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1. Introduction 

Stan Johnson is a person that likes to think about different ways to analyze and 

solve economic-econometric problems.  In this spirit we focus on the following problem.  

Conventional estimators of latent variables models typically are based on strong 

assumptions involving a particular finitely parameterized error distribution specification.  

Economic theories that motivate these models and estimators rarely, if ever, justify such 

restrictions on the error specification.  This uncertainty regarding the specification of the 

data sampling process implies that, in reality, a broad range of statistical models and 

estimators should not logically be ruled out as potential generators of the observed data.  

Within the context of this challenging model specification scenario, in this paper we 

consider the case of a multinomial response model involving endogenous covariates as 

arguments in the unknown link function.  To recover the unknown response parameters 

and marginal probabilities, we demonstrate i) a semiparametric estimator that avoids 

many of the assumptions of the likelihood approach and the loss of precision that occurs 

in fully nonparametric estimation, and ii) a combining model methodology, in the form of 

a Stein-like estimator, whose objective is to produce an optimal combination, under 

quadratic loss, of estimators that are considered feasible candidates for the data sampling 

process. 

 

1.1 Some Background 

 In the context of multinomial response models, assume that on trial 1, 2, , ,i n…=  

one of 1, 2, ,j J…=  alternatives is observed to occur among the binary random 

variables{ }1,...,i iJy y  having , 1,...,ijp j J= , as their respective probabilities of success.  

Assume further that the 'ijp s  are related to a set of k  covariates through link functions of 

the form ( ),j iG x β , where the vector ix  contains attributes of the decision maker and/or 

the alternatives, β  is a vector of unknown parameters, and [ ]:    0,1jG Æ"  may be 

either known or unknown.  The data sampling process is represented as  

  ( )  ε ,  ε  ij ij ij j i ijy p G= + = +x β  (1.1) 
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where the εij  are unobservable independent noise components and ( )| ,ij i j iy GÈ ˘E =Î ˚x x β . 

 In those rare instances where the parametric functional form of ( ),j iG x β  and the 

parametric family of probability density functions underlying the decision model are 

known, one can use the traditional maximum likelihood (ML) approach and the log-

likelihood function   

  ( ) ( )( )ln ,ij j ii j
L y G=Â Ây x ββ;  (1.2)  

to obtain estimates of the parameters of the model. Depending on the specific parametric 

family of distributions assumed for the noise term of latent variables that govern the 

decision process (discussed in section 2 ahead), logit, probit, or other formulations arise. 

Whatever the distribution underlying the likelihood specification, if the choice of 

distribution happens to be correct, then the usual properties of ML estimation hold 

including consistency, asymptotic normality and efficiency.  However, if these conditions 

do not hold, then standard ML estimating procedures do not attain their usual attractive 

sampling properties.  For detailed discussions concerning these types of models, see 

Maddala (1983) and McCullough and Nelder (1995). 

 Several estimating procedures for β  that do not require a parametric formulation 

for the 'jG s exist. For example, Ichimura (1993) demonstrates a least squares estimator of 

β , and Klein and Spady (1993) demonstrate a quasi-maximum likelihood estimator when 

ijy  is binary.  These estimates are consistent and asymptotically normal under their 

prescribed regularity conditions.  Unfortunately, they involve nonlinear optimization 

problems whose solutions are difficult to compute.  Using an information theoretic 

formulation, Golan, Judge, and Perloff (1996) demonstrate a semiparametric estimator 

for the traditional multinomial response problem that has asymptotic properties in line 

with parametric counterparts.  Ahn, et al. (1993) demonstrate a semiparametric estimator 

applicable to censored selection models, whereas Ahn, et al. (1996) develop a 

semiparametric estimator for the traditional single index problem.  As an extension of 

Ahn, et al. (1996), Blundell and Powell (1999) demonstrate an estimator for the single 

index problem that involves endogeneity of the explanatory variables.  Building on work 

by Armstrong (1985) and Carroll, et al. (1995), Spiegelman, Rosner, and Logan (2000) 
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investigate and propose a semiparametric method useful in logistic regression models that 

involve covariate misclassification and measurement error.  Hong and Tanner (2003) 

have recently suggested a semiparametric approach for estimating the binary choice 

model based on median restrictions.  Their approach involves extremum estimation based 

on an estimation objective function that characterizes the median of the noise distribution 

as zero, conditional on a vector of instruments. The method requires estimating unknown 

distributional components of the objective function using kernel density estimation 

techniques. 

 Building on these productive efforts, in this paper we seek a semiparametric basis 

for recovering β  in (1.1) when the functional form of the link functions ( ),j iG x β  is 

unknown and the covariates in the untransformed structural model contain endogenous or 

random components such that ε .i ijx 0È ˘E πÎ ˚  In this context, one objective is to 

demonstrate an estimator that avoids many of the assumptions of the likelihood approach 

and permits us to cope with endogeneity-measurement error problems that often arise in 

practice.  A second objective involves demonstrating a risk superior estimator that 

combines, in a Stein-like way, an estimator that is consistent and asymptotic normal with 

one that has only the property of superior precision. 

 

1.2 The Format 

 In Section 2, we define a particular multinomial response model that reflects the 

endogenous nature of the sampling process, formulate a semiparametric estimation 

procedure in the form of an extremum problem, and provide a solution to the 

semiparametric estimation problem that has the sampling properties of consistency and 

asymptotic normality.  In Section 3 we define a semiparametric estimator that is 

asymptotically biased and demonstrate a Stein-like estimator that combines estimation 

problems with different sampling attributes. In section 4 we discuss alternative 

multinomial response model formulations and indicate corresponding semiparametric 

estimation methods.  Finally, in Section 5 the estimation and inference implications of 

our proposed models are summarized. 
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2.  A Multinomial Response Model and a Semi Parametric Solution 

 Assume the multinomial response model 

  ( ) ( )* *
1 1 10,

* *
1 11 ,

ij ij ik
k j

ij ik

y I y y

iff y y k j

•
π

= -

= > " π

’
 (2.1) 

where the latent variable *
1ijy  is assumed to be generated from the linear model 

  *
1ij i j ijy u= +¢x β , (2.2) 

ix  is now a ( )1k ¥  vector of explanatory covariates over 1, 2, ,i n…=  observations 

relating to decision maker attributes, iju  is an unobservable noise component, and 

( ) ( )0,I u•  is a standard indicator function that takes the value one if ( )0,u Œ •  and equals 

zero otherwise.  This particular multinomial formulation is based explicitly on the 

decision maker's attributes represented by ix , i = 1, ... , n, which clearly do not vary 

across the J alternatives. The decision maker attributes are translated into a utility index 

via alternative-specific 'j sβ that indicates how attributes specific to the decision maker 

affect the rankings for each of the J alternatives. In this formulation, the utility index 

associated with alternative j, conditional on a decision-maker�s attributes, is given by 

i j
¢x β , for each j, apart from random noise in the random utility framework. The 

formulation suppresses any explicit alternative-specific attributes. However this does not 

necessarily imply that the attributes of the alternatives are unobserved and/or not 

considered by the decision maker. Rather, consistent with representations of Neoclassical 

utility functions, the attributes of the alternatives may be "bundled into" the definition of 

the alternative, and it is assumed that the decision maker processes them accordingly. In 

effect, the utility function is specified at the level of a reduced form in which the bundled 

alternative-specific attributes are codified by the name/description of the alternative, and 

different individuals (as differentiated by individual-specific attributes) can value each 

bundle of attributes differently. We will consider alternative multinomial response model 

formulations, and in particular the case where alternative-specific attributes appear 

explicitly in the formulation of the utility index, in section 4. 
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 To characterize in an expository manner a situation that is consistent with the 

covariate endogeneity or measurement error problem, assume that [ ]1 2, yi i ix z=¢ ¢  is a row 

vector of dimension 1 11 ,  im k z+ =  contains a fixed set of exogenous covariates, and 2iy  

is an endogenous random variable where 2 0.i ijy uÈ ˘E πÎ ˚  Then as in Blundell and Powell 

(1999) we rewrite (2.2) as the structural equation,  

  *
1 1 1 2 2  ij i j i j ijy y uz β b= + +¢  (2.3) 

where 1 2 and ij iy y  are jointly determined random variables.  To close the system, we 

define  

  2 1 1 2 2 = i i i i i iy v vz π z π z π= + + +¢ ¢ ¢  (2.4) 

where [ ]1 2i, ,i iz z z ¢= ¢ ¢ is a column vector of dimension ( )1 2 1,  1,m m m m+ = ≥  and 

[ ]i ivE =z 0 .  Rewriting the structural equation (2.2) in reduced form results in 

  * *
1 1 1 2 2 1 1 2   ij i j i j i j ij i j i j ijy v uz β z π z β z πb b b n= + + + = + +¢ ¢ ¢ ¢  (2.5) 

where *
2  ij i j ijv un b= +  is a reduced form error term, for 1, 2, , .j J…=  Since π  is 

unknown, we replace it by a consistent least squares estimator �π , obtaining 

  *
1 1 1 2 2� �  ij i j i j i j ijy v uz β z πb b= + + +¢ ¢  

  1 1 2 2 2� �  i j i j i j ijy v uz β b b= + + +¢  

  i j ijew β= +¢  (2.6) 

and 

  [ ) ( )1 i0,ij j ijy I ew β•= +¢  (2.7) 

where [ ]1 2 2 2� � � �, ,   , ,i i i ij i j ij i i iy e v u v yw z z πb¢= = + = -¢ ¢  and ( )1
1

lim
n

i iji
p n ew 0-

=
=Â . 

 Given the statistical model (2.6-2.7), the problem is to demonstrate a 

semiparametric estimator that connects the unknown probabilities, ,ijp  with the unknown 

link functions, ( ),j iG x β for j = 1,�, J,  and that also has good sampling properties. 
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2.1 Problem Formulation 

 Given the development in (2.1)-(2.7), consider 

  ( )1 ,   ij j i ij ij ijy G px β ε ε= + = +  (2.8) 

which, for expository purposes, we rewrite in ( )1nJ ¥  vector form by vertically stacking 

sets of n sample observations, for each of the J responses 1, 2, ,j J…= , as 

  1 = +y p ε . (2.9) 

If we let [ ]1 2�,w z y=  be a matrix of dimension ( )( )1 1 ,n m n k¥ + = ¥  one way to 

represent information contained in (2.9) is in the form of the empirical moment constraint 

  ( )( )1
1Jn I w y p 0ε− ′⊗ − − =  (2.10) 

If the asymptotic orthogonality conditions ( )1
p

Jn Ι w 0ε− ′⊗ →  hold, then   

  ( )( )1
1Jn Ι w y p 0− ′⊗ − =  (2.11) 

can be used as an asymptotically valid estimating function. In this form, there are 

kJ moment relations and nJ unknown multinomial parameters, with nJ kJ> .  

Consequently, the inverse problem is ill-posed and cannot be solved for a unique solution 

by direct matrix inversion methods. 

 

2.2  An Estimation Criterion � Distance Measures 

 One way to solve the ill-posed inverse problem for the unknown parameters, 

without making a large number of assumptions or introducing additional information, is 

to formulate it as an extremum problem.  In this context, the Cressie-Read statistic 

(Cressie and Read, 1984; Read and Cressie, 1988; Corcoran, 2000)  

  ( ) ( ) 1

1, , 1
1

J
j

j
j j

p
I p

q
p q

γ

γ
γ γ =

  
 = −  +    

∑ , (2.12) 

where we focus on discrete probability distributions with J nonzero probability elements, 

represents an estimating criterion that is particularly useful since the unknowns of the 

problem are contained within the unit simplex.  In the limit as γ  ranges from -2 to 1, a 

family of estimation and inference procedures emerges.  Three main variants of ( ), ,p qI γ  

have received explicit attention in the literature (see Mittelhammer, Judge and Miller, 
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2000).  Assuming that the 'iq s  represent the reference distribution of the CR statistic and 

that this reference distribution is specified to be the uniform distribution, i.e., 
1,iq J i-= " , then when ( )1,  , ,I p qγ γ→ −  converges in the limit to an estimation 

criterion equivalent to the negative of Owen�s (1988, 1991, 2000) empirical likelihood 

(EL) metric 1
1
ln( )J

ii
J p−

=∑ .  The second prominent case corresponds to letting 0g Æ  

and leads to the negative of the information theoretic measure of discrepancy 

1
ln( )J

i ii
p p

=
−∑  as the estimation criterion, the latter being referred to in the literature as 

the empirical exponential likelihood-Kullback-Leibler (1959) distance. As Csiszar (1998) 

has noted, the Kullback-Leibler (KL) distance is not a true distance metric, but in many 

respects, it is an analogue to the squared Euclidean distance measure.  Finally 1γ =  

results in an estimation objective that is proportional to the log Euclidian likelihood 

function, 1 2 2
1
( 1)J

ii
J J p−

=
−∑ .  We can then define a generalized extremum formulation 

for our problem, with the estimation objective being to maximize the negative of a 

Cressie-Read statistic that has been extended to represent n multinomial distributions, 

each with J alternatives, as3 

 ( )
( )

( ) ( )( ) [ ]{ }1

,0,1
, ,  | , =

ij
J J n ni and jp

l I nmaxp p q I w y p 0 1 I p 1γ −

∀∈
′ ′= − ⊗ − = ⊗  (2.13) 

for a given choice of g and a uniform reference distribution -1
nJJq 1=  representing the 

usual case of uninformative priors, where 1#  denotes a ( )1×#  vector of 1�s.  

 

2.3  Problem Formulation and Solution 

 Focusing on the case where 0γ → , the KL estimation problem is defined by  

                                                 
3 Letting ip denote the 1J ¥  vector of multinomial probabilities associated with sample observation i, and 

letting iq  denoted the associated reference distribution, the extended Cressie-Read statistic is of the form  

( ) ( ) [ ] [ ]
[ ]1 1

1, , 1
1

n J
i

i
i j i

j
I j

j
p

p q p
q

γ

γ
γ γ = =

  
 = −  +    

∑∑ . 
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  ( ) ( )max  lnH
p

p p p= - ¢  (2.14) 

subject to the information-moment constraint 

  ( ) ( )1J JI w y I w p′ ′⊗ = ⊗  (2.15) 

and the n  normalization (adding up) conditions 

  [ ] =J n n′ ⊗1 I p 1  (2.16)   

Note that maximization of (2.14) subject to the moment constraints (2.15) and the adding 

up-normalization conditions (2.16) is equivalent to minimization of the KL cross-entropy 

distance measure relative to a uniform reference distribution for each vector of 

probabilities ( )1 2, , ,  for 1,2, ,i i iJp p p i n… …=  and subject to the same moment 

constraints.  For the case of binary data this leads to searching for the maximum entropy 

distribution for nonnegative valued data that matches the first and second order statistics 

of the data (Downs, 2003). 

 Moving in the direction of a solution, the first-order conditions for the Lagrangian 

form of the optimization problem (2.14-2.16) form a basis for recovering the unknown p  

and the 'j sβ  through the Lagrange multipliers.  In particular, the Lagrangian for the KL-

maximum entropy optimization problem is  

  ( ) ( )( ) [ ]1ln J n J nL p p I w y p τ 1 1 I pλ′ ′ ′ ′ ′   = − + ⊗ − + − ⊗    . (2.17) 

The solution to this optimization problem is  

  
( )

( )
( )

( )
( )

( )2

� � �exp exp exp
�

� � �1 exp

i j i j i j

ij J
i i i kk

p
=

′ ′ ′−
= = =

′Ω − Ω +∑

w w β w β

β w β

λ

λ
 (2.18) 

where �
jλ  refers to the ( )1k ¥  vector of elements associated with alternative ,j � �

j j≡ −β λ  

weights the impact of the explanatory variables on the ijp �s, and the ( )�
i βW  term is a 

normalization factor.  We assume that the standard identification condition 1
�β 0=  is 

imposed.  The unknown 'j sβ  that link the 'ijp s  to the 'i sw  are the negative of the kJ  

Lagrange multiplier parameters that are chosen so that the optimum solution � ijp  satisfies 

the constraints (2.15).  Given the Lagrangian and the corresponding first-order 
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conditions, the Hessian is a negative definite diagonal matrix characterized by the 

elements  

  ( )
( )

2

2

1

exp
i

ij iji j

L
p p

Ω∂ = − = −
∂ ′w

β

β
 (2.19) 

and 

  ( ) ( )
2

0 , ,
ij k

L when i j k
p p
∂ = ≠

∂ ∂ #

# . (2.20) 

The negative definite Hessian matrix ensures a unique global solution for the ijp �s.   

 

2.3.1  The Information Matrix 

 To obtain an expression for the information matrix of the estimator for �β , first 

rearrange the Hessian implied by (2.19)-(2.20) in terms of 2J  blocks of elements, with 

the ( ), thi j  block denoting derivatives with respect to the elements of the ( )1n ¥ vectors 

ip and jp , i.e., the n probabilities across observations relating to the thi and 

thj alternatives, respectively. The thj diagonal block of the Hessian matrix can be 

represented by defining ( )i1  to be a ( )1n ¥  zero vector, except for a one in row i, and 

summing over the n sample observations to obtain  

  ( ) ( )
( ) ( ) ( ) ( ) ( )

1 1

1

exp

n n
i

j me
i i iji j

I i i i i
p= =

W ¢ ¢= =
¢

Â Âp 1 1 1 1
w

β

β
. (2.21) 

Then, transforming from ip  to jβ  space (see Lehmann and Casella, 1998, p.115) yields 

 

( ) ( ) ( ) ( ) ( )MLME
I = , p p  I ,

                  

j j
j m im il im i i mME

j il m

I p m
p p

p β β 1 1 w w β β
β β # ##

∂ ∂     ′ ′= − =     ′∂ ∂     
∑ ∑  (2.22) 

where (2.22) is the ( ), thm#  block of ( )21J -  blocks of dimension ( )K K¥  referring to all 

parameter vectors other than the fixed (for identification purposes) 1 .β 0=   The 

( ) ( )( )1 1K J K J- ¥ -  matrix having (2.22) for blocks is identical to the ML multinomial 
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logit information matrix for .β   The asymptotic covariance matrix for �β  can be estimated 

using the inverse of the ( ) ( )( )1 1K J K J- ¥ -  matrix having (2.22) for blocks, evaluated 

at the classical ML-logit estimates. 

 

2.3.2  Asymptotic Properties 

 The conceptual bases for the traditional ML multinomial logit and the KL 

extremum formulations are different, because under the KL formulation no particular 

functional form linking the ijp  and the i jw β¢  is specified.  However, the resulting ML 

logit and KL solutions and information matrices are equivalent, and the usual ML 

asymptotic properties then follow.  Relative to the correspondence between the classical 

KL and ML logit solutions, note that the estimating equations or moment constraints in 

the KL formulation are equivalent to the ML logit first-order conditions, and the optimal 

KL solution has the same post data mathematical form as the logistic multinomial 

probabilities. 

 To show the correspondence of the two approaches explicitly, the extremum KL 

approach can be reformulated as an unconstrained problem.  Combining the Lagrangian 

(2.17) and the solution for the ijp �s (2.18), we can rewrite the constrained KL 

optimization problem in an unconstrained or concentrated form as the minimization, with 

respect to ,λ  of 

  ( ) ( ) ( )
1

ln
n

i
i

M
=

′  = − ⊗ + Ω − ∑y I w λ λλ  (2.23) 

which is equivalent to maximizing the multinomial log-likelihood function, 

  

( )( ) ( )

( )
( )

( )

1

1

1

ln ; ln

exp
                   ln

exp

                   ln

ij ij
i j

i j

ij
i j j i j

ij i j i
i j i

L y p

y

y

=

′
=

′Σ

 ′  = − Ω  

∑∑

∑∑

∑∑ ∑

p y

w β

w β

w β β

 (2.24) 
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where as before = −β λ  and the usual logit asymptotic properties follow.  The 

unconstrained concentrated approach substantially reduces the computational complexity 

of the optimization problem. 

 

2.3.3 Alternative Estimation Objective Functions 

 Finally we note that in (2.13) as γ  approaches -1, maximization of the limit of 

( ), ,I p q γ−  for -1
nJn=q 1  is equivalent to maximization of the empirical likelihood (EL) 

criterion, namely ( ) ( )-1 ln .nJH n ′=p 1 p  Replacing the objective ( ), ,I p q γ−  in (2.13) with 

( )H p  leads to a constrained optimization problem that can be solved analogous to the 

preceding method of Lagrange multipliers to yield, for each ,i j  , the following optimal 

probabilities, 

  
1

�� �ij i j ip w β τ
−

 ′= +
 

 (2.23) 

where �iτ  is the Lagrange multiplier associated with the thi probability additivity 

constraint on ,p  and �β  weights the impact of the explanatory variables on the unknown 

probabilities, where again 1
� .=β 0   As before, �τ  is not in closed form which prevents 

direct evaluation of the functional form to ascertain the estimator�s finite sample 

properties.  For finite sample and limiting sampling properties of this and the KL 

formulation, see Mittelhammer, Judge, and Schoenberg (2003). A solution could also be 

obtained based on the log Euclidean Likelihood objective function. 

 

2.4 A Special Case 

 The formulation and solution in the previous subsections permit the recovery of 

estimates for the marginal probabilities and the jβ  response coefficients under 

endogeneity.  An important special case alternative formulation is one that facilitates the 

direct recovery of the marginal probabilities and the response coefficients between 1y ij  

and the exogenous variables [ ]l 2,i i iz z z= , where 0i ijE z u  =  .  This of course is also the 

case for the traditional multinomial discrete choice problem and thus provides a 
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semiparametric basis for estimation and inference (Mittelhammer, et al., 2000).  In this 

case we make use of the empirical moment constraint 

  ( ) ( )( )1
1 1, ; , Jh ny z p u I z y p u 0− ′= ⊗ − − =  (2.26) 

which because ( ) ,j
 ′Ε ⊗ = I z u 0  yields the unbiased estimating function 

  ( )( )1
1Jn I z y p 0− ′ Ε ⊗ − =   (2.27) 

with sample analog 

  ( )( )1
1Jn I z y p 0− ′⊗ − = . (2.28) 

Given this information base, we have in the context of the previous sections, the 

following extremum problem: 

  
( )

( ) ( )( ) ( )10,1 ,
ln . . ,  

ij
J J n np i and j

max s tp p I z y p 0 1 I p 1
∈ ∀

′ ′ ′ − ⊗ − = ⊗ =  . (2.29) 

The extremum problem can be cast in Lagrangian form as 

  ( ) ( )( ) ( )1ln J n J nL p p I z y p 1 1 I pδ γ′ ′ ′ ′ ′   = − + ⊗ − + − ⊗     (2.30) 

with solution 

  
( )
( )

( )
( )

( )
( )2

exp exp exp
�

1 exp

i j i j i j

ij J
i i i mm

p
z z z

z

δ α α

δ α α
=

′ ′ ′−
= = =

Ω − Ω ′+∑
 (2.31) 

where jδ  refers to the ( )1k ¥  vector of elements associated with alternative j,  

  ( ) ( )
2

1 exp
J

i i m
m=

′Ω ≡ +∑ zα α  (2.32) 

and j j≡ −α δ  measures the impact of the explanatory exogenous variables on the ijp �s, 

where the standard identification condition 1 = 0α  is imposed.  The term ( )iΩ α  is a 

normalization factor.  The unknown jα  links the ijp  to the .iz  The development of the 

Hessian and the asymptotic covariance matrix proceeds as in Section 2.3.1. 

 

3.  A Competing Estimator 

 The semiparametric estimator demonstrated in Section 3 has the nice first-order 

properties of consistency and asymptotic normality. In cases where endogeneity is 

present in the underlying data sampling process, other estimators exist that do not have 
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the property of first-order consistency. However, these estimators may possess good 

precision characteristics. This raises questions concerning the sampling characteristics 

that would emerge if two estimators with different sampling attributes were combined. 

 One variant of this type of estimator is produced if, in the context of Section 2, we 

proceed as if 2iy  is uncorrelated with the noise component. In this case, if we incorrectly 

assume ( )JÈ ˘E ƒ =¢Î ˚I x u 0 , and now let π  denote the vertically concatenated vector of 

choice probabilities, the empirical moment constraint  

  ( )( )1
1Jn- ƒ - - =¢I x y u 0π   (3.1) 

yields the biased estimating function 

  ( )( )1
1Jn-È ˘E ƒ - π¢Î ˚I x y 0π . (3.2) 

with sample analog  

  ( )( )1
1Jn-È ˘ƒ - =¢Î ˚I x y 0π , (3.3) 

and we are lead to the following extremum problem: 

  
( )

( ) ( )( ) ( )10,1 ,
max ln | ,  

ij
J J n ni and jp Œ "

È ˘- ƒ - = ƒ =¢ ¢ ¢Î ˚I x y 0 1 I 1π π π π . (3.4) 

The Lagrangian form of the extremum problem is given by 

  ( ) ( )( ) ( )1ln j n J nL È ˘ È ˘= - + ƒ - + - ƒ¢ ¢ ¢ ¢ ¢Î ˚Î ˚I x y 1 1 Iπ π δ π η π  (3.5) 

with solution, 

  
( )

( )
( )

( )
( )

( )2

exp exp exp

1 exp

i j i j i j

ij J
i i i mm

x x β x β

β x β

δ

δ

$ $ $
$ $ $

π
=

′ ′ ′−
= = =

Ω − ′Ω +∑
 (3.6) 

where jδ  refers to the ( )1k ¥  vector of Lagrange moment constraint multipliers 

associated with alternative j, ( ) ( )2
1 exp

J
i i mm=

¢W ∫ +Âβ x β$ $ , and j jβ δ$ $∫ -  measures the 

impact of the explanatory exogenous variables on the ijp �s, where the standard 

identification condition 1β 0$ =  is imposed.  The unknown jβ$  links the ijp  to the .iz  The 

development of the Hessian and the asymptotic covariance matrix proceeds as in Section 

2.3.1. 
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 Given that the estimating equations on which the solution (3.6) is biased, even in 

the limit, it is to be expected that the estimates derived from them do not possess the 

property of consistency. However, analogous to the case of comparing OLS to 

instrumental variable-based estimators of parameters in linear and nonlinear models, it is 

possible that the estimator based on the misspecified moment constraints has lower 

variation than the estimator that replaces 2y  with a projection of itself through an 

instrument space. We consider next a method that attempts to exploit this potential 

characteristic of the alternative estimator through combinations of estimators. 

 

3.1. Combined estimators formulation 

 The semiparametric estimator demonstrated in Section 2 has the attractive first-

order asymptotic properties of consistency and asymptotic normality. A variant of this 

estimator when 2iy  replaces 2� iy  in the structural moment condition is not consistent but 

its variance and/or quadratic risk performance may be superior to that of its competitors. 

Since each of these estimators can have superior sampling characteristics in some 

respects, this leads us to consider, in the spirit of Judge and Mittelhammer (2003) and 

Mittelhammer and Judge (2003), an estimator that is a weighted combination of the two. 

In this context, we consider the estimator that results from the following linear 

combination  

  ( ) ( )� 1β ββ $a a a= + -  (3.7) 

and ask whether, under quadratic loss 2|| ||β β- , a combination of the estimators can be 

devised that has asymptotic risk that is superior to �β  and that also performs well in finite 

samples. The asymptotic risk of ( )β a  is 

  ( ) ( ) ( ) ( )( ) ( ) ( )22
� �, 1 2 1tr tr trββ β

β β µ µ
β,$ $r a a a a= S + - S + + - S¢  (3.8) 

where µ  is the asymptotic bias of β$ , � and ββ $S S are the asymptotic covariance matrices 

of � andβ β$ , and � ββ, $S denotes the asymptotic covariance matrix between the elements of 
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� andβ β$ . The minimum asymptotic risk choice of α  is characterized by the solution of 

( ),d
d
r
a

=
β β

0, which coincides with the solution of 

  ( )� � �, ,
2 0tr tr tr tr tra S + S + - S - S - + S =¢ ¢βµ µ µ µββ β β β β$ $$ $  (3.9) 

and leads to the optimal weight 

  
� �� ,,

*
� � � �, ,

1
2 2

tr trtr tr

tr tr tr tr tr tr
β β

β ββ β

µ µ

µ µ µ µ
β ββ β

β β β β

$ $$

$ $$ $

a
S - SS + - S¢

= = -
S + S + - S S + S + - S¢ ¢

. (3.10) 

Given the solution in (3.10), the minimum risk combination of the two estimators in (3.7) 

can be expressed as 

  ( )� � ,

� � ,

� �
2

tr tr

tr tr tr
β

ββ
µ µ

β β
∗

β β

β β β β
$

$ $

$S - S
= - -

S + S + - S¢
 (3.11) 

Since � � ,
�|| || 2AE tr tr trββ
β β µ µ

β β$ $
$È ˘- = S + S + - S¢Î ˚ , where ( )AE i  denotes asymptotic 

expectation, and if we substitute �|| ||β β$-  for its asymptotic expected value (Judge and 

Bock, p. 175), we may rewrite (3.11) as 

  ( )2
� �

�|| ||
a

∗β β β β
β β

$
$ª - -

-
 (3.12) 

where � � ,
a tr tr

β β β$= S - S , which is in the form of a Stein shrinkage estimator where �β  is 

shrunk toward the alternative estimator β$ .  

 

3.2  Comments on Sampling Characteristics and Asymptotic Risk Performance 

 We note that (3.11) will always exhibit asymptotic quadratic risk behavior that is 

at least as good as the base estimator �β . The approximate version, ∗β  , defined in (3.12) 

can be shown to be first order equivalent to (3.11), and thus to the first order of 

approximation, will also exhibit quadratic risk behavior that is at least as good as the base 

estimator. Moreover, this first order superiority continues to hold if a consistent estimator 

is used to replace �a� in the numerator of the numerator in (3.12). These results follow 

from related results on asymptotic risk performance of combining estimators (similar in 

development to (3.7)-(3.12)) presented in Judge and Mittelhammer (2003) for the case of 
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a linear model data sampling context, and by Mittelhammer and Judge (2003) in the 

context of linear structural equation estimators. 

 Regarding the finite sample performance of the combining estimator relative to 

the base estimator, given the absence of parametric distributional assumptions in this 

semiparametric framework, no analytical risk superiority result would appear tractable. 

For certain specialized parametric sampling distribution assumptions, such as the case of 

multivariate normality, it may be possible to derive some limited analytical risk 

comparisons, as in Judge and Mittelhammer (2003) and Mittelhammer and Judge (2003), 

where the risk superiority of the combining estimator was demonstrated under certain 

regularity conditions.  Relating to finite sample behavior, we add that in these recent 

studies, extensive Monte Carlo experimentation was conducted amounting to 1,300 

different sampling scenarios characterized by a variety of conditions on noise variance, 

collinearity, degree of parameter identification, and spanning normal, uniform, beta, and 

gamma sampling distributions. In these sampling experiments, the combining estimator 

exhibited quadratic risk superiority relative to the base estimator in the vast majority of 

the experiments analyzed. We conjecture that the same kinds of results would apply to 

the combined estimator proposed in section 3.1. 

 

4.  Alternative Multinomial Choice Models 

 The multinomial formulation that was presented heretofore is based exclusively 

on decision maker's attributes represented by ix , i = 1, ... , n, which clearly do not vary 

across the J alternatives. We now consider alternative multinomial response models, and 

suggest how semiparametric estimates of these models might be defined based on the KL 

information theoretic framework. 

4.1  Alternative-Specific Attributes 

 The utility maximization-decision model underlying the multinomial choice 

problem can be altered in a number of ways. One prominent model variation is the case 

where alternative-specific attributes are accounted for explicitly, allowing for estimates 

of the impacts on decision making of marginal changes in the levels of attributes 

contained in the J alternatives. Suppressing decision maker-specific attributes, in this 

formulation there is a common (across alternatives) parameter vectorβ  representing 
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marginal utilities of attributes associated with each of the alternatives. The overall utility 

of each alternative is derived by accumulating the utility of the bundle of attributes 

associated with the alternative as j
¢x β , for j = 1, �, J, and then the alternative with the 

highest realization of the accumulated utility, also accounting for random noise in the 

random utility formulation, is the alternative chosen.  

 The preceding model variant can be accommodated within the KL-problem 

context with minor changes to the formulation of section 2. First of all, we alter the 

representation in (2.8) to the following: 

  ( )1 ,   ij j ij ij ij ijy G pw β ε ε= + = +  (4.1) 

where ijw  now refers to a vector of observed attribute levels corresponding to alternative 

j and observation i. Note the formulation in (4.1) is consistent with utility maximization, 

as noted and motivated in Train (2003, p. 41). For expository purposes, we rewrite the 

information in (4.1) in ( )1nJ ¥  vector form by vertically stacking sets of n sample 

observations, for each of the J responses 1, 2, ,j J…= , as 

  1 = +y p ε . (4.2) 

Accounting for endogeneity in some of the attributes as before, we let [ ]1 2�,w z y=  be a 

matrix of dimension ( )( )1 1nJ m nJ k¥ + = ¥ . Then we can utilize the information 

contained in (4.2) in the form of the empirical moment constraint 

  ( ) ( )1
1nJ w y p 0ε− ′ − − =  (4.3) 

If the asymptotic orthogonality conditions ( ) 1
p

nJ w 0ε− ′ →  hold, then   

  ( ) ( )1
1nJ w y p 0− ′ − =  (4.4) 

can be used as an asymptotically valid estimating function. In this form, there are 

k moment relations and nJ unknown multinomial probability parameters, with nJ k> .  

Consequently, the inverse problem is ill-posed as before and cannot be solved for a 

unique solution by direct matrix inversion methods. 

 The KL estimation problem can now be defined as 

  ( ) ( )max  lnH
p

p p p= - ¢  (4.5) 
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subject to the information-moment constraint 

  1w y w p′ ′=  (4.6) 

and the n  normalization (adding up) conditions 

  [ ] =J n n′ ⊗1 I p 1 . (4.7)   

Note that maximization of (4.5) subject to the moment constraints (4.6) and the adding 

up-normalization conditions (4.7) is equivalent to minimization of the KL cross-entropy 

distance measure relative to a uniform reference distribution for each vector of 

probabilities ( )1 2, , ,  for 1,2, ,i i iJp p p i n… …=  and subject to the same moment 

constraints.   

 The first-order conditions for the Lagrangian form of the optimization problem 

(4.5-4.7) form a basis for recovering the unknown p  and β  through the Lagrange 

multipliers.  In particular, the Lagrangian for the maximum entropy optimization problem 

is now 

  ( ) ( ) [ ]1ln n J nL p p w y p τ 1 1 I pλ′ ′ ′ ′ ′   = − + − + − ⊗    . (4.8) 

The solution to this optimization problem is  

  
( )

( )
( )

( )
( )

( )1

� � �exp exp exp
�

� � �exp

ij ij ij

ij J
i i ikk

p
=

′ ′ ′−
= = =

′Ω − Ω ∑

w w β w β

β w β

λ

λ
 (4.9) 

where �λ  refers to the ( )1k ¥  vector of Lagrange multiplier elements and � �β λ≡ −  

measures the impact of the explanatory variables on the ijp �s, with ( )�
i βW  being a 

normalization factor.  The unknown β  that links the ijp  to the ijw  is the negative of the 

Lagrange multiplier vector that is chosen so that the optimum solution � ijp  satisfies the 

constraints (4.6). The formulation in (4.9) is identical to the standard result for the 

maximum-utility motivated multinomial logit model in the case of alternative-specific 

attributes (McFadden, 1974; also see Train, 2003, chapter 3).  

 Following a derivation analogous to the approach underlying (2.21)-(2.22), the 

information matrix of the current formulation can be derived where 



 20

  ( ) ( )
( ) ( ) ( ) ( ) ( )

1 1

1

exp

n n
i

j me
i i ijij

I i i i i
p= =

W ¢ ¢= =
¢

Â Âp 1 1 1 1
w

β

β
. (4.10) 

and 

 ( ) ( ) ( )( ) ( )MLME
1 1 1

I = I

                  

J n J
j j

j ij ij i ij iME
j i j

I p
p p

p β w w w w β
β β= = =

∂ ∂    ′= − − =   ′∂ ∂   
∑ ∑∑  (4.11) 

where 
1

J

i ij ij
j

pw w
=

=∑ . The inverse of the latter matrix represents the ( )K K¥ information 

matrix for the estimator �β , and the result in (4.11) demonstrates that the information 

matrix of the KL-maximum entropy approach and of the multinomial logit approach are 

again identical.  

4.2 Other Model Variants 

 There are research contexts in which one might want to investigate the impacts of 

changing attribute levels of alternatives, changing attributes levels of individual decision 

makers, or both. The two formulations in the preceding sections can be extended-

combined to accommodate the case where the impacts of both types of attributes are 

being investigated. The KL-problem framework can accommodate this final model 

variant by including variables that refer to both types of attributes, and the algebra of the 

optimization problem again leads to the multinomial logit result.  In fact, the model 

formulation can be altered from the very beginning by reinterpreting the iw  vectors as 

incorporated variables that refer to both types of attributes, with the decision maker-

specific observations blocked appropriately to interact with parameters unique to the jth 

alternative, with an initial block reserved for attribute specific characteristics that interact 

with common parameters across alternatives. That is, redefine the iw  vectors to be 

... ...i i ij
′ ′ ′ =   w r 0 0 d 0 0 , where i′r is a row vector of alternative-specific attributes for 
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the ith observation, ij′d  is a vector of decision maker-specific attributes that are intended to 

be interacted with the parameters associated with the jth alternative, and 0 is a row vector 

of zeros in placed where blocks of variables interact with parameters that refer to 

parameters associated with alternatives other than the ith. Then defining the parameter 

vector to be [ ], ,...,1 2 J
′′ ′ ′ ′β = δ ,β β β , it is apparent that a model containing alternative-

specific and decision-maker attributes is represented by i′w β .  

 Any of the model variants can be combined using the methodology outlined in 

section 3. As noted in section 3.2, it would be expected that the combined estimator will 

exhibit asymptotic mean square error performance that is at least as good as either of the 

base estimators that are being combined. 

 

5.  Summary and Implications 

 Endogeneity is an important and common problem in a range of linear and 

nonlinear econometric models.  Recognizing this, in this paper, our focus has been on 

binary choice models and how one may, in a semiparametric way, handle the estimation 

and inference problem under endogeneity.  The estimators that are suggested are 

semiparametric in the sense that the joint distribution of the data is unspecified apart from 

a finite number of moment conditions and the conditional mean assumption on the error 

process.  Empirical likelihood and exponential empirical likelihood distance measures 

along with relevant underlying moment conditions frame the estimation problem.  A 

solution basis is demonstrated that permits the recovery of the unknown response 

coefficients and the corresponding marginal probabilities and defining sampling 

properties.  Because there is usually uncertainty concerning the stochastic characteristics 

of the econometric model, estimation procedures are developed that permit combining 

alternative plausible-competing models-estimators.  Asymptotic and finite sample 

characteristics of the combined estimator are discussed.  Developing analytical and 
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Monte Carlo sampling results for the proposed estimators and applying them to real 

economic problems, are the next steps in the research process. 
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