
UC Davis
IDAV Publications

Title
Parallel Visualization of Large-Scale Aerodynamic Calculations: A Case Study on T3E

Permalink
https://escholarship.org/uc/item/4422g7s8

Authors
Ma, Kwan-Liu
Crockett, Tom W.

Publication Date
1999

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/4422g7s8
https://escholarship.org
http://www.cdlib.org/

e
d
ul
u
a
g
n
e
n
on
%

g
g

i-

ry
o

rs
g

en
l
8
e
u

d

s
red
nd
lift
e
to
n

12,
-

is
Abstract

This paper reports the performance of a parallel volume rend
ing algorithm for visualizing a large-scale unstructured-gri
dataset produced by a three-dimensional aerodynamics sim
tion. This dataset, containing over 18 million tetrahedra, allows
to extend our performance results to a problem which is more th
30 times larger than the one we examined previously. This hi
resolution dataset also allows us to see fine, three-dimensio
features in the flow field. All our tests were performed on th
SGI/Cray T3E operated by NASA’s Goddard Space Flight Ce
ter. Using 511 processors, a rendering rate of almost 9 milli
tetrahedra/second was achieved with a parallel overhead of 26

CR Categories and Subject Descriptors:D.1.3 [Programming
Techniques]: Concurrent Programming - Parallel Programmin
I.3.3 [Computer Graphics] Picture/Image Generation - Viewin
Algorithms; I.3.8 [Computer Graphics] Applications; J.2 [Phys
cal Sciences and Engineering].

Additional Keywords: parallel rendering, volume rendering,
scientific visualization, parallel algorithms, unstructured grids,
computational fluid dynamics, T3E

1 INTRODUCTION

Leading-edge scientific computations with demanding memo
and processing requirements are increasingly being performed
massively parallel supercomputers. As an example, researche
ICASE and NASA Langley Research Center are performin
large-scale unstructured mesh computations for three-dim
sional high-lift aircraft analysis on state-of-the-art paralle
supercomputers such as the Cray T3E and SGI Origin2000 [
The computational meshes they are using each contain sev
million data points. The largest one is a transport take-off config
an

n-
ll-

ca-
a
s-
e
g

the
n.
by

ch

u
r,
r-

a-
s
n
h
al

-

.

;

n
at

-

].
ral
-

ration which uses up to 24.7 million grid points to derive goo
predictions of lift and drag for varying angles of attack.

Visualizing the solution data from this type of calculation i
particularly challenging because the associated unstructu
meshes are typically large in size and irregular in both shape a
resolution. Figure 1 displays a surface mesh used in the high-
analysis work [8], and Figure 2 shows a close-up view of the sam
mesh. The corresponding volume mesh would be too cluttered
view directly. Visualizing unstructured-grid data has been a
active area of research in recent years [2, 5, 6, 7, 9, 10, 11,
13]. However, interactive performance for high-fidelity visualiza
tion of large datasets, such as the high-lift analysis solutions, c
only be obtained with the help of parallel computers.

At ICASE, we have been developing a parallel volume re
derer for unstructured-grid data. Our design is based on ce
projection rendering and a multiplexed asynchronous communi
tion algorithm. Effective static load balancing is achieved with
round robin distribution of volume data cells among the proce
sors, combined with a fine-grained interleaved partitioning of th
image. A spatial partitioning tree is used to ensure locality durin
the rendering process, thereby improving the performance of
image compositing step and reducing memory consumptio
Communication cost is reduced by buffering messages and
overlapping communication with rendering calculations as mu
as possible.

Figure 1. Illustration of the surface grid for a high-lift aircraft
configuration. The mesh resolution near the wing surface
particularly fine. Over 90% of mesh elements are in the vicinity of
the wing surface.

;

Parallel Visualization of Large-Scale Aerodynamics Calculations:
A Case Study on the Cray T3E

Kwan-Liu Ma
University of California, Davis

Thomas W. Crockett
Institute for Computer Applications in Science and Engineering
Author’s addresses:Kwan-Liu Ma, Department of Computer Science, UC
Davis, One Shields Avenue, Davis, CA 95616-8562, ma@cs.ucdavis.ed
Thomas W. Crockett, ICASE, MS 132C, NASA Langley Research Cente
Hampton, VA 23681-2199, tom@icase.edu.

g
o
w
nl
h
er
io
s

s.
0
e
ls

an
n
e

2
e
nt
1

ts
s

ns

g
t

s

of

e
ng
izes
eral
uc-
ary
r-
s,

e to

er-
to
se a
e

ity
i-
ry

he
se
all
n-
ber
, the
g
er
ed

a.
ch
-
nts
rg-
h

nts
nd

on.
ed,
ssor

ns
m-
ake
r-
ch
iod-
are
g-
g
en-
In [6], we show that this algorithm scales well with increasin
numbers of processors on the IBM SP2. Parallel efficiencies
70% or better were maintained for up to 128 processors. Ho
ever, our tests used a relatively small dataset containing o
103,064 data points (567,863 tetrahedra). We did not know if t
same algorithm would scale well with data size, or wheth
increased numbers of ray segments would lead to communicat
bottlenecks. The size of the high-lift analysis solution data allow
us to verify the scalability of our algorithm for larger dataset
This paper presents test results for a dataset containing 3,107,
grid points (18,216,138 tetrahedra), which is about 32 times larg
than the one we used previously. The size of this dataset a
allows us to profitably increase the image resolution, providing
opportunity to study performance as a function of image size, a
to produce visualization results which reveal fine details in th
modeled phenomena.

The rest of the paper is organized as follows. Section
reviews the basic parallel rendering algorithm. Section 3 provid
a brief overview of the T3E architecture. Section 4 then prese
experimental results obtained on the Cray T3E using up to 5

processors.1 Section 5 illustrates some of the visualization resul
we have obtained with our renderer, and we conclude this ca
study in Section 6 with a summary of our results and directio
for future research.

2 A PARALLEL VOLUME RENDERING
ALGORITHM FOR 3D
UNSTRUCTURED-GRID DATA

A more thorough description of our parallel volume renderin
algorithm can be found in [6]. In this section, we only highligh

1Although the Goddard T3E contains 1048 computational proces-
sors, the per-job limit is 512. Our current implementation uses one
processor to coordinate data distribution and image assembly tasks,
leaving a maximum of 511 processors available for rendering compu-
tations.

Figure 2. A close-up view of the surface grid for the high-lift
configuration, which shows the mesh structure near the two flap
f
-
y
e

n

75
r
o

d

s
s
1

e

.

the design principles. The basic algorithm performs a sequence
tasks:

• Distributing data and visualization parameters
• Space partitioning
• Viewing transformation
• Scan conversion of tetrahedral cells
• Merging of ray segments
• Assembly and output of final images

The volume data is distributed in round robin fashion with th
intention of dispersing nearby cells as widely as possible amo
processors. This is because the data cells come in different s
and shapes. The difference in size can be as much as sev
orders of magnitude due to the adaptive nature of the unstr
tured mesh. As a result, the projected image area of a cell can v
dramatically, which produces similar variations in scan conve
sion costs. Cells which are in proximity tend to have similar size
so dispersing them helps to average out load imbalances du
cell size.

Once the volume data is distributed, a preprocessing step p
forms a parallel, synchronized partitioning of the volume data
produce a hierarchical representation of the data space. We u
k-d tree [1] because of its ability to adapt to the structure of th
data. Thek-d tree is used in the rendering step to restore local
which is lost in the data distribution step, resulting in more eff
cient image compositing and reducing runtime memo
requirements.

The principal difference between the current algorithm and t
one described in [6] is in the image partitioning strategy. Becau
the types of unstructured grids we deal with can have sm
regions of very high cell density, we found that our original sca
line interleaving scheme exhibited load imbalances as the num
of processors approached the number of scanlines. In contrast
current algorithm uses a very fine-grained pixel interleavin
scheme which effectively distributes high density regions ov
more processors, resulting in better load balancing and improv
scalability.

A cell projection method is used to render the volume dat
However, cells are not pre-sorted in depth order. Instead, ea
processors traverses thek-d tree in the same fixed order, scan con
verting its local cells to produce ray segments. The ray segme
are then routed to their final destinations in image space for me
ing. A double-buffering scheme is used in conjunction wit
asynchronoussendand receiveoperations to amortize communi-
cation overheads and to overlap communication of ray segme
with rendering computations. Scan conversion of data cells a
merging of ray segments proceed together in multiplexed fashi
When scan conversion and ray-segment merging are finish
each processor sends its completed subimage to a host proce
which assembles them for display.

Logically, the scan conversion and image merging operatio
represent separate threads of control, operating in different co
putational spaces and using different data structures. For the s
of efficiency and portability, however, we have chosen to inte
leave these two operations using a polling strategy. Ea
processor starts by scan converting one or more data cells. Per
ically the processor checks to see if incoming ray segments
available; if so, it switches to the merging task, sorting and mer
ing incoming rays until no more input is pending. The resultin
communication pattern is both view- and data-dependent, but g

o

m
e
o
r
o

u
o

e
o

n
c-
t
e

th
a

ay
n
te
so
s
y,
es

a
S
pe

fo
ll
e
i

y-
s
v-
r

d
1
d
i
n
-

age
ew
ely.
u-
e

set
gle
rid
nd
33
em-
the

e
ets.
s is
for-
11

ugh
ge-
56
ates
ta-

ing
erally requires each processor to communicate with most, if n
all, of the other processors.

Due to the asynchronous nature of the rendering algorith
individual processors are not able to determine on their own wh
a frame is complete. Hence a distributed termination detecti
protocol is employed. Our original renderer used a straightfo
ward procedure in which the host processor collected informati
from each rendering processor and then notified them all when
determined that the overall rendering operation was complete. O
current version improves on this using a binary merging alg
rithm based on ray-segment counts. The new approach runs
logarithmic, rather than linear, time, and does not involve th
host, making it more efficient and scalable to larger numbers
processors.

We have identified a dozen different variables which ca
affect the performance of this algorithm on any given archite
ture. Some of these depend on the contents of the input da
others are determined by the viewing and visualization param
ters specified by the user; and still others are parameters of
algorithm. We will discuss several of these issues in more det
in Section 4, but first we provide a brief overview of the T3E
architecture.

3 SGI/CRAY T3E

All of the tests reported here were performed on the SGI/Cr
T3E computer operated by NASA’s Goddard Space Flight Ce
ter. The T3E is a distributed-memory massively parallel compu
system. Although memory is attached directly to each proces
(physically distributed), it is globally addressable. In the intere
of portability, we have chosen not to exploit this feature directl
preferring instead to rely on MPI message passing for interproc
sor communication

In Goddard's T3E, each PE contains a 300MHz DEC Alph
21164 microprocessor with peak performance of 600 MFLOP
and 128 megabytes of local memory. About 120 megabytes
processor can be used by the application program. The system
a whole contains 1088 processors, of which 1048 are available
application workloads, with a per-job maximum of 512 PEs. A
PEs are connected by a bidirectional 3D torus communication n
work with peak data bandwidth of 480 megabytes per second
every direction. A recent cross-platform study of a parallel pol
gon renderer with communication characteristics similar to tho
of our volume rendering algorithm concluded that the T3E deli
ered performance which was superior to that of its contempora
competitors [3].

4 TEST RESULTS

To study the scalability of our rendering algorithm, we performe
a series of tests using both the large dataset containing 18,216,
tetrahedra, and the small dataset containing 567,863 tetrahe
We used the small dataset in our previous study [6] to examine
detail each component of the parallel overhead and to fine tu
our algorithm. In this study, we focus particularly on the follow
ing parameters:

• number of processors
• data size
• image size
t

,
n
n
-
n
it
r

-
in

f

a;
-
e
il

-
r
r

t

-

,
r
as
r

t-
n

e

y

38
ra.
n
e

• ray-segment buffer size
• polling frequency

For each test, three different views were used, and the aver
rendering time was recorded. Color Plates 1 and 2 show the vi
sequences used with the small and large datasets respectiv
With the current steady-state solutions, data input and distrib
tion is performed only once, and is therefore not included in th
rendering time. To expedite our experiments, the large data
used in our tests has been reduced from double precision to sin
precision, and contains only a single scalar quantity at each g
point. It occupies 325 megabytes of space on disk; reading a
partitioning it among 128 processors requires approximately
seconds. We have made no attempt to optimize our image ass
bly and display procedures, so these times are excluded from
rendering rates as well.

4.1 Performance and Scalability
The first set of test results is summarized in Figure 3. W

compare the rendering rates for the large and the small datas
Because of memory requirements, a minimum of 42 processor
needed to render the large dataset. The plots show that per
mance with the large dataset increases steadily through 5
processors. The large number of tetrahedral cells entails eno
computational load to keep the parallelization overhead mana
able. Performance with the small dataset is also good through 2
processors, but peaks around 320 processors and deterior
beyond that point. With 128 processors, our current implemen

B

B

B
B

B

B

B

B

B

B
BBB

J

J

J

J

J

J

J

J

J

0

1

2

3

4

5

6

7

8

9

1 100 200 300 400 500

M
ill

io
n

s
o

f
T

et
ra

h
ed

ra
/S

ec

No. of Processors

B 567,862 cells (buffer size = 80, polling interval = 160)

J 18,216,138 cells (buffer size = 100, polling interval = 200)

Comparative Rendering Performance
400 x 400 image, fixed buffer size and polling interval

Figure 3. Rendering rates (tetrahedra/second) on the T3E us
up to 511 processors.

st

n

e
tr
th
a

ce
o
lly
t
fe
e
in

ta
a

in
ic
n
n
io
e
ll
y
t

u
ed
a
i-

g
th

a

n-
ive
e

lion
per
1.1
ad
out
e

ion
s

of

o-
e
er

eri-
are
ase
he
m-
for
00

is
ll

1

tion on the T3E renders the small dataset more than 4 times fa
than its predecessor on the IBM SP2 [6].

Figure 4 compares the relative contributions of computatio
and parallel overhead to the total rendering time for varying num
bers of processors. Computation includes frame initialization, tr
traversal, scan conversion, ray-segment merging, and con
flow. Overhead represents additional costs incurred due to
parallel implementation, and includes data copying, communic
tion, termination detection, and idle time due to load imbalan
and network congestion. For the large dataset, the overheads c
prise about 17% of the time on 64 processors, gradua
increasing to 26% of the time with 511 processors. This slow ra
of growth suggests that even more processors could be used ef
tively for rendering datasets of this size. For the smaller datas
useful computation drops below 50% at about the same po
where performance peaks in Figure 3, around 320 processors.

Table 1 provides a more detailed breakdown of the compu
tion and overhead components for the 511-processor case. R
segment merging is by far the most expensive operation, cost
more than four times as much as scan conversion. Commun
tion costs (data copying, send and receive latencies, polling, a
synchronization) seem to be well under control. The domina
overhead appears to be the end-of-frame termination detect
protocol, but this is partly an artifact of the way termination tim
is measured. Once a processor has finished scan converting a
its cells, it enters a polling loop, waiting for either incoming ra
segments from other processors, or termination messages. The
for the latter requires a trip through the termination detection ro
tine on each iteration of the loop, so that much of the report
termination cost could be interpreted instead as polling overhe
and/or idle time (receive wait). Given this interpretation, the pr

Computation Time vs. Overhead
400 x 400 image, fixed buffer size and polling interval

16 32 64 128 256 384 511
0

20

40

60

80

100

P
er

ce
n

ta
g

e
o

f
T

o
ta

l T
im

e

No. of Processors

overhead

overhead

16 32 64 128 256 384 511
0

20

40

60

80

100

computation

computation

567,862 cells:

18,216,138 cells:

Figure 4. Computation time and parallel overheads for varyin
numbers of processors. Buffer sizes and polling intervals are
same as in Figure 3.
er

-
e
ol
e
-

m-

e
c-
t,
t

-
y-
g
a-
d
t
n

of

est
-

d

e

mary overhead then becomes wait time, which is mainly
reflection of load imbalance.

Together, the results in Figures 3 and 4 and Table 1 demo
strate that the T3E is well-equipped to handle the mass
communication generated by this application. With the larg
dataset on 511 processors, an average of more than 44.6 mil
ray segments have to be communicated per frame. At 24 bytes
ray segment, the aggregate communication volume is about
gigabytes. One of the advantages of our algorithm is that this lo
does not get injected into the network all at once, but is spread
over the duration of the frame time, determined in part by th
choice of buffer size. Nonetheless, with an advertised bisect
bandwidth of 122 GB/s in a 512-processor configuration, it seem
unlikely that we would ever tax the communication capabilities
the T3E.

4.2 Image Size
While an image size of 400 x 400 may provide adequate res

lution for smaller volumetric datasets, it doesn’t do justice to th
larger problem considered here. To gauge the impact of high
image resolutions on performance, we have repeated our exp
ments with image sizes up to 1200 x 1200 pixels. The results
shown in Table 2. As can be seen, performance tracks the incre
in image resolution closely. This is to be expected given that t
principal execution time components are dependent on the nu
ber of ray segments generated. The lower overhead fraction
the 1200 x 1200 case is due to a larger ray segment buffer (1,0
vs. 100), which results in more efficient communication with th
high resolution image. The polling interval was set to 200 for a
three cases.

Component Time (secs) Percentage

Overheads

Ray-segment copying 0.040414 1.98

Send latency 0.046632 2.29

Receive latency 0.042881 2.11

Send wait 0.000000 0.00

Receive wait 0.161666 7.94

Polling 0.035943 1.77

Termination detection 0.187978 9.24

Synchronization 0.013291 0.65

Total overhead 0.528805 25.98

Computation

Initialization 0.097967 4.81

Scan conversion 0.235613 11.58

Ray-segment merging 0.949170 46.64

Other 0.223697 10.99

Total computation 1.506447 74.02

Total 2.035252 100.00

Table 1: Execution time components for 18,216,138 cells on 51
processors at 400 x 400 pixels.

u

s
n
to

ch
o
a
th

e
ri

g
m

o
g

th
t

s
t.

or-
are
ize
d-
-

se-
in
e
ost.
e

fer
ion
da-
s.

ea
nd
se
r,

ight
.
at
,

een
of

is
o-

ly
al

e-
.,
g
to

ilar
ed

e
n-
w
f

ld
-
rly
he
s)
w

w
e of
ith

ar
face
e
due
n

ests
4.3 Communication Parameters
As our results from Section 4.2 suggest, the choice of comm

nication parameters (buffer depth and polling interval) can have
significant impact on performance. Although this problem ha
been studied in some detail in the context of parallel polygon re
dering algorithms [4], the situation here is more complex due
the interaction of additional parameters such as the depth of thek-
d tree and the choice of opacity transfer functions, both of whi
can have a significant impact on communication and computati
performance. Thus guidelines for selecting optimal communic
tion parameters are far from obvious, and a detailed analysis is
subject of ongoing investigation.

Figure 5 displays the impact of buffer depth on performanc
with the large dataset using 192 processors. The buffer size va
from a minimum of 25 up to 1.25 times theexpected useful maxi-
mum. We define the expected useful maximum as the avera
number of ray segments which need to be communicated fro
each processor to every other processor. This value is highly pr
lem-dependent, varying as a function of the input data, viewin
parameters, opacity mapping, and number of processors. For
case, the expected useful maximum is empirically determined
be an even 1200.

Image Size

400 x 400 800 x 800 1200 x 1200

Ray segs. (millions) 44.7 178.0 400.0

Overhead time 1.111 4.355 5.613

Compute time 4.711 16.865 39.721

Total time 5.822 21.220 45.334

Overhead percentage 19.1% 20.5% 12.4%

Table 2: Rendering performance at different image resolution
using 128 processors with the large (18.2 million cell) datase
Times are in seconds.

Rendering Time vs. Buffer Depth
192 processors, 18.2 million cells, GSFC T3E

4.0

4.2

4.4

4.6

4.8

5.0

0 200 400 600 800 1000 1200 1400 160

R
en

d
er

in
g

 T
im

e
(s

ec
)

Buffer Depth (ray segments)

poll = 2*buf

poll = 200

Figure 5. Rendering time as a function of buffer depth for two
different polling strategies. Image size is 400 x 400.
-
a

-

n
-
e

es

e

b-

is
o

Normally one expects that as buffer size increases, perf
mance will improve, since message-passing overheads
amortized over more data items. However, using a buffer s
which is too large can eliminate the benefits obtained by sprea
ing the communication load over time, particularly on bandwidth
limited systems [4]. For buffer sizes at or above the expected u
ful maximum, the behavior is equivalent to a simpler algorithm
which all of the communication is deferred to the end of th
frame, and the advantages of the asynchronous approach are l

This loss of performance with increasing buffer size can b
clearly seen in Figure 5, although it appears at smaller buf
depths than would be expected given the high communicat
bandwidth on the T3E. We suspect that this premature degra
tion is caused by loss of locality in the ray merging operation
Larger buffers will tend to defeat the purpose of thek-d tree by
delivering many ray segments at once which fall on a wider ar
of the image. Fewer opportunities for early ray merging arise, a
ray segment lists will grow longer, with a corresponding increa
in list insertion time and memory consumption. Note, howeve
that the vertical scale on the graph has been chosen to highl
the effect—the total variation in performance is only about 16%

Our experience with parallel polygon renderers indicates th
the choice of polling interval is far less critical than buffer depth
and the results here seem to bear that out. The interval betw
polling operations should be big enough to amortize the cost
the polling call, but beyond that, just about any value will do. Th
is in part due to the deadlock avoidance properties of our alg
rithm. If a processor is blocked from sending, it automatical
reverts to a receiving mode, whether or not the polling interv
has been reached.

Figure 5 also shows the results of two different polling strat
gies. In the first one, we pick a fixed polling interval of 200, i.e
the renderer will check for incoming data after scan convertin
200 cells. In the second strategy, we set the polling interval
twice the buffer size. As can be seen, performance is very sim
in either case, although the fixed polling interval is better behav
with larger buffer sizes.

5 VISUALIZATION RESULTS

Finally, we show a few visualization examples with the larg
dataset. Color Plate 3 shows direct volume rendering of flow de
sity surrounding the aircraft's wing. Color Plates 4 and 5 sho
visualizations of velocity magnitude. Direct volume rendering o
this high resolution data elicits many fine features in the flow fie
which would be invisible with conventional two- or three-dimen
sional contour plots. In particular, in Plates 4 and 5 we can clea
verify the low pressure region (red spherical cloud) above t
wing, and the high pressure region (yellow and orange blob
below the wing. These two images also show the extreme lo
velocity values on the flaps (white stripes), and the complex flo
patterns ahead of the leading edge and behind the trailing edg
the wing. None of these detailed phenomena could be seen w
either low resolution data or low resolution rendering.

Some additional white patches appear as intermittent line
features near the upper and lower edges of the fuselage sur
(which is also a grid boundary). We have yet to determin
whether these artifacts are generated by the simulation, or are
to numerical problems in the renderer. Although the simulatio
produces double precision results, the dataset used for our t

c
n

o
o
o
u
e
th
ce
a
ay
s

til

he
e
o

c-
r

n

in
e
i
w
t

is
n
c
c

o
e
is
ed
e

y
E
3E
ca
is
m
h

c
e
3
ce
l
e

d
.

or

i-
ta.
-

e

,
r,

r

-
l
n

-

c-

f

-

s.
r

f.
by
n

has been reduced to single precision in order to save disk spa
reduce I/O time, and conserve memory in the renderer. It is co
ceivable that this loss of precision is causing erroneous values
appear during the scan conversion process.

6 CONCLUSIONS

We have conducted a series of performance tests with one
the largest unstructured-grid datasets used to date in parallel v
ume rendering research. Performance and scalability are go
and the T3E appears to be very well suited to the task. In partic
lar, initial concerns about the volume of communication generat
by such a large dataset appear to be unfounded, at least for
architecture. The primary impediment to interactive performan
is ray merging time, suggesting that the additional communic
tion and memory needed to support some form of early r
termination might be worth the cost. However, the visualization
shown here have very few truly opaque cells in them, so the u
ity of early ray termination is likely to be problem-dependent.

While the results presented here show good performance, t
are most likely sub-optimal, given the complexities of tuning th
algorithm to a particular dataset and a particular architecture. F
maximum performance with minimum user intervention, a predi
tive, adaptive self-tuning strategy is needed so that the rende
can respond dynamically to changes in the input data, viewi
parameters, or hardware configuration.

We also plan to study an even larger dataset which conta
nearly 150 million tetrahedra. It is clear that direct, brute-forc
rendering will not provide interactive response for datasets of th
size, even with massively parallel architectures. Consequently,
are investigating ways to integrate a multiresolution scheme in
the rendering step.

In addition, a new generation of the high-lift analysis code
using mixed grids composed of prisms, pyramids, tetrahedra, a
hexahedra in order to achieve higher efficiency. Our cell-proje
tion rendering algorithm can be easily generalized to handle su
mixed grids.

We have also conducted preliminary tests with the same alg
rithm on SGI’s Origin2000 architecture. Our initial results wer
poor compared to the T3E, consistent with the findings in [3]. It
possible that our algorithm fares poorly on distributed shar
memory architectures, or that deficiencies in memory manag
ment or message passing software are inhibiting scalability. W
are designing new experiments for a more comprehensive stud

In the meantime, the renderer has also been ported to ICAS
32-node Linux-based PC cluster, where it outperforms the T
for comparable numbers of processors. Given that communi
tion performance is much lower in the cluster, this difference
attributable primarily to faster processors (400 MHz Pentiu
II’s), and we would expect performance scalability to be muc
more limited than on the T3E.

Acknowledgements

This work was supported by the National Aeronautics and Spa
Administration under Contract No. NAS1-97046 while th
authors were in residence at ICASE. Access to the Goddard T
was provided by NASA's HPCCP/CAS project, with assistan
from Cathy Schulbach. We thank the system support personne
NASA Goddard Space Flight Center for their help in using th
e,
-

to

f
l-
d,
-
d
is

-

-

y

r

er
g

s

s
e
o

d
-
h

-

-
e
.
’s

-

e

E

at

system. The large dataset was provided by Dimitri Mavriplis an
S. Pirzadeh. The small dataset was provided by Paresh Parikh

References

[1] J. L. Bentley. Multidimensional binary search trees used f
associative searching.Communications of the ACM,vol. 18,
no. 8, Sept. 1975, pp. 509–517.

[2] P. Cignoni, C. Montani, E. Puppo, and R. Scopigno. Mult
resolution representation and visualization of volume da
IEEE Transactions on Visualization and Computer Graph
ics, vol. 3, no. 4, Oct.–Dec. 1997, pp. 352–369.

[3] T. W. Crockett. Portability and cross-platform performanc
of an MPI-based parallel polygon renderer.Proceedings of
HPCCP/CAS Workshop 98,C. Schulbach and E. Mata, eds.
NASA CP–1999-208757, NASA Ames Research Cente
Jan. 1999, pp. 251–256.

[4] T. W. Crockett and T. Orloff. Parallel polygon rendering fo
message-passing architectures.IEEE Parallel and Distrib-
uted Technology, vol. 2, no. 2, Summer 1994, pp. 17–28.

[5] K.-L. Ma. Parallel volume ray-casting for unstructured-grid
data on distributed-memory architectures.Proceedings of the
1995 Parallel Rendering Symposium,ACM SIGGRAPH,
Oct. 1995, pp. 23–30.

[6] K.-L. Ma and T. W. Crockett. A scalable parallel cell-projec
tion volume rendering algorithm for three-dimensiona
unstructured data.Proceedings of the 1997 Symposium o
Parallel Rendering,ACM SIGGRAPH, Oct. 1997, pp. 95–
104.

[7] X. Mao. Splatting of non-rectilinear volumes through sto
chastic resampling.IEEE Transactions on Visualization and
Computer Graphics, vol. 2, no. 2, June 1996, pp. 156–170.

[8] D. J. Mavriplis and S. Pirzadeh. Large-scale parallel unstru
tured mesh computations for 3D high-lift analysis.AIAA
Journal of Aircraft, 1999, to appear.

[9] C. Silva, J. Mitchell, and A. Kaufman. Fast rendering o
irregular volume data.Proceedings of the 1996 Symposium
on Volume Visualization,ACM SIGGRAPH, Oct. 1996, pp.
15–22.

[10] R. Westermann and T. Ertl. The VSBUFFER: visibility
ordering of unstructured volume primitives by polygon draw
ing. Proceedings Visualization ‘97,IEEE CS Press, Oct.
1997, pp. 35–42.

[11] J. Wilhelms, A. Van Gelder, P. Tarantino, and J. Gibb
Hierarchical and parallelizable direct volume rendering fo
irregular and multiple grids.Proceedings Visualization ‘96,
IEEE CS Press, Oct. 1996, pp. 57–64.

[12] P. Williams, N. L. Max, and C. M. Stein. A high accuracy
volume renderer for unstructured data.IEEE Transactions on
Visualization and Computer Graphics,vol. 4, no. 1, Jan.–
Mar. 1998, pp. 37–54.

[13] R. Yagel, D. M. Reed, A. Law, P.-W. Shih, and N. Sharee
Hardware assisted volume rendering of unstructured grids
incremental slicing.Proceedings of the 1996 Symposium o
Volume Visualization,ACM SIGGRAPH, Oct. 1996, pp. 55–
62.

Plate 2. Test sequence for the large dataset (18,216,138 cells). Velocity field around a high-lift wing configuration.
Plate 1. Test sequence for the small dataset (567,862 cells). Flowfield over an aircraft wing with a missile attached.
Plate 3. Density; a view from above the wing.

Plate 4. Velocity magnitude; a view from the fuselage toward the tip of the wing.
Plate 5. Velocity magnitude; a view from above and behind the wing.

	Abstract
	1 INTRODUCTION
	2 A PARALLEL VOLUME RENDERING ALGORITHM FOR 3D UNSTRUCTURED-GRID DATA
	3 SGI/CRAY T3E
	4 TEST RESULTS
	4.1 Performance and Scalability
	4.2 Image Size
	4.3 Communication Parameters

	5 VISUALIZATION RESULTS
	6 CONCLUSIONS
	Acknowledgements
	References
	Parallel Visualization of Large-Scale Aerodynamics Calculations: A Case Study on the Cray T3E

