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Abstract.
Background: While obesity has been shown to be a risk factor for Alzheimer’s disease, the potential mechanisms underlying
this risk may be clarified with better understanding of underlying physiology in obese persons.
Objective: To identify patterns of cerebral perfusion abnormality in adults as a function of body mass index (BMI) defined
weight categories, including overweight or obese status.
Methods: A large psychiatric cohort of 35,442 brain scans across 17,721 adults (mean age 40.8 ± 16.2 years, range 18–94
years) were imaged with SPECT during baseline and concentration scans, the latter done after each participant completed the
Connors Continuous Performance Test II. ANOVA was done to identify patterns of perfusion abnormality in this cohort across
BMI designations of underweight (BMI < 18.5), normal weight (BMI = 18.5 to 24.9), overweight (BMI 24.9 to 29.9), obesity
(BMI ≥ 30), and morbid obesity (BMI ≥ 40). This analysis was done for 128 brain regions quantifying SPECT perfusion
using the automated anatomical labeling (AAL) atlas.
Results: Across adulthood, higher BMI correlated with decreased perfusion on both resting and concentration brain SPECT
scans. These are seen in virtually all brain regions, including those influenced by AD pathology such as the hippocampus.
Conclusion: Greater BMI is associated with cerebral perfusion decreases in both resting and concentration SPECT scans
across adulthood.
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INTRODUCTION

While Alzheimer’s disease (AD) has been recog-
nized as the most common cause of dementia for
decades [1], lifestyle factors are increasingly rec-
ognized as risk modifiers for AD. Midlife-obesity,
in particular, has been identified as a risk factor
for future dementia [2]. Such a relationship is an
important focus for potential risk reduction, partic-
ularly given the lack of currently available effective
treatments for AD. However, the nature of this rela-
tionship between overweight or obese and the risk for
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AD remains unknown. Attempts to better understand
this question in humans have used neuroimaging
as a key tool. Previous work has demonstrated
that overweight- and obesity-related brain volume
loss can overlap in the same regions targeted by
AD pathology, such as the hippocampus [3]. These
changes have been demonstrated even in cognitively
normal individuals, as well as persons with mild cog-
nitive impairment and AD [4, 5].

Regional cerebral blood flow has also been used
to track obesity-related brain abnormalities. For
example, one voxel based single photon emis-
sion computed tomography (SPECT) study showed
body mass index (BMI)-related hypoperfusion [6]
in retired National Football League players. Obesity
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is thought to promote hypoperfusion by promoting
hypertrophic inward remodeling of the cerebral vas-
culature [7]. Structural brain changes have also been
reported in successful dieters [8]. Weight loss has
also been shown in a systematic review to relate to
attenuation of cognitive decline [9].

Functional neuroimaging remains an important
resource in identifying potential risk factors for
dementia [10], as well as age-related changes [11].
We have previously utilized SPECT functional
neuroimaging to review and identify patterns of
abnormality relevant to the diagnosis of traumatic
brain injury [12, 13], depression versus demen-
tia classification [14], marijuana-related influences
in the brain [15], omega-3 fatty acid associated
improved cerebral blood flow [16], gender-related
differences in the brain [17], and brain aging [18].
This work has been done with a quantitative approach
in regions of interest with knowledge of psychiatric
co-morbidities for use in multi-variable statistical
modeling. The purpose of this current work is to iden-
tify potential brain perfusion abnormalities in adults
related to being overweight or obese.

MATERIALS AND METHODS

Subjects

Subjects were drawn from multiple branches of the
Amen Clinics as described in prior work [19]. IRB
approval for retrospective analysis of de-identified
clinical and SPECT scan data was provided by
accredited institutional review board, IntegReview
(IRB# 004; http://www.integreview.com/). Inclusion
criteria were expanded to encompass the largest num-
ber of subjects for analysis for BMI patterns across
the lifespan and across a variety of psychiatric and
neurological diagnosis. Some subjects had more than
one diagnosis. Subject demographics are detailed in
Table 1.

Brain SPECT imaging

As detailed previously [13–18], all subjects
received intravenous administration of an age- and
weight-appropriate dose of technetium-99m hexam-
ethylpropylene amine oxime (99mTc-HMPAO) for
brain SPECT imaging. Each subject received a rest-
ing, or baseline, scan and a task or concentration scan
on different days and discontinued medications on
the day of scans. For baseline scans, subjects were
injected while sitting quietly in same setting with eyes

Table 1
Subject Demographics (Total n = 17721; 35442 scans)

Variables Statistics (χ ± σ,
Range, Percent (n))

Age 40.8 ± 16.2, Age 18–94
Age Group (Adult/Geriatric) 90.9 (33558)/9.1 (3345)
Gender (Male/Female) 60.6 (18925)/39.4 (12296)
Body Mass Index 25.2 ± 6.2, (10.9–82.9)
Eating Disorder 2.7 (481)
All Cause Dementia 6.2 (1151)

(Including AD)
ADHD 51.1 (9055)
Major Depression 17.5 (3107)
Bipolar Disorder 7.4 (1313)
Generalized Anxiety Disorder 56.5 (10006)
Traumatic Brain Injury 43.5 (7700)
Schizophrenia 2.4 (427)
Alcohol Use Disorder 5.8 (1034)
Cannabis Use Disorder 3.8 (682)

open. Subjects were then scanned 30 min later using
a high-resolution Picker Prism 3000 triple-headed
gamma camera with fan beam collimators, acquir-
ing data in 128 × 128 matrices, yielding 120 images
per scan with each image separated by 3◦ spanning
360◦. SPECT data was processed and attenuation
correction performed using general linear (Chang)
method for attenuation correction. Brain SPECT
images were then reconstructed and resliced accord-
ing to anterior-posterior commissure line so final
images were similarly aligned for analysis. Concen-
tration scans were done on a separate day following
with tracer injected 3 min after completion of the
Connors Continuous Performance Test II [20]. The
scan protocol was otherwise no different than the
baseline scan. Cerebral perfusion was then estimated
using a region of interest (ROI) basis using areas
derived from the automated anatomical labeling atlas
(AAL) [21]. As detailed in prior work [22], ROI
counts in each region of interest (ROI) were quan-
tified using trimmed means. Calculation of these
trimmed means was done using all scores in a 98%
confidence interval (–2.58 < Z < –2.58). Perfusion for
each region was then estimated with the trimmed
mean using the following formula.

T=10∗((subject ROI mean−trimmed regional avg)/

trimmed regional stdev) + 50.

Statistical analysis

All statistical analyses were conducted using SPSS
(Version 26, IBM, Armonk, NY). First, the relation-
ship between BMI, as a function of underweight
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(BMI < 18.5), normal weight (BMI 18.5–24.9),
overweight (BMI 25–29.9), obese (BMI ≥ 30), mor-
bidly obese (BMI ≥ 40), and regional cerebral blood
flow was evaluated using one way ANOVA at
both baseline and concentration tasks. Least squares
differences were used to correct for multiple com-
parisons. p-values <0.05 were considered statistically
significant. Partial correlations were then modeled
between BMI and these regional baseline and con-
centration perfusion estimates controlling for age,
gender, and co-morbidities including psychiatric co-
morbidities.

RESULTS

ANOVA results are detailed in Supplementary
Material 1 for baseline perfusion and Supplementary
Material 2 for concentration perfusion.

Figures 1–5 detail the baseline perfusion ANOVA
results of all participants as a function of worsening
overweight and obesity in several areas of key rele-
vance for AD: temporal lobes (Fig. 1), parietal lobes
(Fig. 2), hippocampus (Fig. 3), posterior cingulate
(Fig. 4), and precuneus (Fig. 5).

In each figure, the y-axis expresses the estimated
perfusion as counts/pixel and the x-axis shows the
weight categories by BMI. In summarizing this
data, the most notable pattern across virtually all
brain regions is the decline in cerebral perfusion
in a progression from underweight to normal, over-
weight and then to obese categories. This pattern is
consistent whether comparing baseline or concen-
tration scans across weight groups. There were no
regions that showed elevated perfusion in relation to
higher BMI.

Figure 6 shows the progressive decrease in base-
line resting perfusion comparing three different men

Fig. 1. Areas of obesity-related hypoperfusion in brain regions
vulnerable to Alzheimer’s disease: temporal lobes.

of the same age with normal, overweight, and obese
BMIs.

Table 2 shows the partial correlations between BMI
and baseline perfusion adjusting for age, gender, and
co-morbidities including psychiatry co-morbidities.

Fig. 2. Areas of obesity-related hypoperfusion in brain regions
vulnerable to Alzheimer’s disease: parietal lobes.

Fig. 3. Areas of obesity-related hypoperfusion in brain regions
vulnerable to Alzheimer’s disease: hippocampus.

Fig. 4. Areas of obesity-related hypoperfusion in brain regions
vulnerable to Alzheimer’s disease: posterior cingulate.
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Fig. 5. Areas of obesity-related hypoperfusion in brain regions
vulnerable to Alzheimer’s disease: precuneus.

Fig. 6. This figure showed 3-D renderings of resident perfusion
averaged across normal BMI (BMI = 23), overweight (BMI = 29),
and obese (BMI = 37) men, each 40 years of age.

Table 2
Partial Correlations of BMI and Baseline Brain Perfusion in

Regions Vulnerable to Alzheimer’s Disease

Brain Regions BMI

Baseline Correlation –0.218
Temporal Lobe

Significance (2-tailed) <0.001
Baseline Correlation –0.221
Parietal Lobe

Significance (2-tailed) <0.001
Baseline Correlation –0.205
Hippocampus

Significance (2-tailed) <0.001
Baseline Correlation –0.169
Posterior Cingulate

Significance (2-tailed) <0.001
Baseline Preceuneus Correlation –0.223

Significance (2-tailed) <0.001

Supplementary Table 1 displays the partial correla-
tion results for all areas adjusting for age, gender, and
co-morbidities including psychiatry co-morbidities.

DISCUSSION

With over 35,000 functional neuroimaging scans
across more than 17,000 individuals, this study
is one of the larger studies linking obesity with
brain dysfunction, as evidenced here by quantifiable
regional perfusion. The striking patterns of progres-
sively reduced perfusion found in virtually all regions
across categories of underweight, normal weight,
overweight, obesity, and morbid obesity was noted
on both baseline (resting state) and concentration
scans. In particular, brain areas noted to be vulnerable
to AD: the temporal and parietal lobes, hippocam-
pus, posterior cingulate gyrus, and precuneus were
found to have reduced perfusion along the spectrum
of weight classification from normal weight to over-
weight, obese, and morbidly obese [23]. While the
majority of persons in this study had psychiatric co-
morbidities, adjusting for these factors along with age
and gender in a partial correlation analysis did not
change the statistical significance of the relationships
between BMI and lower perfusion. This related find-
ing strongly suggests that body tissue adiposity and its
relationship with lower cerebral perfusion is indepen-
dent of the presence or absence of existing psychiatric
co-morbidities. Combined with other literature [24],
this work suggests a deleterious interplay between
obesity and brain perfusion.

While the work presented here focused on body tis-
sue adiposity and cerebral perfusion in a large cohort,
other studies have suggested a negative relationship
between BMI, obesity, and the brain, particularly
with neuroimaging as a proxy of structure or func-
tion. For example, multiple initial studies focused on
brain atrophy in relationship with obesity, particularly
in elderly cohorts [3–5]. Initially, this relationship
was shown in the Cardiovascular Health Study in 94
cognitively normal participants in their late 70s who
remained cognitively normal 5 years after their brain
MRI scan [3]. The findings of brain atrophy in rela-
tion to higher BMI were replicated in the separate
Alzheimer’s Disease Neuroimaging Cohort (ADNI)
and then in a larger Cardiovascular Study Cohort [4,
5]. However, what makes our study different from
that work is the focus on brain perfusion, which
shows greater sensitivity and earlier changes related
to brain dysfunction than atrophy [25]. Our find-
ings may therefore provide a possible physiological
explanation for how obesity can act as an epidemi-
ological risk factor for AD [10]. Interventions that
target obesity as one factor for improvement of cog-
nitive function further support the continued need for
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research into this area [26]. Additional work utilizing
regional cerebral blood flow has suggested additive
hypoperfusion is present in persons with both obesity
and heart failure, compared to either alone [27]. To the
extent that obesity is related to lower blood flow the
observation of underweight status and higher cerebral
perfusion can be related to literature linking caloric
restriction to higher cerebral blood flow [28]. Cere-
bral perfusion may therefore warrant further study as
a biomarker of caloric restriction in related efforts to
improve brain health.

Interventions to improve brain health are derived
primarily from AD prevention studies. One study,
called the Finnish Geriatric Intervention Study to Pre-
vent Cognitive Impairment and Disability (FINGER),
used a multi-faceted approach to control vascular risk
factors, including weight management, to improve
processing speed and global cognition [26]. Another
randomized controlled trial in 120 midlife adults
showed that aerobic physical activity improved hip-
pocampal volume compared to a passive stretching
group [29]. Models of brain health care include atten-
tion to physical activity, management of weight, and
treating psychiatric disorders that raise risk for AD,
such as depression [30]. Within this context, imaging
cerebral perfusion may provide a biomarker to eval-
uate if weight loss programs at midlife improve this
metric and future risk for AD.

The influence of obesity on brain perfusion
remained statistically significant despite adjusting
for psychiatric disorders. This result suggests that
the main effects of psychiatric disorders and obe-
sity on the brain are independent. The relationship of
obesity on brain physiology may occur through sev-
eral mechanisms. One is through neuroinflammation
and its influence on perfusion. Obesity is a known
systemic proinflammatory state [31]. Neuroinflam-
mation is related to cerebral hypoperfusion through
pathways that include TREM-2 [32], a biomarker
for neuroinflammation also noted in AD [33]. Thus,
chronic obesity with its associated systemic inflam-
mation my trigger a resultant neuroinflammation and
hypoperfusion. Changes in sex hormone levels with
obesity may also result in changes in cerebral per-
fusion. Future studies can further investigate specific
factors related to these mechanisms.

We have previously shown that depression and
dementia have distinguishable patterns of perfu-
sion abnormality on SPECT neuroimaging [14]. A
study of brain SPECT in late onset schizophrenia
showed bilateral post-central gyrus hypoperfusion;
the same study showed reduced cerebral perfusion

in the precentral and inferior frontal gyri [34].
Schizophrenia and alcohol dependence have also
been independently linked to lower hippocampal
volumes [35, 36]. Traumatic brain injury has also
been related to lower cerebral perfusion [12], but
in a cohort of retired National Football Players
who suffered from chronic repetitive concussions
BMI also independently related to lower cerebral
perfusion [6].

However, obesity is a problem spanning more than
just the elderly. Across all ages in the United States,
the average BMI is approximately 26.5 [37] which is
in the overweight category. This trend is in line with
the average BMI in our sample, also in the overweight
category at 25.2 and this similarity, in conjunction
with our large sample size, improves the generaliz-
ability of these findings. Moreover, since close to 20%
of the United States population have a psychiatric dis-
order [38], our large sample is likely a reasonable
representation of the U.S. population. Other large
cohort studies of about 10,000 or more participants,
namely the U.K. biobank, have also demonstrated
both brain atrophy and white matter microstructural
abnormalities on brain imaging [39] spanning 45–76
years. Affected regions include regions relevant for
cognitive function, such as the hippocampus. As our
sample size is broader (18–94 years), the findings
carry additional relevance for the general population.
The inclusion of baseline, as well as concentration
scans, provides additional information not available
from structural scans alone. Also, we include sepa-
rate categorization of morbid obesity that has not been
extensively studied in prior work. The use of SPECT
to evaluate cerebral perfusion has shown relevance to
AD with one study linking temporal parietal hypop-
erfusion of 2.5–4.2% per year with dementia severity
[40]. However, our study does not examine longitudi-
nal perfusion changes, nor do we have any insight on
the potential risk of pediatric obesity, although pre-
liminary data has suggested an obesity/neuroimaging
relationship [41]. Thus, studies of pediatric obesity
and brain hypoperfusion will be required in future
work.

Overall, we have found a strong set of relation-
ships between being overweight and obese and brain
hypoperfusion across a large adult cohort spanning
young adults to late life. The persistence of these
abnormalities despite adjusting for demographic and
psychiatric factors further highlights the need to
address obesity as a target for interventions designed
to improve brain function, be they AD prevention ini-
tiatives or attempts to optimize cognition in younger
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populations. Such work will be crucial in improving
outcomes of these groups.
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