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Abstract

The United States Environmental Protection Agency (US EPA) list of hazardous air pollutants 

(HAPs) includes toxic metal suspected or associated with development of cancer. Traditional 

techniques for detecting and quantifying toxic metals in the atmosphere are either not real time, 

hindering identification of sources, or limited by instrument costs. Spark emission spectroscopy 

is a promising and cost-effective technique that can be used for analyzing toxic metals in real 

time. Here, we have developed a cost-effective spark emission spectroscopy system to quantify 

the concentration of toxic metals targeted by the US EPA. Specifically, Cr, Cu, Ni, and Pb 

solutions were diluted and deposited on the ground electrode of the spark emission system. The 

least absolute shrinkage and selection operator (LASSO) was optimized and employed to detect 

useful features from the spark-generated plasma emissions. The optimized model was able to 

detect atomic emission lines along with other features to build a regression model that predicts 

the concentration of toxic metals from the observed spectra. The limits of detections (LODs) 

were estimated using the detected features and compared to the traditional single-feature approach. 

LASSO is capable of detecting highly sensitive features in the input spectrum; however, for some 

toxic metals the single-feature LOD marginally outperforms LASSO LOD. The combination of 

low-cost instruments with advanced machine learning techniques for data analysis could pave the 

path forward for data-driven solutions to costly measurements.

1 Introduction

The United States Environmental Protection Agency (US EPA) lists a number of metals in 

their list of hazardous air pollutants (HAPs). These metals are known or suspected to cause 

cancer or other serious health effects (Buzea et al., 2007; Pope et al., 2002). Table 1 lists the 

metals in the US EPA’s HAP list. Table 2 lists other metals that are not on the US EPA’s 

HAP list but have been implicated in a range of adverse health effects and so are of concern 
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to the California Air Resources Board (CARB). It has been shown that presence of these 

metals is associated with various health concerns such as diabetes (Zanobetti et al., 2009), 

cardiovascular disease (Brook et al., 2004), and asthma (Gent et al., 2009). Therefore, it is 

necessary to monitor and quantify their ambient concentration.

Various techniques over the years have been developed and used to measure metal particles. 

X-ray fluorescence (XRF) (Vincze et al., 2002; Van Meel et al., 2007) and inductively 

coupled plasma mass spectrometry (ICP-MS) (Rovelli et al., 2018; Venecek et al., 2016) 

have been used traditionally to quantify metals in atmospheric particles. XRF is excellent 

for measuring lighter elements and metals on filter substrates, but for field application 

it is expensive, has a high limit of detection (LOD) for heavier elements, and includes 

radiation risk. ICP-MS requires collection of aerosol on a substrate, such as a filter or 

impactor foil, extraction of the metals or elements from the substrate using harsh acidic 

chemicals, and then analyzing in the ICP-MS along with standards that help the instrument 

quantitate. Moreover, ICP-MS is most suitable for heavier elements and metals so has a high 

LOD for lighter toxic metals and is not available in field-deployed, real-time applications. 

Additionally, these instruments are expensive and hence are limited by cost and complexity 

as well.

Spark-induced breakdown spectroscopy (SIBS) and laser-induced breakdown spectroscopy 

(LIBS) have been employed in various applications from combustion (Kotzagianni et al., 

2016; Do and Carter, 2013; Kiefer et al., 2012), nanomaterials (De Giacomo et al., 2011; 

Hu et al., 2017; Davari et al., 2017a; Matsumoto et al., 2015a, b, 2016), and environmental 

and bio-hazards (Diwakar and Kulkarni, 2012; Diwakar et al., 2012; Zheng et al., 2018b), 

forensics (Martin et al., 2007), semiconductors and thin films (Hermann et al., 2019; 

Davari et al., 2017b; Axente et al., 2014; Davari et al., 2019), explosives (Gottfried et 

al., 2009), pharmaceuticals (Mukherjee and Cheng, 2008a, b; St-Onge et al., 2002), and 

biomedical engineering (Abbasi et al., 2018; Baudelet et al., 2006; Davari et al., 2018). 

In particular, Fisher et al. (2001) studied various toxic metals in aerosols by optimizing 

the spectrometer response with respect to gate delay. Hunter et al. (2000) employed spark 

emission spectroscopy for continuous monitoring of metallic elements in aerosols. Yao et al. 

(2018) used spark emission spectroscopy to obtain the carbon content of fly ashes. Diwakar 

and Kulkarni (2012) employed spark emission spectroscopy coupled with a corona aerosol 

microconcentrator (CAM) to improve the particle collection efficiency and detection limits 

of toxic metals. Zheng et al. (2017) characterized the CAM performance with respect to 

different experimental parameters and obtained the optimized design parameters for their 

CAM system.

Recently, machine learning and deep learning techniques have been applied in different 

fields. These techniques in general learn patterns that can be used to distinguish different 

labels. Boucher et al. (2015) employed various linear and nonlinear machine learning 

techniques on LIBS spectra obtained from geological samples and concluded that a 

combination of models yields a lower total error of prediction. Chengxu et al. (2018) used 

convolutional neural networks to detect potassium in LIBS spectra and improve the linearity 

of their prediction model incorporating deep convolutional layers. Zheng et al. (2018a) 

employed spark emission spectroscopy on metals and used partial least squares regression to 
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analyze their spectra set. They compared their multivariate models to univariate models and 

showed in their study that these two groups have similar performance.

While LIBS and SIBS address issues regarding the field measurement and instrument 

complexity, they are still considered expensive. Current interest in low-cost sensors and 

their ability to characterize local air pollution concentrations motivated development of a 

low-cost system. We employed two complementary approaches: (1) decreasing the cost 

of the electronics associated with SIBS and (2) incorporating advanced data analysis 

techniques to improve quantification and the limit of detection. In recent years, numerous 

studies have used artificial neural networks (Ferreira et al., 2008), partial least squares 

regression, and least absolute shrinkage and selection operator (LASSO) (Dyar et al., 2012) 

on emission spectra to improve the quantification and limit of the detection of spectroscopic 

systems. In this study, we have developed a low-cost spark emission spectroscopy system 

to quantify toxic metals. To reduce the overall cost, inexpensive replacements for necessary 

components, such as the spark generator and delay generator, have been developed in the 

lab. To improve performance, advanced machine learning tools such as k-means clustering 

and LASSO have been employed to improve the system performance. The resulting 

instrument was evaluated against four toxic metals listed by the US EPA.

2 Instrument development

2.1 Spark generation system

Setting up a spark emission spectroscopy system requires expensive components. However, 

depending on the application, some of the components can be replaced. Components such 

as spark generator and delay generator can cost up to USD 10 000 and 5000, respectively. 

According to our application and needs, we developed these components for less than 

USD 600 and 50, respectively. One costly component that is required for developing a 

spark emission spectroscopy system is the spark generation system. Numerous papers have 

studied the fundamental principles of spark emission spectroscopy (Walters, 1977; Sacks 

and Walters, 1970; Walters, 1969). The key idea is to discharge a capacitor as quickly as 

possible to increase the power dissipated in the spark gap. Figure 1 illustrates the schematic 

of the spark generation system. The overall goal is to charge a capacitor at high voltage 

and, once it has been charged sufficiently, discharge the capacitor through the spark gap. 

An Arduino board controls the timing between charging and discharging the capacitor. A 

boost convertor converts 24 to 5000 V DC and is connected to a mechanical relay with 

two switching states controlled with the Arduino board. In the charge state, the mechanical 

relay provides the conduction path between the boost convertor and the capacitor. In this 

configuration, the capacitor reaches full charge in 5 s. Once the capacitor is fully charged, 

the Arduino board sends a signal to turn off the boost convertor and sends another signal 

to the mechanical relay to flip to the discharge state. At the discharge state, the mechanical 

relay provides a conduction path between the capacitor and the spark gap. Shepherd et al. 

(2000) showed that the discharge process could be controlled by a resistor after the spark 

gap. For low resistor values, the spark current exhibited a periodic behavior as the capacitor 

discharges, which can be associated with an under-damped discharging. On the other hand, 

increasing the resistor value damped the discharge process and dissipated a large portion 
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of the capacitor energy through the resistor instead of the spark gap. We found that a 10 

Ω resistor maximizes the power dissipation in the spark gap, while minimizing oscillations. 

Figure 2 illustrates the evolution of the generated spark as a function of time. The voltage 

shows a sudden increase followed by an exponential decrease fully discharging in less than 5 

μs and thus delivering sufficient energy to the arc and deposited analyte.

2.2 Delay generator

The delay generator is another costly component typically used in time-resolved 

spectroscopy. Electronics advances have paved the way for developing a cost-effective delay 

generator. The delay generator suppresses initial noise in the emission spectrum so needs 

to cover a range between 1 and 20 μs with resolution less than 0.2 μs. We designed a 

custom-built delay generator in order to lower the overall cost of the instrument. Figure 

3 illustrates the schematic of the circuit. Upon generation of the spark-induced plasma, 

a pair of lenses collects and focuses the plasma emission into a photodiode. The pulse 

generated by the photodiode is passed into a voltage comparator (LM 311-N) to generate 

a transistor–transistor logic (TTL) signal. The output TTL signal from the comparator is 

sent to a pulse width modulator (PWM) controller (LTC6992), which adds delay to the 

TTL signal. An Arduino board adjusts a digital resistor (AD5241), which in turn determines 

the delay value. Figure 4 shows the delay generator performance. The y axis illustrates 

the delay values requested of the delay generator, while the x axis shows the measured 

values. The red dashed line shows the desired 1 : 1 line, while the circles show the measured 

performance. The performance is linear over the relevant delay range with only a slight 

deviation from the 1 : 1 line. Considering the spark-generated plasma’s short lifetime, our 

measurements require short delay values (< 5 μs) where the built-in delay generator shows 

excellent performance and accuracy.

2.3 Spectra collection

Four toxic metals with different concentrations were used to test the developed spark 

emission spectrometer system performance. Cr, Cu, Ni, and Pd (1000 μg mL−1) were 

purchased from AccuStandard and diluted to specific concentrations. For each concentration 

more than 10 spectra have been collected and used for model development. A micropipette 

was used to deposit diluted solutions on a 1 mm diameter Tungsten ground electrode of the 

spark system for emission analysis. The total mass can be calculated from the deposited 

volume and solution concentration. Upon evaporation of the droplets, the capacitor was 

discharged to ablate the deposited material and obtain spectra. A pair of lenses (75 mm focal 

length and 25.4 mm diameter; Thorlab) focused the emission into an optical fiber connected 

to a spectrometer (Ocean Optics).

3 Results and discussions

To address shot-to-shot variations in the spark-generated plasma and nullify possible faults 

caused by the low-cost components, an unsupervised learning technique, k-means clustering, 

classifies the collected spectra. Following this procedure, it is possible to identify and 

remove outliers and hence improve the accuracy of the analysis. Figure 5 illustrates the 

elbow plot that is used to optimize the number of spectral classes. The standard approach is 
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to set the optimum number of clusters to the value where the within-cluster sum of squares 

(WCSS) error plateaus. The WCSS error plateaus once we have two or more centroids, and, 

therefore, the number of centroids is set to two. Figure 6 illustrates the performance of the 

model for 300 spectra obtained from the background (Tungsten ground electrode ablation). 

The results show clearly two clusters with different emission response. The lower left cluster 

containing < 10 % of the spectra represents low-signal outliers, which were eliminated 

from further analysis. For each toxic metal, 0.1, 1, 10, and 100 ng of mass were deposited 

on the ground electrode. For each concentration, 10 spectra were collected using a 2 μs 

delay between the observed and recorded emissions. After ablating the deposited mass and 

recording the spectrum, feature scaling has been used as a preprocessing step to improve the 

optimization process for our machine learning model. Plasma temperature can be obtained 

as follows:

Iem = ℎc
λki

NkAki,

(1)

Nk = N gke− Ek
kBT

U(T) .

(2)

Combining Eqs. (1) and (2) and taking log from both sides gives

ln Iemλki
gkAki

= − Ek
kBT + ln ℎcN

U(T) ,

(3)

where kB is the Boltzmann constant, Aki is the transition probability between two energy 

states (i) and (k), and Nk is the population density at energy state k (Ek).λki indicates the 

wavelength associated with the transition, and gk represents the degeneracy of energy state 

k. The slope of Eq. (3) is used to estimate the plasma temperature based on a series of 

Tungsten lines for the recorded cleaned spectra set at 2 μs. Figure 7 illustrates the Boltzmann 

plot (Hahn and Omenetto, 2010, 2012) constructed by Tungsten lines. Based on the slope of 

the fit, the plasma temperature is estimated as 4013±579 K. Upon identifying and removing 

the outlier spectra, the cleaned spectra set is normalized using the Tungsten peak at W I 

(400.87 nm) and fed into the LASSO algorithm for model development and prediction.

LASSO

The cleaned scaled spectra set has been used to detect and quantify concentrations of the 

toxic metals. Simple linear regression obtains the slope and intercept of a linear line by 

minimizing the mean squared error between the predictions and known values. LASSO 

detects and employs more features to perform predictions by optimizing the following loss 

function:
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J(θ) = 1
m ∑

i = 1

m
y(i) − ℎθ x(i) 2 + c ∑

j = 1

k
θj ,

(4)

where x(i) ∈ ℝ2048 and hθ (x(i)) represent the normalized spectrum and the LASSO 

concentration prediction based on spectrum (i) (x(i)), respectively, and where y(i) is the 

known concentration corresponding to spectrum (i). m refers to the total number of spectra, 

and the LASSO coefficients are indicated by θj. k indicates the total number of features 

(spectral lines) used to build the model. The first term in Eq. (4) is the mean squared error 

and is common with simple linear regression, while the second term is a regularization 

term that minimizes the magnitude of θj. The L1 norm essentially sets most of the features 

in the spectrum to zero and maintains only a few features to build the linear model and 

perform predictions. The regularization constant (c) determines the number of features to be 

used in the model, and therefore the model loss needs to be optimized with respect to the 

regularization constant. To obtain the optimized regularization constant, we plotted the loss 

values for the Ni spectra training and testing sets as a function of the number of features 

for various c values based on leave-one-out cross validation (Fig. 8). As expected, the train 

loss monotonically decreases as the number of features increases, while the loss for the 

test set initially decreases and then starts increasing. This implies that after incorporating 

a certain number of features into the model, the model starts memorizing rather than 

generalizing, which is known as overfitting. Therefore, we set the regularization constant 

to the value that minimizes the loss for the test set. Figure 9 illustrates the optimized 

LASSO model predictions obtained by cross validation. For each concentration, the cross 

validation predictions were averaged and plotted along with the standard deviations. The 

predicted values vary linearly with the actuals. Figure 10 shows the wavelengths chosen by 

LASSO and the mean spectrum for 10 ng. LASSO chose a few Ni emission peaks along 

with other features to build the model. The same optimization process was applied to other 

toxic metals, specifically Cr, Cu, and Pb. Figure 11 illustrates the resulting predictions and 

demonstrates the value of LASSO for predicting deposited mass from the spectra. To obtain 

the LOD, the following function of the LASSO coefficients θj was used:

LOD = 3σB
S = 3σB θB ,

(5)

where σB is the standard deviation of the background and ||θB|| is the Euclidean norm of 

LASSO coefficients. Table 3 reports the LODs of the studied toxic metals.

Multivariate regression models such as LASSO might be more powerful in detection and 

quantification over univariate models; however, there is no guarantee that multivariate 

models outperform simple linear regression (Castro and Pereira-Filho, 2016; Braga et al., 

2010). To evaluate LASSO performance, we compared LASSO with univariate methods, by 

calculating the LODs using simple univariate linear regression based on the features selected 

by LASSO. Figure 12 illustrates the LODs obtained using this univariate technique (circles) 
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compared to LASSO LOD (dashed line) for Ni. Considering only the sensitivity (LOD) is 

necessary but not sufficient for evaluating model performance since low R2 values are also 

problematic. Therefore, in order to incorporate both R2 and LOD for model assessment, we 

defined a score as

score = LOD
R2

2
.

(6)

Based on this definition, a model that has low LOD and high R2 is desirable. The 

LASSO score outperforms single feature linear regression for Pb, but the two methods 

were comparable for Cu, Ni, and Cr (Fig. 13). Other studies have reported that univariate 

techniques performed better than multivariate ones (Castro and Pereira-Filho, 2016; Braga 

et al., 2010). In LASSO, this may be related to the cost function defined for the regression 

(Eq. 4). LASSO is a special case of elastic net family where both L1 and L2 norms are 

combined and used in the cost function. Considering the cost function in Eq. (4), the 

model goal is to minimize the prediction error and coefficient values (minimizing L1). 

This does not necessarily optimize LOD. Therefore, cost function minimization does not 

correspond to LOD minimization. Considering Fig. 12, using features defined by LASSO in 

a univariate model may yield better LOD than that obtained by LASSO alone. This might be 

an advantageous approach if the physical intuition of the features is not as important as the 

detection of toxic metals.

4 Conclusion

A cost-effective spark emission spectroscopy instrument was designed and developed to 

quantify toxic metals targeted by the US EPA and the California Air Resources Board. 

Costly components such as the spark generation system and delay generator were developed 

to lower the overall cost. An unsupervised learning technique was employed to detect outlier 

spectra. The cleaned spectra set was fed into LASSO for predicting the concentration of 

deposited samples on the ground electrode of the spark system from spectra obtained from 

the plasma. A combination of LASSO feature detection with univariate regression might 

improve the detection limits. Our results illustrate the promising realm of cost-effective 

sensors combined with advanced machine learning techniques to provide data-driven 

solutions to the traditional challenging problems.
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Figure 1. 
Schematic of the developed spark emission spectroscopy.
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Figure 2. 
Spark voltage evolution in time.
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Figure 3. 
Schematic of the built-in delay generator.
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Figure 4. 
The expected delay set by the Arduino board as a function of the measured delay.
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Figure 5. 
The elbow plot suggests two centroids for clustering the spectra set.
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Figure 6. 
K-means clustering for detecting outliers before passing the spectra set to the LASSO 

model. Two clusters were plotted for the normalized intensities of two arbitrary wavelengths 

at λ1 (208.365 nm) and λ2 (208.759 nm).
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Figure 7. 
Boltzmann plot for various Tungsten lines in order to estimate plasma temperature.

Davari and Wexler Page 17

Atmos Meas Tech. Author manuscript; available in PMC 2024 April 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 8. 
The train and test losses for Ni as a function of the number of features.
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Figure 9. 
(a) LASSO predictions based on leave-one-out cross validation for Ni; (b) the averaged 

predictions for each concentration.
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Figure 10. 
Ni 10 ng spectrum (black line) and selected features by LASSO (red line).
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Figure 11. 
The optimized LASSO models predictions for Cr, Cu, Ni, and Pb.
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Figure 12. 
(a) The univariate LODs based on LASSO selected features and (b) LASSO and univariate 

models scores.
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Figure 13. 
Model scores defined by Eq. (3) for Cr, Cu, Ni, and Pb. Circles indicate univariate models 

scores and dashed lines correspond to LASSO scores.
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Table 1.

List of hazardous metals targeted by the US EPA.

US EPA metal HAPS

Antimony

Arsenic

Beryllium

Cadmium

Chromium

Cobalt

Lead

Manganese

Mercury

Nickel

Selenium
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Table 2.

List of other toxic metals.

Toxic metals

Copper

Iron

Zinc
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