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Abstract

Failure (or success) in finding a statistically significant effect of a large-scale intervention may be 

due to choices made in the evaluation. To highlight the potential limitations and pitfalls of some 

common identification strategies used for estimating causal effects of community-level 

interventions, we apply a roadmap for causal inference to a pre-post evaluation of a national 

nutrition program in Madagascar. Selection into the program was non-random and strongly 

associated with the pre-treatment (lagged) outcome. Using structural causal models (SCM), 

directed acyclic graphs (DAGs) and simulated data, we illustrate that an estimand with the 

outcome defined as the post-treatment outcome controls for confounding by the lagged outcome 

but not by possible unmeasured confounders. Two separate differencing estimands (of the pre- and 

post-treatment outcome) have the potential to adjust for a certain type of unmeasured 

confounding, but introduce bias if the additional identification assumptions they rely on are not 

met. In order to illustrate the practical impact of choice between three common identification 

strategies and their corresponding estimands, we used observational data from the community 

nutrition program in Madagascar to estimate each of these three estimands. Specifically, we 

estimated the average treatment effect of the program on the community mean nutritional status of 

children 5 years and under and found that the estimate based on the post-treatment estimand was 

about a quarter of the magnitude of either of the differencing estimands (0.066 SD vs. 0.26–0.27 

SD increase in mean weight-for-age z-score). Choice of estimand clearly has important 

implications for the interpretation of the success of the program to improve nutritional status of 

young children. A careful appraisal of the assumptions underlying the causal model is imperative 

before committing to a statistical model and progressing to estimation. However, knowledge about 

the data-generating process must be sufficient in order to choose the identification strategy that 

gets us closest to the truth.
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Introduction

Interventions scaled-up to a large or national level have failed to consistently demonstrate 

the causal benefits anticipated by results of small-scale experimental studies [1]. Challenges 

in evaluating a program operating at-scale are not limited to the logistical and technical 

constraints of surveying hundreds to thousands of households across a region or country, but 

also include the design and analysis of an evaluation to determine whether the program 

actually results in a benefit, and if so to quantify it. Our ability to make a causal claim from 

an evaluation may easily be compromised by the choices we make in the analysis and are 

particularly complex in observational studies. These choices are made even more 

controversial with the availability of pre-treatment outcome data, as we will illustrate in this 

paper. Misleading estimates of a program's benefit (in either direction) have significant 

policy and funding implications for the program, as well as for the people the program is 

intended to help.

In an introductory chapter on econometric evaluations of social programs, Nobel laureate 

James Heckman and co-author Edward Vytlacil point out that we often confuse the three 

main issues that face an evaluation: definition, identification and estimation. The authors 

state that “particular methods of estimation (e.g. matching or instrumental variable 

estimation) have become associated with ‘causal inference’ and even the definition of 

certain ‘causal parameters’ …” [2]. Investigators from different disciplines will bring 

distinct theoretical and analytical frameworks to estimation, which can lead to differing 

estimates of the causal effect and contradictory conclusions, in some cases without strong 

theoretical justification for the approach used. However, the selection of an estimator should 

happen after defining the causal target parameter and after the underlying assumptions 

necessary to identify the parameter are made explicit. In this paper, we work step-by-step 

through a roadmap for causal inference [3, 4], and emphasize the need to “define first, 

identify second, and estimate last” (quote from Judea Pearl's forward in Targeted Learning 

by van der Laan and Rose) [4, 5].

We use a national nutrition program in Madagascar for illustration. The program was 

implemented at the community level: it was made available to all residents of a community 

and sharing of information within a community was encouraged. Importantly, the 

Madagascar program rollout was non-random: communities were selected for treatment if 

they were located within districts with a pre-program prevalence of childhood underweight1 

that was above the national average or if they met certain logistical criteria (e.g. a local non-

profit organization was available to supervise the program). Cross-sectional anthropometric 

1Underweight is an indicator of being two standard deviations below the median weight of a reference population of well-nourished 
and healthy children of the same age and gender.
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surveys were administered in the same communities in Madagascar pre- and post-program 

implementation, providing multiple options for identification of a causal effect.

In this paper, we define the outcome as either the post-treatment value or the change from 

pre- to post-treatment. We consider the long-standing controversy over the advantages and 

disadvantages of each, reviewed in Imai [6] and Maris [7]. Using these two outcomes, we 

identify three statistical parameters used for interventions with pre-post data that under 

different assumptions are equivalent to our causal target parameter of interest. We include 

two difference-in-differences models commonly used with pre-post data: a change score 

estimand and an outcome estimand where the outcome data from both time periods are 

combined, or “pooled” together (popular in the social sciences and econometrics literature) 

[6, 8–10]. We also include a conventional approach in which the pre-treatment outcome (or 

lagged outcome) is included in the conditioning set of covariates.

Our study adds to the existing literature on the trade-offs of these causal models by using 

semi-parametric structural equation models to avoid making assumptions about the 

underlying functional form of the data-generating distribution [5, 11]. In addition, we use 

graphical representations of these models (directed acyclic graphs or DAGs) to make the 

assumptions underlying our causal models transparent and understandable to contextual 

experts. We review how DAGs can be used for locating sources of dependencies among 

variables and show in a series of data simulations how the estimate of the target causal 

parameter diverges from the truth when the necessary assumptions for a given identifiability 

result fail to hold. Finally, we apply a semi-parametric efficient estimator (targeted 

maximum likelihood) for each of the three estimands to the observed data from Madagascar 

to estimate the average treatment effect (ATE) of the program. We demonstrate that the 

choice of causal model and corresponding identification strategy have important 

implications for conclusions regarding the success of the program at improving the 

nutritional status of young children.

Setting, data and notation

In Madagascar, approximately 30% of children under five are estimated to be underweight 

[12]. Underweight is a near-term marker for inadequate nutrition and is estimated to be 

responsible for the largest proportion of the death and disease burden associated with 

malnutrition [13]. In 1999, the Madagascar National Office of Nutrition (ONN) 

implemented a comprehensive community-level growth-monitoring and nutrition program, 

incorporating multiple activities that have been found to be associated with better child 

outcomes [14]. Prior to the roll-out of the national nutrition program in 1997/1998, a large-

scale anthropometrics survey was performed in 420 communities in Madagascar. The survey 

was administered to a random sample of 14,148 households, 12,814 of which had children 5 

years of age and under. Treatment assignment in 1999 was made at the community level, 

based primarily on district-level prevalence of moderate underweight among children 5 

years of age and under (obtained from the 1997/1998 study). The program was phased in 

through 2002 and expanded to include new communities impacted by severe weather 

conditions in 2000 or impacted by political instability in 2002. In total, 3,600 project sites 

were reached. In 2004 a second anthropometric survey was administered to 10,704 
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households; 9,296 with children 5 years of age and under, in 446 participating and non-

participating communities. We restricted our analytic sample to 410 of these communities; 

26 were excluded that were not part of the baseline survey in 1997, and 10 communities 

from 6 urban districts were excluded because sites in these districts were opened in 2002 in 

response to a political crisis, such that the context of the intervention in these sites differed 

substantially from the remainder of the country.

The data in our analysis are from two cross-sectional surveys with different individuals 

included in each year (i.e. outcomes and covariates were measured on one set of subjects in 

1997/1998 (time t = 0) and on another set of subjects in 2004 (time t = 1)). For ease of 

comparison of the different estimands, we set the community as the unit of analysis. The 

observed variables for our analysis included community-level covariates (e.g. population 

size); individual-level covariates aggregated to the community level as a mean or proportion 

(e.g. proportion of mothers with no education); and the nutrition program administered at the 

community level. Our outcome of interest is community mean weight-for-age for children 

under 5 years, one of the primary nutritional outcomes in children targeted by the program. 

Our observed data are described in Table 1.

Causal inference road map

We follow a road map that links our research question to inference, making the underlying 

assumptions explicit for the path between the two [3, 4]. First, we define precisely the 

research question. This may seem obvious, but is often not made clear. Second, we turn the 

research question and relevant background knowledge into a structural causal model (SCM) 

[5], which encodes information about the relationships between the variables with a series of 

non- or semi-parametric equations. Importantly, we assume that the SCM accurately 

represents the data-generating processes that gave rise to our observed data. This is the key 

link from counterfactual to observed data.

Given the SCM, we specify the causal parameter of interest in the third step.2 The causal 

parameter is the parameter we would obtain under an ideal experiment and is defined using 

counterfactual notation. We use the phrasing “intervening to set the treatment” or “setting A 

= a” to refer to the hypothetical treatment conditions that we want to apply to the system 

when making causal contrasts. In this paper, we are interested in estimating the difference in 

the expectation of counterfactual outcomes if we were to intervene to set the treatment to 1 

(receive treatment) versus to 0 (not receive treatment), for all communities. This contrast is 

known as the ATE.

In the fourth step, we assess identifiability, or whether the observed data, in combination 

with our assumptions about the data-generating system, are sufficient to express the target 

casual parameter of interest as a parameter of the distribution of the observed data alone. 

This second parameter is the statistical target parameter (also referred to as the estimand; we 

use the terms interchangeably). The estimand is the parameter we estimate directly with the 

2Note that our objective in this paper is not to argue for one single type of causal model (SCM), nor to say that the causal model 
specification must come before specifying the causal parameter, but rather to emphasize separation of the steps, and to make clear 
what the assumptions are when a given SCM is used.
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observed data; under additional causal assumptions, it is equal to the casual parameter. We 

evaluate three different statistical target parameters commonly used with pre-post data, each 

of which is equivalent to the causal parameter under alternative identifying assumptions.

In the last steps of the roadmap, we commit to an estimand and statistical model and proceed 

using targeted maximum likelihood estimation, an efficient double robust approach. We 

present results using the observed data from Madagascar. In addition, we use simulations to 

illustrate the different assumptions required for the three statistical parameters to be 

equivalent to the ATE, our target parameter, of interest and potential consequences when the 

assumptions do not hold.

We could evaluate other causal parameters of interest, such as the average treatment effect 

among the treated, or the ATT, which is a conventional target parameter in the field of 

econometrics and impact evaluations of observational studies [2] and is of interest in the 

public health field. We chose the ATE to demonstrate how selecting a statistical model 

without understanding the underlying assumptions can threaten the validity of a causal effect 

estimate. The choice of a different causal parameter would not eliminate this threat.

The research question, SCM and target causal parameter

Our causal question is: Does the intervention increase the average nutritional status of 

children living in the community? In this paper, we are interested in estimating a population 

average effect at the community level, for all communities in the target population.

The SCM is characterized by a set of endogenous variables at two time points (see notation 

Table 1). Community variables that are not aggregates of individual factors are denoted by V 

and are assumed to be time invariant for the period of the study. Individual-level factors 

aggregated up to community-level factors are denoted by a vector, Wc(t), at time t = 0,1. The 

community-level mean outcome for children at time t is denoted as Yc(t). The community-

level exposure, A is assigned to zero or one as a function of V, Wc(t = 0) and Yc(t = 0). In 

addition, there are unmeasured exogenous variables, U, that may cause random variation in 

each of the observed variables. Restrictions on the joint distribution of these unmeasured 

errors will be required for identifiability.

We pose the following SCM to explain the relationships between the variables:

where no assumptions are made about the form of the functions. Our target causal parameter 

is the ATE given by: , where  denotes the counterfactual 

community-level outcome under an intervention on the SCM setting A = a.
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We start with a model with a minimal set of exclusion restriction assumptions about the 

data-generating system in order to avoid imposing restrictions that may or may not be 

reflective of the true data-generating process. We make a single exclusion restriction in this 

model: that the covariates Wc(t = 1) occurring post intervention are not affected by the 

intervention. We impose this exclusion restriction for three reasons. First, it is a reasonable 

assumption in the context of the Madagascar study. Second, it is required for one of the 

three estimands (see identifiability section for estimand III), and we apply it to the other two 

to facilitate our comparison across estimands. Finally, it allows us to condition on Wc(t = 1) 

in the models to better predict Yc(t = 1). Although we cannot test whether this exclusion 

restriction holds, we find that A is not significantly associated with any of the variables in 

Wc(t = 1), when controlling for the corresponding variable in Wc(t=0) using a series of 

parametric regressions (data not shown). In addition, our estimation results were not found 

to be sensitive to removing Wc(t = 1) from the set of conditioning variables for estimands I 

and II (data not shown).

Identifiability

Causal effect estimation relies on assumptions that must be made explicit when using 

observational data for causal inference. Specifically, some form of the randomization 

assumption (RA) and the experimental treatment assignment (ETA) assumption are 

sufficient for our causal parameter to be identified.3

The RA (also known as the assumption of no unmeasured confounders, or of 

exchangeability), states that treatment, A, is independent of counterfactual outcome, Ya, 

given some subset of the data. The RA is a causal assumption, and as such is not testable. 

However, we can draw a graphical representation of our SCM (i.e. a DAG) to check whether 

our assumptions about the underlying data-generating system are sufficient to imply that our 

identifying assumptions hold [5, 11]. By using a graphical procedure, we are able to solve 

the identification problem without resorting to an algebraic analysis of whether a statistical 

model parameter has a unique solution in terms of the parameters of the distribution of the 

observed variables [5, 18]. Very briefly, the graph is drawn based on the relationships 

defined in the SCM, where the parents of a variable (variables on the right-hand side of the 

equation) are connected to the child variable (variable on the left-hand side of the equation) 

with an arrow directed toward it. A path is any sequence of lines connecting two variables. 

The arrow between two variables can only go in one direction, such that the paths are 

acyclic (i.e. the graph cannot have A → B → C → A). Paths can either be open or blocked, 

depending on the direction of the arrows and whether or not a variable is conditioned on. (In 

this paper, we represent conditioning on a variable by placing a box around it.) Open paths 

can give rise to dependency between variables, and the absence of any open paths implies 

independence.

3The consistency assumption and the stable unit treatment value assumption (SUTVA) typically associated with the Rubin framework 
[15, 16] are subsumed in our SCM. The consistency assumption states that an individual's (or community's) potential outcome under 
the treatment actually received is precisely the observed outcome. Our SCM already implies the counterfactual and provides the 
necessary link to the observed data. In addition, the SCM assumes that the data-generating system for each community is generated 
independently of the others, such that the absence of hierarchical relationships between communities implies that one community's 
outcome is unaffected by another's treatment assignment (i.e. SUTVA holds) [17].
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The specific RA and necessary additional assumptions for our three estimands are discussed 

in detail below. To minimize confusion from too many arrows, we represent DAGs for each 

estimand using a simplified data structure that omits the observed, time invariant, village 

factors, V. We justify this simplification because V are exogenous to the data-generating 

system (no arrows go into V, other than UV) and if we condition on V, we do not have to 

worry about unblocked paths from unmeasured variables through V. In most cases, we also 

omit the exogenous variables, U. The omission of the U's implies that these exogenous 

variables are independent (discussed further with Figure 1). Paths depicted in red in the 

figures represent unblocked paths between the treatment and outcome variables. In our 

DAGs, we make use of a dashed line to represent the association between two variables 

created by these unblocked paths. Specifically, a dashed line indicates that the path is open 

due to conditioning on a collider (two arrows go into the same variable).

An assumption of sufficient support in the observed data distribution is also required for the 

target statistical parameter to be identified. The strong ETA assumption (also known as the 

positivity assumption) states that there must be sufficient variation in treatment (i.e. some 

positive probability of both being treated and not being treated) within strata of confounders, 

although this can be weakened under additional assumptions.

In the Madagascar example, the ETA assumption was not theoretically violated. 

Communities in non-targeted districts participated and communities in targeted districts did 

not. Although most (92%) of communities in the non-targeted districts did not take up the 

program, only 66% of communities in targeted districts in our sample took up the program 

by 2004. In addition, many non-participating communities received the program after 2004 

as the program expanded. As expected, the treated communities have on average a higher 

prevalence of underweight (39% vs. 30%), but there was reasonable heterogeneity in 

underweight by treatment status: the range among the treated communities was 5–95% 

prevalence, and 0–70% prevalence among the untreated communities.

However, the sample was finite and the covariate data were high dimensional, such that the 

ETA assumption may be practically violated. Due to the impossibility of checking every 

level of the covariates, we examined the distribution of estimated probabilities of treatment 

given our covariates and found that the probabilities are bounded between 0.025 and 0.975 

in our sample for each of the estimands (data not shown). The range of probabilities in the 

untreated group is comparable to that of the treated group. Although these checks do not 

quantify the degree to which violations or near-violations threaten the validity of our causal 

effect estimate, evidence of heterogeneity in treatment within strata of the confounders gave 

us some confidence that the ETA assumption is reasonably held. A formal diagnostic based 

on the parametric bootstrap is available for estimating the presence and magnitude of bias 

from positivity violations and near-violations [19, 20], but was not performed here.

In the next sections, we describe three identifiability results (and corresponding estimands) 

where we link the causal parameter to our observed data distribution. In the first estimand, 

the outcome is defined as the outcome post treatment, Yc(t =1). In the second estimand, the 

outcome is defined as the change in outcome pre- vs. post-treatment, Yθ; and in the third, the 
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outcome combines the data from both time periods, Yc(t). We refer to the latter as the pooled 

outcome estimand.

Estimand I: outcome Yc(t=1)

For the first estimand with outcome Yc(t = 1), identifiability is based on conditioning on all 

baseline covariates, including the pre-treatment (or lagged) outcome, as well as post-

treatment covariates Wc (t=1) assumed not to be affected by A, as discussed above. The RA 

for this estimand is:

(1)

For the RA(1) to hold, it is sufficient that the exogenous variables for the exposure, UA, be 

independent of the exogenous variables for the outcome, UY(t= 1), given V, Wc(t = 0), Yc(t = 

0), Wc(t = 1). This additional independence assumption is reasonable if we have no 

unmeasured common causes of A and Yc(t= 1) (i.e. no confounders).

The DAG in Figure 1 encodes the information from the series of equations in the SCM and 

allows us to visually check that  is independent of A given Wc(t = 0), Yc(t=0), and 

Wc(t =1). Specifically, we verify that our conditioning variables, which must not be affected 

by the intervention, block any unblocked backdoor path from A to Yc(t =1), while not 

opening any new paths. This is referred to as satisfying the backdoor criterion [18]. The 

RA(1) holds under this model.

We now have the following identifiability result:

where the first equality holds under the RA(1), and the second holds under our definition of 

the counter-factual outcomes. Note that for these conditional expectations of the outcome to 

Weber et al. Page 8

J Causal Inference. Author manuscript; available in PMC 2016 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



be well defined without parametric model assumptions beyond those implied by our SCM, 

we need some communities with and without the treatment for each level of the conditioning 

variables V and Wc(t) (i.e. we need for the ETA assumption to hold).

A first estimand (or statistical parameter) for the ATE, ΨI, follows:

(2)

We refer to this estimand as the post-treatment estimand.

Estimand II: outcome Yθ

Next, we consider the outcome as the change in the community specific means, Yθ, before 

and after treatment. We define Yθ as:

(3)

By definition of the structural equations for Yc(t = 1) and Yc(t = 0), we have the following 

structural equation for Yθ:

The DAG in Figure 2 reflects this same information. Note that UY(t=0) now affects both 

Yc(t= 0) and Yθ, so we have included it in the graph. Under this model, we have a new RA 

for outcome, Yθ:

(4)

and we can identify a statistical target parameter based on Yθ that is equivalent to ΨI [21]. 

Specifically, if we define the counterfactual mean of  under an intervention on the SCM 

setting A = a as:

(5)

then we can rewrite our target causal parameter in terms of  and show that it is identical to 

the ATE as previously defined as . First, the parameter is expressed 

as a difference in the differences of means:

(6)
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However, since intervening to set the treatment cannot affect the pre-treatment outcome 

, the above can be rewritten such that the mean of Yc(t=0) cancels out to 

give the ATE:

(7)

Under the RA(4), we can identify our statistical target parameter

and have an alternative, but equivalent, formulation of estimand ΨI:

(8)

So what is the advantage of using Yθ over Yc(t = 1) for estimating the ATE? The main 

justification in the causal inference literature is that the difference method allows for both 

the treatment, A, and outcome, Yc(t), to depend on unobserved community fixed effects that 

are time invariant [6, 22]. To explore this advantage, we add an unmeasured confounder, 

C=fC(UC), to our SCM and DAG, such that C is a common cause for A, Yc(t = 0), and 

Yc(t=1) (see Figure 3). The allowed functional forms of fY(t=0) and fY(t=1) in the SCM are 

restricted such that C has a linear additive effect on Yc(t), specifically that:

The introduction of an unmeasured confounder, C, opens up a backdoor path from A to Yc(t 

= 1) (see path A ← C → Yc(t = 1) labeled (i) and colored red in Figure 3). The RA(1) for 

estimand I no longer holds. At first, it appears that RA(4) might hold for Yθ. If we assume C 

has a constant additive effect on both Yc(t = 0) and Yc(t = 1), then Yθ is not a function of C 
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when taking the difference of Yc at the two time points. The structural equation for Yθ 

remains unchanged in this case. Using Yθ instead of Yc(t= 1) as outcome has the potential 

(under this specific parametric assumption) to close one backdoor pathway from A to Yθ via 

unmeasured confounder C.

However, on closer inspection, RA(4) does not hold under this model. Under the causal 

model where C affects Yc(t= 0), Yc(t= 1), and A, conditioning on Yc(t = 0) induces new 

dependence between Yθ and A and opens a backdoor path through exogenous variable 

UY(t=0) and confounder C. This occurs because Yc(t= 0) is a collider. Conditioning on a 

collider opens a path that would otherwise be blocked [11]. This unblocked path, A← C − 

UY(t= 0) → Yθ, is represented by the dashed line between UY(t= 0) and C (labeled (ii) in Figure 

4).

Thus, to benefit from the potential to remove unmeasured confounding from the use of Yθ as 

outcome, we need a new RA(9), which is not conditional on Yc(t=0):

(9)

It is important to note that we have arrived at the same conclusion with DAGs that others 

have reached using parametric equations and analysis of covariance. In the econometrics 

literature, the problem is recognized as the fact that the residual on Yθ (in a parametric 

equation) is necessarily correlated with the lagged outcome, Yc(t=0), because both are a 

function of the random error on Yc(t=0) (i.e. a function of UY(t=0) in our SCM) [23]. 

Conditioning on Yc(t = 0) has been demonstrated to bias the treatment effect estimate under 

this model where the errors on Yc are serially correlated [23]. The method of differencing 

can still be applied if this correlation is thought to be negligible (e.g. possibly when the data 

are from a series of cross-sections of different individuals and/or the time between cross-

sections is long) [24].

However, RA(9) still does not hold under this differencing model without additional 

assumptions. We make these assumptions apparent with the use of the DAG shown in 

Figure 5.

By not conditioning on Yc(t = 0), we open up multiple new pathways from A to Yθ: directly 

through Yc(t = 0) (A ← Yc(t = 0) → Yθ, labeled (iii) in Figure 5); through C (A ← C → Yc(t = 

0) → Yθ, labeled (iv)); and through UY(t=0) (A ← Yc(t=0) ← UY(t=0) → Yθ, labeled (v)). 

Additionally, Wc(t=1) is a descendant of collider Yc(t= 0), and conditioning on Wc(t= 1) 

opens up the same pathway as conditioning on Yc(t= 0) (i.e. A ← C − UY(t = 0) → Yθ). 

However, if we do not condition on Wc(t=1), then we would open up new backdoor 

pathways through Wc(t=1) (i.e. A ← C → Yc(t=0) → Wc(t=1) → Yθ and A ← Yc(t=0) → 

Wc(t=1) → Yθ labeled (vi)).

Therefore, we must be willing to make additional assumptions for our casual parameter to be 

identifiable in a difference model. Three additional exclusion restrictions are sufficient: Yc(t 

= 0) must not affect A, Wc(t=1) and Yc(t=1). We modify the structural equation for Yc(t=1) to 
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be an additive function of Yc(t=0), such that Yθ no longer depends on Yc(t=0), and the semi-

parametric equation for Yθ becomes:

Under this model (see Figure 6), we can choose to either adjust for Wc(t = 1) or not; 

conditioning on Wc(t = 0) is sufficient and Wc(t = 1) is no longer a descendant of a collider.

In summary, RA(9) holds in the presence of unmeasured confounding from non-time-

varying factors, C, with a constant additive effect on Yc(t) if Yc(t=0) does not affect A, Yc(t = 

1) and Wc(t =1). The target causal parameter can now be identified as a new target parameter 

of the observed data distribution. The identifiability result applied to Yθ becomes:

where the first equality holds under the RA(9) and the second from the definition of the 

counterfactual outcome Yθ under our new SCM (Figure 6), giving us a new estimand for the 

ATE, ΨII:

(10)

Which we refer to as the change score estimand.

Estimand III: outcome Yc(t)

Finally, there is an alternate difference-in-differences estimand that pools the outcome data 

from both time periods together. For this approach, we need to evaluate a third causal model 

for identifiability. Specifically, if we are willing to make additional assumptions on the 

underlying causal model such that:

(11)

then we have the following identifiability result under the new SCM:
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As with estimand II, the first equality in the identifiability result holds under the RA(9). The 

last equality holds under assumption (11) (i.e. by substituting t=1 and t = 0 for t), giving us a 

third estimand for the ATE:

(12)

We refer to this final estimand as the pooled outcome estimand. However, additional 

restrictions on the allowed data distribution are needed for this identifiability result to hold. 

Starting with the SCM established for the change score estimand (ΨII), we work through the 

model separately at each time point. At time t=1, assumption (11) becomes:

which will hold if Yc(t = 1) is independent of Wc(t =0) given V, A, and Wc(t=1). We can use 

the DAG shown in Figure 7 to check whether our SCM implies this conditional 

independence. Under our current model, assumption (11) fails at t = 1 because of two 
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unblocked paths: the direct path from Wc(t = 0) to Yc(t = 1) (label (vii) in Figure 7); and the 

paths through collider A (i.e. Wc(t= 0) − C → Yc(t=1) label (viii) in Figure 7). Therefore, for 

assumption (11) to hold at t = 1, we need to add two new exclusion restrictions: that Wc(t = 

0) does not affect Yc(t=1) and does not affect A (see Figure 8).

Similarly, at time t = 0, assumption (11) becomes:

and we verify with a DAG that our SCM implies Yc(t= 0) is independent of Wc(t= 1) given 

V, A, and Wc(t = 0) (Figure 9). No additional exclusion restrictions are required.

Note that we cannot add any arrows back that were removed for estimand II (i.e. Yc(t =0) 

cannot affect A, Wc(t = 1) or Yc(t = 1)). Under the additional restriction assumptions that 

Wc(t =0) does not affect A and Yc(t = 1), our causal target parameter, the ATE, is equivalent 

to estimand III. In settings where background knowledge makes it plausible to assume this 

more restrictive causal model, the pairing of Wc(t) and Yc(t) at time t may result in an 

efficiency gain.

Illustration of identifiability results using simulated data

In this section, we present a series of simulations to illustrate the reliance of estimand ΨI and 

the difference-in-differences estimands ΨII and ΨIII on distinct identifiability assumptions 

(the code is available in the Appendix A). As with the DAGs, we excluded the observed 

village factors, V, from the simulations. We present eight scenarios based on different SCMs 

represented by the DAGs in the previous section. In all cases, Yc(t), Wc(t) and C are 

continuous, normally distributed and a function of additive linear terms. Treatment variable, 

A, is dichotomous and the true causal parameter of interest, the ATE, has a value of 1. For 

each scenario and estimand, we estimated the true value of the estimand using simulation 

based on a sample of 100,000 observations (using fits of correctly specified linear 

regressions for each conditional expectation). These estimates are reported in Table 2.

The first simulation is based on the starting SCM for the post-treatment estimand (ΨI) 

represented in Figure 1. Under this model, RA(1) holds, and the true value of the estimand is 

equivalent whether the outcome is defined as Yc(t= 1) or Yθ (Figure 2 and RA(4)) and is 

equal to the target parameter value of 1 (simulation #1, Table 2). However, when we 

introduce an unmeasured confounder, C, in the second simulation, RA(1) and RA(4) no 

longer hold and the estimand diverges from the target causal parameter (simulation #2). This 

result is in keeping with a backdoor pathway being open from A to outcome Yc(t = 1) 

through C (path (i) in Figure 3) or with dependence between Yθ and A through UY(t=0) and 

confounder C (path (ii) in Figure 4).

The change score estimand (ΨII) diverges from the true value of the ATE when not 

conditioning on Yc(t=0) (simulation #3) because this opens up new pathways from A to Yθ 

(paths (iii) to (vi) in Figure 5). After adding the additional exclusion restrictions for 
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estimand II in the fourth simulation (i.e. Figure 6), the true value of the estimand again 

equals the target casual parameter value (simulation #4). However, in simulation #5, we add 

that Yc(t=0) affects A into the previous scenario for estimand II. In this fifth scenario, 

estimand II diverges from the ATE.

The sixth simulation represents the model for our pooled outcome estimand (ΨIII), where at 

time t=1, Yc(t=1) is not independent of Wc(t = 0) given V, A, and Wc(t=1) (Figure 7). As 

expected, estimand III diverges from the ATE (simulation #6). However, when the paths 

from Wc(t = 0) to A and Yc(t = 1) are removed (Figure 8), estimand III is equal to the ATE 

(simulation #7). Finally, in simulation #8, we add that Yc(t = 0) affects A into the previous 

scenario for estimand III, and the estimate once again diverges from the truth. As with 

simulation #5, this last simulation demonstrates that even if we can accept all the other 

exclusion restrictions for estimand III, we still must be willing to accept that Yc(t = 0) does 

not affect A for the difference-in-differences estimands to equal the target parameter.

In summary, the above simulations show that when there is an unmeasured confounder, the 

post-treatment estimand is generally not equal to the ATE whereas the change score and 

pooled outcome estimands might be, but only under additional assumptions. We further 

illustrate that even with an additive constant confounder C, the latter two estimands (ΨII and 

ΨIII) may still diverge substantially from the ATE if Yc(t = 0) affects A (i.e. Yc(t = 0) is a 

confounder), as well as if additional assumptions fail to hold.

Estimation methods

To estimate the ATE of the nutrition program on children's mean weight-for-age in a 

community, we used targeted maximum likelihood estimation (TMLE) for each of the three 

estimands [4, 25]. TMLE is a doubly robust estimator with important advantages over more 

commonly used estimators, such as parametric regression or inverse probability of treatment 

weights (IPTW or propensity score weighting) [26, 27]. Because the Madagascar evaluation 

was an ex-post facto quasi-experimental design, we wanted an estimator that would do the 

best job possible of adjusting for confounding from covariate imbalance across treatment 

groups (by chance or by design of the program roll-out).

TMLE involves estimation of both the conditional mean of the outcome given treatment and 

covariates, , and the conditional probability of treatment given covariates, g0, in 

estimating a causal effect. The initial estimator of  is updated in a fluctuation procedure 

using a “clever covariate,” which is a function of the treatment mechanism, g0 [4]. The 

updated estimates of the predicted values of the outcome under each treatment condition are 

then used to obtain an estimate of the statistical target parameter of interest. In this way, 

TMLE removes all asymptotic residual bias of the initial estimator for the target parameter, 

as long as we have a consistent estimator for  or g0 [4].

 for estimands I, II and III is defined respectively, as:
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and the corresponding g0 is defined as:

TMLE was implemented using R package “Targeted Maximum Likelihood Estimation” 

version 1.2.0-4 [28]. In order to avoid unsubstantiated parametric assumptions on the data-

generating process, we fit both g0 and  using SuperLearner (“SuperLearner Prediction” 

version 2.0-10, see Appendix B for a description), a machine-learning algorithm based on 

10-fold cross-validation [29]. Candidate SuperLearner (SL) algorithms that were included 

for fitting g were generalized linear models, Bayesian linear models, generalized additive 

models, step-wise regression, k-nearest neighbors and neural networks. Candidate 

algorithms that were included for fitting Q were generalized linear models, Bayesian linear 

models, generalized additive models, step-wise regression and polynomial spline regression. 

Standard errors were estimated using a non-parametric bootstrap with 200 replications. For 

each bootstrap sample, 410 communities were sampled with replacement and estimates for 

each estimand obtained before drawing the next sample. The confidence intervals (CI) were 

calculated assuming a normal distribution for the estimator, as well as by ordering the 

bootstrap estimates and taking the 2.5th and 97.5th percentile values. We also present robust 

influence curve based confidence intervals using the TMLE package [28]. Finally, we 

compared TMLE to two other methods of estimation: linear main term regression and 

inverse probability of treatment weighting [26, 27].

Estimation results using observed data

In a simulation under which all identifying assumptions held, the TMLE with SL estimator 

for each estimand was unbiased and the IC based 95% CI achieved nominal coverage (see 

Appendix C). Estimates for the point treatment effect from the observed data and their 

corresponding confidence intervals are shown in Table 3. The point estimates represent a 

difference in community mean weight-for-age z-score. A unit change of one is equivalent to 

one standard deviation (SD) above the mean weight for the reference standard (i.e. a 

population of well-nourished and healthy children of the same age and gender).

For estimand I, the estimate of the ATE obtained with TMLE is less than a tenth of a 

standard deviation, but statistically significant at the 5% level for two of the three CI's 

(β=0.066, influence curve-based CI: 0.009, 0.123). The differences in CI are small. The 

point estimate for estimand II is much larger than estimand I and statistically significant (β = 

0.255, influence curve-based CI: 0.165, 0.346). As with estimand II, the point estimate for 
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estimand III is relatively large and statistically significant (β = 0.274, influence curve-based 

CI: 0.184, 0.365).

Differences between estimates for any given estimand using TMLE with SuperLearner, 

inverse probability of treatment weighting and linear main term regression were very small 

compared to the differences between estimands (data not shown).

Discussion

Pre-post program evaluations (with data from treatment and control groups) present 

investigators with multiple approaches for identifying the causal effect of the program, each 

of which relies on a different set of assumptions. In this paper, we consider an existing 

program evaluation with pre-post data in order to illustrate trade-offs implied by alternative 

approaches to identifiability. We further contrast the results obtained by applying an 

efficient double robust estimator (TMLE) to observed data from the evaluation in order to 

estimate each of the corresponding estimands.

We show with simulated data that when the outcome is defined as the post-treatment value, 

Yc(t = 1), under the key assumption of no unmeasured confounding, the simple post-

treatment estimand (ΨI) equals the ATE (our target casual parameter). If an unmeasured 

factor, C, is introduced that confounds the relationship between treatment and outcome, the 

ΨI and the ATE diverge. Since unmeasured confounding is a realistic scenario in 

observational studies, it is not surprising that a difference-in-differences approach is often 

favored to try to address this issue. A differencing model is advantageous in that it 

“subtracts out” the effect of unmeasured confounders with a constant additive effect on the 

outcome at the two time points. The commonly accepted identifying assumption for the 

difference-in-differences estimand is a RA known as the parallel trend assumption. 

However, additional assumptions are necessary for the difference-in-differences estimand to 

equal the ATE. We discuss a sufficient set of such assumptions in a non-parametric 

structural equation model, namely that the lagged outcome, Yc(t = 0), does not affect 

treatment, A, the post-treatment covariates, Wc(t= 1), or the post-treatment outcome, Yc(t= 

1). These are very strong assumptions about the lagged outcome. Under conditions where 

these restrictions do not hold, difference-in-differences estimands (ΨII and ΨIII) have the 

potential to diverge further from the wished for causal effect than the post-treatment 

estimand adjusting for all baseline covariates, even in the presence of an unmeasured 

confoun-der with a constant additive effect. The exclusion restrictions become more 

numerous for the model that pools the outcome from both time periods (ΨIII).

When estimating the ATE using the observed data and TMLE, we obtained a small, 

although statistically significant, point estimate for the post-treatment estimand, ΨI: less 

than one tenth of a standard deviation in mean weight-for-age z-score. In contrast, the point 

estimates of the ATE for the differencing estimands are much larger at 0.26–0.27 SD in 

mean weight-for-age z-score. Drawing conclusions about the impact of the nutrition 

program requires us to evaluate the plausibility of the identifying assumptions underlying 

each approach. Do the larger effect estimates of the differencing estimands represent an 

estimate of the ATE that is less biased by some unmeasured, time-independent, confounder 
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(e.g. community dispersion) or an estimate that is more biased due to confounding by 

baseline mean weight-for-age z-score (Yc(t= 0))?

In 1997, the Malagasy government based selection into the treatment group in part on 

district-level prevalence of moderate underweight in children less than 5 years, aggregated 

up from community data. This background knowledge suggests that we should condition on 

Yc(t=0). However, the ex-post facto evaluation of program impact was designed and 

implemented in 2004. Differencing models are often applied to data from serial cross-

sections of different persons from the same communities separated in time by many years 

[24]. It is possible under certain conditions that the pre-treatment outcome and covariates do 

not directly affect the post-treatment outcome and covariates and are associated with post-

treatment outcome and covariates due only to fixed community-level factors that affect both. 

In other words, Yc(t= 0) may be predictive of Yc(t= 1), but only due to shared common 

causes C, Wc(t= 0), V, or Wc(t= 1), given that the cross-sectional surveys were administered 

7 years apart in Madagascar. Therefore, if we accept that ΨII or ΨIII is equal to our 

parameter of interest, then we accept that any residual variation in Yc(t = 0) not explained by 

Wc(t = 0) and V has only a minimal influence on Yθ.

In the econometrics literature, other authors have shown using parametric models that under 

certain assumptions and conditions for selection into treatment, a difference-in-differences 

model and a model conditional on the lagged outcome will provide upper and lower bound 

estimates of the causal effect of interest [23, 24]. We briefly consider whether our two 

estimands, the difference-in-differences estimand, ΨIII, or the post-treatment estimand 

(referred to as a lagged-outcome estimand in this literature), ΨI, can be interpreted similarly 

under our non-parametric causal model, given our contextual knowledge of factors that 

influenced selection into treatment in this study.

In the Madagascar study, both contextual knowledge and observed associations strongly 

suggest that the treatment was differentially assigned to villages with a lower lagged 

outcome (lower mean weight-for-age in a community or higher prevalence of underweight). 

In this context, failure to control for the lagged outcome is expected to result in a 

differences-in-differences estimand that overestimates the effect of interest. Interpretation of 

ΨIII as a true upper bound, however, would require that all other assumptions hold for the 

difference-in-differences estimand to equal the causal effect of interest, or that any which 

fail are similarly contributing to an overestimate of the effect.

On the other hand, as noted by Guryan in the context of his econometric model [24], a 

lagged-outcome estimator may under- or over-estimate the true effect depending on the 

direction of unmeasured confounding. In the Madagascar study, unmeasured confounding of 

the post-treatment estimand is unlikely to have resulted in a substantial overestimate of the 

true effect, as the post-treatment estimate is already near zero and there is not a good basis 

for suspecting a meaningful detrimental effect of the intervention. In other words, simply 

based on a priori knowledge, an effect estimate of zero is a plausible lower bound. It 

remains possible, of course, that the post-treatment estimand resulted in an underestimate of 

the true effect due to unmeasured confounding. For example distance of the village from a 

qualified non-profit organization to monitor the program may have both decreased 
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probability of assignment to treatment and independently improved outcomes; while some 

of this confounding would be expected to be captured though adjustment for the lagged 

outcome, residual negative confounding might remain.

Conclusions

In summary, our results highlight important trade-offs between approaches to identifiability 

in the context of evaluating an intervention with pre-post data. We are confronted with a 

bias trade-off between a single post-treatment estimand that conditions on the pre-treatment 

outcome (a measured confounder) but assumes no unmeasured confounders, and two 

difference-in-differences estimands that address certain types of unmeasured confounders 

but do not condition on the pre-treatment outcome. Note that none of the estimands account 

for time-varying and non-linear unmeasured confounders. The equivalence of the estimands 

to the casual effect of interest relies on assumptions that cannot be empirically verified; we 

require expert knowledge about the process that generated the observed data before we can 

choose one over the other.

If our knowledge is sufficient to accurately represent the underlying data-generating process 

using a causal model, then our casual model may help us choose between estimands (e.g. to 

decide whether the post-treatment estimand is closer to the ATE than the differencing 

estimands). In the case of the Madagascar intervention, our knowledge is unfortunately not 

sufficient to say definitively which, if any, of the SCM that we considered accurately 

describe the true data-generating process, nor which corresponding estimand is closer to our 

causal target parameter. If the required assumptions hold for the models described by 

Guryan and others, the truth lies somewhere between zero effect and a moderate positive 

effect of the program, which was sufficient to warrant further monitoring of the program.

Finally, if we have strong evidence that (a) there is important unmeasured confounding and 

that (b) the data do not support any other assumptions on which our identifiability results 

rely, then the target parameter is not identifiable. We cannot disregard this evidence; we risk 

obtaining a biased estimate, which has important implications for future funding of a 

program. The threat to validity from selecting a causal model without understanding the 

underlying assumptions transcends our work and is applicable to any evaluation of an 

intervention.
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Appendix A: R Code for simulations for Table 2

#——————————————

# In all, we assume W1 is not affected by A, and exclude observed exogenous variables, V

#——————————————
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set.seed(100)

n <- 100000

C <-rnorm(n,0,1)

W0<-rnorm(n,0,1)

#——————————————

# Run 1: Example for figure 3.1: estimand I, controlling for Y0

# No unmeasured confounding C

Y0 <-rnorm(n,0.5*W0,1)

A <-rbinom(n,1,1/(1 + exp(-0.5*W0-0.5*Y0)))

W1 <-rnorm(n,W0+Y0,1)

Y1 <-rnorm(n,W0+2*Y0+A+W1,1)

est1 <- glm(Y1∼A+W0+W1+Y0)

#————————————————————————

# Run 2: Example for figure 3.3: estimand I

# Introduce unmeasured confounder C that affects Y(0), Y(1) and A

Y0<-rnorm(n,0.5*W0+C,1)

A <-rbinom(n,1,1/(1 + exp(-0.5*W0-0.5*Y0-0.5*C)))

W1 <-rnorm(n,W0+Y0,1)

Y1 <-rnorm(n,W0+Y0+A+W1+C,1)

est2 <- glm(Y1∼A+W0+W1+Y0)

#————————————————————————

# Run 3: Example for figure 3.5: estimand II, not controlling for Y(0)

# Unmeasured confounder C

Y0<-rnorm(n,0.5*W0+C,1)

A <-rbinom(n,1,1/(1 + exp(-0.5*W0-0.5*Y0-0.5*C)))

W1 <-rnorm(n,W0+Y0,1)
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Y1 <-rnorm(n,W0+Y0+A+W1+C,1)

Yd <-Y1-Y0

est3 <- glm(Yd∼A+W0+W1)

#————————————————————————

# Run 4: Example for figure 3.6: estimand II, not controlling for Y(0)

# Confounder C, assume Y(0) does not affect A, W(1), or Y(1); i.e., no confounding by Y(0)

Y0<-rnorm(n,0.5*W0+C,1)

A <-rbinom(n,1,1/(1 + exp(-0.5*W0-0.5*C)))

W1 <-rnorm(n,W0,1)

Y1 <-rnorm(n,W0+A+W1+C,1)

Yd <-Y1-Y0

est4 <- glm(Yd∼A+W0+W1)

#————————————————————————

# Run 5: Example adding Y(0) affects A into run 4

Y0<-rnorm(n,0.5*W0+C,1)

A <-rbinom(n,1,1/(1 + exp(-0.5*W0-0.5*Y0-0.5*C)))

W1 <-rnorm(n,W0,1)

Y1 <-rnorm(n,W0+A+W1+C,1)

Yd<-Y1-Y0

est5 <- glm(Yd∼A+W0+W1)

#——————————————————— —————

# Run 6: Example for figure 3.7: estimand III

# Confounder C, assume Y(0) does not affect A, W(1), or Y(1); i.e., no confounding by Y(0)

# Assumption (11) but W(0) affects A and Y(1)

Y0 <-rnorm(n,0.5*W0+C,1)

A <-rbinom(n,1,1/(1 +exp(-0.5*W0-0.5*C)))
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W1<-rnorm(n,W0,1)

Y1<-rnorm(n,W0+A+W1+C,1)

# Reshape wide to long

id <- paste(“id”, 1:n, sep = “”)

data_wide <- data.frame(id,C,A,W0,Y0,W1,Y1)

data_long <- reshape(data_wide,

varying=4:7,

idvar = “id”,

direction = “long”,

timevar=“T”,

new.row.names=NULL,

sep = “”)

est6 <- glm(Y∼A+W+T+A*T,data=data_long)

#————————————————————————

# Run 7: Example for figure 3.8: estimand III

# Confounder C, assume Y(0) does not affect A, W(1), or Y(1); i.e., no confounding by Y(0)

# Assumption (11) and W(0) does not affect A or Y(1)

Y0 <-rnorm(n,0.5*W0+C,1)

A <-rbinom(n,1,1/(1 +exp(-0.5*C)))

W1<-rnorm(n,W0,1) Y1<-rnorm(n,A+W1+C,1)

# Reshape wide to long

id <- paste(“id”, 1:n, sep = “”)

data_wide <- data.frame(id,C,A,W0,Y0,W1,Y1)

data_long <- reshape(data_wide,

varying=4:7,

idvar = “id”,

direction = “long”,

timevar=“T”,
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new.row.names=NULL,

sep = “”)

est7 <- glm(Y∼A+W+T+A*T,data = data_long)

#————————————————————————

# Run 8: Example adding Y(0) affects A into run 7

Y0 <-rnorm(n,0.5*W0+C,1)

A <-rbinom(n,1,1/(1 +exp(-0.5*Y0-0.5*C)))

W1<-rnorm(n,W0,1)

Y1<-rnorm(n,A+W1+C,1)

# Reshape wide to long

id <- paste(“id”, 1:n, sep= “”)

data_wide <- data.frame(id,C,A,W0,Y0,W1,Y1)

data_long <- reshape(data_wide,

varying = 4:7,

idvar=“id”,

direction = “long”,

timevar=“T”,

new.row.names = NULL,

sep =“”)

est8 < - glm(Y∼A + W + T + A*T,data = data_long)

#————

est_all <-rbind(est1$coeff[“A”],est2$coeff[“A”],est3$coeff[“A”],est4$coeff[“A”],

est5$coeff[“A”], est6$coeff[“A:T”],est7$coeff[“A:T”],est8$coeff[“A:T”])

est_all

Appendix B: SuperLearner

SuperLearner (SL) [30] is a non-parametric, machine-learning tool that “learns” from the 

observed data by using a candidate set of algorithms (or estimators) and a pre-specified loss 

function that assigns a measure of performance to each of the algorithms. Briefly, there are 

three key components to SL:
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1. SL uses a library of algorithms for prediction. The algorithms can be diverse, 

simple (i.e. logistic regression), complex (i.e. neural nets), numerous and can 

include user-defined algorithms.

2. The predictive performance of each algorithm is assessed using V-fold cross-

validation. Cross-validation involves partitioning the sample into a user-specified 

number of training and validation sets. A training set is used to construct the 

candidate estimators (i.e. fit the regression) and the corresponding validation set is 

then used to assess the performance (i.e. estimate the risk) of the candidate 

algorithms. The validation set rotates by the number of partitions such that each set 

is used as the validation set once. Risk is defined using a loss function, for 

example, if we use the squared error loss function then our estimate of the risk 

corresponds to the estimated mean squared error loss on the validation sets. The 

“best” algorithms typically have the smallest empirical risk averaged over all the 

validation sets.

3. The library of algorithms is augmented with new algorithms, which are weighted 

averages of the algorithms from the previous step. The weighted algorithm with the 

smallest cross-validated risk is the “super learner” estimator and is expected to 

outperform any single algorithm. (Note that we can include a parametric model in 

the SuperLearner library.)

Appendix C: simulation with the TMLE and SL estimator

We checked the performance of the TMLE and SL estimator using simulated data 

(generated as in Appendix A) and a sample size of 410 (the same size as the observed data), 

where the true value of the estimand was 1 and all identifying assumptions held for each 

estimand. The simulation was repeated 5,000 times to show that the TMLE_SL estimator 

was unbiased and the IC based 95% CI achieved nominal coverage (results given in below 

table).

Mean Variance Bias MSE Coverage†

Estimand I 1.00 0.013 0.0001 0.013 0.94

Estimand II 1.00 0.021 0.0001 0.021 0.94

Estimand III 1.01 0.020 0.0051 0.020 0.95

Note:
†
Proportion of runs where the 95% influence curve-based CI contains the true value.
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Figure 1. 
DAG illustrating that post-treatment outcome, Yc(1), is independent of treatment, A, given 

lagged outcome, Yc(0), pre- and post-treatment covariates, Wc(0) and Wc(1), and exogenous 

covariates, V (not shown). There are no unmeasured confounders.
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Figure 2. 
DAG illustrating that pre-post change outcome, Yθ, is independent of treatment, A, given the 

lagged outcome, Yc(0), pre- and post-treatment covariates, Wc(0) and Wc(1), and exogenous 

covariates, V (not shown). There are no unmeasured confounders.
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Figure 3. 
DAG illustrating that an unblocked path (i) is opened from treatment, A, to the post-

treatment outcome, Yc(1), in the presence of unmeasured confounder, C.
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Figure 4. 
DAG illustrating by conditioning on pre-treatment outcome, Yc(0), in the presence of 

unmeasured confounder, C, that an unblocked path (ii) is opened from treatment, A, to the 

pre-post change outcome, Yθ, through C and exogenous variable UY(t= 0).
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Figure 5. 
DAG illustrating by not conditioning on lagged outcome, Yc(0), in the presence of 

unmeasured confounder, C, that multiple unblocked paths are opened from treatment, A, to 

the pre-post change outcome, Yθ, through: (iii) lagged outcome, Yc(0); (iv) confounder, C; 

(v) exogenous UY(t=0); and (vi) collider covariates Wc(1).
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Figure 6. 
DAG illustrating exclusion restrictions on lagged outcome Yc (0) for the pre-post change 

outcome, Yθ, in the presence of unmeasured confounder, C. Yθ, is independent of treatment, 

A, given covariates, only if Yc(0), does not affect treatment, A, post-treatment outcome, 

Yc(1), and post-treatment covariates, Wc(1).
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Figure 7. 
DAG illustrating the test of independence for the pooled outcome estimand at time t =1 in 

the presence of unmeasured confounder, C. Two unblocked paths are opened from pre-

treatment covariates, Wc(0), to post-treatment outcome, Yc(1): (vii) through a direct path; 

and (viii) the path through C created by the collider treatment, A.
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Figure 8. 
DAG illustrating exclusion restrictions on pre-treatment covariates Wc(0) for the pooled 

outcome estimand at time t=1 in the presence of unmeasured confounder, C. The post-

treatment outcome, Yc(1), is independent of Wc(0) given treatment, A, and post-treatment 

covariates, Wc(1), only if Wc(0) does not affect Yc(1) and does not affect A.
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Figure 9. 
DAG illustrating exclusion restrictions on pre-treatment covariates Wc(0) for the pooled 

outcome estimand at time t=0 in the presence of unmeasured confounder, C. The lagged 

outcome, Yc(0), is independent of post-treatment covariates, Wc(1), given treatment, A, and 

Wc(0), if Wc(0) does not affect post-treatment outcome, Yc(1), and does not affect A.
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Table 1

Notation used for variables, parameters and outcomes.

Notation Description

V Vector of time-invariant community-level covariates† (urban location, province, population size, 
presence of a health facility, road and water access in wet and dry seasons, indicators of weather shocks 
between '99 and '01)

Wc(t) Vector of community-level covariates that summarize individual-level factors for the individuals 
sampled in the community at time t = 0,1 (proportion of mothers sampled in the community who are 
uneducated or with primary only education, mean child age, proportion of children older than 1 year, 
proportion of female children, and mean child birth order ranking)

A Treatment, assigned at the community level

Community mean of individual-level outcomes Yi(t) (weight-for-age of child i, i = 1,…,N) for each of 
the N children under 5 years sampled in the community at time t=0,1

Observed data structure, Oj, for a given community j. The observed data are J independent and 
identically distributed copies of O

UV,…UY(t) Sources of random variation for each variable (for example characteristics of leadership in accepting 
the program (UA) for A, dispersion of the community across large distances (UV) for V, lack of a 
secondary school in the community (UW) for W, and sampling procedure problems (UY(t)) for Y(t))

P0 True data-generating distribution; Oj ∼ P0

Counterfactual outcomes; we focus on two outcomes: the post-treatment outcome, Yc(t=1), and the 
change in outcome from pre- to post-treatment, Yθ = Yc(t=1) – Yc(t =0). For each, we define their 

counterfactual value under treatment level A= a (  and , respectively)

Ψ(P0) True value of the target statistical parameter (or estimand), consisting of parameter mapping Ψ applied 
to the true data-generating distribution P0. We present 3 estimands labeled ΨI, ΨII, and ΨIII

Note:

†
Population size, presence of a health facility and access by road or water information is only available at the community level in 2004. For the 

purposes of this paper, we assume that these factors did not change significantly from 1997.
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Table 3

Point treatment effect estimates and confidence intervals using observed data.

Outcome Estimand Point estimate Confidence intervals (LCI, UCI) Confidence interval method

Y(t=1) ΨI 0.066 –0.004, 0.135 Normal distribution

0.001, 0.152 Percentiles

0.009, 0.123 Influence curve

Yθ ΨII 0.255 0.143, 0.368 Normal distribution

0.140, 0.358 Percentiles

0.165, 0.346 Influence curve

Y(t) ΨIII 0.274 0.124, 0.425 Normal distribution

0.232, 0.511 Percentiles

0.184, 0.365 Influence curve
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