multi-layer LPBF process by 

Mukherjee et al. [35]. Although they successfully used a traveling grid system to increase 

efficiency, multiple simplifying assumptions, such as temperature-independent material 

properties and neglecting heat loss due to vaporization, had to be made to maintain reasonable 

computational costs.  

An alternative to modeling fluid dynamics is incorporating fluid flow effects numerically 

in conduction heat transfer models rather than explicitly modeling fluid flow and solving the 

governing equations, i.e., the Navier Stokes equations, at the micro scale. Examples of such 

implementations are incorporating evaporation through a heat sink on the surface of the powder 

bed as proposed by Karayagiz et al. [36], and accounting for Marangoni convection effects 

through increasing thermal conductivity of the liquid phase by a reported factor [37,38]. In 

Chapter 3, a thorough description of these techniques and their implementation in the proposed 

modeling approach will be provided.  

In addition to coupling the thermal field with a mechanical model to study the 

development of residual stresses, it is also possible to feed the thermal model into a 

microstructure simulation to predict grain growth and microstructure evolution during the 

solidification process. Li et al. [39] recently published a review paper discussing the four 

conventional methods (i.e., Cellular Automata, Phase Field, Monte Carlo, and deterministic 

methods) used in the microstructural simulation of the solidification process for Ti-6Al-4V 

during LPBF. 
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Figure 2.6: Thermal field results from (a) conduction-only model by Hu et al. [27], (b) thermo-fluid CFD 

simulation by Mukherjee et al. [35]. 
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2.3.3 Thermo-mechanical Models 

A pre-requisite for producing high quality LPBF products is predicting and controlling 

thermal stresses and associated distortions during the printing process. Post-AM residual stress 

measurements although widely conducted, could be too late to save a product from failure once a 

defect appears. On the other hand, in-situ residual stress measurement faces many challenges 

such as extremely high temperatures and spatters that are generated during most laser-based AM 

processes and affect positioning of measurement systems. Therefore, FEA has gradually become 

a powerful tool for studying thermal stresses during the LPBF process. However, it is also worth 

mentioning that recently, new methods have been developed to combine experimental data and 

computer vision with FEA to monitor stress evolution during AM processes [40]. Due to its 

ability in handling highly non-linear problems, FEA is identified as the preferred numerical 

method to study the thermo-mechanical behavior during the SLM process. 

Numerous research has been conducted to study residual stress and part distortion during 

LPBF processes using commercially available FEA software, such as Abaqus [41,42], ANSYS 

[43] and COMSOL Multiphysics [44]. These sequentially coupled thermo-mechanical numerical 

models link transient temperature fields to thermal strains. Conventionally, the transient 

temperature field can either come from a conduction-based heat transfer model or a thermo-fluid 

CFD simulation. Because of their efficiency in part-scale modeling, most multi-layer thermo-

mechanical models of LPBF processes are based on macroscale conduction-based thermal 

models. An example is the sequentially coupled FEA thermo-mechanical model developed by 

Cheng et al. [41] in Abaqus. Although computationally efficient, their model is missing effects 

of convection of liquid in the melt-pool which has a huge impact on the predicted stress fields. 
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The residual stress predictions in X-direction of several different scanning strategies are 

presented in Figure 5(a).  

Chen and Yan [45] coupled an interface-tracking thermo-fluidic model that includes 

powder packing with a mechanical model, CFD-FEM, to study thermal stresses and distortions 

during LPBF. However, due to high computational costs, their model is limited to two tracks and 

two layers only. The thermal stresses predicted by their CFD-FEM model are presented in Figure 

2.7(b). Another example is the Abaqus-based thermo-mechanical model, with temperature field 

coming from a thermo-fluid model, by Mukherjee et al. [42]. They were able to model 10-layer 

depositions of IN718 and Ti-6Al-4V powder layers. However, as explained earlier in Section 

2.3.2, several major simplifying assumptions had to be made to keep their approach efficient 

while affecting the accuracy of the predictions.  

 

Figure 2.7: Predicted thermal stresses with thermal field coming from (a) a conduction-based thermal 

model by Cheng et al. [41], (b) a thermo-fluid CFD simulation by Chen and Yan [45]. 
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2.3.4 Microstructure Modeling 

Predicting the microstructural evolution during metal AM processes is critical and hence 

has been extensively studied in literature. Microstructure modeling helps with adjusting process 

parameters to achieve desired microstructures and hence mechanical properties. In a recent 

review paper, Korner et al. [46] discuss the four conventional modeling approaches (i.e. Phase 

Field model, Cellular Automaton, and Monte Carlo method) used in the microstructural 

simulation of the solidification process in metal AM processes.  

The basis for microstructure modeling is the thermal field. In other words, the temperature 

field is fed into microstructure simulations to predict grain growth and microstructure evolution 

during the solidification process. The Phase Field (PF) model can be used to solve complex 

interfacial problems of micro length scale. However, due to its high computational costs, the 

mathematical PF model is usually restricted to very small regions. There are several open-source 

tools, such as the PRISMS-PF framework [47] (developed by the PRISMS Center) which uses an 

efficient matrix-free FE approach and MOOSE-PF [48] (developed by the Idaho National 

Laboratory) that can be used to develop and employ PF models.   

Cellular Automaton (CA) is another approach that is commonly used to model grain 

structure evolution during metal AM processes. For instance, Lawrence Livermore National Lab 

has recently published an open-source source code on github, called the Exascale CA (ExaCA) 

built upon the Kokkos library [49]. ExaCA is specifically useful when modeling AM processes 

as it utilizes a parallel-in-time approach to address the sequential nature of scanning in AM 

processes and avoid high computational costs by simulating one layer at a time. Unlike PF and 

CA methods, the Monte Carlo (MC) method uses random numbers and probability for grain 

grown simulation. MC method is a relatively simple and efficient method that is proved to be 
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effective in simulating grain growth behavior [39]. For instance, Sandia National Laboratories 

has developed a kinetic MC source code, called SPPARKS, that is readily available on github 

and can be used for microstructural evolution simulations [50]. It is also worth noting that there 

are commercial software packages that use a combination of these methods to tackle 

microstructure simulations. For instance, PhasePot integrates the PF in combination with MC 

models to simulate the microstructure evolution [51].     

2.3.5 Heat Source Modeling 

One of the most important aspects of thermal and thermo-fluid modeling of LPBF 

processes is the definition of the moving heat source. Heat source can be modeled as a point 

source, 2D flux, or 3D power distributed over a volume. In 1946, Rosenthal [52] developed an 

exact analytical solution for heat conduction equations with one-dimensional (i.e., point) moving 

heat source on the surface of a semi-infinite metallic plate. Later in 1983, Eager and Tsai [53] 

introduced a two-dimensional moving heat source with Gaussian-distributed power to predict the 

weld geometry.  

In 1984, this was upgraded to a three-dimensional double-ellipsoidal moving heat source 

by Goldak et al. [54] to increase the accuracy of the predictions. However, the use of 2D heat 

sources have been more common in LPBF simulations due to their simplicity and proven to be 

sufficient in thermal models for LPBF processes. Another common type of heat source model 

adopted in literature is the Ray Tracing model [55] which is uncommon due to the lack of 

available information for estimation of the penetration depth and proper definition of the heat 

source . 

2.3.6 Heat Absorption Modeling 
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In LPBF processes, the net amount of energy absorbed by the powder bed depends on 

many factors, including the characteristics of the energy source such as laser wavelength as well 

as the characteristics of the materials such as inter-reflection of the laser beam among powder 

particles [56]. Therefore, the reported value for each material varies widely in literature. To 

tackle such challenges, many efforts have been made to utilize analytical and experimental 

studies in approximating the absorption of laser light by the metal powder. For instance, 

Promoppatum et al. [57] conducted numerical studies, using reported data on absorptivity of 

IN718 in literature, to determine the fitted absorptivity that gives the closest estimate of 

measured melt-pool width for a laser wavelength of 1.06 𝜇𝑚. 

Although most modeling approaches assume a constant absorptivity as a common 

approximation, it must be mentioned that incorporating a material and process dependent 

absorptivity helps with achieving melt-pool sizes that align better with experimental 

measurements. An example of such approach is utilizing scaling laws, as defined by Gan et al. 

[58], that can also facilitate process optimization and defect elimination in LPBF processes. 

Details about this approach are described in Section 3.1.2.  

2.3.7 Thermo-physical and Mechanical Properties 

Thermo-physical properties, i.e. thermal conductivity, density, and specific heat capacity, 

of alloys vary significantly with temperature. Therefore, the assumption of constant thermo-

physical properties could reduce the simulation accuracy. The majority of the existing thermal 

models for LPBF processes incorporate temperature-dependent thermo-physical properties 

[25,28,31] while a few of them assume constant values [59]. Additionally, the majority of 

thermo-mechanical simulations have used temperature-dependent mechanical properties, i.e. 
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Young’s modulus, thermal expansion coefficient, and yield stress, for more accurate predictions 

[19,42].  

Since the powder domain is modeled as continuum homogenous material, incorporating 

effective properties for powder is essential. The effective thermo-physical properties of the 

powder bed could be dependent on the packing density of the powder bed, properties of the 

shielding gas entrapped among the powder particles, and bulk material properties [60]. The 

numerical treatment of latent heat effects is commonly implemented using two schemes, the 

simple Apparent Heat Capacity method and the more involved Heat Integration method. Proell et 

al. [61] also proposed a variant of the heat integration scheme that allows for higher efficiency 

and accuracy through a user-defined tolerance. 

2.3.8 Reduced-order Modeling 

In addition to numerical simulations and experimental measurements, Reduced Order  

Modeling (ROM) has become a very attractive predictive tool in recent years. ROM is referred to 

a model based on Machine Learning (ML) or Deep Learning (DL) of data obtained from 

experimental measurements or physics-based simulations. The goal of such ROMs is to discover 

the relationship between a set of available input data and to predict outputs even if there is no 

phenomenological understanding [60]. There are multiple critical review papers on ROM 

approaches in AM [62,63]. Most current approaches use datasets stemming from experimental 

measurements [64,65], numerical simulations [66,67], or a combination of both [68]. In this 

dissertation, ROMs based on experimental measurements are referred to as black-box models, 

ROMs based on solutions of numerical simulations are referred to as grey-box models, and 

white-box models are those based on physics-based simulations.  
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Multi-scale multi-physics white-box models are accurate yet very computationally 

expensive and complex in modeling LPBF processes. Therefore, for real-time applications, such 

models are often not appropriate. On the other hand, black-box models are efficient and suitable 

for real-time control systems. However, they are costly, time-consuming to develop, and majorly 

lack interpretability. Therefore, grey-box models are more suitable for real-time applications, 

including digital twins. A successful grey-box model benefits from large amounts of data. 

Producing a database to help develop a grey-box model can be prohibitively expensive. 

However, it still offers many advantages, including flexibility in modeling for different materials 

and process parameters without the time, cost, and manpower required to run numerous 

experiments [69].   

There are limited available grey-box models, supervised or unsupervised ML, applied to 

AM processes. In their review paper, Qi et al. [62] identified Neural Networks (NN) to be the 

prevalent ML method applied to different aspects of AM due to its ability of discovering 

complicated patterns. Mozaffar et al. [66] used Recurrent Neural Networks (RNN) trained by 

data obtained from an in-house FE code, GAMMA, to predict the thermal histories during the 

Direct Energy Deposition (DED) process. Similarly, Paul et al. [66] presented a novel 

framework that uses data from GAMMA, an in-house FE code, to train a ML model with 

extremely randomized trees. Many researchers also developed prediction grey-box models based 

on Convolutional Neural Networks (CNN). Khadilkar et al. [70] developed a CNN-based model 

from FE simulations to predict stresses during Stereolithography (SLA) printing process. Wang 

et al. [71] also trained a NN to quickly predict separation stress distribution during the pull-up 

process in SLA using FE simulation data from Abaqus.  
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Most recently, Sofi and Ravani [72] have developed an encoder-decoder CNN to obtain 

sub-second predictions of the heatmap for different scanning strategies during single-layer 

selective laser sintering, which can be further developed for close loop control system for AM 

digitalization. Although utilizing ML approaches would enable fast predictions of temperature 

and stress fields during AM processes, there are challenges associated with these techniques 

(such as large amount of accessible data, proper selection of the significant process parameters as 

inputs to the network, etc.) that need to be considered when training ML models. 

Training and constructing ROMs could be timely and/or costly, depending on the nature of 

the data gathering process. Therefore, to reduce the costs associated with gathering simulation 

data, physical knowledge can be incorporated into developing ROMs. The loss functions of 

physics-informed ROMs can be constructed based on governing Partial Differential Equations 

(PDEs) [73]. A relevant example is the work of Zhao et al. [74] in which a physics-informed 

CNN model is trained to simulate the thermal field during LPBF using a static heating source on 

a 2D plane. 

ROMs, in general, allow for near-real-time predictions and hence could potentially be used 

as an engine in developing a digital twin for the AM process. A digital twin is a digital model of 

a real-life object, process, or system. Rather than a virtual model in isolation, a digital twin is 

constructed in such a way to exchange real-time information with its physical counterpart [75]. 

In other words, the virtual representation is continuously being updated with real-time data. 

Although digital twins of products, such as jet engines, power turbines, and vehicles, have 

existed for some time, digital twins of processes are relatively new. The objective of a digital 

twin for AM processes is to reduce the total number of experiments needed for quality assurance 

of printed parts, i.e. to minimize defects and produce structurally reliable parts [76].  
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2.3.9 Commercially Available Software Packages for Modeling Metal AM 

Processes 
 

More recently, advanced simulation tools have been developed to help the AM 

community tackle modeling challenges and difficulties more easily. However, before reviewing 

some of the existing well-known commercially available AM software packages, it must be 

mentioned that there are many challenges in using these software packages for practical 

applications and specifically for developing digital twins of AM processes. The most significant 

challenge is the high computational cost and power requirement for running such simulations as 

well as costly license access for most of the packages. However, it must be mentioned that a few 

of these new tools offer reduced computational times and less complexity in modeling AM 

processes. Some recent studies have surveyed several of these computational tools and compared 

their capabilities of simulating AM processes [77]. Some of these AM simulation tools include 

ANSYS Additive Print [78], Atlas 3D Sunata [79], Amphyon [80], Simufact Additive [81], 

Autodesk Netfabb [82], and FLOW-3D AM [83].  

ANSYS Additive Print is a software package that offers different levels of simulation 

fidelity for thermal and stress analysis during metal AM processes. Some of the major 

capabilities of the software include predicting distortions and automatic distortion compensation 

as well as predicting in-process stresses and final residual stresses using the inherent strain 

method. This stand-alone AM simulation tool allows users and designers of metal AM parts to 

introduce appropriate countermeasures at an early stage and avoid time-consuming design 

considerations.  

Released in 2018, Atlas 3D Sunata is a cloud-based software that offers a more 

computationally efficient approach by performing thermal analysis using the Thermal Circuit 

Network (TCN) model as opposed to conventional FEM. In the TCN method, the build process 
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is segmented into smaller groups that are then connected like nodes to enhance efficiency in 

thermal modeling of the layer-by-layer process. Sunata also offers optimizations depending on 

the users’ priorities of minimizing build time, distortion, support removal, etc. A unique feature 

of this software is enabling users to optimize the build tray when printing a collective of 

geometries while ensuring no thermal cross contamination takes place. Similar to Additive Print, 

Sunata offers distortion compensation to guarantee the printed part matches closely with the 

input STL file.  

Another commonly used tool is Amphyon which is also a standalone software tool used 

by designers and engineers for modeling metal AM processes. Amphyson also utilizes the 

inherent strain method for predicting residual stresses and thermal strains. The modular software 

package offers different modules including pre-deformation module, supports module, examiner 

module, mechanical process simulation module, thermal process simulation module, and thermal 

adaptation module. The modules are constantly being developed to increase the usability of the 

software in practical applications. Similar to Additive Print and Sunata, Amphyon also offers 

distortion compensation by the pre-deformation method in which the distortions are projected in 

an adverted way back to the CAD file.  

Simufact Additive can also be used to model metal-based AM processes, namely LPBF 

and BJ processes. Simufact is a multi-physics simulation tool that can be used to predict stresses, 

temperatures, and distortions throughout the printing, heat treatment (e.g., HIP process), and 

machining processes, i.e., before the part is actually printed. Moreover, the software offers a 

comprehensive material database for most commonly used metal AM materials.  

Autodesk Netfabb is another AM software tool that offers capabilities including but not 

limited to preparing and simulating AM processes. The software is aimed to help with scaling the 
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workflow and streamlining the day-to-day work of printing parts. A unique feature of Netfabb is 

topology optimization which enables the designers and engineers to apply AM features to the 

desired parts and design for the required load and weight conditions.  

Unlike previous software that were aimed for part-scale modeling, FLOW-3D is a 

commercial CFD software that simulates at the micro- and meso-scales. And, FLOW-3D AM is 

specifically developed to model LPBF processes and can be used as a high-fidelity simulation 

tool to model the end-to-end process, from powder spreading to powder melting. FLOW-3D AM 

is a combination of two separate software packages: FLOW-3D DEM which can be used to 

model the particle-particle interactions in powder bed formation process and FLOW-3D WELD 

which can be used to model laser-material interaction for a variety of applications such as laser 

welding, laser cladding, DED processes, etc. The sequence of model set up using FLOW-3D AM 

is as follows: powder spreading using FLOW-3D DEM, laser irradiation using FLOW-3D 

WELD, and looping through the prior steps for multi-layer builds. High-fidelity FLOW-3D AM 

can accurately characterize the melt-pool dynamics and predict the onset of balling effect and 

porosity as well as surface morphology and microstructure evolution. 
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Chapter 3. Development of the Simplified Multi-scale Modeling 

(SMM) Approach 

The proposed physics-based SMM, as illustrated in Figure 3.1, allows for considering 

lower length scale physics in modeling the thermo-mechanical response of alloys during multi-

layer LPBF processes. The major component of the SMM approach is CTM which aims to link 

high-fidelity micro-scale and macroscopic simulations. In other words, it aims to serve as a more 

efficient alternative for computationally expensive high-fidelity CFD simulations and a more 

accurate alternative for over-simplified conduction thermal models used for modeling of the 

multi-layer deposition process.  

In order to maintain the efficiency of the multi-layer CTM, volume shrinkage due to 

melting as well as mass loss due to evaporation are neglected. Section 3.1 describes the features 

of the CTM and Section 3.2 aims to cover the coupling between the thermal model and the 

mechanical model in simulating the stress state for multi-layer LPBF process. Also, Section 3.3 

aims to discuss how the presented model can be utilized for developing data-driven and physics-

informed ROMs.  
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Figure 3.1: A schematic representation of SMM approach and the major components of the CTM 

3.1 Comprehensive Thermal Model (CTM) 

The distinct features of CTM are outlined in Figure 3.1. The figure aims to represent major 

micro, meso, and macro level physics that are accounted for in multi-scale modeling of the LPBF 

process. The foundation of the physics-based CTM is conduction with additional features 

including process and material dependent absorptivity, evaporation, Marangoni convection, 

process-induced micro-voids, latent heat, and phase transition effects as well as thermo-physical 

properties for bulk and powder material. The objective of the CTM is to obtain more accurate 

temperature predictions than simplified conduction-only models and higher efficiency than high-

fidelity CFD simulations. It must also be mentioned that the model can conveniently be 

expanded to a wide range of alloys provided sufficient information is available. The CTM is 

implemented using the Heat Transfer Module in COMSOL Multiphysics®  with MATLAB [84]  

as a scripting tool to automate and parameterize the simulation process for multi-layer deposition 
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across different alloys. The simulation domain, as depicted in Figure 3.2, consists of 

1 𝑚𝑚 × 1 𝑚𝑚 × 30 𝜇𝑚 powder layers and a substrate, of the same material, with the 

dimensions of 2 𝑚𝑚 ×  2 𝑚𝑚 × 0.5 𝑚𝑚.  

 

Figure 3.2: 3D model of the simulation domain and the scanning strategy   

As the laser passes over the powder layer, for the first few layers, heat dissipates through 

and hence the melted material attaches to the substrate. As a result, if the substrate and the 

powder are of dissimilar materials, mixing of the two materials would take place during the 

scanning of the first few layers. This effect could significantly change the surface tension 

gradients and hence the Marangoni flow. Therefore, for simplification, in this dissertation, it is 

assumed that the powder and the substrate are of the same material. However, it is worth 

mentioning that in order to avoid unwanted mixing of alloys in LPBF processes, the 

experimentalists sometimes print inverted “feet” or pyramids (illustrated in Figure 3.3) for the 

first few layers and cut them off of the printed part after fabrication.   
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Figure 3.3: A series of printed parts with inverted “feet” or pyramids at the bottom. Courtesy of Yuanbo 

Tang from University of Oxford. 

After a mesh independence study was carried out, it was determined that an 8-node hex 

mesh of size 25 𝜇𝑚 is suitable for the powder region with coarser mesh for the substrate. For a 

5-layer deposition simulation, the total computational time of the CTM ranged from 5 to 7 hours 

on a laptop with an Intel ® Core ™ i9-9880H CPU @ 2.30 GHz, 32 GB RAM. To put this into 

perspective, according to Strayer et al. [85], a high-fidelity CFD simulation for a 1 mm long 

track of IN718 took around 7 hours on 24 cores of the Intel Xeon Platinum 8268 @2.90GHz 

processor. This clearly indicates that the proposed CTM reduces the computational expenses 

significantly. As part of this research work, thermal history signatures, cooling rates, and melt-

pool sizes across different alloys are computed and the results of the material-dependence study 

are presented and discussed in later sections. 

3.1.1 Heat Conduction Model 

As mentioned earlier, the CTM is conduction-based. Therefore, the governing equation for 

the heat transfer problem is the transient energy equation as presented below:  
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 𝜌(𝑇)𝑐𝑝(𝑇)
𝜕𝑇(𝒙, 𝑡)

𝜕𝑡
= 𝑘(𝑇)𝛻2𝑇(𝒙, 𝑡) + 𝑞𝑙𝑎𝑠𝑒𝑟 (1) 

where 𝜌(𝑇) is the density of the material, 𝑐𝑝(𝑇) is specific heat, k(𝑇) is thermal conductivity, 

𝑇(𝒙, 𝑡) is temperature, and 𝑞𝑙𝑎𝑠𝑒𝑟 is the heat source term. 𝑘(𝑇)𝛻2𝑇(𝒙, 𝑡) is the heat flux term 

governed by Fourier’s law for an isotropic material where 𝒙 = (𝑥, 𝑦, 𝑧) refers to the position 

vector. Given appropriate initial and boundary conditions, the heat equation can be solved. In 

this model, the initial temperature of the entire domain, i.e., the powder bed and the substrate, is 

set at room temperature (𝑇0). Moving laser beam heat flux, natural convection (i.e., heat loss to 

the surroundings due to shielding gas flow), and radiation to surroundings are the thermal 

boundary conditions in this heat transfer problem: 

 

𝑇(𝒙, 0) = 𝑇0 

𝑞𝑟𝑎𝑑𝑖𝑎𝑡𝑖𝑜𝑛 = 𝜀𝜎𝐵(𝑇0
4 − 𝑇4) 

𝑞𝑐𝑜𝑛𝑣𝑒𝑐𝑡𝑖𝑜𝑛 = ℎ(𝑇0 − 𝑇) 

(2) 

where 𝜀 is emissivity, 𝜎𝐵 is the Boltzmann’s constant (= 5.67 × 10−8𝑤 𝑚2𝐾4⁄ ), and ℎ is the 

convective heat transfer coefficient. It must be mentioned that the proposed CTM assumes 

constant (i.e. independent of temperature) emissivity and heat transfer coefficient. One of the 

most important aspects of the thermal model for LPBF processes is heat source modeling of the 

laser beam. As discussed in Section 2.3.5, a surface heat source is accurate enough to model 

LPBF processes and hence is acceptable to use in the proposed CTM. The heat input is described 

by a Gaussian distribution as a function of distance from its center. In other words, such heat 

fluxes follow an axisymmetric Gaussian profile presented as follows:  

 𝑞𝑙𝑎𝑠𝑒𝑟 =
2A𝑃

𝜋𝜔2
exp {−2

[𝑥 − 𝑥𝑙(𝑡)]
2 + [𝑦 − 𝑦𝑙(𝑡)]

2

𝜔2
} (3) 
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where 𝐴 is absorptivity (as described in Section 3.1.2), 𝑃 is laser power, 𝑥𝑙(𝑡) and 𝑦𝑙(𝑡) indicate 

position of the laser beam, and 𝜔 is laser beam radius. 

3.1.2 Process and Material Dependent Absorptivity 

Another important aspect of thermal modeling of LPBF processes is absorption of laser 

energy by the metallic powder and bulk material. As discussed in Section 2.3.6, absorptivity in 

LPBF processes is significantly affected by different factors that include the characteristics of the 

energy sources as well as the materials [60]. Therefore, accounting for process and material 

dependent absorptivity is critical in thermal modeling of LPBF processes. Proper definition of 

absorptivity is specifically important at higher energy inputs where keyhole mode is the major 

form of melting. For the proposed CTM, the absorptivity used is a function of both process 

parameters as well as thermo-physical properties as defined by Gan et al. [58] through scaling 

laws as following: 

 

𝐴 = 0.7[1 − exp (−0.6𝐾𝑒𝑚𝐿𝑑
∗ )] 

 

𝐾𝑒𝑚𝐿𝑑
∗ =

𝐴𝑚𝑃

(𝑇𝑚 − 𝑇0)𝜋𝜌(𝑇)𝐶𝑝(𝑇)𝑉𝑠𝜔2
 

(4) 

where 𝐾𝑒𝑚𝐿𝑑
∗  is the scaling parameter, 𝐴𝑚 is minimum absorptivity (i.e., absorptivity on a flat 

surface which is a material dependent property), and 𝑉𝑠 is the laser speed. The scaling laws are 

developed based on in-situ synchrotron X-ray imaging data and high-fidelity multi-physics 

models for different materials and process parameters. In their experimental set-up, Gan et al. 

used 1070 nm for laser wavelength with maximum power of 540 W.  

3.1.3 Latent Heat and Phase Transition 

Latent heat and phase transition effects are among the most critical aspects of thermal 

modeling for LPBF processes. Phase variables, 𝜃𝑖(𝑇), keep track of volume fraction of solid 
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phase (𝑖 = 1) and liquid phase (𝑖 = 2) at every time-step and location in the simulation domain. 

For simplicity, the model does not explicitly track the gaseous phase. Tracking 𝜃𝑖(𝑇), which is 

depicted in Figure 3.4 for IN718, allows for utilizing temperature- and phase-dependent material 

parameters in phase transition regions.   

 

Figure 3.4:Plots corresponding to phase variables 𝜃𝑖(𝑇) 

The values of density and thermal conductivity during phase transitions are described by 

following equations:  

 

𝜌(𝑇) = 𝜃1(𝑇)𝜌1(𝑇) + 𝜃2(𝑇)𝜌2(𝑇) 
 

𝑘(𝑇) = 𝜃1(𝑇)𝑘1(𝑇) + 𝜃2(𝑇)𝑘2(𝑇) 
 

𝜃1(𝑇) + 𝜃2(𝑇) = 1 

 

(5) 

Using mixture relations and phase variables in defining properties through phase transition 

has commonly been used in previous studies such as the heat transfer model developed by 

Karayagiz et al. [36]. Also, in the present model, the Apparent Heat Capacity method is used to 

account for the latent heat of fusion in solid-to-liquid phase change [61]. In this method, the 



39 

 

specific heat capacity of the alloy is increased in its melting region (i.e., between solidus and 

liquidus temperatures) to account for the excess energy required in heating the material: 

 𝐶𝑝(𝑇) = 𝜃1(𝑇)𝐶𝑝,1(𝑇) + 𝜃2(𝑇)𝐶𝑝,2(𝑇) + 𝐿𝑓
𝑑𝑓

𝑑𝑇
 (6) 

where 𝑓(𝑇) is a smooth phase transition function and 𝐿𝑓 is the latent heat of fusion. Additionally, 

in the CTM, temperature-dependent thermo-physical properties for powder and bulk material are 

used which are discussed in detail in Section 3.1.4.  

3.1.4 Thermo-physical Properties 

As mentioned in Section 2.3.7, utilizing effective thermo-physical properties for the 

continuum domain of the powder is critical. Although powder-scale approaches result in a more 

realistic simulation compared to continuum-scale simulations, such models could instantly 

become computationally expensive and hence impractical for part-scale simulations [36]. In the 

current modeling approach, the effective thermal conductivity and density of the powder are used 

as defined by Yin et al.[26]:  

 

𝜌𝑝𝑜𝑤𝑑𝑒𝑟(𝑇) = 𝜌𝑏𝑢𝑙𝑘(𝑇)(1 − ∅(𝑇)) 
 

𝑘𝑝𝑜𝑤𝑑𝑒𝑟(𝑇) = 𝑘𝑏𝑢𝑙𝑘(𝑇)(1 − ∅(𝑇))
4 

 

(7) 

where ∅(𝑇) is the porosity function defined as follows: 

 

 
∅(𝑇) =

{
 

 
∅0 (

∅0, 𝑇0 < 𝑇 < 𝑇𝑠
𝑇 − 𝑇𝑚
𝑇𝑠 − 𝑇𝑚

), 𝑇𝑠 < 𝑇 < 𝑇𝑚

0, 𝑇𝑚 < 𝑇

 

 

(8) 

where ∅0 is the initial powder porosity, 𝑇𝑠 is the solidus temperature, and 𝑇𝑚 is the melting 

temperature of the alloy. Initially, i.e., before the laser starts scanning, powder properties are 

assigned. As the laser scans and the molten material cools down and solidifies, bulk properties 
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need to be assigned. Therefore, to account for the transition from powder to bulk properties the 

phase switch method is used. In this method, a distributed Ordinary Differential Equation (ODE), 

with zero initial condition, is defined and solved at all time-steps and locations in the powder 

domain:  

 
𝑑𝑢

𝑑𝑡
= 𝑇 > 𝑇𝑚 (9) 

In the phase switch method, variable 𝑢 is equal to 0 for powder and 1 for bulk material 

representing different forms of the material. In this study, five commercially available AM alloys 

have been selected to simulate and study the effects of material properties on melt-pool 

development, temperature field evolution, and cooling rates. These alloys include IN718, IN625, 

stainless steel 316L, Ti-6Al-4V, and AlSi10Mg. The results of these studies are presented in later 

sections. Figure 3.5(a) and Figure 3.5(b) represent the powder and bulk thermal conductivity and 

density of the different material systems, respectively. Moreover, Figure 3.5(c) depicts the 

modified specific heat capacity of the different materials calculated through the Apparent Heat 

Capacity Method. It must be mentioned that in Figure 3.5(a), the thermal conductivity of the 

liquid phase in increased by factor Cm which is introduced in Section 3.1.6 and tabulated in 

Table 3.1. These thermo-physical properties are mainly extracted from Mills Handbook [86].  
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Figure 3.5: Powder and bulk thermo-physical properties of the five alloys of interest. 
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3.1.5 Evaporation 

At high energy inputs, the temperature of the molten material exceeds the boiling 

temperature of the alloy and causes evaporation. During evaporation, evaporated material is 

removed by the flow of the shielding gas and the remaining material cools rapidly and solidifies  

[23]. In the proposed CTM, however, mass loss due to evaporation is neglected for simplicity. 

But it is worth mentioning that several studies have accounted for mass loss due to evaporation 

by setting the density and specific heat capacity of the removed material to those of alloy gas 

[23,87]. These methods assume that the removed material remains in gaseous state as 

temperatures cool down.  

As mentioned earlier, heat loss due to evaporation is implemented by a new physics-based 

approach introduced by Karayagiz et al. [36]. In this approach, a heat sink is introduced on the 

surface of the powder bed through following equations: 

where 𝐿𝑣 is latent heat of vaporization, �̇�𝑣 is the evaporative mass rate, 𝑃𝑟𝑒𝑐𝑜𝑖𝑙 is the recoil 

pressure, 𝑀 is the molar mass of the material, 𝑅 is gas constant, 𝑃0 is atmospheric pressure, and 

𝑇𝑏 is the boiling temperature of the alloy material.  

 The last two equations in Equation 10 are the Hertz-Knudson equation and the Clausius 

Clapeyron equation, respectively. Some studies include a positive fraction in the equation for �̇�𝑣 

as an adjustment factor to account for condensation on the surface [60]. However, there are many 

 

𝑞𝑒𝑣𝑎𝑝𝑜𝑟𝑎𝑡𝑖𝑜𝑛 = −𝐿𝑣�̇�𝑣 

�̇�𝑣 = 𝑃𝑟𝑒𝑐𝑜𝑖𝑙√
𝑀

2𝜋𝑅𝑇
 

𝑃𝑟𝑒𝑐𝑜𝑖𝑙 = 𝑃0 𝑒𝑥𝑝 {
𝑀 𝐿𝑣
𝑅

(
1

𝑇𝑏
−
1

𝑇
)} 

(10) 
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discrepancies in the values reported in the literature. In this dissertation, it is assumed that no 

condensation takes place and hence maximum heat flux happens. Accounting for evaporation has 

a significant effect on heat loss and hence thermal field and melt-pool sizes. These effects are 

described in detail in Section 6.1.  

3.1.6 Marangoni Convection 

Surface tension gradients on the surface of the melt-pool are due to spatial gradients of 

temperature. These surface tension gradients generate Marangoni force which is the main driver 

for fluid flow circulation (i.e., convection) inside the melt-pool. Marangoni or thermocapillary 

convection is a critical phenomenon in fluid flow models of LPBF processes, specifically at high 

energy inputs where the temperature gradients across the melt-pool are larger. As briefly 

mentioned earlier in the chapter, surface tension gradients are also affected by chemical 

concentration gradients. Therefore, for simplicity, the powder and the substrate are assumed to 

be of the same material to avoid any mixing of different alloys and resulting surface tension 

gradients. In order to estimate the strength of convective transport of heat in the melt-pool, a 

non-dimensional number, called the Marangoni number (Ma) can be utilized: 

 𝑀𝑎 = −
𝑑𝜎

𝑑𝑇

𝑤 ∆𝑇

𝜇𝛼
 (11) 

where 
𝑑𝜎

𝑑𝑇
 is the rate of surface tension changing with respect to temperature, 𝑤 is the 

characteristic length of the molten pool (taken as the width of the melt-pool), ∆𝑇 is the 

temperature difference between peak temperature inside the melt-pool and solidus temperature of 

the alloy, 𝜇 is the dynamic viscosity, and 𝛼 is the thermal diffusivity.  

Higher values of 𝑀𝑎 indicate that convection in the melt-pool is mainly driven by surface 

tension gradients whereas small values indicate that there is no flow as diffusion dominates. 

Marangoni convection has a critical effect on melt-pool geometry specifically. Traditionally, this 
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has been studied using CFD simulations that are computationally expensive and cumbersome. 

However, the effects of Marangoni convection can be approximated by increasing the thermal 

conductivity of the liquid phase by correction factor 𝐶𝑚. This value is either calculated 

experimentally or numerically and is reported in literature for many common alloys. This 

common approach has previously been utilized by several modelers, including Nikam et al. [37] 

and Ladani et al. [38], to numerically account for effects of Marangoni convection in the heat 

transfer model. The reported factors are extracted from references which are cited in Table 3.1. 

Section 6.2 covers the effects of accounting for Marangoni convection on the melt-pool sizes.  

3.1.7 Process-induced Micro-voids 

Implementation of process-induced micro-voids is one of the novelties of the CTM. Void 

formation can be realistically predicted with high-fidelity interface-tracking CFD simulations. 

However, the proposed modeling approach offers an efficient yet effective way of introducing 

micro-voids in the scanning domain. Accounting for micro-voids has a huge effect on thermal 

field (as shown in Section 6.3) as well as the thermo-mechanical field during the multi-layer 

deposition process. As mentioned in Section 2.2.2, there are many factors that lead to formation 

of undesired voids during the printing process which makes predicting and avoiding voids a 

difficult task.  

In the proposed CTM, process-induced micro-voids are randomly implemented in the 

model through defining thermo-physical properties with random spatial distributions generated 

using Equation 12 [88]. The idea behind this implementation is to generate a random spatial 

distribution of values and use them in defining material properties. Initially, powder properties 

are assigned and as the laser scans and melt-pool solidifies, properties ranging from air to bulk 

material are randomly assigned to replicate the inhomogeneous nature of printed parts in the 



45 

 

presence of voids. Function 𝑓(𝑥, 𝑦, 𝑧), as presented below, produces a spatially random number 

through a triple sum expression for a 3D volume: 

where 𝑔(𝑘, 𝑙,𝑚) is the amplitude coefficient with a Gaussian distribution, ℎ(𝑘, 𝑙, 𝑚) is the 

frequency-dependent amplitude, 𝛽 is the spectral exponent, and ∅(𝑘, 𝑙,𝑚) is the phase angle 

with uniform random distribution. 𝐾, 𝐿, and 𝑀 are integers corresponding to maximum 

frequency in each direction. Therefore, the thermo-physical properties are assigned as follows:  

 
𝑢 = {

0 𝜌𝑝𝑜𝑤𝑑𝑒𝑟(𝑇), 𝑘𝑝𝑜𝑤𝑑𝑒𝑟(𝑇)

1
𝜌𝑚𝑒𝑎𝑛 + 𝐴𝑓(𝑥, 𝑦, 𝑧)

𝑘𝑚𝑒𝑎𝑛 + 𝐵𝑓(𝑥, 𝑦, 𝑧)

 

 

(13) 

where constants 𝐴 and 𝐵 are chosen such that the minimum value of the calculated thermo-

physical property, namely density and thermal conductivity, of the powder bed corresponds to air 

and the maximum value corresponds to bulk properties of the resulting alloy. u = 0 corresponds 

to powder properties and u = 1 corresponds to properties assigned after solidification takes 

place. To better illustrate this approach, Figure 3.5 presents the introduction of pores in the 

scanning domain during printing. In this figure, the spotty blue areas in the powder domain 

represent voids with properties resembling that of air. The material used here for demonstration 

purposes is stainless steel 316L.   

 

𝑓(𝑥, 𝑦, 𝑧) = ∑ ∑ ∑ 𝑎(𝑘, 𝑙,𝑚) cos(2𝜋(𝑘𝑥 + 𝑙𝑦 + 𝑚𝑧) + ∅(𝑘, 𝑙,𝑚))

𝑀

𝑚=−𝑀

𝐿

𝑙=−𝐿

𝐾

𝑘=−𝐾

 

 

𝑎(𝑘, 𝑙,𝑚) = 𝑔(𝑘, 𝑙,𝑚) ℎ(𝑘, 𝑙,𝑚) =
𝑔(𝑘, 𝑙,𝑚)

(𝑘2 + 𝑙2 +𝑚2)
𝛽
2⁄
 

 

(12) 
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Figure 3.6: Graphical representation of the implementation of micro-voids in the scanning domain and 

spatially random thermo-physical properties ranging from air to bulk properties 

Pore morphologies, as depicted in Figure 3.7, are dependent on the mechanism leading to 

the formation of pores. Plessis [89] developed 3D images from X-ray tomography of a series of 

Ti-6Al-4V samples. According to his findings, lack-of-fusion voids are irregular in shape and 

size with occasional entrapment of un-melted powder particles. These voids are elongated 

(length > 100 𝜇𝑚) and narrow in shape and generally oriented perpendicular to the building 

direction. On the other hand, keyhole-induced pores are rounded (diameter > 50 𝜇𝑚) while gas 

pores are near-spherical and much smaller in size. In addition to characterizing pores in terms of 

their shapes, some studies have also provided statistical data on their morphologies based on 

experimental measurements. For instance, Kasperovich et al. [90] evaluated pores statistically 
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using descriptors such as circularity, sphericity, aspect ratio, and convexity. Circularity (𝐶) and 

sphericity (ψ) are defined through the following two equations:  

 

𝐶 =
4𝜋 .  𝐴𝑠
𝐿2

 

𝜓 =
6𝜋0.5 . 𝑉

𝐴1.5
 

(14) 

where 𝐴𝑠 is pore surface area, 𝐿 is pore perimiter, and 𝑉 is pore volume. Sphericity is equal to 

one for a perfect sphere and approaches zero for more irregular and elongated pores. To increase 

the practicality and effectiveness of the proposed approach in implementation of process-induced 

micro-voids, statistical data from actual experimental measurements can be used to replicate a 

more realistic representation of generated micro-voids during printing. However, in this 

dissertation, the objective is to prove that the proposed methodology has potential. Therefore, 

incorporation of experimental measurements can certainly be subject of future studies. 

 

Figure 3.7: Pore morphologies of LPBF parts as characterized by Plessis [89] are (a) lack-of-fusion 

pores, (b) gas pores, (c) keyhole-induced pores. 
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3.1.8 CTM-specific Parameters for Alloys of Interest 
 

The parameters discussed in Sections 3.1.1-3.1.7, are extracted from literature for different 

materials and tabulated in Table 3.1. These parameters are used in running CTM simulations and 

generating the results discussed in Chapter 4.   

Table 3.1: CTM-specific parameters for the five alloys of interest. (Values with * are not readily 

available in literature and hence, have been estimated based on the values for similar materials.) 

 

3.1.9 Successive Addition of layers 

Another important feature of the CTM is modeling successive deposition of powder layers 

which is important in the simulation of the multi-layer deposition process. The energy introduced 

by subsequent passing of the laser on new layers has a profound effect on the temperature field, 

cooling rates, and melt-pool dimensions. A common approach to simulate addition of layers with 

time is the method of “element birth and death” [94,95]. In this technique, the entire 3D 

geometry is constructed first where all the elements are initially deactivated. In other words, the 

elements are visually present, yet they do not add to the overall stiffness matrix before they are 

Parameters 
Material System 

Ref. 
IN625 IN718 316L SS Ti-6Al-4V AlSi10Mg 

𝑨𝒎 0.27 0.30* 0.34 0.39 0.30* [91] 

𝑳𝒇 (
𝒌𝑱

𝒌𝒈
) 227 210 260 286 293 [86] 

𝑳𝒗 (
𝒌𝑱

𝒌𝒈
) 6000 5800 6100 9830 12000 [86] 

𝑻𝒔(𝑲) 1563 1533 1658 1878 798 [86] 

𝑻𝒎(𝑲) 1623 1609 1723 1923 898 [86] 

𝑻𝒃(𝑲) 3100 3190 3086 3315 2700 [86] 

𝑴(
𝒈

𝒎𝒐𝒍
) 59.57 57.94 55.85 446.06 27.00 [86] 

𝑪𝒎 2 2 2.5* 1.76 1* [37,92,93] 
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activated. As the laser scans, the elements within the layer are activated and appropriate thermo-

physical properties are assigned to them. 

In this dissertation, to simulate addition of new layers, temperature field obtained from the 

FE analysis of the nth layer is mapped to the corresponding locations as initial condition for 

simulation of the n+1th layer. The new layer, which is in the powder state before the laser scans, 

is assumed to be at room temperature. The deposited layer is added to the existing geometry and 

the entire geometry is re-meshed after each deposition. The deposition of subsequent layers is 

automated using nested loops in the MATLAB scripts. 

3.2 Thermo-mechanical Modeling based on CTM 
 

As part of the SMM approach, the transient CTM can be coupled with a mechanical model 

to study the thermo-mechanical response of alloys. The 3D simulation can be used to predict the 

state of stress and deformations at any stage of the manufacturing process. The Heat Transfer 

and Structural Mechanics Modules in COMSOL Multiphysics were utilized to develop a coupled 

FE thermo-mechanical model. Among the governing equations are the equilibrium equation and 

the stress-stain constitutive relation, respectively, as presented below:  

where 𝜎𝑖𝑗 is the stress tensor, 𝐶𝑖𝑗𝑘𝑙 is the modulus tensor, and 𝜀𝑘𝑙
𝑒𝑙 is the elastic strain. Plastic 

strain is neglected in the present thermo-mechanical model due to lack of reliable information 

about thermo-elastic-plastic parameters. Hence, the material is assumed to be linearly elastic and 

the total strain is defined as the sum of elastic and thermal strains: 

 

𝜎𝑖𝑗,𝑗 = 0 

𝜎𝑖𝑗 = 𝐶𝑖𝑗𝑘𝑙 𝜀𝑘𝑙
𝑒𝑙 

(15) 

 𝜀𝑖𝑗
𝑡𝑜𝑡𝑎𝑙 = 𝜀𝑖𝑗

𝑒𝑙 + 𝜀𝑖𝑗
𝑡ℎ (16) 
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where 𝛼𝑒 is the temperature-dependent coefficient of thermal expansion and 𝑢 is the 

displacement field. For simplification, material is assumed to be isotropic as well as linearly 

elastic with 𝐶𝑖𝑗𝑘𝑙 defined as following: 

where 𝜈 is Poisson’s ratio, 𝐸 is Young’s modulus, and 𝛿 is Dirac delta function. The defined 

𝐶𝑖𝑗𝑘𝑙 in Equation 17 is the most general isotropic 4th-order modulus tensor where λ and μ are 

Lame constants that are in terms of material’s properties [96]. Young’s modulus is a measure of 

the stiffness of the material or its resistance to deformation when subjected to stresses, and ν is 

the Poisson’s ratio which measures the lateral contraction produced by the applied stress.  

 To minimize errors in stress predictions, temperature-dependent Young’s modulus and 

coefficient of thermal expansion, for bulk and powder material, are used and extracted from the 

following references [86,97,98]. However, to get more realistic results, it is essential to account 

for plasticity rather than considering a perfectly-elastic model. Strains induced because of the 

solid-state phase transition can also be considered to increase the accuracy of the thermo-

mechanical model. Such strains are, however, neglected in most macroscopic thermo-mechanical 

models of multi-layer LPBF processes [42]. When considering these two effects, the equation for 

total strain would be:  

𝜀𝑖𝑗
𝑒𝑙 =

1

2
(𝑢𝑗,𝑖 + 𝑢𝑖,𝑗) 

𝜀𝑖𝑗
𝑡ℎ = 𝛼𝑒(𝑇 − 𝑇0) 

 

𝐶𝑖𝑗𝑘𝑙 = 𝜆 𝛿𝑖𝑗𝛿𝑘𝑙 + 𝜇(𝛿𝑖𝑘𝛿𝑗𝑙 + 𝛿𝑖𝑙𝛿𝑗𝑘) 

λ =
𝜈𝐸

(1 + 𝜈)(1 − 2𝜈)
 

𝜇 =
𝐸

2(1 + 𝜈)
 

(17) 
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where 𝜀𝑖𝑗
𝑝 and 𝜀𝑖𝑗

𝑣 are plastic and strain induced by solid state phase transformation, 

respectively. Several of the existing thermo-mechanical models, consider plastic strain and the 

cyclic work hardening effect using a plasticity model with the von Mises yield criterion [42,99]. 

Although the plastically deformed regions are small in size in LPBF parts, they increase the 

computational costs significantly because of non-linear material behavior [60]. The effects of 

accounting for Marangoni convection and evaporation on the linearly-elastic thermo-mechanical 

response of the part are described in Section 6.4.  

3.3 Data-driven and Physics-informed ROM 
 

 The presented physics-based model is accurate and efficient enough to be used as a rapid 

computational tool for extracting datasets and developing a data-driven or a physics-informed 

ROM. The main benefit of the ROM over the physical model is its efficiency and speed in 

providing near-real-time or sub-second predications. Therefore, in this dissertation, a CNN 

architecture has been proposed to develop a ROM or specifically, train a CNN using datasets 

extracted from the physics-based model. Figure 3.8 represents the workflow as well as a 

schematic for the proposed CNN architecture. In this workflow, during the multi-layer deposition 

process, the temperature field at every time-step is discretized into a certain number of cuboids 

of height of the powder layer thickness and a temperature is assigned to each cuboid using shape 

functions. These values are stored in the form of 3D arrays of temperature data and labelled as 

the ground truth in the model.  

 𝜀𝑖𝑗
𝑡𝑜𝑡𝑎𝑙 = 𝜀𝑖𝑗

𝑒𝑙 + 𝜀𝑖𝑗
𝑡ℎ + 𝜀𝑖𝑗

𝑝 + 𝜀𝑖𝑗
𝑣 (18) 
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Figure 3.8: (a) The proposed workflow, and (b) a schematic of the proposed CNN architecture for sub-

second prediction of the temperature field for a 3-layer LPBF simulation 

 For instance, for a 3-layer deposition process and assuming the temperature field is 

discretized into 100 × 100 cuboids, an array of size 100 × 100 × 3 would be extracted at every 

time-step. The array needs to be flattened into a single column in the data pre-processing step. 

Inputs to the network could be material specifications, five process parameters (i.e. laser power, 

laser velocity, hatch spacing, powder layer thickness, and laser beam radius), and 3 laser position 

parameters (i.e. x, y, and z coordinates of the laser). These 9 laser and powder properties in 
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addition to manufacturing process parameters would get inputted into the network and pass 

through a few fully connected layers. The last fully connected layer would then be reshaped into 

multiple small 2D arrays of numbers. Using up-sampling and convolutional operation, these 

relatively small (2D) arrays would then be decoded into larger 2D images. At every stage, the 

number of 2D arrays gets reduced until the output layer with 3 layers of 100 × 100 2D array of 

numbers. These 30,000 output numbers would then be compared to the ground truth label to 

calculate the loss as well as optimize the weights and biases using the backpropagation 

algorithm.  

 In order to determine the optimal hyper-parameter settings, it would be useful to take a 

random subset of data and look at several combinations of hyper-parameters which include 

number of filters in convolutional layers, number of neurons per fully connected layer, and the 

learning rate. The learning rate is used to decide by how much the weights are updated or how 

quickly the loss function is minimized after each iteration. In this dissertation, the objective is to 

propose the CNN architecture that can be utilized for developing a ROM using the presented 

physics-based model. Another promising use case for the proposed physical model is training a 

physics-informed CNN model that incorporates physical laws and physics-informed loss 

functions based on the governing PDEs. However, due to limited computational resources, 

implementation of such frameworks is beyond the scope of this dissertation and would be subject 

of future studies.  
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Chapter 4. Results Obtained from the CTM 

This chapter aims to present, discuss, and compare the results obtained from the CTM for 

the five-layer deposition simulations of the five alloys of interest: IN718, IN625, stainless steel 

316L, Ti-6Al-4V, and AlSi10Mg. Section 4.1 focuses on the thermal history signatures at a 

specific location in the scanning domain and studies the re-melting of previous layers. Section 

4.2 discusses the surface cooling rates at the corresponding locations and analyzes their 

correlation with the stress development. Lastly, Section 4.3 compares the melt-pool dimensions 

across the materials as five layers are deposited and discusses the factors that affect these 

differences. Table 4.1 presents the process parameters used in running these simulations 

including powder layer thickness (tp), laser power (P), laser velocity (Vs), and hatch spacing 

(h). The first column of the table indicates the process parameters under consideration and the 

last column represents the average values for the aggregate of all the materials considered across 

each row. Table 4.2 also presents the remaining process parameters including initial temperature 

(T0), laser radius (𝜔), and initial powder density (ϕ0) as well as atmospheric pressure (P0) and 

gas constant (𝑅).  

Table 4.1: Representative process parameters used in running simulations 

 

Parameters 
Material System 

Representative Values 
IN625 IN718 316L SS Ti-6Al-4V AlSi10Mg 

𝒕𝒑(𝝁𝒎) 20 25 40 20 50 30 

𝑷 (𝑾) 195 100 280 180 175 185 

𝑽𝒔 (
𝒎𝒎

𝒔
) 800 600 500 900 1025 765 

𝒉(𝝁𝒎) 100 35 40 − 70 80 100 75 

Ref. [11] [100] [101] [102] [103] - 
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Table 4.2: The remaining process parameters and constants as defined in simulations 

 

 

 

 

 

 

 

4.1 Thermal Signatures 

In the melting process, thermal histories of the powder bed are rapidly changing with time, 

with the maximum temperature happening on the powder layer surface at the center of the laser 

beam and decreasing with distance from the center of the beam which assumes to follow a 

Gaussian distribution. Predicting thermal histories is critical since they majorly govern 

microstructural evolution and grain structure. Figure 4.1 shows the computed temperature fields 

for IN718 as five layers are deposited. The thermal history of point A, as indicated in Figure 4.2, 

is tracked during the five-layer deposition process for the five material systems considered here. 

Point A is a point from which the laser passes; hence it experiences the highest temperatures 

during the scanning of the first layer. As layers are deposited and the heat source moves away, 

the peak temperatures drop down at point A and everywhere else in the lower layers. 

Parameters Values 

𝑻𝟎(𝑲) 293 

𝝎(𝝁𝒎) 50 

𝝓𝟎  0.4 

𝑷𝟎(𝒂𝒕𝒎) 1 

𝑹 (
𝒌𝑱

𝒌𝒎𝒐𝒍.𝑲
) 8.314 
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Figure 4.1: Temperature distribution during the five-layer deposition of IN718 using CTM  

By comparing the peak temperatures after the deposition of new layers with the melting 

temperature of the material, one can determine how much re-melting of the previous layers 

happens. In Figure 4.2, the blue line indicates the melting temperature for each alloy. It can be 
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seen that with this specific set of process parameters, AlSi10Mg alloy experiences re-melting of 

all previously deposited layers as all five peak temperatures exceed the melting temperature of 

the alloy. This is due to the alloy’s higher thermal conductivity and lower melting temperature 

compared to the rest of the alloys under study. On the other hand, Ti-6Al-4V experiences the 

lowest peak temperature compared to the rest of the alloys. An important note to make is that due 

to the consideration of evaporative heat loss in this model, the peak temperatures are realistic and 

roughly around the boiling temperature of each alloy.   

 

Figure 4.2: Thermal histories of the five alloys of interest in point A 
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4.2 Surface Cooling Rates 

Cooling rate is defined as the rate at which the temperature decreases with time and it is 

identified as one of the most important factors in AM processes, in general. In any metal AM, 

depending on the process parameters and the energy input, the cooling rates are generally high 

and range from 104 to 106 K/s. Accurate prediction of cooling rates and thermal gradients are 

essential as they directly control the microstructure development and grain structure during the 

multi-layer deposition process. Cooling rates are also directly correlated with residual stress 

development and hence are essential to be accurately predicted. In fact, several existing studies 

have focused on optimizing process parameters and scan strategies to identify local defect-prone 

locations and control cooling rates for local microstructure development [104].  

Figure 4.3 illustrates the surface cooling rates for the five materials of interest as predicted 

by the CTM. An important observation from Figure 4.3 is that Ti-6Al-4V experiences the highest 

cooling rates during the scanning of the first layer and hence is more prone to higher residual 

stresses and microstructural defects. Also, one can see that the peak values occur immediately 

after the laser passes and the cooling rate slows as solidification takes place and heat stores as 

latent heat of fusion is dissipated. However, the cooling rates certainly vary depending on the 

process parameters used as well as the selected location in the scan path.  
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Figure 4.3: Corresponding surface cooling rates of the five materials under study during the five-layer 

deposition process 

4.3 Melt-pool Development 

With the thermal model developed, it is also possible to obtain the melt-pool size and 

geometry using isothermal contours (as depicted in Figure 4.4), using the melting temperature of 

the alloy as the minimum temperature. Melt-pool dimensions are affected by the material 

properties as well as process parameters and are directly correlated with part quality, 



60 

 

microstructure evolution, and additional implications. Hence, an accurate prediction of melt-pool 

evolution during LPBF process is critical. On one hand, small melt-pool sizes make the AM 

process inefficient by increasing the processing time as well as reducing density and hindering 

part quality. On the other hand, large melt-pool sizes can cause excessive vaporization and hence 

increased porosity in the printed structure. Therefore, many existing studies have focused on 

optimizing process parameters, either numerically or experimentally, in an effort to achieve 

stable melt-pool sizes [11].  

 

Figure 4.4: A graphical representation of melt-pool length, width, and depth 

Figure 4.5 and Figure 4.6 compare the melt-pool geometries during the five-layer 

deposition process for the five alloys of interest. An important observation from these two 

figures is that the size of the melt-pool increases as new layers are added. This is mainly due to 

heat transfer from the lower layers. Also, it can be seen that alloy composition hugely affects the 

thermal field and hence leads to different melt-pool sizes during the five-layer deposition 

process. Due to its unique thermal properties, the size of AlSi10Mg melt-pool is much larger 

than the rest of the materials as can be seen in Figure 4.5. This unstable behavior is also 

evidently observed in Figure 4.2. Therefore, it can be concluded that the representative process 
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parameters used in these simulations are more aggressive and intense for AliSi10Mg compared 

to the optimized process parameters listed for the alloy in Table 4.1. 

 

Figure 4.5: A graphical comparison between melt-pool dimensions for the five materials of interest as 

five layers are deposited 
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Figure 4.6: A comparison between depth, width, and length of the melt-pools across different alloys  
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Chapter 5. Experimental Verification of the CTM 

To prove the fidelity of the proposed thermal model, the CTM is verified using the 

measurements provided by Karayagiz et al. [36]. The mentioned reference presents experimental 

data on thermal history and melt-pool widths during LPBF of Ti-6Al-4V using the zigzag 

scanning pattern. The process parameters used in the experiments and the corresponding 

simulation using CTM are listed in Table 5.1. The simulation domain is presented in Figure 5.1 

with a thin layer of powder over a bulky substrate of the same material. In order to ensure 

consistency with the referenced literature, the same 8-noded hex mesh of size 25 μm for the 

powder bed and much coarser tetrahedral mesh for the substrate were used.  

The comparisons between experimental and numerical thermal histories at a point in the 

scanning domain are presented in Figure 5.1. It is clear from this figure that there is good 

agreement between the numerical values from CTM and experimental measurements. According 

to [36], the discrepancies can be mainly due to noise in temperature measurements made using a 

thermal imaging sensor with high-speed thermography. Considering the constant spattering and 

instabilities of the printing process, accurate in-situ temperature measurements are generally very 

difficult to obtain. In LPBF processes, many of the phenomena occur at a very short time span of 

just a few microseconds and hence are not easy to measure using typical measuring instruments. 

Moreover, the width of the melt-pool measured from experiments is reported to be 170 ±

13 μm and the proposed CTM predicts 172 μm. Therefore, the prediction error of the CTM is 

within an acceptable range which proves the accuracy of the proposed modeling approach in 

predicting thermal history and melt-pool dimensions during multi-layer LPBF. 
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Table 5.1: Process parameters used in experiment and corresponding CTM  

 

 

 

 

 

 

 

 

Figure 5.1: Comparison between experimental and numerical thermal histories at the location identified 

by a red star in the scanning domain  

  

Parameters Values 

𝒕𝒑(𝝁𝒎) 30 

𝝎(𝝁𝒎) 35 

𝑷  50 

𝑽𝒔(
𝒎𝒎

𝒔
) 80 

𝒉 (𝝁𝒎) 70 
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Chapter 6. Evaluation of Effects of Fluid Flow on Thermal and 

Thermo-mechanical Response 

This chapter aims to investigate the importance of accounting for fluid flow effects on the 

thermal and thermo-mechanical response of alloys. Sections 6.1 and 6.2 discuss the effects of 

Marangoni convection and evaporation on the thermal history signatures and melt-pool 

development through the deposition process, respectively. In other words, thermal histories and 

melt-pool dimensions are used as metrics for comparison of the results in the presence and 

absence of fluid flow phenomena. Section 6.3 aims to discuss the importance of accounting for 

micro-voids on the temperature field and hence the consequent thermo-mechanical response. 

Lastly, Section 6.4 discusses the effect of Marangoni convection and evaporation on the thermo-

mechanical response of alloys during single layer LPBF.  

6.1 Effect of Evaporation 

As mentioned earlier, material evaporation at high energy densities can lead to defect 

formation during the printing process. Therefore, accounting for evaporation is crucial when 

modeling LPBF processes. Figure 6.1 represents the direct effect of evaporation on peak 

temperatures as well as melt-pool dimensions. Both simulations presented in Figure 6.1 were run 

using the representative set of process parameters tabulated in Table 4.1 during the five-layer 

deposition process for IN718. An important observation to make from Figure 6.1 is that the peak 

temperature in the presence of evaporation is much closer to the boiling temperature of IN718 

(i.e. 3190K) as opposed to the unphysically elevated temperatures of conduction-only thermal 

models. In other words, when neglecting evaporation, the temperature of the melt-pool is not 

bounded by the evaporation temperature and hence this leads to excessive overheating of the 

melt-pool. Although accounting for heat loss due to evaporation has a significant effect on peak 
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temperatures, determining how much of this effect is a result of other features as opposed to 

evaporation solely, can be investigated through a quantitative and systematic sensitivity analysis 

in future studies.  

In addition to overestimated peak temperatures, the size of the melt-pool is also 

unphysically and unrealistically large in the absence of evaporation as depicted in Figure 6.1. As 

it can be seen in this figure, neglecting heat loss due to evaporation results in melt-pools that 

reach the edge of the powder domain for layers 3, 4, and 5 hence it seems they are cut off on the 

edges. This comparison clearly demonstrates that considering evaporation in the CTM is of 

utmost importance and crucial in achieving results that align better with experimental 

measurements and hence lead to more accurate predictions when coupled with a mechanical 

model to investigate stresses and distortions.  

 

Figure 6.1: Comparison of melt-pool sizes and thermal histories in the presence and absence of heat loss 

due to evaporation 
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6.2 Effect of Marangoni Convection 

Another fluid flow phenomenon that hugely affects the melt-pool size is the flow induced 

by Marangoni convection. This has been demonstrated through comparing the melt-pool sizes in 

the absence and presence of Marangoni convection effects in the CTM. As discussed in Section 

3.1.6, to account for Marangoni convection in the CTM the thermal conductivity of the liquid 

phase is increased by correction factor 𝐶𝑚. Therefore, in the absence of this effect 𝐶𝑚 is taken to 

be 1 and in the presence of this effect 𝐶𝑚 is taken to be 2 (for IN718, see Table 3.1). The same 

set of representative process parameters provided in Table 4.1 are used to run both sets of 

simulations for five-layer deposition of IN718.  

The melt-pool sizes are depicted in Figure 6.2. Based on the results, neglecting the 

Marangoni driven flow results in melt-pools that are unnaturally narrow and shallow whereas 

accounting for the effects leads to more realistic melt-pool sizes. According to Yuan and Gu 

[105], in the presence of Marangoni convection, the melt-pool would be wider, whereas 

neglecting Marangoni effects would lead to a narrower melt-pool shape. This is clearly observed 

in Figure 6.2 where significant discrepancies in width exist in the absence and presence of 

Marangoni convection.  

The direction and strength of Marangoni convective flow is directly correlated with the 

surface tension gradients that are caused by temperature differences. Therefore, at higher energy 

inputs where larger temperature gradients exist, accounting for Marangoni convection is of 

utmost importance and critical in achieving accurate predictions of melt-pool sizes. Although 

Marangoni flow has a significant effect on melt-pool sizes, it was found that accounting for 

Marangoni convection has minimal effect on the peak temperatures during the deposition 
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process. Therefore, the thermal history signatures in the absence and presence of Marangoni 

effects are closely similar.  

 

Figure 6.2: Comparison of melt-pool sizes in the presence and absence of Marangoni effects 

6.3 Effect of Micro-voids on Temperature Field 

The new approach developed in this dissertation, accounts for process-induced micro-voids 

using spatially random numbers in defining material properties. This is thoroughly described in 

Section 3.1.7. However, in order to more closely look at the effect of voids on the temperature 

field (before considering a collection of random pores in the scanning domain), the thermal 

histories were compared in the presence of a single void. Figure 6.3 represents the thermal 

histories in the presence of a spherical void positioned at a predefined location in the scanning 
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domain. This result is simulated using the same set of process parameters as provided in Table 

4.1 and a scan length of 765 𝜇𝑚.  

For demonstration purposes, the spherical void (with radius of 10 𝜇𝑚) is used as a 

simplified version of a random geometry of an actual void from experiments. Initially, the void 

has powder properties as if it does not exist in the domain. As the laser starts scanning and 

temperatures rise above the melting temperature of the alloy, air properties will be assigned to 

the void element to replicate presence of a micro-void in the powder domain.  

 

Figure 6.3: Comparison of temperature profiles at a random location in the presence and absence of a 

single void 
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According to the results presented in Figure 6.3, the peak temperature is slightly lower and 

starts to cool down faster in the presence of a void. It must be emphasized that, in this figure, the 

location of the void is random and the laser beam is not directly passing through this location. 

Therefore, unlike previous figures, maximum temperatures are not achieved in thermal history 

plots of Figure 6.3.  

The results presented successfully confirmed the importance of accounting for voids in the 

scanning domain and their significant effect on the temperature profiles. However, introducing 

void elements using this approach could instantly become computationally expensive and 

impractical as more pores are added to the domain. Therefore, in order to increase the efficiency 

of the approach while expanding it to a more general framework, spatially random numbers are 

used in defining material properties to replicate the presence of voids in the domain during 

printing. Figure 6.4 compares the temperatures at a point from which the laser passes 

(represented by a black star) in the presence and absence of random pores during single-layer 

LPBF for stainless steel 316L.  

Accounting for process-induced micro-voids is specifically important when modeling the 

thermo-mechanical behavior of materials during printing. Presence of voids in the domain can 

lead to local stress concentration and hence crack initiation and early failure in the printed parts. 

In order to take this approach one step further, statistical information on micro-voids from actual 

experiments can be used to replicate a more realistic presentation of voids in the domain. It must 

be emphasized that although introduction of voids as an input parameter in this dissertation is 

contrary to conventional modeling approaches, it provides a unique first approximation to high-

fidelity CFD simulations while maintaining the computational efficiency of the modeling 

approach developed here. 
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Figure 6.4: Comparison between the thermal histories at the location of a void vs. bulk material  
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6.4 Effect of Evaporation and Marangoni Convection on Thermo-mechanical 

Field 

In this dissertation, the thermo-mechanical problem is modeled as a one-way coupling 

where the transient temperature field is computed followed by thermal expansion and stress 

analysis on the same FE mesh. In other words, the CTM is coupled with a mechanical model as 

part of the SMM approach depicted in Figure 3.1. The effects of accounting for evaporation and 

Marangoni convection on the thermo-mechanical response of 316L stainless steel is depicted in 

Figure 6.5.  

Based on the results presented in Sections 6.1 and 6.2, accounting for fluid flow effects is 

crucial in accurate thermal modeling of LPBF processes. Therefore, it is expected that the 

thermo-mechanical response is also directly affected by fluid flow effects. Figure 6.5 compares 

the x-component of stresses as scanning of a single layer takes place and at two different 

locations with the representative set of process parameters tabulated in Table 4.1. A similar trend 

is observed in Figure 6.5 as in melt-pool sizes and peak temperatures of Figure 6.1 and Figure 

6.2. This figure clearly indicates that absence of fluid flow effects leads to overestimated and 

unrealistically large stresses. 

It must be noted that due to high computational costs of thermo-mechanical models (in the 

range of nanoseconds as opposed to microseconds for thermal analysis), a multi-layer simulation 

which accounts for heat transfer from previous layers has not been performed in this dissertation. 

However, this could serve as a solid foundation for further work in multi-layer and even 

complete part-level simulations of LPBF processes. There are approaches introduced in literature 

to increase the computational efficiency of the transient thermo-mechanical model for multi-

layer simulations of AM processes. For instance, Zhao et al. [44] used two different mesh sizes 
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to halve the computational time: a coarser mesh for the transient heat transfer model and a finer 

mesh for the solid mechanics simulation.  

Another approach that is commonly used to increase efficiency in part-scale thermo-

mechanical models is process agglomeration in which layers are lumped into larger 

computational layers to reduce the total number of degrees of freedom in the problem [106]. 

Some examples of agglomeration approaches are agglomerated laser heat source and layer. In 

short, in this dissertation, the main objective is to make preliminary comparisons that illustrate 

the importance of fluid flow effects on the stresses during LPBF processes. Therefore, a more 

comprehensive study that accounts for plasticity and non-linear material behavior as well as heat 

transfer from lower layers can be subject of future studies. 

 

Figure 6.5: Comparison between the x stress component in the presence and absence of fluid flow effects 

at two locations (a) A and (b) B in the scanning domain.  
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Chapter 7. Conclusions and Future Works 

The primary objective of this dissertation was to develop a modeling approach that would 

efficiently account for micro length scale physics in multi-layer simulations of Laser Powder 

Bed Fusion (LPBF) processes. The presented physics-based model is accurate and efficient 

enough to be used for developing Reduced-Order Models (ROMs) that can then be integrated 

within digital twin frameworks and AI based defect control methods. An extensive literature 

review was performed to identify the challenges and limitations of the existing modeling 

approaches. Moreover, the significance of accounting for fluid flow effects on the thermal and 

thermo-mechanical behavior of alloys was studied and a material-dependence study was carried 

out to compare the response of five of the most commonly used AM alloys which include IN718, 

IN625, stainless steel 316L, Ti-6Al-4V, and AlSi10Mg.  

7.1 Summary of This Dissertation 
 

As the initial step, the seven major metal AM technologies as well as their mechanisms 

and limitations were studied. LPBF process was then identified as the most prominent metal AM 

technology and its drawbacks and defects were characterized. It was found that most of the 

defects associated with LPBF processes, namely microstructural, surface quality, and structural 

defects, are due to lack of control of the temperature field during printing. In other words, many 

of these defects are caused as a result of inaccurate prediction and control of the temperature 

field. Therefore, studying the thermal and thermo-mechanical behavior of the parts during 

printing became the goal of this research work.  

After reviewing the conventional modeling approaches for LPBF processes, two major 

categories of thermal simulations were identified that are described in Section 2.3. These are 

simplified conduction-only thermal models and computationally intensive thermo-fluid models 
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(i.e. CFD simulations). While the former approach is suitable for part-scale modeling, its 

predictions are not very accurate with large discrepancies from experimental measurements. On 

the other hand, CFD simulations accurately characterize the behavior of the alloy through 

printing at the micro-scale but their high computational costs make them inefficient for multi-

layer LPBF simulations. Therefore, the goal of this dissertation was to develop a new modeling 

approach, that would be used as a good first approximation to a CFD simulation while increasing 

the computational efficiency.  

In order to satisfy this goal, the Comprehensive Thermal Model (CTM) was developed as 

the thermal component of the Simplified Multi-scale Modeling (SMM) approach in Chapter 3. 

The CTM has several unique features which include process and material dependent 

absorptivity, evaporation, Marangoni convection, process-induced micro-voids, latent heat, and 

phase transition effects as well as thermo-physical properties for bulk and powder material. In 

fact, implementation of process-induced micro-voids using random spatial numbers in defining 

material properties is a novelty of this approach which is thoroughly described in Section 3.1.7 

along with the rest of the unique features discussed in Section 3.1.  

As part of the SMM approach, the CTM was coupled with a linearly elastic mechanical 

model to study the thermomechanical behavior of the manufactured part and show the 

significance of accounting for micro-length scale physics on the stress state. With its accuracy 

and efficiency, the CTM also provides for a suitable computational tool to be used for extracting 

datasets and developing both a data-driven and a physics-informed Reduced-Order Model 

(ROM) using neural networks. Moreover, a Convolutional Neural Network (CNN) architecture 

and the workflow for utilizing it is proposed in Section 3.3 to be used as the foundation for 

developing ROMs using the proposed physics-based model. 
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In Chapter 4, the results of five-layer simulation using the CTM for the five alloys of 

interest are presented and discussed. The parameters studied include thermal signature histories, 

surface cooling rates, and melt-pool dimensions and the effects of material properties on the 

results was investigated. In order to prove the predictive capabilities of the model, the CTM is 

verified with experimental measurements from literature for Ti-6Al-4V and the results are 

presented in Chapter 5. The importance of numerical implementation of fluid flow effects in the 

CTM and SMM was also demonstrated in Chapter 6 and it was clearly shown that accounting for 

such effects is crucial in multi-layer simulations of LPBF processes. The modeling approach can 

also easily be extended to other metal alloys with proper definition of properties listed in Table 

3.1.  

7.2  Potential for Future Research    

 One of the major reasons contributing to the efficiency of the presented modeling 

approach while maintaining the essential character of the problem is simplifying assumptions 

used. In the CTM, the simplifying assumptions include neglecting volume shrinkage due to 

melting, mass loss due to evaporation, and mixing of alloys in the presence of dissimilar 

materials for the powder and substrate. These simplifying assumptions might have contributed to 

the discrepancies with experimental results presented in Chapter 5. Therefore, including the 

effects of such phenomena in the CTM can be further studied and conducting a systematic 

sensitivity analysis can be considered in future studies. Also, a quantitative analysis can be 

conducted to explore the sensitivity of the temperature profiles, melt-pool dimensions, and 

microstructural defects on the different features of the CTM, such as temperature-dependent 

properties, process and material dependent absorptivity, etc.   
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Moreover, accounting for non-linear material behavior and plastic strains in the SMM 

approach could result in achieving a more realistic prediction of the thermo-mechanical behavior 

of alloys during printing. Another possibility for future research is extending the SMM 

framework to multi-layer thermo-mechanical simulations to study the effect of heat transfer from 

lower layers on the stress state. It must be emphasized that in this dissertation, the focus was 

maintaining the computational efficiency of the model for multi-layer modeling and accounting 

for such physics would have hindered the fundamental objective of this research work. 

Although computer simulations are often used as an efficient substitute for experiments, 

calibrating the presented model with experimental measurements for each material system would 

be very useful. Currently, the CTM is verified with experimental measurements provided in 

literature for Ti-6Al-4V only. Extending this to the rest of the alloys while calibrating 

temperature and stress predictions with experimental measurements could be subject of future 

studies. Also, incorporating statistical information on process-induced micro-voids obtained 

from experiments (as discussed in Section 3.1.7) can help with increasing the practicality of the 

presented framework and is worth further studying.  

Moreover, as described in Section 2.3.4, the basis for modeling the microstructure or the 

grain structural evolution during LPBF processes is a well-defined thermal field. Therefore, the 

temperature field predictions of the CTM can be fed into microstructure simulations in the future 

studies. Another possibility of future work is investigating how the presented model can be 

efficiently extended to actual part-scale simulations (with hundreds of layers and much larger 

scanning domains). Due to limited computational resources, the presented model was limited to 

five-layer simulations of 1 𝑚𝑚 × 1 𝑚𝑚 powder domains only. However, scaling the model up 
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to structural level simulations would require access to parallel computing techniques and High-

Performance Computing (HPC).  

Utilizing HPC can also benefit developing ROMs, specifically data-driven ROMs, by 

paving the way for collecting datasets in a more efficient manner. The collected datasets can also 

be used in developing process maps for the AM process. Constructing process maps would help 

researchers visually identify a suitable range of process parameters (i.e., a process window) for 

achieving parts with optimized qualities such as surface roughness, density, residual stresses, etc. 

Moreover, full development of ROMs and their integration within the digital twin framework 

would be crucial in efficiently printing sound parts with optimized mechanical properties and 

minimal qualification testing.   
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