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Online links

1. 454sim: http://sourceforge.net/projects/bioinfo-454sim/

2. ART: http://www.niehs.nih.gov/research/resources/software/biostatistics/art/

3. ArtificialFastqGenerator: http://sourceforge.net/projects/artfastqgen/

4. BEAR: https://github.com/sej917/BEAR

5. CuReSim: http://www.pegase-biosciences.com/curesim-a-customized-read-simulator/

6. DWGSIM: https://github.com/nh13/DWGSIM

7. EAGLE: https://github.com/sequencing/EAGLE

8. FastqSim: http://sourceforge.net/projects/fastqsim/

9. Flowsim: http://biohaskell.org/Applications/FlowSim

10. GemSim: http://sourceforge.net/projects/gemsim/

11. Grinder: http://sourceforge.net/projects/biogrinder/

12. Mason: http://www.seqan.de/projects/mason/

13. MetaSim: http://ab.inf.uni-tuebingen.de/software/metasim/

14. NeSSM: http://cbb.sjtu.edu.cn/~ccwei/pub/software/NeSSM.php

15. Pbsim: https://code.google.com/archive/p/pbsim/

16. pIRS: https://github.com/galaxy001/pirs

17. ReadSim: http://sourceforge.net/projects/readsim/

18. Simhtsd: http://sourceforge.net/projects/simhtsd/

19. simNGS and simLibrary: http://www.ebi.ac.uk/goldman-srv/simNGS/

20. SimSeq: https://github.com/jstjohn/SimSeq

21. SInC: http://sourceforge.net/projects/sincsimulator/

22. Wgsim: http://github.com/lh3/wgsim

23. XS: http://bioinformatics.ua.pt/software/xs/

Further Information
Link 1: [http://darwin.uvigo.es/ngs-simulators/]
Access to this interactive links box is free online.
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Computer simulation of genomic data has become increasingly popular for assessing and 

validating biological models or to gain understanding about specific datasets. Multiple 

computational tools for the simulation of next-generation sequencing (NGS) data have been 

developed in recent years, which could be used to compare existing and new NGS analytical 

pipelines. Here we review 23 of these tools, highlighting their distinct functionality, requirements 

and potential applications. We also provide a decision tree for the informed selection of an 

appropriate NGS simulation tool for the specific question at hand.

Introduction

Next-generation sequencing (NGS) techniques are the standard nowadays for the generation 

of genomic data, producing ever-increasing amounts of information rapidly and at a low 

cost. These techniques allow us to sequence DNA and RNA very quickly, facilitating the 

acquisition of massive genomic, transcriptomic, DNA-protein interaction and epigenomic 

datasets, and are radically changing the way we look at genomes1–3. Given their higher 

parallelism and smaller reaction volumes compared to conventional Sanger sequencing, 

NGS methods offer larger amounts of data, shorter sequencing time and reduced costs, albeit 

at the cost of increased error rates and shorter reads4. NGS clearly facilitates the 

accumulation of large data sets, but the downstream processing of these data is still an 

important bottleneck5. Not surprisingly, NGS data result in numerous bioinformatics 

challenges, including storage, transmission, manipulation and analysis. Better computational 

methods and more efficient software tools are constantly being developed in order to provide 

faster processing and more accurate inferences. However, it is essential that these methods 

are benchmarked against existing tools with similar functionality, in order to show their 

superiority at least in some aspect. In general, computational methods can be benchmarked 

using empirical and/or simulated data. Although validation with empirical data is essential 

as it represents real scenarios, the true process underlying it is usually unknown, 

complicating its use for the assessment of accuracy (that is, how close the estimated value is 

to the ‘true’ value). On the other hand, in silico data allow us to generate as much data as 

desired and under controlled scenarios with predefined parameters for which the ‘true’ 

values are known, nicely complementing the validation with real data6,7. Thus, computer 

simulation of genetic and genomic data has become increasingly popular for assessing and 

validating biological models or to gain understanding about specific datasets. Simulations 

alone can be used as guidance for the development of new computational tools8, for 

debugging and to evaluate software performance9,10. Computer simulations also allow us to 

generate new hypotheses11, help in the design of sequencing projects12,13, and are 

absolutely essential to verify distinct inferences such as the correctness of an assembly14, 

the accuracy of gene prediction15 or the power to reconstruct accurate genotypes and 

haplotypes2,16. Several computational tools for the simulation of NGS data have been 

developed in the past few years. These tools have very diverse input requirements and 

functionalities, which makes it quite difficult to choose the most appropriate one for the 

problem at hand.

Here we present, to our knowledge, the first review of available software tools for the 

simulation of genomic NGS data. Note that we focus on the simulation of DNA sequences 
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and do not discuss RNA sequencing (RNAseq) simulation, which has its own characteristics. 

We review 23NGS simulation tools that were either recently published or developed, that 

were — in most cases — still maintained and that were freely available. We discuss their 

various features, such as the required input, the interaction with the user, the sequencing 

platforms, the type of reads, the error models, the possibility of introducing coverage bias, 

the simulation of genomic variants and the output provided. This is done within the 

framework of potential applications, providing readers with guidelines for the identification 

of the NGS simulators that are best suited for their purposes (Fig. 1).

An overview of current NGS technologies

The most popular NGS technologies on the market are Illumina’s sequencing by synthesis, 

which is probably the most widely used platform at present17, Roche’s 454 pyrosequencing 

(454), SOLiD sequencing-by-ligation (SOLiD), IonTorrent semiconductor sequencing18 

(IonTorrent), Pacific Biosciences’s (PacBio) single molecule real-time sequencing19, and 

Oxford Nanopore Technologies (Nanopore) single-cell DNA template strand sequencing. 

These strategies can differ, for example, regarding the type of reads they produce or the kind 

of sequencing errors they introduce (Table 1). Only two of the current technologies (Illumina 

and SOLiD) are capable of producing all three sequencing read types —SINGLE END, PAIRED 

END and MATE PAIR. Read length is also dependent on the machine and the kit used; in 

platforms like Illumina, SOLiD, or IonTorrent it is possible to specify the number of desired 

base pairs per read. According to the sequencing run type selected it is possible to obtain 

reads with maximum lengths of 75 bp (SOLiD), 300 bp (Illumina) or 400bp (IonTorrent). 

On the other hand, in platforms like 454, Nanopore or PacBio, information is only given 

about the mean and maximum read length that can be obtained, with average lengths of 700 

bp, 10 kb and 15 kb and maximum lengths of 1 kb, 10 kb and 15 kb, respectively. Error rates 

vary depending on the platform from <=1% in Illumina to ~30% in Nanopore. Further 

overviews and comparisons of NGS strategies can be found in 5,20–22.

Simulation parameters

The existing sequencing platforms use distinct protocols that result in datasets with different 

characteristics1. Many of these attributes can be taken into account by the simulators (Fig. 

2), although there is not a single tool that incorporates all possible variations. The main 

characteristics of the 23 simulators considered here are summarized in Tables 2 and 3. These 

tools differ in multiple aspects, such as sequencing technology, input requirements or output 

format, but maintain several common aspects. With some exceptions, all programs need a 

REFERENCE SEQUENCE, multiple parameter values indicating the characteristics of the 

sequencing experiment to be simulated (read length, error distribution, type of variation to 

be generated, if any, etc.) and/or a PROFILE (a set of parameter values, conditions and/or data 

used for controlling the simulation), which can be provided by the simulator or estimated de 
novo from empirical data. The outcome will be aligned or unaligned reads in different 

standard file formats, such as FASTQ, FASTA or BAM. An overview of the NGS data 

simulation process is represented in Fig. 3. In the following sections we delve into the 

different steps involved.
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Reference Sequence

Most NGS simulators require a reference sequence from which they will generate the 

simulated reads. This reference sequence can be a particular genomic region, multiple 

genomic regions concatenated, a chromosome, or a complete genome. The only exception in 

this regard is the simulator XS23, which just requires the read length, sequencing technology 

and nucleotide composition to generate completely de novo reads. Most of the current NGS 

simulators use a haploid genome as the reference sequence. Some tools such as EAGLE24, 

pIRS9, ReadSim25,26 and SimSeq27 simulate reads from different ploidies. While in 

EAGLE and ReadSim one can specify any ploidy (or even a specific chromosome for 

EAGLE), pIRS and SimSeq simulate reads from diploid genomes given a haploid reference. 

Furthermore, several tools are able to generate pools of reads from multiple reference 

sequences, in some cases using an ABUNDANCE PROFILE that defines the proportion of reads 

that are generated from each sequence.

Profiles

Most simulators require the setting of many parameters. This can be done in the command 

line and/or using a profile. Profiles can specify parameter distributions or discrete values for 

different biological features (e.g. GC-content, indel and substitution rates) and/or 

technological features (e.g. insert sizes, read lengths, error rates and QUALITY SCORES). Note 

that there are not standard formats for profiles and the information they include can change 

for the different tools. Because for many users it might be difficult to decide on particular 

parameter values or to construct their own profile, some simulators provide default profiles. 

Alternatively, many tools offer a way to estimate de novo profiles from empirical data. 

Several simulators are able to generate new profiles from alignments of reads mapped to a 

reference genome (SAM/BAM files) or from real sequencing data from a previous 

sequencing run (FASTQ files). Thus, BEAR28, NeSSM29 and pIRS provide guidelines for 

the use of alignment and mapping tools such as BWA30, BLAST31, SOAP32 or SOAP233, 

and for error estimation programs such as DRISEE34, together with other scripts for parsing 

the data or for other tasks. ART8, , FASTQsim13, GemSim16, SimSeq27 and SInC17 

packages provide their own standalone tools for the generation of error, quality and/or 

abundance profiles. ART and SInC generate quality profiles based on specific error models 

and/or the quality score distribution extracted from empirical data. NeSSM generates quality 

and error profiles. The quality profiles define the quality score given to each base along the 

read and are estimated based on an existing set of reads. The error profiles define the 

proportion of the different error types (substitutions and indels) and are estimated with 

specific scripts. pIRS generates quality profiles using mapped reads and known variations 

from re-sequencing data. The program BEAR, focused on metagenomics, generates error, 

quality and abundance profiles. For the generation of the error profile it uses a modified 

version of DRISEE to infer error rates by clustering artefactual duplicate reads in the 

supplied dataset. For the quality profile it uses the output of the error model to determine the 

average quality score assigned to erroneous nucleotides per position per read28. In addition, 

it generates an abundance profile from the relative frequency of the different taxa in a 

metagenomic dataset.
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Finally, other simulation programs such as ArtificialFastqGenerator35 and CuReSim10 do 

not use a profile, their simulation parameter values are specified directly via the command-

line.

Accounting for PCR Amplification

DNA amplification with polymerase chain reaction (PCR) is currently a necessary step in 

the preparation of libraries for the Illumina, 454, IonTorrent and SOLiD36,37 sequencing 

platforms. One may be interested therefore in modeling the bias introduced by PCR1,38,39, 

as done by ART, Flowsim40,41 and Grinder7.

ART, which simulates reads for Illumina, 454 and SOLiD, can mimic PCR bias by 

specifying the number of reads (SR or PE) generated per AMPLICON8. Flowsim is a suite of 

executables that simulate the entire 454 pyrosequencing process; using its module “kitsim” 

one can simulate the attachment of adapters to the end of each amplicon, which later on 

serve as primers for their PCR amplification simulated by “duplicator”40,41.

Grinder was specifically developed to simulate amplicon sequencing from user supplied 

PCR-primer collections, introducing known experimental artifacts like chimeras39 and 

spurious copy number variants. Grinder can generate chimeras in two ways: 1) by appending 

consecutive segments at given breakpoints, where both amplicon sequences and breakpoints 

are randomly selected; and 2) by concatenating fragments at breakpoints determined by 

specific K-MERS that must be shared by the amplicons. In addition, the presence of several 

gene copies in a genome may affect the composition of the amplicon library, contributing 

with extra amplicon reads. Grinder models this bias by sampling species proportionally to 

their relative abundance and to the number of copies of the amplicon in their genome7.

Read Features

In an NGS experiment, the number, length and type of reads are determined by the specific 

sequencing machine and the library preparation. It is possible to simulate a specific amount 

of reads with different lengths and types according to the sequencing technology assumed. 

The number of reads can be specified or estimated according to the desired COVERAGE. Also, 

it is possible to select a fixed length, the length of the longest read or a length distribution. 

The read type can be specified directly or indirectly by defining particular insert sizes. By 

default, most simulators assume single-end reads.

Base call errors

NGS technologies rely on a complex interplay between chemistry, hardware and optical 

sensors. Adding to this complexity is the software that analyzes the sensor data and predicts 

the individual bases. This last step is usually referred to as BASE CALLING42. The base calling 

converts the signals into actual sequence data with quality scores (known as Phred Q 

Scores43,44). The different sequencing platforms usually assume an explicit error model in 

order to assign a measure of uncertainty to each base call45.
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Error-rate models determine the probability of erroneous substitutions, insertions or 

deletions at a given position within a read28,46. For the generation of realistic reads, it is 

necessary to understand and incorporate as much as possible the different sources of 

sequencing error. Each sequencing platform has a specific error rate (Table 1), which can 

also vary within the same technology and among reads16. The importance of taking this into 

account and simulating sequencing data based on specific error models should not be 

underestimated.

Simulators may generate sequence errors in different ways: based on the quality scores 

(ArtificialFastqGenerator); by introducing particular errors at specific positions (SimSeq); 

by using specific error parameters for each platform/technology, which can be user-defined 

(ART, Mason6, pIRS) or fixed by the program (DWGSIM47, FASTQsim); using vriable 

error rates within reads (simhtsd48, wgsim49); using error distributions (Grinder); or 

generating specific errors along with some noise (simNGS50). In the following subsections 

we describe in more detail the different errors that are modeled and their occurrence in 

sequencing platforms, as well as how the different simulators implement them.

Indel errors

It has been reported that Illumina platforms rarely contain indel errors9, whereas for 454 and 

IonTorrent insertions and deletions (indels) are actually the main source of error, although 

they occur at very low rates51. However, in 454, assessing the correct number of 

polynucleotide sites (HOMOPOLYMERS) is often quite difficult because light signal changes 

among homopolymers with similar lengths can be undetectable 5,52–56. PacBio yields long 

single-molecule reads that are prone to false indels from non-fluorescing nucleotides52,54, 

which are stochastically modeled by the PacBio read simulator pbsim57. With Nanopore it 

is also possible to have indel errors; insertions occur when the strand slips back and forth so 

that a given position is read more than once, and deletions occur when the rate of strand 

displacement in the pore sensor exceeds the rate of data acquisition57. ReadSim, which is so 

far the only simulator available for Nanopore, assumes fixed error rates for indels and 

substitutions. Indel rates can be specified via the command line, or using a configuration 

profile in the cases of ART, CuReSim, Grinder, Mason, MetaSim58, NeSSM, pbsim, 

ReadSim, SInC and XS. Some programs like BEAR, EAGLE and GemSim include utilities 

or use external tools like DRISEE for the estimation of indel rates from FASTQ or SAM 

files. On the other hand, 454 and IonTorrent homopolymer specific errors59 may be 

extracted from a profile determining the position and corresponding error rate (as in ART), 

or introduced under the form of homopolymeric stretches using a specified empirical model 

(as in MetaSim, Flowsim or Grinder).

Substitution errors

Substitution errors are dominant in Illumina and SOLiD platforms. These may occur when 

incorrect bases are introduced during clonal amplification of templates (by PCR)9,54,60 or 

when the optical signals are translated into bases. In the latter process the green laser is used 

to detect G and T at the same time, using afterwards a filter to distinguish between G and T. 

A and C are detected in a similar way but by using a red laser. Thus, base call errors may 

arise because of insufficient discrimination of the respective base emission spectra51. It is 
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also known that SOLiD sequencers are unable to read through palindromic regions, 

presumably due to the formation of hairpin structures, therefore interpreting such regions as 

miscellaneous random sequences. ART simulates this kind of error. As with indels, 

substitutions errors rates have to be defined in the command line or within a profile.

Some NGS platforms can make position-specific substitution errors, with reads having 

significantly lower quality in the later cycles. In Illumina these type of errors possibly arise 

from either single-strand DNA folding or sequence-specific alterations in enzyme 

preference1,52,54,60 and can be modeled by GemSim and pIRS. There is a similar case for 

454 platforms59. Flowsim, 454sim and MetaSim can simulate two kinds of sequencing 

flows with a degradation model. The positive flow, interpreted as the occurrence of one or 

more bases, is modelled as a Normal distribution; the negative flow –no base or noise–, is 

modelled as a Log Normal distribution. The degradation model is introduced as a standard 

deviation that gradually increases the chance of error along the sequence.

Quality Scores

The quality score is a prediction of the probability of an error in a base call43,44,46,61. The 

distribution of base quality scores is position dependent, and the mean quality score 

decreases as a function of increasing base position for most of the available technologies8. 

Some NGS read simulators separate the quality score from sequencing error, even though 

they are correlated measurements. Several strategies can be used to simulate the quality 

scores, in most cases using empirical information. 454sim, EAGLE, Flowsim and simNGS 

use fixed quality scores profiles that are based on previous studies. ART, 

ArtificialFastqGenerator, BEAR, FASTQsim, GemSim, NeSSM, SimSeq and SInC also 

include utilities that allow the user to derive quality profiles from FASTQ files. On the other 

hand, pIRS determines both the base and quality score in relation to the cycle number and to 

the base position on the simulated read, using empirical parameters. Alternatively, the 

distribution of the quality scores can be controlled by the user. Some programs use a simple 

parameter that determines a fixed quality score for every read (ArtificalFastqGenerator, 

CuReSim, DWGSIM, ReadSim, simhtsd, wgsim and XS). Grinder assigns two quality 

scores, depending on whether the simulated base call is correct or not. More complex, 

realistic simulators use a Gaussian distribution (XS) or a Position Specific Normal 

Distribution (Mason) with mean, standard deviation and quality standard deviation for the 

first and last base. For PacBio the distribution of errors is considered to be constant along the 

chromosomes22 and programs like pbsim use a Uniform distribution to assign the quality 

scores. In Illumina, each PE read can have equal or different quality scores. Simulators that 

explicitly allow two different quality distributions for PE reads are ArtificialFastqGenerator, 

DWGSIM, EAGLE, SimSeq and SInC.

Sequencing depth

Sequencing depth or coverage is not continuous along genomes. This can be due to 

chance62 but also to the GC bias introduced during DNA amplification by PCR63,64, as 

sequencing depth increases in regions with elevated GC content38,51.This coverage bias is 

taken into account by ArtificialFastqGenerator, BEAR, EAGLE, NeSSM and pIRS. 
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ArtificialFastqGenerator calculates the GC content of different genomic regions from the 

reference sequence and then samples coverage levels for these regions from a Normal 

distribution. BEAR, EAGLE NeSSM and pIRS use data from previous studies to determine 

the variation of the GC content along the reference sequence, resulting in the simulation of 

variable regional coverage.

Simulating genomic variants

Apart from sequencing error (Fig. 4), many tools can also introduce different types of 

genomic variants in the simulated reads17 like single nucleotide polymorphisms (SNPs), 

indels, inversions, translocations, copy number variants (CNVs) and short tandem repeats 

(STRs) (Table 4).

The general strategy is to create a mutated sequence by introducing genomic variants in the 

reference sequence before the generation of reads (Fig. 4). In most cases, these variants are 

simulated using a given mutation rate, so the mutated sequence differs by a given percentage 

from the reference sequence. Programs like DWGSIM and EAGLE require instead a file 

with known mutations (in plain text, VCF or BED-like format). FASTQsim includes a 

separate tool that builds a mutation file from real data, using a NGS dataset (FASTQ files) 

and a reference genome, being best suited for re-sequencing.

Some programs are capable of generating population-level diversity by creating several 

mutated sequences from a single reference sequence (Fig. 4). Programs like GemSim and 

Mason can generate sets of related haplotypes differing by at least one SNP from the 

reference sequence. In GemSim users may also create their own tab-delimited haplotype file 

providing the specific position and mutation introduced.

Tools like GemSim, BEAR, Grinder and NeSSM can introduce genomic variants in a given 

set of reference sequences belonging to different taxa to create a set of mutated genomes that 

will resemble a metagenomic community (Fig. 4). As mentioned before, these programs use 

an abundance profile so the reads are generated from these sequences with a probability 

proportional to “taxa” abundance.

Output

The generated NGS reads may be stored in different file formats. According to the specific 

NGS technology simulated, one can get SFF files (standard flowgram format) from 454 

platforms (454sim and Flowsim), and FASTA or FASTQ files for IonTorrent, Illumina, 

PacBio, SOLiD and Nanopore. Other possible output files include alignment files, either in 

MAF (Multiple Alignment Format) or SAM/BAM formats. These can be outputted by 

default (as in Mason, pbsim and SimSeq), or as an option, complementary to the simulated 

reads (as in ART).

Conclusions

NGS is having a big impact in a broad range of areas that benefit from genetic information, 

from medical genomics, phylogenetic and population genomics, to the reconstruction of 

Escalona et al. Page 8

Nat Rev Genet. Author manuscript; available in PMC 2017 February 01.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



ancient genomes, epigenomics and environmental barcoding. These applications include 

approaches such as de novo sequencing, resequencing, target sequencing or genome 

reduction methods. In all cases, caution is necessary in choosing a proper sequencing design 

and/or a reliable analytical approach for the specific biological question of interest. The 

simulation of NGS data can be extremely useful for planning experiments, testing 

hypotheses, benchmarking tools and evaluating particular results. Given a reference genome 

or dataset, for instance, one can play with an array of sequencing technologies to choose the 

best-suited technology and parameters for the particular goal, possibly optimizing time and 

costs. Yet, this is still not the standard practice and researchers often base their choices on 

practical considerations like technology and money availability. As shown throughout this 

Review, simulation of NGS data from known genomes or transcriptomes can be extremely 

useful when evaluating assembly, mapping, phasing or genotyping algorithms e.g. 

2,7,10,13,64 exposing their advantages and drawbacks under different circumstances.

Altogether, current NGS simulators consider most, if not all, of the important features 

regarding the generation of NGS data. However, they are not problem-free. The different 

simulators are largely redundant, implementing the same or very similar procedures. In our 

opinion, many are poorly documented and can be difficult to use for non-experts, and some 

of them are no longer maintained. Most importantly, for the most part they have not been 

benchmarked or validated. Remarkably, among the 23 tools considered here, only 13 have 

been described in dedicated application notes, 3 have been mentioned as add-ons in the 

methods section of bigger articles, and 5 have never been referenced in a journal. Indeed, 

peer-reviewed publication of these tools in dedicated articles would be highly desirable. 

While this would not definitively guarantee quality, at least it would encourage authors to 

reach minimum standards in terms of validation, benchmarking, and documentation. 

Collaborative efforts like the Assemblathon e.g. 27 or iEvo (http://www.ievobio.org/) might 

be also a source of inspiration. Meanwhile, we hope that the decision tree presented in Fig. 1 

helps users making appropriate choices.
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Glossary

Coverage Bias
A bias in the amount of reads for a particular region. For example, sequencing depth 

increases in regions of elevated GC content.

Single Read
Single-read sequencing involves sequencing DNA fragment from only one end.

Paired-End Reads
In paired-end sequencing, a single fragment is sequenced from both 5' and 3' ends, giving 

rise to reads in both forward and reverse (FR) orientation, where read 1 is the forward read 

and read 2 is the reverse. The sequenced fragments may be separated by a certain number of 

bases (depending on insert size and read length) or overlapping.

Mate-Pair Reads
Mate-pair sequencing means generating long-insert paired-end DNA libraries. The inserts 

are circularized and fragmented and the labeled fragments (corresponding to the ends of the 

original DNA ligated together) are purified, ligated to another set of adapters and finally PE 

sequenced. The resulting inserts include two DNA segments that were originally separated 

by 2-5 kb, facilitating mapping and assembly.

Reference Sequence
A particular genomic region, multiple genomic regions concatenated, a chromosome, or a 

complete genome from which NGS reads will be generated.

Profile
A set of biological (GC-content, indel and substitution rates) and/or technological (insert 

sizes, read lengths, error rates and quality scores) parameter distributions or values that will 

be used in a specific simulation.

Abundance Profile
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Set of probabilities that represent the proportion of taxa within a community (and dataset).

Quality Score
A prediction of the probability of an error in a base call.

Amplicon
A piece of DNA or RNA resulting from an amplification event (for example as in PCR), 

either natural or artificial.

K-mer
A k-mer refers to all the possible subsequences of length k that can be obtained from a given 

sequence.

Coverage (or Sequencing Depth)
Number of times a certain nucleotide has been sequenced.

Base Calling
The analysis of the information obtained from the machine sensors during NGS and 

posterior prediction of the individual bases. This converts the signal into actual sequence 

data with quality scores.

Homopolymer
A sequence of multiple identical nucleotides.
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Online Summary

1. There is a large number of tools for the simulation of genomic data for 

all currently available NGS platforms, with partially overlapped 

functionality. Here we review 23 of these tools, highlighting their 

distinct functionalities, requirements and potential applications.

2. The parameterization of these simulators is often complex. The user 

may decide between using existing sets of parameters values called 

profiles or re-estimating them from its own data.

3. Parameters than can be modulated in these simulations include the 

effects of the PCR amplification of the libraries, read features and 

quality scores, base call errors, variation of sequencing depth across the 

genomes and the introduction of genomic variants.

4. Several types of genomic variants can be introduced in the simulated 

reads, such as SNPs, indels, inversions, translocations, copy-number 

variants and short-tandem repeats.

5. Reads can be generated from single or multiple genomes, and with 

distinct ploidy levels. NGS data from metagenomic communities can 

be simulated given an “abundance profile” that reflects the proportion 

of taxa in a given sample.

6. Many of the simulators have not been formally described and/or tested 

in dedicated publications. We encourage the formal publication of these 

tools and the realization of comprehensive, comparative 

benchmarkings.

7. Choosing among the different genomic NGS simulators is not easy. 

Here we provide a guidance tree to help users choosing a suitable tool 

for their specific interests.
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Figure 1. NGS genomic simulators decision tree.
Selection of a NGS simulator requires a set of sequential decisions. First we should reason 

whether we have a reference sequence or not. Then we need to decide whether we want to 

simulate reads from one or several organisms. Next we will specify whether we want to 

introduce genomic variants (in addition to those already existing in the reference 

sequence(s)). Finally we need to determine the sequencing technology of interest.
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Figure 2. General overview of the sequencing process and steps that can be parameterized in the 
simulations.
NGS simulators try to imitate the real sequencing process as closely as possible by 

considering all the steps that could influence the characteristics of the reads. a | NGS 

simulators do not take into account the effect of the different DNA extraction protocols in 

the resulting data. However, they can consider whether the sample we want to sequence 

includes one or more individuals, from the same or different organisms (e.g., pool-

sequencing, metagenomics). Pools of related genomes can be simulated by replicating the 

reference sequence and introducing variants on the resulting genomes. Some tools can also 
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simulate metagenomes with distinct taxa abundance. b | Simulators can try to mimic the 

length range of DNA fragmentation (empirically obtained by sonication or digestion 

protocols) or assume a fixed amplicon length. c | Library preparation involves ligating 

sequencing–platform dependent adaptors and/or barcodes to the selected DNA fragments 

(inserts). Some simulators can control the insert size, and produce reads with adaptors/

barcodes. d | | Most NGS techniques include an amplification step for the preparation of 

libraries. Several simulators can take this step into account (for example, by introducing 

errors and/or chimaeras), with the possibility of specifying the number of reads per 

amplicons. e | Sequencing runs imply a decision about coverage, read length, read type 

(single-end, paired-end, mate-pair) and a given platform (with their specific errors and 

biases). Simulators exist for the different platforms, and they can use particular parameter 

profiles, often estimated from real data.
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Figure 3. General overview of NGS simulation.
The simulation process begins with the input of a reference sequence (most cases) and 

simulation parameters. Some of the parameters can be given via a profile, that is estimated 

(by the simulator or other tools) from other reads or alignments. The outcome of this process 

may be reads (with or without quality information) or genome alignments in different 

formats.
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Figure 4. Flows available to generate reads with and without genomic variation.
Dots represent variants present in the reference sequence(s), and crosses represent the newly 

introduced variants (mutated sequences). a | Simulation of reads from a single reference 

sequence without adding new genomic variants. b | Generation of reads from a single 

mutated sequence generated from a single reference sequence. c | Reads are generated from 

a set of mutated sequences that were generated from a single reference sequence. d | 
Generation of reads from a set of mutated sequences obtained from a set of reference 

sequences. e | Reads are obtained directly from a set of reference sequences without 

introducing additional genomic variants.
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Table 1
Main characteristics of current NGS technologies.

Technology Run Type Maximum Read Length Quality Scores Error Rates References

Single-read Paired-end Mate-pair

Illumina X X X 300 bp > Q30 0.0034 – 1% 65

SOLiD X X X 75 bp > Q30 0.01 – 1% 66

IonTorrent X X 400 bp ~ Q20 1.78% 22

454 X X ~700 bp (up to 1 Kb) > Q20 1.07 – 1.7% 59,67

Nanopore X 5.4 – 10 Kb NAY 10 – 40% 68–72

PacBio X ~15 Kb (up to 40 Kb) < Q10 5 – 10% 22,73–75
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Table 2
General information about 23 NGS genomic simulators.

Simulator Technology G vs M Run types REF Characterization Processes Outputs

Input Profile Process PCR GV QS

PA RE PR DF PA GU SW RE AL FO

454Sim 454 G SR x x x x x SFF

ART 454, ILL, SOL G SR, PE, MP x x x x x x x x x x SFF/FQ

ArtificialFastqGenerator ILL G PE x x x x x x FQ

BEAR 454, ILL, ITO G,M SR, PE x x x x x x FQ

CuReSim 454, ILL, 
SOL, ITO

G SR x x x x FQ

DWGSIM (dnaa) ILL, SOL, ITO G SR, PE, MP x x x x x x x FQ

EAGLE 454, ILL, 
PCB, ITO

G SR, PE x x x x x x x FQ

FASTQSim ILL, SOL, 
PCB, ITO

G,M SR x x x x x x x FQ

Flowsim 454 G SR, PE x x x x x x x x SFF

GemSim 454, ILL G,M SR, PE x x x x x x x FQ

Grinder 454, ILL, SNG G,M SR, PE, MP x x x x x x x x FQ

Mason 454, ILL, SNG G SR, PE, MP x x x x x x x x FA/FQ

MetaSim 454,ILL, SNG G,M SR, PE, MP x x x x FA

NeSSM 454, ILL M SR, PE x x x x x x FQ

pbsim PCB G CLR/CCS x x x x x x FQ

pIRS ILL G,M PE x x x x x x x x FQ

ReadSim PCB, ONT G SR x x x x x x FQ

simhtsd 454, ILL G SR, PE x x x x FQ

simNGS ILL G SR, PE x x x x x x FQ

SimSeq ILL G SR, PE, MP x x x x x x x x SAM/BAM

SInC ILL G PE x x x x x x x FQ

wgsim ILL, SOL G SR x x x x x x FQ

xs 454, ILL, 
SOL, ITO

G SR,PE x x x x FQ

454: Roche’s 454. ILL: Illumina. SOL: SOLiD. ITO: Ion Torrent. PCB: Pacific Biosciences. ONT: Oxford Nanopore Technologies. SNG: Sanger. 
G: Genomics. M: Metagenomics. PA: Parameters. RE: Reads. PR: Profile. DF: Default Profile. GU: Guide to generate profiles. SW: Specific 
software to generate profile. PCR: Polymerase Chain Reaction. GV: Genomic variants. QS: Quality scores. FO: Format. AL: Alignments. FA: 
Fasta. FQ: Fastq. SFF: Standard Flowgram Format. SAM Sequence Alignment Map. BAM: Compressed SAM File. Also accessible in http://
darwin.uvigo.es/ngs-simulators/

Nat Rev Genet. Author manuscript; available in PMC 2017 February 01.

http://darwin.uvigo.es/ngs-simulators/
http://darwin.uvigo.es/ngs-simulators/


 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

Escalona et al. Page 23

Table 3
Technical information about 23 NGS genomic simulators.

Simulators Programming Language Operative System Interface Processing License Open Source

454Sim C++/Perl Win, Lnx, MOS CLI NP,P GNU GPL v1 Y

ART C++/Perl Win, Lnx, MOS CLI P GNU GPL Y

ArtificialFastqGenerator Java Win, Lnx, MOS CLI P GNU GPL v3 Y

BEAR Python/Perl Lnx CLI P AU Y

CuReSim Java Win, Lnx, MOS CLI P * N

DWGSIM (dnaa) C/Perl/Python Lnx CLI P GNU GPL v2 Y

EAGLE C++ Lnx CLI NP,P BSD Y

FASTQSim Bash/Python Lnx CLI NP,P GNU GPL v3 Y

Flowsim Haskell Lnx CLI P GNU Y

GemSim Python Win, Lnx, MOS CLI P GNU GPL v3 Y

Grinder Perl Win, Lnx, MOS CLI, GUI, API P GPL Y

Mason C++ Win, Lnx, MOS CLI P GPL/LGPL. Y

MetaSim Java Win, Lnx, MOS CLI, GUI P PRO / AU N

NeSSM C/Cuda/Perl Lnx CLI NP,P AU Y

pbsim C++ Lnx CLI P GNU GPL v2 Y

pIRS C++/Perl Lnx CLI NP,P GNU GPL v2 Y

ReadSim Python Win, Lnx, MOS CLI P * Y

simhtsd Perl Lnx CLI P GNU GPL v3 Y

simNGS C Lnx, MOS CLI P GNU GPL v3 Y

SimSeq Java Lnx CLI P MIT Y

SInC C++ Lnx CLI NP,P CCANCL V2.0 N

wgsim C Lnx CLI P MIT Y

xs C++ Lnx CLI P GNU GPL v3 Y

(*)
Information related to this topic is not available. Win: Windows. Lnx: Linux. MOS: MacOS. CLI: Command line interface. GUI: Graphical User 

Interface. API: Application Programming Interface. NP: No parallel processing. P: Parallel processing (accepts multi-threading). GNU GPL: GNU 
General Public License. PRO: Proprietary software. AU: Academic use only. BSD: Berkeley Software Distribution. CCANCL: Creative Commons 
Attribution Non-Commercial License.
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Table 4
Genomic variants.

Simulators Genomic Variants

MGC PLO SNPs Indels INVs TRA CNVs STRs

BEAR x

DWGSIM (dnaa) x x x x x

EAGLE x x x x x x

FASTQSim x x x

GemSim x x x

Grinder x x x

Mason x x

NeSSM x

pIRS x x x x

ReadSim x x x x

SimSeq x

SInC x x x

wgsim x x x

Variation that can be introduced in the reference sequences: MGC, Metagenomic community; PLO, Ploidy; SNPs, Single Nucleotide 
Polymorphisms; Indels, Insertions and/or deletions; INVs, Inversions; TRA, Translocations; CNVs, Copy Number Variants; STRs, Short Tandem 
Repeats.
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