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Abstract of the Dissertation 

 

Uncovering the molecular architecture of Alzheimer’s disease 

by 

Emily Miyoshi 

Doctor of Philosophy in Biological Sciences 

University of California, Irvine, 2022 

Professor Vivek Swarup, Chair 

 

Alzheimer’s disease (AD) is a devastating, progressive neurodegenerative disorder that results in 

dementia, with care for those with dementia estimated to cost the U.S. $321 billion in 2022. 

Although many years of research have uncovered notable findings about AD biology, it is clear 

that we still have a limited understanding of the disease as evidenced by the lack of effective 

therapeutics against AD. For example, genome-wide association studies (GWAS) have 

uncovered multiple genetic risk variants, revealing novel genes and pathways for study in AD. 

However, it remains a challenge to ascertain the functional significance of these risk variants. 

Multiple studies have attempted to clarify the role of AD risk variants with “bulk”-tissue RNA-

sequencing (RNA-seq), but they have been hindered by the vast cellular heterogeneity of the 

brain. Single-cell (scRNA-seq) and single-nucleus RNA-seq (snRNA-seq) performed on the 

5XFAD mouse model of AD, as well as human AD samples, identified disease-associated glial 

subpopulations, but it is unclear what regulates these subtypes. Additionally, studies have 

revealed region-specific glial subpopulations existing in the healthy brain, suggesting potential 

regional differences in the disease phenotype. This dissertation aimed to clarify the molecular 
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landscape of AD with spatial and cellular resolution with an emphasis on the analysis and 

integration of different data modalities and model systems. 

We first sought to define the cell-type specific gene regulatory programs dysregulated in AD to 

identify potential regulators of disease-associated cell subpopulations and to further unravel AD 

genetic risk (Chapter Two). Recent advances in sequencing methods now allow interrogation of 

the transcriptome and epigenome at the single cell resolution, and AD epigenetic data has been 

limited.  We generated paired single-nucleus transcriptomic and epigenomic data from 

postmortem human brain tissue of late-stage AD and cognitively healthy controls. In addition to 

being the first epigenetic dataset of human AD with single-cell resolution, we directly integrated 

the two different data modalities, allowing us to define disease-associated glial subpopulations at 

the transcriptome and epigenome. We identified cell-type specific, disease-associated candidate 

cis-regulatory elements (cCREs) and their candidate target genes. Although this is possible with 

single-cell epigenetic data alone, paired gene expression data provides additional functional 

evidence of cCREs. We also revealed cell-type specific transcription factors dysregulated with 

disease, like SREBF1 in oligodendrocytes, altogether identifying both cis- and trans-gene 

regulatory mechanisms that may regulate AD cell states. Furthermore, we characterized the cis-

regulatory landscape at AD GWAS loci in specific cell-types, providing insight into the cell-types 

relevant to specific AD risk variants. 

On the other hand, while recent transcriptomic studies have revealed both brain region- and cell-

type-specific gene expression changes in AD, “bulk”-tissue and scRNA-seq do not retain spatial 

information for gene expression changes without careful microdissection and sequencing 

separate samples. The human brain’s spatially complexity at both macro- and microscopic levels 

underlies brain function and thus is a critical feature to consider in disease pathophysiology. We 

generated spatial transcriptomic data from postmortem human brain tissue from cognitively 

healthy controls, early-, and late-stage AD to investigate the spatial relationship of disease-
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associated transcriptomic changes (Chapter Three). Additionally, we performed a comparative 

analysis of AD in Down Syndrome (DS) and the general population by generating both spatial 

and single-nucleus transcriptomic data from AD in DS. To date, no published spatial or single-

nucleus studies have explored the concordance between these two populations, although AD in 

DS may serve as an advantageous group for preclinical and clinical studies of AD. We identified 

regional and cell-type specific transcriptomic changes shared between both AD populations. 

Further, we present a time-course analysis of the spatial transcriptome of the amyloid mouse 

model 5XFAD to assess the AD transcriptome across multiple brain regions and identify 

evolutionary-conserved gene expression changes. In addition to surveying different model 

systems, we integrated imaging data with spatial transcriptomic data. Amyloid beta (Aβ) pathology 

is one of the classical hallmarks of AD and proposed as a critical driver of AD pathogenesis 

(amyloid cascade hypothesis). We identified transcripts spatially localized to Aβ pathology 

conserved between both human and mouse. We also integrated spatial and single-nucleus 

transcriptomic data to discover spatially defined cell signaling pathways dysregulated with disease 

and highlight regional heterogeneity of astrocytes. Altogether, this dissertation reveals regional 

and cellular molecular changes occurring in AD and contextualizes them in a systems-level 

framework to uncover pathways for further study in AD. 
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Chapter One: Multi-omics to disentangle the molecular architecture of 

Alzheimer’s disease 

Genetics of Alzheimer’s disease 

Alzheimer’s disease (AD) is one of the most common neurodegenerative disorders, clinically 

manifesting as cognitive decline and memory loss. Pathologically it is defined by the accumulation 

of amyloid beta (Aβ) plaques and neurofibrillary tangles—abnormal protein aggregates consisting 

of Aβ and tau, respectively. The genetic components of AD can be divided into two forms: 

deterministic gene mutations and risk conferring genetic variants. The former includes rare, 

autosomal dominant mutations in APP, PSEN1, and PSEN2, constituting a small proportion of 

AD cases, where age of onset may be as early as 35 years old (early-onset familial AD, EOFAD), 

compared to the typical >65 age of onset (late-onset AD, LOAD) (1). APP encodes amyloid 

precursor protein, which is cleaved by β- and γ-secretase to produce Aβ, and both PSEN1 and 

PSEN2 encode subunits of γ-secretase (1). The introduction of these mutations results in 

extensive amyloid deposition and gliosis, as well as cognitive deficits, in mice (2–4), indicating a 

critical role of Aβ in AD pathophysiology.  

However, most AD cases (LOAD) do not have a clear genetic etiology and are labeled as 

“sporadic,” although LOAD heritability is reported to be between 58-79% (5). It is suggested that 

LOAD may be the result of a combination of genetic variants with smaller effect sizes, and 

therefore, there have been large efforts to determine the genetic landscape of LOAD. The APOE 

E4 allele was the first genetic variant identified to confer risk for LOAD and influences the age of 

onset (6, 7). Many genome-wide association studies (GWAS), relying on microarray or whole 

genome or exome sequencing, have discovered additional genetic risk variants, with the most 

recent study reporting a total of 75 LOAD risk loci (8–15). Although risk variants may act on genes 

large distances away, GWAS-identified risk genes have been typically annotated by the nearest 
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gene. More recent studies are attempting to determine candidate causal genes with gene 

prioritization analyses, which should help to finetune mechanistic follow-up studies. As a whole 

however, AD GWAS has highlighted several biological pathways of interest, such as APP 

metabolism (ADAM10, APP, SORL1), lipid homeostasis (ABCA1, ABCA7, APOE, CLU), the 

immune response (CD33, CR1, HLA, MS4A, SPI1, TREM2), and endocytosis (BIN1, PICALM). 

Protective genetic factors also reside within some of the same loci associated with risk (16–19), 

suggesting these are key AD genes. 

Another particularly interesting genetic form of AD is trisomy of chromosome 21 (chr21), Down 

syndrome (AD in DS). Notably, chr21 includes APP, and most individuals with DS accumulate AD 

pathology by 40 years old and in a predictable manner (20, 21). At ages >65 years old, individuals 

with DS have an 80% risk for dementia (22). Biomarker changes in AD in DS follow those in both 

LOAD and EOFAD (23), and APOE E4 may also be a genetic risk factor for AD in DS (24). 

Additionally, a study identified risk variants in APP, CST3, and MARK4 for AD in DS (25)—all 

three genes have been associated with AD risk in the general population. This smaller and more 

genetically and phenotypically homogeneous population may be advantageous to study AD, 

considering the shared features between AD in DS and LOAD. 

 

Global transcriptomic changes in Alzheimer’s disease 

It remains a challenge, however, to understand the molecular underpinnings of AD with genetic 

variation alone, as the downstream functional outcomes of these AD-associated risk variants still 

need to be determined. Researchers therefore turned to a more functional assessment, gene 

expression measurements from microarray and RNA-sequencing (RNA-seq), to dissect the 

relationship between genetic variation and disease phenotype, and multiple studies have now 

identified both upregulated and downregulated genes in AD at the tissue-level with differential 
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expression analysis (26–35). Gene expression changes reflected the known pathological 

progression of AD in the brain (32–34). While a few studies identified expression quantitative trait 

loci (36–38), several studies also revealed potential posttranscriptional regulatory changes, such 

as microRNAs over- or underrepresented in AD (31, 39, 40), as well as differential splicing or 

editing events (31, 41, 42). Further, it was discovered that transposable elements, which also may 

influence regulation of gene expression, are differentially expressed in AD (43, 44). 

In addition to differential analysis, many transcriptomic studies applied network analysis to help 

decipher the biological significance of differentially expressed genes (DEGs) by clarifying the 

relationships between these genes and other co-regulated genes. Across these studies, key 

biological pathways, such as the immune response, synaptic function, myelination, and 

metabolism, were dysregulated in AD (30, 33, 39, 45–49). We performed a meta-analysis of three 

independent, large-scale RNA-seq cohorts and found many of these biological pathways are 

robustly preserved across brain regions and independent datasets (45). Interestingly, the 

expression of synaptic genes appears to increase in early stages of disease but decreases at the 

later stages (26, 29, 33, 48). Myelination-related genes also decrease in AD (28, 47), and a recent 

study discovered transcriptomic subtypes of AD, where PLP1, encoding a major myelin protein, 

is a key driver of a major subtype (B) (34). A study also revealed TYROBP, which interacts with 

TREM2, is a regulator of immune-related processes in AD (30), while we identified the 

transcription factor SPI1 in our meta-analysis (45). These tissue-level transcriptomic analyses 

have not only reaffirmed postulated biological processes involved in AD, but also highlighted 

candidate genes for further investigation. 
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Cellular diversity of the brain 

The adult human brain is composed of multiple cell populations and even cell subpopulations; the 

existence of subpopulation-level diversity was revealed in the drawings of Santiago Ramón y 

Cajal, illustrating morphologically distinct neurons and astrocytes. From sequencing a single 

mouse blastomere (50) to thousands of cells per sample (51, 52), single-cell RNA-seq (scRNA-

seq) has provided us the opportunity to unbiasedly discover molecularly distinct cell 

subpopulations in the brain, and the development of profiling of single-nucleus suspensions 

(snRNA-seq) (53, 54) allowed us to utilize archived postmortem human brain tissue samples, in 

addition to reducing technical artifacts in mouse studies. Several studies have greatly propelled 

our understanding of the brain’s cellular heterogeneity (51, 54–62). For example, the Allen 

Institute identified over 40 inhibitory neuron clusters within the human middle temporal gyrus (56), 

and more recently more than 200 excitatory neuron clusters across multiple brain regions in the 

adult mouse (58). Through their careful microdissection of the cortical layers, we now have the 

transcriptomic signatures of layer-specific and multiple layer-spanning neuronal subpopulations, 

and interestingly, many cluster-specific markers are noncoding RNAs, reinforcing that gene 

regulation is largely cell-type specific.  

Furthermore, several studies revealed transcriptionally distinct astrocytes and microglia that are 

region-specific; this includes those specific to grey or white matter, in addition to individual cortical 

layers (63–67). Oligodendrocytes are also surprisingly heterogeneous. scRNA-seq performed on 

mouse brain tissue, as well as snRNA-seq on human brain tissue, discovered several 

transcriptionally distinct mature oligodendrocyte subpopulations, majorly separating by 

myelinating or non-myelinating state (60, 68–70). A few studies also characterized the epigenome 

of single cells in the mouse and human brain and likewise identified epigenetically distinct cell 

subpopulations (71–73), and more recently vascular subpopulations in the brain were 

transcriptionally defined (74). It remains unclear, however, what is the functional significance of 
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these heterogeneous subsets of cells, as well as how do different cell subpopulations respond to 

disease. 

 
Single-cell studies of Alzheimer’s disease 

While tissue-level transcriptomic studies helped to uncover biological pathways and genes 

dysregulated in AD, they are limited by their inability to resolve cell-specific gene expression 

changes, which may greatly influence our understanding of a gene’s role in disease. Results from 

“bulk” RNA-seq ultimately are skewed based on a tissue’s cellular composition, and this was 

confirmed in the first single-nucleus transcriptomic study of the human AD brain (75) with 48  

prefrontal cortical samples from the Religious Order Study and the Rush Memory and Aging 

Project (ROSMAP, 24 controls and 24 AD based on pathological staging). They notably found 

that most AD DEGs are cell-type specific and that bulk-tissue RNA-seq can fail to capture AD 

gene expression changes unique to smaller cell populations.  

Moreover, single-cell profiling provides the opportunity to examine cell subpopulation-specific 

changes in disease. Another snRNA-seq study identified RORB+ excitatory neuronal 

subpopulations in the entorhinal cortex that are selectively vulnerable in AD, as well as similar 

populations in the superior frontal gyrus (76). They interestingly did not observe this selective 

vulnerability among inhibitory neurons. In contrast, many studies have found expansion of select 

cell subpopulations with AD (75, 77–84). scRNA-seq studies of the amyloid mouse model 5XFAD 

discovered disease-associated microglia (DAMs), astrocytes (DAAs), and oligodendrocytes 

(DOLs) (77, 79, 82). These subpopulations notably have overlapping gene markers, like 

Serpina3n, B2m, and Ctsb, and are localized to amyloid plaques, suggesting similarities in the 

response to amyloid pathology across glia. In addition, Keren-Shaul et al. proposed that microglia 

transition to DAM in two stages, where one stage is Trem2 dependent (77), and this was validated 

in a separate snRNA-seq study of 5XFAD and 5XFAD-Trem2 deficient mice (78). It is unknown 
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what regulates the other DAM stage, as well as DAAs and DOLs. However, it is also uncertain if 

these subpopulations are relevant in clinical AD. For example, DAMs have been only partially 

recapitulated in human AD studies (78, 85). The analysis of both human and mouse datasets, 

rather than the analysis of one alone, may help to deepen our understanding of disease by 

allowing us to identify species-conserved, disease-associated changes that we can manipulate 

and study in vivo. 

Further, there is presently a paucity of epigenetic data for AD, especially at the single-cell 

resolution. A few studies identified AD-associated, tissue-level changes in DNA methylation and 

histone modifications (86–89); however, the cell-type specificity of gene regulation underlines the 

need for single-cell profiling of epigenetic features. This is exemplified in a study that examined 

chromatin accessibility changes in sorted cells (90) and functionally validated a microglia-specific 

enhancer for BIN1. Recent advances in single-cell technologies, such as single-cell assay for 

transposase-accessible chromatin using sequencing (ATAC-sequencing, open chromatin) (91, 

92), 10x Genomics Multiome (paired open chromatin and gene expression), and Paired-Tag 

(paired histone modifications and gene expression) (93), allow us to explore the single-cell 

epigenome in a high throughput manner, and leveraging these will help to provide a 

comprehensive knowledge of the molecular changes occurring in AD and subsequent delineation 

of the underlying biological processes.  

 

Spatially resolved molecular profiling to study Alzheimer’s disease 

Unsurprisingly sc- and snRNA-seq have their own limitations; tissue homogenization into a single-

cell suspension results in a loss of associated spatial information. Therefore, researchers have 

developed several approaches to investigate gene expression while retaining spatial context, 

such as multiplexed in situ hybridization (94), in situ sequencing (95), and spatial transcriptomics 
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(96, 97). In comparison to methods requiring pre-determined gene targets (probes), spatial 

transcriptomics functions similarly to RNA-seq by utilizing reverse transcription to allow unbiased 

profiling of the transcriptome. Arrays of “spots” with primers including a spot-specific barcode and 

poly(dT) primer result in transcripts uniquely barcoded by their spatial location within the array. 

Maynard et al. performed spatial transcriptomics on human prefrontal cortical samples, identifying 

layer-specific gene signatures without the need for microdissection (98). A few studies also used 

spatial transcriptomics to study AD and amyotrophic lateral sclerosis to examine region-specific 

gene expression changes in disease (99–101).  

However, the resolution of spatial transcriptomics is limited to the size of the spot—currently 55μm 

in the commercially distributed form, 10x Genomics Visium—and thus each spot is likely a mixture 

of 2-3 cells, depending on the tissue. This subsequently prompted the development of methods 

to integrate single-cell and spatial datasets, like SPOTlight (102) and BayesSpace (103). Two 

studies from the Liddelow lab analyzed both data modalities to further interrogate astrocyte 

subpopulations and their spatial distributions within the brain (104, 105), and Kamath and 

Abdulraouf et al. identified AGTR1+ neurons within the ventral substantia nigra pars compacta 

are selectively vulnerable in Parkinson’s disease (106). Altogether these studies, as well as those 

of other tissue types (107–109), highlight the utility of integrating single-cell and spatial data to 

understand specific cell subpopulations in disease. 

In addition, spatial data should not be constrained to the transcriptome. Recent adaptations allow 

us to profile the epigenome in a spatial manner (110–112), and in proteinopathies, like AD, it is 

important to examine molecular changes in relation to pathological protein aggregates. Previous 

studies have relied on global pathological scoring, but resolving the localization of pathological 

features and associated transcripts within the local environment will provide higher confidence for 

pathology-associated genes. Spatial transcriptomics was originally limited to hematoxylin and 

eosin staining, so Chen et al. immunostained adjacent sections for Aβ to investigate Aβ-
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associated gene expression changes and identified “plaque-induced genes” (99). 

Immunostaining, however, can now be performed on the same tissue sections, to more concretely 

associate the spatial localization of pathology to gene transcripts. Moreover, several promising 

“hi-plex” multi-omic approaches, such as the commercially available Nanostring CosMx and 

Akoya Phenocycler, allow single-cell profiling of hundreds to thousands of proteins and transcripts 

within the same tissue section. Overall, new spatial methods provide incredibly exciting 

opportunities to finely map disease-associated molecular changes within the microenvironment 

and uncover spatially restricted disease signatures that may be linked to brain circuitry. 
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Chapter Two: Single-nucleus chromatin accessibility and transcriptomic 

characterization of Alzheimer’s disease 

Introduction 

The human brain is composed of multiple heterogeneous subsets of cells; both neuronal and 

nonneuronal cells work in concert to perform simple and higher-order tasks. Recent studies have 

provided more precise molecular characterization and identification of neuronal and nonneuronal 

cell populations in the cognitively normal brain (54, 56, 57, 113). However, our understanding of 

heterogeneous cell populations within the diseased brain is still largely limited, hindering our 

understanding of the biological processes underlying disease. Neurodegenerative disorders, like 

Alzheimer’s disease (AD), are marked with massive neuronal loss, accompanied by gliosis, and 

the role of specific neuronal and glial cell populations in AD pathophysiology remains unclear. 

Several single-cell and single-nucleus RNA-sequencing (snRNA-seq) studies have been 

performed on both mouse and human tissue to study AD, revealing cell-type specific 

transcriptional changes (75, 76, 78, 114, 115), but the regulators of these disease-associated cell 

subtypes have yet to be defined. 

Moreover, a slew of genetic studies have been performed on AD, identifying multiple associated 

genetic risk variants (8, 9, 11, 15, 116–118). Genome-wide association studies (GWAS) of 

complex diseases such as AD show that a substantial proportion of genetic risk from common 

variants partitions to distal regulatory elements, which are often cell-type specific regions in 

disease-relevant tissues. While much work has gone into intersecting GWAS signals with 

functional genomics assays, including bulk-tissue RNA-seq and assay for transposase 

accessible-chromatin with high-throughput sequencing (ATAC-seq) (90), the resolution of such 

studies is noticeably limited by cell-type heterogeneity. A prerequisite for linking GWAS hits to 

cell-types is a map that links distal regulatory elements with their target genes. 
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ATAC-seq profiles the open chromatin regions within a tissue and has recently been adapted for 

single cell resolution (91). To date, single-cell chromatin accessibility techniques, such as single-

nucleus ATAC-seq (snATAC-seq) have been seldom used in primary samples of diseased 

tissues, with only two published studies of single-cell chromatin accessibility in the cognitively 

normal human brain (71, 72). Therefore, we performed snATAC-seq and snRNA-seq in the same 

AD postmortem human brain tissue samples to define AD-associated gene regulatory programs 

at the epigenomic and transcriptomic level, providing a powerful lens into the cellular 

heterogeneity of the brain and allowing us to unravel novel biological pathways underlying 

neurodegeneration in specific cell populations. 

Here, we present a multi-omic analysis of 191,890 nuclei from postmortem human brain tissue of 

AD and cognitively healthy controls at the single-nucleus resolution, in which we directly 

integrated snRNA-seq and snATAC-seq datasets, thus providing a more complete understanding 

of the molecular changes in AD. We identified cell-type specific candidate cis-regulatory elements 

(cCREs) based on chromatin accessibility and found disease-associated cell subpopulation-

specific transcriptomic changes. We identified transcription factors (TFs) that may be regulating 

AD gene expression changes. Further, we applied pseudotime trajectory analysis on our 

integrated dataset to extensively characterize disease-associated glial cell states at the 

epigenomic and transcriptomic level, expanding on previous work exploring gene expression in 

diverse glial subtypes. We integrated fine-mapped GWAS signals at selected AD risk loci with our 

snATAC-seq data to link AD risk signals to the specific cell-types in which they are accessible 

and defined the cis-regulatory chromatin accessibility networks at these loci. Moreover, since 

network analysis has been effective at clarifying disease transcriptomic signatures in tissue-level 

RNA-seq data, we designed a co-expression network analysis pipeline, integrating single-cell and 

bulk-tissue RNA-seq datasets, that robustly identified AD-associated co-expression networks 

within each cell-type. Altogether, we have clarified the gene regulatory landscape of AD, 



 11 

highlighting the role of glia in AD pathophysiology and identify several genes, namely SREBF1 in 

oligodendrocytes, for further study in the context of AD. Finally, we provide an online interface for 

exploration of these datasets (https://swaruplab.bio.uci.edu/singlenucleiAD). 

 

Materials and Methods 

Human Samples 

Human prefrontal cortex brain samples were obtained from UCI MIND’s Alzheimer’s Disease 

Research Center (ADRC) tissue repository and under UCI’s Institutional Review Board (IRB). 

Postmortem human brain tissue from the Religious Orders Study and Memory and Aging Project 

(ROSMAP) study was obtained under the IRB of Rush University Medical Center. Informed 

consent was obtained for all human participants. Samples were dissected, homogenized on a dry 

ice pre-chilled isolating platform and aliquoted for snRNA- and snATAC-seq. For details on human 

samples used in this study (AD n = 6 males and 6 females, controls n = 5 males and 3 females, 

all 74-90+ years old), please see Supplementary Tables 1-2i. ROSMAP RNA-seq data and details 

can be found on synapse.org website using corresponding synapse (syn) ID syn3219045. 

 

Bulk RNA-seq 

Total RNA was isolated from human prefrontal cortex using Mini Nucleospin RNA kit (Cat 

#740955.250, Takarabio). RNA integrity was assessed using 2100 Bioanalyzer (Agilent). Total 

RNA was quantified using Qubit RNA HS assay kit (Cat# Q32852, Invitrogen). ~500ng total RNA 

was used to prepare the cDNA library using SMARTer Stranded Total RNA Sample Prep kit-HI 

Mammalian (Cat#634874, Takarabio). cDNA library concentration was calculated using Qubit 

dsDNA HS assay kit (Cat#Q32851, Invitrogen). Library quality was assessed using either High 

sensitivity DNA assay kit (Cat# 5067-4626) on 2100 Bioanalyzer or D5000 HS kit (Cat#5067-
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5589, 5067-5588) on 4200 Tapestation (Agilent). Libraries were multiplexed with 96 and 95 

samples in 2 lanes on an Illumina Novaseq S4 for 100-bp paired-end reads. 

 

Single-nucleus RNA-seq 

Single nucleus suspensions were isolated from ~ 50mg frozen human prefrontal cortex. Samples 

were homogenized in Nuclei EZ Lysis buffer (Cat#NUC101-1KT, Sigma-Aldrich) and incubated 

for 5 min. Samples were passed through a 70μm filter and incubated in additional lysis buffer for 

5 min and centrifuged at 500 g for 5 min at 4°C before two washes in Nuclei Wash and 

Resuspension buffer (1xPBS, 1% BSA, 0.2U/μl RNase inhibitor). Nuclei were FACS sorted with 

DAPI (NucBlue Fixed Cell ReadyProbe Reagent, Cat#R37606, Thermo) before running on the 

10x Chromium™ Single Cell 3' v3 platform. cDNA library quantification and quality were assessed 

as in bulk RNA-seq. Libraries were sequenced using Illumina Novaseq 6000 S4 platform at the 

New York Genome Centre, using 100bp paired-end sequencing. 

 

Single-nucleus ATAC-seq 

Single nucleus suspensions were isolated from ~ 50mg frozen human prefrontal cortex according 

to the 10x Genomics Nuclei Isolation from Mouse Brain Tissue protocol (CG000212, Rev A) with 

an additional sucrose purification step. Before resuspending our nuclei in Diluted Nuclei Buffer, 

we removed cellular debris by preparing a sucrose gradient (Nuclei PURE Prep Nuclei Isolation 

Kit, Cat#NUC201-1KT, Sigma). Nuclei were spun at 13,000 g for 45 minutes at 4°C and then 

washed once and filtered before running on the 10x Chromium™ Single Cell ATAC platform. 

Library quantification and quality check were performed according to manufacturer’s 

recommendations. Libraries were sequenced using Illumina Novaseq 6000 S4 platform at the UCI 

Genomics core facility, using 100bp paired-end sequencing. 
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RNAscope (fluorescent in situ hybridization) 

Fresh frozen human postmortem tissue was sectioned at 20μm on a cryostat at −20°C. Slides 

were stored airtight at −80°C until use. Immediately after removing from −80°C, slides were dried 

for 20 minutes at room temperature and then fixed in 4% paraformaldehyde/PBS for 15 minutes 

at 4°C. Slides were then washed in RNase-free PBS for 5 minutes at room temperature 3 times. 

For single labeling experiments, slides were incubated in PBS with an LED light for 96 hours at 

4°C to quench autofluorescence (119), and for dual labeling, autofluorescence was quenched 

with TrueBlack (Biotium) for 30 seconds before coverslipping. Slides were processed following 

the RNAscope Multiplex Fluorescent Reagent Kit v2 Assay (ACD) instructions for fresh frozen 

tissue, except protease IV incubation was 15 minutes. Probes used were NEAT1 (Cat#411531), 

PLP1 (Cat#499271), CNP (Cat#509131-C2), SREBF1 (Cat#469871), ACSL4 (Cat#408301), 

MOG (Cat#543181-C2), and AQP4 (Cat#482441-C2). Fluorophores used were TSA Plus Cy5 

(1:200, Perkin Elmer) and Opal 570 (1:200, Perkin Elmer) to avoid autofluorescence. Images 

were taken on ZEISS Axio Scan.Z1 at 20x magnification. Four regions per section were analyzed 

using QuPath. We used a trained object classifier to identify MOG+ or AQP4+ nuclei, except for 

ASCL4/MOG dual staining, which required manual assignment of MOG+ nuclei due to high 

background. Subcellular detection was used to count RNA punctae. We used linear mixed effects 

model to account for random effects (age, sex) and fixed effects (multiple regions from the same 

individual). 

 

Immunofluorescence 

Fixed and cryoprotected human postmortem tissue was sectioned at 40μm using a cryotome 

(Leica). For 6E10, Iba-1, MAP2, and GFAP, brain sections were treated with 90% formic acid for 
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4 min. For PDGFRA and Olig2, sections in sodium citrate buffer were heated at 80°C in a bead 

bath for 30 min. Sections were then washed before blocking (PBS with 5% goat or donkey normal 

serum, respective to the antibodies, and 0.2% TritonX-100) for 1 hour at room temperature. 

Primary antibodies were incubated at 4°C overnight (6E10-1:1000, Cat#803001, Biolegend; Iba-

1-1:1000, Cat#019-19741, Wako; MAP2-1:500, Cat#ab32454, Abcam; GFAP-1:500, Cat#G3893, 

Sigma; PDGFRA-1:50, Cat#AF-307, R&D Systems; Olig2-1:200, Cat#ab109186, Abcam). 

Secondary antibodies (Goat anti-mouse 555, Cat#A-21422; Goat anti-rabbit 488, Cat#A11034; 

Goat anti-rabbit 488, Cat#A11034; Goat anti-mouse 555, Cat#A-21422; Donkey anti-goat 488, 

Cat#A-11055; Donkey anti rabbit 555, Cat#A31572; all from ThermoFisher) were diluted 1:200 

and incubated for 1 hour. Slides were treated with 0.3% Sudan Black in 70% EtOH for 4 min to 

reduce autofluorescence and imaged on a confocal microscope (Leica). Images from 3 randomly 

selected areas were used for volume analysis of amyloid plaques using IMARIS. We used linear 

mixed effects model as previously stated. 

 

Annotation of major cell-types 

Major cell-type annotations were assigned to UMAP partitions and initial clusters in snATAC-seq 

and snRNA-seq datasets respectively through manual inspection of canonical marker gene 

signals. ‘Pseudo-bulk’ chromatin accessibility coverage profiles of gene body and upstream 

promoter regions were visualized using the Signac (120) (v0.2.0) function CoveragePlot, while 

gene expression signals were visualized using Seurat (121, 122) (v3.1.2) snRNA-seq cell-type 

assignments were further validated by integration with the Mathys et al. (75) dataset. 

 



 15 

Integrated analysis of snRNA-seq and snATAC-seq data 

A unified dataset of both chromatin accessibility and gene expression was constructed using 

Seurat’s integration framework. Canonical Correlation Analysis (CCA) was used to generate a 

shared dimensionality reduction of the ‘query’ snATAC-seq gene activity and the ‘reference’ 

snRNA-seq gene expression. MNNs were then identified in this shared space, effectively 

identifying pairs of corresponding cells that anchor the two datasets together. To confirm major 

cell-type annotations in snATAC-seq cell populations, we used Seurat’s label transfer algorithm, 

which leverages these anchors to predict cell-types in snATAC-seq data, with cell-type 

annotations in snRNA-seq cells as the reference and LSI reduced chromatin accessibility as the 

weights. We achieved a max prediction score >= 0.5 in 94% of cells, demonstrating high 

correspondence between the two data modalities. Next, we used these shared anchors to impute 

gene expression signals in snATAC-seq data. Following imputation, we merged gene expression 

in cells from the snRNA-seq dataset with snATAC-seq cells whose max prediction score >= 0.5. 

The merged dataset was then centered, dimensionally reduced with PCA using 30 dimensions, 

batch corrected with MNN (monocle3, v0.2.0) and embedded with UMAP. Clusters and UMAP 

partitions were identified using Leiden clustering (monocle3). We visualized correspondence of 

major cell-types from their dataset of origin to their joint UMAP partitions using ggalluvial (v 

0.11.1). 

 

Cell-type specific dimensionality reduction and cluster analysis 

Cell-type specific analyses were performed for snATAC-seq and snRNA-seq by subsetting each 

major cell-type from the fully processed dataset followed by re-embedding with UMAP. 

Subpopulations of each cell-type used for all downstream analysis were then identified using 

Leiden clustering (monocle3). Clusters smaller than 100 cells were removed as outliers. We then 
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used the addReproduciblePeakSet function from the R package ArchR (v1.0.0) (123) with default 

parameters to call accessible chromatin peaks using MACS2 (v2.2.7.1) in each cell-type 

subcluster. For snRNA-seq and snATAC-seq clusters, we performed a bootstrapped cluster 

composition analysis to robustly assess the composition of each cluster with respect to AD 

diagnosis. Over 25 iterations, 20% of cells were sampled from the whole dataset, and the 

proportion of cells from AD or control samples were computed for each cluster. A two-sided 

Wilcoxon rank sum test was used to compare the proportion of AD and control samples in each 

cluster using the wilcox.test R (v3.6.1) function with default parameters and Benjamini-Hochberg 

multiple testing correction. 

 

Annotation of cell subpopulations 

snRNA-seq subpopulations for astrocytes, microglia, neurons, and oligodendrocyte progenitors 

were annotated in a similar way to the major cell-types, using canonical marker gene signals as 

well as differentially expressed genes. snATAC-seq subpopulations for astrocytes, microglia, 

neurons, and oligodendrocyte progenitors were annotated using Seurat label transfer prediction 

scores with the snRNA-seq clusters as a reference annotation. We annotated the snRNA-seq 

oligodendrocytes by hierarchically clustering oligodendrocyte and oligodendrocyte progenitor 

clusters based on the gene expression matrix of the top 25 DEGs (by average log fold-change) 

from each oligodendrocyte subpopulation, grouping oligodendrocytes into major lineage classes 

such as progenitor, intermediate, and mature. We used the same approach to annotate the 

snATAC-seq oligodendrocytes, hierarchically clustering the gene activity matrix using the same 

DEGs. The R package ComplexHeatmap (v 2.7.6.1010) (124) was used for hierarchical clustering 

and visualization of these gene expression and gene activity matrices. 
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Single-nucleus Transcription Factor (TF) binding motif analysis 

Single-nucleus TF motif enrichment was computed for a set of 452 TFs from the JASPAR 2018 

database (125) using the Signac wrapper for chromVAR (v 1.12.0) (126). The motif accessibility 

matrix was first computed, describing the number of peaks that contain each TF motif for all cells. 

chromVAR then uses this motif accessibility matrix to compute deviation Z-scores for each motif 

by comparing the number of peaks containing the motif to the expected number of fragments in 

a background set that accounts for confounding technical factors such as GC content bias, PCR 

amplification, and variable Tn5 tagmentation. To further analyze specific TFs of interest, we used 

the getFootprints function in ArchR to perform TF footprinting analysis in pseudo-bulk aggregates 

of single nuclei in the same cluster or cell-type, splitting nuclei from control or late-stage AD 

samples where appropriate. 

 

Chromatin Cis Co-Accessibility Network (CCAN) analysis 

The correlation structure of chromatin accessibility data was analyzed using the R package cicero 

(v1.3.4.7) (127). Briefly, cicero quantifies ‘co-accessibility’ between pairs of genomic regions in a 

population of cells by correlating accessibility signals aggregated from several cells at a time, 

penalizing for distance between regions using a graphical LASSO with a maximum interaction 

constraint of 500 kb. Importantly, prior to correlation and regularization, a bootstrap approach was 

used to generate metacells by aggregating 50 cells at a time using k-nearest neighbors, 

circumventing the sparsity of single-cell chromatin data. Finally, networks of cis co-accessible 

regions (CCANs) were identified through community detection. We applied this procedure in each 

major cell-type as well as splitting each cell-type into control and AD cells for CCAN analysis. 
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Analysis of gene-linked candidate cis-regulatory elements (gl-cCREs) 

We sought to further contextualize co-accessible chromatin regions by linking them to likely target 

genes using an accessibility-expression correlation strategy stratified by major cell-type and 

disease status of each sample. First, we identified pairs of co-accessible peaks where one of the 

peaks overlaps a gene’s promoter, which serves as a candidate target gene for that particular 

cCRE. We then computed the Pearson correlation between the expression of the candidate target 

gene from snRNA-seq with the chromatin accessibility of the linked cCRE from snATAC-seq, 

where expression and accessibility values have been averaged for all cells within a given cell 

population. This correlation analysis was performed iteratively across all promoter-cCRE co-

accessible links identified separately in each major cell with regard to AD diagnosis status. 

Retaining links with Pearson correlation coefficient in the 95th percentile and p-value <= 0.01, we 

defined gene-linked candidate cis-regulatory elements (gl-cCREs) as genomic regions with a 

significant correlation to at least one target gene, and we defined cCRE-linked genes as genes 

with a significant correlation to at least one cCRE. We used non-negative matrix factorization 

(NMF v 0.23.0) as implemented in the R NMF package (128) using k=30 matrix factors on the gl-

cCRE accessibility matrix averaged by each snATAC-seq cluster split by cells from control and 

AD samples, yielding 30 gl-cCRE modules. The NMF basis matrix (W) was used to assign each 

gl-cCRE to its top associated module, and the NMF coefficient matrix (H) was used to determine 

which cell cluster that each module was most associated to. To identify biological process 

associated with these gl-cCRE modules, we used the enrichR (v 3.0) (129, 130) package to query 

enriched GO terms for the set of target genes in each gl-cCRE module in the GO Biological 

Processes 2018, GO Cellular Component 2018, and GO Molecular Function 2018 databases. 
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TF regulatory network construction 

Using snATAC-seq and snRNA-seq data in one cell-type, we identified candidate TF regulatory 

target genes and used this information to construct cell-type specific TF regulatory networks. We 

used the same set of TF binding motifs as in our single-cell TF motif enrichment analysis (JASPAR 

2018 motifs). For a given TF, we defined candidate target genes as those with an accessible 

promoter containing the TF binding motif, or an accessible gl-cCRE linked to the target gene’s 

promoter, allowing us to distinguish between TFs that regulate genes through promoter or 

enhancer binding events. We used this information to construct a directed TF regulatory network 

using the R package igraph (v 1.2.6), where each vertex represents a TF or target gene, and each 

edge represents a promoter or linked-cCRE binding event, overlaying additional information onto 

the network such as DEG or AD GWAS gene status. 

 

Estimating GWAS enrichment using cluster specific accessible chromatin regions 

To estimate heritability of a variety of complex traits, we used LDSC (v 1.0.1) (131). GWAS 

summary statistics were input to LDSC, which then computes enrichment of heritability for an 

annotated set of SNPs conditioned on a baseline model in order to account for genomic features 

that influence heritability, and jointly modeling multiple annotations together. Sets of cluster 

specific peaks were constructed by extending peaks up and down stream by 2000 bp, identifying 

peaks that are accessible in 1% of all cells within each cluster, and removing all peaks that are 

accessible in more than one other cell-type. Cluster specific peaks were formatted for LDSC using 

the make_annotation.py script, and LD scores were computed for each set using the ldsc.py 

script. Publicly available GWAS summary statistics were collected for AD (9, 15), Schizophrenia  

(132), Frontotemporal Dementia (FTD) (133), Progressive Supranuclear Palsy (PSP) (134), 

Multiple Sclerosis (MS) (135), Inflammatory Bowel Disease (IBD) (136), height (137), and 
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cholesterol (138). Next, summary statistics were converted to hg38 coordinates using the UCSC 

liftover tool (v377) and formatted for LDSC using the munge_sumstats python script. We followed 

the recommended guidelines for cell-type specific partitioned heritability analysis, using HapMap3 

SNPs and their provided hg38 baseline model (v2.2). The ldsc.py script was then used to compute 

cluster specific enrichments of GWAS heritability, with Benjamini-Hochberg multiple testing 

correction applied to enrichment p-values. 

 

Single-nucleus Consensus Weighted Gene Co-expression Network Analysis (scWGCNA) 

We developed a novel co-expression network analysis approach to single-cell data by integrating 

snRNA-seq and bulk-tissue RNA-seq datasets and called this approach Single-nucleus 

Consensus Weighted Gene Co-expression Network Analysis (scWGCNA). scWGCNA is based 

on a co-expression network analysis approach called Weighted Gene Co-expression Network 

Analysis (WGCNA), implemented using the WGCNA R package (v1.69) (139, 140). For 

scWGCNA, we used multiple transcriptomic datasets comprising of our snRNA-seq data, Mathys 

et al. snRNA-seq data, bulk-tissue RNA-seq data from our UCI cohort and bulk tissue RNA-seq 

data from ROSMAP cohort (46). First, we integrated our snRNA-seq and Mathys et al. snRNA-

seq datasets using iNMF approach, and then constructed metacells in a fashion similar to our 

CCAN analysis of chromatin accessibility data, in which we apply a bootstrapped aggregation 

process to single-nucleus transcriptomes. During metacell computation, we only pool cells within 

the same cell-type, and within the same AD diagnosis stage, in order to retain these metadata for 

scWGCNA. We then employed a signed consensus WGCNA approach (45) within a given cell-

type, by calculating component-wise values for topological overlap for each dataset. First, bi-

weighted mid-correlations were calculated for all pairs of genes, and then a signed similarity 

matrix was created. In the signed network, the similarity between genes reflects the sign of the 
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correlation of their expression profiles. The signed similarity matrix was then raised to power β, 

varies between cell-types, to emphasize strong correlations and reduce the emphasis of weak 

correlations on an exponential scale. The resulting adjacency matrix was then transformed into a 

topological overlap matrix. Modules were defined using specific module cutting parameters which 

included minimum module size of 100 genes, deepSplit = 4 and threshold of correlation = 0.2. 

Modules with correlation greater than 0.8 were merged together. We used first principal 

component of the module, called the module eigengene, to correlate with diagnosis and other 

variables. Hub genes were defined using intra-modular connectivity (kME) parameter of the 

WGCNA package. Gene-set enrichment analysis was done using EnrichR. 

 

Analysis of regulatory targets of SREBP 

We downloaded a dataset of ENCODE ChIP-seq validated TF target genes from EnrichR, 

containing regulatory targets of SREBP. Fisher’s enrichment tests were performed with the R 

function fisher.test to test whether oligodendrocyte modules were significantly over-represented 

with SREBP target genes, inferring which modules are regulated by SREBP. Module eigengenes 

were computed for the set of SREBP target genes, and the RNA expression as well as protein 

expression data from Inweb (141) and Biogrid (142) was also to analyze SREBP targets 

throughout the course of AD progression. A protein-protein interaction (PPI) network of SREBP 

target genes was constructed using SREBF1 ChIP-seq data from ENCODE and visualized using 

the STRING database (143), restricting the edges to known protein-protein interactions. In 

addition to bulk RNA-seq, we used a proteomics dataset from our group’s previous study (144) of 

685 samples representing AD, asymptomatic AD, and controls from the human PFC to interrogate 

the levels of SREBF1 target genes and target proteins in AD. 
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Statistics 

All statistical methods and tests used in the manuscript were described in the figure legends, 

Methods, Supplementary Notei, or main text as appropriate. 

 

Results 

Multi-omic analysis of the human prefrontal cortex 

We performed both snATAC-seq (10x Genomics; n=12 late-stage AD; n=8 control) and snRNA-

seq (10x Genomics v3; n=11 late-stage AD; n=7 control) on nuclei isolated from the prefrontal 

cortex (PFC) using postmortem human tissue from late-stage AD and age-matched cognitively 

healthy controls (74-90+ years old, Fig. 2.1a). We defined late-stage AD and controls based on 

both Braak and plaque staging (Supplementary Tables 1-2i). We specifically aimed to generate 

both transcriptomic and epigenetic data from the same tissue sample (aliquots of samples from 

the same dissection, see Methods) to minimize differences in cell-type composition between the 

two methods, thus allowing for meaningful downstream integrated analysis. After quality control 

filtering, we retained a total of 130,418 nuclei for snATAC-seq and 61,472 nuclei for snRNA-seq 

(Methods, Supplementary Fig. 1-2, Supplementary Table 3, Supplementary Notei). To ensure the 

rigor of our study, we applied batch correction methods to the data from both assays, since library 

preparation limitations required multiple batches. For snATAC-seq, we used mutual nearest 

neighbors (MNN) (145) to correct the Latent Semantic Indexing (LSI) reduced chromatin 

accessibility matrix, and for snRNA-seq we used integrative Non-negative Matrix Factorization 

(iNMF) (146) to reduce dimensionality while simultaneously eliminating batch effects (Methods, 

Extended Data Fig. 2.1, Supplementary Notei). We applied Uniform Manifold Approximation and 

Projection (UMAP) (147) dimensionality reduction and Leiden clustering (148) to the batch-

corrected epigenomic and transcriptomic datasets, identifying distinct cell-type clusters in 
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snATAC-seq (35) and snRNA-seq (34, Fig. 2.1b-c). With snATAC-seq, we profiled all major cell-

types of the brain—excitatory neurons (24,076 nuclei, EX.a-e), inhibitory neurons (9,644 nuclei, 

INH.a-d), astrocytes (15,399 nuclei, ASC.a-f), microglia (12,232 nuclei, MG.a-e), 

oligodendrocytes (62,253 nuclei, ODC.a-m), and oligodendrocyte progenitor cells (4,869 nuclei, 

OPC.a)—annotated based on chromatin accessibility at the promoter regions of known marker 

genes (Fig. 2.1d, Extended Data Fig. 2.2). We used chromVAR (126) to compute TF motif 

variability in single nuclei by estimating the enrichment of TF binding motifs in accessible 

chromatin regions (Methods) and examined the enrichment of TF motifs by cell-type in respect to 

diagnosis, identifying several TF motifs with increased enrichment with disease in astrocytes, 

excitatory neurons, and microglia (Supplementary Fig. 3, Supplementary Data 1i). Moreover, we 

performed TF footprinting analysis to further clarify cell-type-specific TF regulation, highlighting 

the SOX9 TF footprint in oligodendrocytes. Interestingly, we noticed TF motif enrichment of 

oligodendrocyte-related TFs in excitatory neurons. Likewise, we detected similar cell-types using 

snRNA-seq— excitatory neurons (6,369 nuclei, EX1-5), inhibitory neurons (5,962 nuclei, INH1-

4), astrocytes (4,756 nuclei, ASC1-4), microglia (4,126 nuclei, MG1-3), oligodendrocytes (37,052 

nuclei, ODC1-13), and oligodendrocyte progenitor cells (2,740 nuclei, OPC1-2)—classified by the 

gene expression of cell-type markers (Fig. 2.1e). In both assays, oligodendrocytes were the most 

commonly profiled cell-type (Supplementary Fig. 3i). Additionally, while many differentially 

expressed genes (DEGs) in each major cell-type agreed with previous literature, we also found 

cluster-specific genes previously established as neuronal or glial subtype markers, such as 

LINC00507 for L2-3 excitatory neurons (EX1) (56), SV2C for L3 interneurons (INH4) (54), and 

CX3CR1 for homeostatic microglia (MG2) (66) (Fig. 2.1h, Supplementary Fig. 3-4, Supplementary 

Data 1i). 
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Figure 2.1. Single-nucleus ATAC-seq and single-nucleus RNA-seq to study cellular diversity in the diseased 

brain 

a, Schematic representation of the samples used in this study, sequencing experiments, and downstream bioinformatic 

analyses, created with BioRender.com. b, c, UMAP visualizations where dots correspond to individual nuclei for 

130,418 nuclei profiled with snATAC-seq (b) and 61,472 nuclei profiled with snRNA-seq (c), colored by Leiden cluster 

assignment and cell-type (ASC = astrocytes, EX = excitatory neurons, INH = inhibitory neurons, MG = microglia, ODC 

= oligodendrocytes, OPC = oligodendrocyte progenitor cells, PER/END = pericytes/endothelial cells). d, Pseudo-bulk 

chromatin accessibility profiles for each cell-type at canonical cell-type marker genes. For each gene, 1kb upstream 

and downstream are shown. Promoter/TSS highlighted in grey with gene model and chromosome position shown 
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below. Chromosome coordinates are the following: GFAP chr17:44904008-44919937; SLC17A7 chr19:49428401-

49445360; GAD2 chr10:26213307-26305558; CSF1R chr5:150052291-150116372; MBP chr18:76977827-

77136683; PDGFRA chr4:54226097-54299247. e, Row-normalized single-nucleus gene expression heatmap of cell-

type marker genes. f, UMAP plot of 186,167 nuclei from a jointly learned subspace of snATAC-seq and snRNA-seq, 

colored by cell-type assignment. g, Integrated UMAP as in f, colored by originating dataset. Smaller gray dots represent 

nuclei from the other data modality. 

 

Since the epigenomic landscape is deeply intertwined with downstream gene expression 

signatures, we integrated our snATAC-seq and snRNA-seq datasets using Seurat’s integration 

platform (121, 122) (Methods, Fig. 2.1f, Extended Data Fig. 2.3, Supplementary Fig. 3i). Cell-

types that were independently classified using chromatin data or transcriptome data 

overwhelmingly grouped together in the integrated UMAP space (Fig. 2.1g, Supplementary Fig. 

3i). Using the same biological samples in snATAC-seq and snRNA-seq resulted in a high degree 

of overlap between nuclei from these two data modalities in the jointly constructed space. 

Additionally, we confirmed cell-type identities by gene activity and gene expression in a panel of 

canonical cell-type marker genes (Supplementary Fig. 3i) and used Seurat’s label transfer 

algorithm to verify cell-type annotations in the snATAC-seq dataset using the snRNA-seq dataset 

as a reference (Supplementary Fig. 5i). 
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Extended Data Figure 2.1. Batch correction of snATAC-seq, snRNA-seq, and merged datasets. 

a, snRNA-seq UMAPs before (left) and after iNMF batch correction (right), colored by sequencing batch. b, snATAC-

seq UMAPs before (left) and after MNN batch correction (right), colored by sequencing batch. c, Dot plot of iNMF 

metagene expression in each snRNA-seq cluster. d, snRNA-seq UMAPs colored by metagene expression of selected 

iNMF metagenes. e, Dot plots showing the iNMF loading for the top 30 genes for the same metagenes in d. 
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Extended Data Figure 2.2. Cell-type immunostaining and in situ hybridization. 

a-d, Representative immunofluorescence images from postmortem human brain tissue from control and late-stage 

AD cases for Iba-1 (a), GFAP (b) MAP2 (c), and 6E10 (d). e, Quantification of 6E10-positive amyloid plaques. n = 3 

cognitively healthy controls, 3 late-stage AD. Data is presented as the average of three different sections per sample. 

Linear mixed-effects model **** p < 0.0001. Box boundaries and line correspond to the interquartile range (IQR) and 

median respectively. Whiskers extend to the lowest or highest data points that are no further than 1.5 times the IQR 

from the box boundaries. f, Representative immunofluorescence images from postmortem human brain tissue from 

control and late-stage AD cases for OLIG2 with PDGFRA co-labeling. g, h, Representative RNAscope images from 

postmortem human brain tissue from control and late-stage AD cases for CNP (g) and PLP1 (h) with DAPI 

counterstain. 
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Extended Data Figure 2.3. Comparison of gene expression and gene activity. 

a, Scatter plot comparing average gene activity from snATAC-seq and average gene expression from snRNA-seq by 

each major cell-type, with accompanying Pearson correlation statistics and linear regression lines. b, Donut chart 

showing the percent of genes with high chromatin accessibility and low gene expression in grey for each major cell-

type. High chromatin accessibility was defined as genes in the top 20% of gene activity, while low gene expression was 

defined as genes in the bottom 20% of gene expression. Percent of all other genes are colored by the cell-type. 
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Multi-omic characterization of AD cellular heterogeneity 

In both snATAC-seq and snRNA-seq, we discovered multiple neuronal and glial subpopulations, 

and we annotated the subpopulations from snRNA-seq based on previously identified marker 

genes (54, 56) (Fig. 2.2, Supplementary Fig. 6-7, Supplementary Notei). For our snATAC-seq 

clusters, we used Seurat label transfer to calculate cluster prediction scores allowing for 

supervised annotation of our cell clusters, in which we mapped EX.a to EX1 and ASC.b to ASC2, 

for example (Supplementary Fig. 6-7i). We examined the composition of each cluster in the 

context of disease and found several that are significantly over- or under-represented in late-stage 

AD compared to control, in both data modalities (Fig. 2.2d-g, Methods). ASC3 (GFAPhigh/CHI3L+) 

significantly increased in proportion with disease (bootstrapped cluster proportion analysis using 

a two-sided Wilcoxon rank sum test, FDR = 8.63 x 10−5), whereas ASC4 

(GFAPlow/WIF1+/ADAMTS17+) significantly decreased (FDR = 4.68 x 10−7), consistent with a 

recent snRNA-seq study of the 5XFAD mouse model of AD (79). We also found that the proportion 

of MG.a. and MG.b was increased in late-stage AD (FDR = 9.82 x 10−7, 8.88 x 10−10), both of 

which mapped to the activated snRNA-seq cluster MG1 (SPP1high/CD163+), which was also 

increased with disease (FDR = 6.32 x 10−7). Additionally, we found that immune oligodendrocyte 

cluster ODC13 was significantly increased in late-stage AD (FDR = 1.62 x 10−4). 

Further, we identified both differentially accessible chromatin regions (DARs) and differentially 

expressed genes (DEGs) in late-stage AD for each cell cluster and found high cluster specificity 

for GO term enrichment of distal and proximal DARs, as well as DEGs (Methods, Supplementary 

Fig. 7-9, Supplementary Data 1-6, Supplementary Notei). For example, we identified NEAT1 as 

upregulated in astrocytes and oligodendrocytes, in agreement with previous findings in the 

entorhinal cortex (114), and we confirmed AD upregulation of NEAT1 with in situ hybridization 

(Extended Data Fig. 2.4). Altogether, we found cluster-specific epigenetic and transcriptomic 
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changes in late-stage AD, which may underlie the dysregulation of distinct biological pathways in 

different cell subpopulations in neurodegeneration. 

 

 

Figure 2.2. Epigenetically and transcriptionally distinct cell subpopulations in human AD prefrontal cortex 

a,b, Hierarchically clustered heatmaps of row-normalized gene expression in snRNA-seq OPC and oligodendrocyte 

clusters (a) and gene activity in snATAC-seq OPC and oligodendrocyte clusters (b) for the top 25 upregulated DEGs 

(sorted by average log fold change) identified in each oligodendrocyte subpopulation. c, Pseudo-bulk chromatin 

accessibility coverage profiles for OPC (progenitor), intermediate oligodendrocyte and mature oligodendrocyte 

snATAC-seq clusters, assignments as in b. Promoter/TSS highlighted in grey with gene model and chromosome 

position shown below. Chromosome coordinates are the following: VCAN chr5: 83468465-83583303; ITPR2 chr12: 

26335515-26836198; CD74 chr5: 150400637-150415929; APOLD1 chr12: 12722917-12830975; OPALIN chr10: 

96342216-96362365; CNP chr17: 41963741-41978731; MOG chr6: 29653981-29673372. d,e, snATAC-seq (d) and 

snRNA-seq (e) UMAPs as in Fig. 2.1, where nuclei are colored by AD diagnosis. Clusters annotated by cell-
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type. f,g, Box and whisker plots showing the proportion of nuclei mapping to each cluster for each sample, split by 

control and late-stage AD samples for snATAC-seq (i) and snRNA-seq (j) clusters, with measures of significance from 

bootstrapped cluster composition analysis (Wilcoxon test, see Methods, *** FDR <= 0.001, ** FDR <= 0.01, * 0.01 < 

FDR <= 0.05) and n as in Supplementary Tables 7-9i. For box and whisker plots, box boundaries and line correspond 

to the interquartile range (IQR) and median respectively. Whiskers extend to the lowest or highest data points that are 

no further than 1.5 times the IQR from the box boundaries. 
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Extended Data Figure 2.4. NEAT1 validation and neuronal TFs. 

a, b, Representative RNAscope images from postmortem human brain tissue 

for NEAT1 and AQP4 staining (a) and NEAT1 and MOG staining (b) with DAPI nuclear counterstain. c, Boxplots 

showing quantification of NEAT1 puncta per AQP4+astrocyte as in a. n = 4 cognitively healthy controls, 5 late-stage 

AD. d, Boxplots showing quantification of NEAT1 puncta per MOG+ oligodendrocyte as in b. n = 4 cognitively healthy 

controls, 4 late-stage AD. Data is represented as the mean of four equally sized regions per sample. Linear mixed-
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effects model e, Tn5 bias subtracted TF footprinting for JUN by snATAC-seq neuron cluster (top) and by AD diagnosis 

(bottom), with TF binding motif logo above and Tn5 bias insertions below. f, Left: Co-embedding UMAP colored by JUN 

motif variability (top) and JUN target gene score (bottom). Right: Violin plots of JUN motif variability (top) and JUN 

target gene score (bottom) in excitatory neuron clusters, split by diagnosis. Wilcoxon test (ns: p > 0.05, *: p <= 0.05, **: 

p <= 0.01, ***: p <= 0.001, ****: p <= 0.0001). g, Tn5 bias subtracted TF footprinting for EGR1 by snATAC-seq neuron 

cluster (top) and by AD diagnosis (bottom), as in e. h, Left: Co-embedding UMAP colored by EGR1 motif variability 

(top) and EGR1 target gene score (bottom). Right: Violin plots of EGR1 motif variability (top) and EGR1 target gene 

score (bottom) in excitatory neuron clusters, split by diagnosis, as in f. i,Violin plots of SREBF1 motif variability in 

oligodendrocyte snATAC-seq clusters, as in f. j, Violin plots of SREBF1 gene expression in oligodendrocyte snRNA-

seq clusters, as in i. For boxplots, box boundaries and line correspond to the interquartile range (IQR) and median 

respectively. Whiskers extend to the lowest or highest data points that are no further than 1.5 times the IQR from the 

box boundaries. 

 

Cell-type-specific cis-gene regulation in late-stage AD 

Based on our experimental design utilizing both snATAC-seq and snRNA-seq in the same 

samples, we reasoned that we could identify the target genes of cCREs in specific cell populations 

(Extended Data Fig. 2.5a, Methods). To this end, we sought to elucidate the cis-regulatory 

architecture of the PFC in late-stage AD by constructing cis co-accessibility networks (CCANs) 

(127) separately for late-stage AD and control in each cell-type (Methods). To identify target 

genes of cCREs, we focused on the subset of co-accessible peaks where one of the peaks lies 

in a promoter element, yielding a set of cCREs and candidate target genes. For this set of co-

accessible links, we correlated the expression of the candidate target gene to the chromatin 

accessibility of the cCRE, strengthening the evidence of a potential regulatory relationship beyond 

co-accessibility alone. Finally, we used NMF to analyze and cluster these gene-linked cCREs (gl-

cCREs) based on their chromatin accessibility in each cell cluster. In sum, this process results in 

a set of candidate enhancer elements (gl-cCREs) grouped into functional modules, as well as a 

set of cCRE-linked genes, for each major cell-type in late-stage AD and control. 
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Extended Data Figure 2.5. Schematics of analyses. 

a, Schematic diagram linking cCREs to target genes and downstream analysis. First, we identify co-accessible 

chromatin peaks in each cell-type for control and late-stage AD. Second, we identify pairs of co-accessible peaks where 

one peak overlaps a gene promoter and correlate the expression of that gene with the chromatin accessibility of the 

other peak. Third, NMF is used to group gl-cCREs into functional modules. b, Schematic of construction of TF 
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regulatory networks for each cell-type. c, Schematic representation of scWGCNA analysis, including iNMF integration 

with the Mathys et al. 2019 dataset, metacell aggregation, construction of co-expression networks, and downstream 

analysis of gene modules. 

 

Figure 2.3. Linking cis-regulatory elements to downstream target genes in specific cell-types 

a, Histogram showing the number of genes that have 1 through 25 linked cCREs. b, Upset plot showing the size of 

overlaps between the sets of cCRE-linked genes identified in each cell-type. The barplot on the left shows the set size 

of cCRE-linked genes for each cell-type, and the barplot on the top shows the number of overlapping genes between 

two sets, or the number of unique genes in one set. c, Venn diagrams for each major cell-type showing the overlaps 

between the set of cCRE-linked genes and genes upregulated in that cell-type (celltype DEGs) and genes upregulated 

in AD within this cell-type (diagnosis DEGs). A one-sided Fisher’s exact test was used for gene set overlap significance 

(*** p <= 0.001, ** p <= 0.01, * p < 0.05). d, Heatmap showing row-normalized pseudo-bulk chromatin accessibility in 

each snATAC-seq cluster split by nuclei from control and late-stage AD samples. Rows (cCREs) are organized based 

on NMF module assignment. Annotations correspond to genes from DGE analysis that are upregulated in AD in at 
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least one cell-type. e, Donut chart showing the percentage of gl-cCREs that map to intronic, exonic, or distal 

regions. f, Heatmap showing NMF coefficients in each snATAC-seq cluster split by nuclei from control and late-stage 

AD samples. g, Heatmap showing log transformed enrichR combined scores for GO terms for gene sets of selected 

NMF modules. 

 

In total, using this approach we identified 56,552 gl-cCREs and 11,440 cCRE-linked genes, with 

a median of 4 cCREs linked to each of these genes (Fig. 2.3a, Supplementary Tables 4-5i). By 

examining the overlap between sets of cCRE-linked genes identified in each cell-type, we 

observed a substantial number of genes with linked cCREs that are shared across multiple cell-

types, in addition to those that are cell-type specific (Fig. 2.3b). For several cell-types, we found 

a significant overlap between the set of cCRE-linked genes and cell-type marker DEGs, as well 

as genes that are upregulated in AD within that cell-type, highlighting a critical role of cCREs in 

disease-related gene expression changes (Fig. 2.3c). We also investigated the chromatin 

accessibility in each snATAC-seq cluster for these gl-cCREs and noted a high degree of cell-type 

and cluster specificity (Fig. 2.3d). The majority of the gl-cCREs mapped to intronic regions 

(58.35%) (Fig. 2.3e). Moreover, by inspecting the NMF coefficient matrix (H), we were able to 

identify which cluster or cell-type each NMF module corresponds to, and we annotated several 

modules that are specific to control or late-stage AD nuclei within a given cluster (Fig. 2.3f-g, 

Supplementary Notei). Additionally, we found that some of the cCRE target genes that are 

common to more than one cell-type are regulated by different cCREs in each cell-type. 

 

Cell-type-specific transcription factors in late-stage AD 

To complement our analysis of cis-regulatory elements, we sought to identify cell-type specific 

trans-regulatory elements in late-stage AD. TFs tightly control cell fate in neurodevelopment and 

have been implicated in neurodegenerative processes. We examined the regulatory role of 
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microglial TF SPI1 (also known as PU.1) and nuclear respiratory factor 1 (NRF1) in 

oligodendrocytes (Figure 4a-f, Supplementary Fig. 10, Supplementary Notei). SPI1 motif 

variability in our snATAC-seq microglia clusters was significantly increased in only upregulated 

clusters MG.a and MG.b, but SPI1's targets were significantly downregulated in only MG1 (Fig. 

2.4a-b, Supplementary Fig. 10i). We also identified NRF1 is dysregulated in select 

oligodendrocyte clusters (Fig. 2.4d-f, Supplementary Fig. 10i). These results indicate that SPI1 

acts as a transcriptional repressor in late-stage AD, providing insight into how SPI1 contributes to 

AD pathophysiology. Additionally, NRF1 has previously been associated with mitochondrial 

function, and impaired mitochondrial function (149), mediated by NRF1 dysregulation, may 

contribute to neuronal dysfunction in late-stage AD through the disruption of myelination. TF 

analyses in neuronal populations and Fos related antigen 2 (FOSL2) in astrocytes are shown in 

Extended Data Fig. 2.4 and Supplementary Fig. 10i. 

To gain further insight into TF-mediated gene regulation in late-stage AD, we constructed cell-

type specific TF regulatory networks. For a given TF, we identified candidate target genes as 

those whose promoters or linked cCREs are accessible and contain the TF’s binding motif in the 

cell-type of interest, and we repeated this for several select TFs, generating microglia-specific 

and oligodendrocyte-specific TF regulatory networks (Fig. 2.4g-h, Extended Data Fig. 2.5b, 

Supplementary Notei). Within these networks we identified multiple AD DEGs, in addition to genes 

located at known AD GWAS loci, regulated by SPI1 in microglia and NRF1 in oligodendrocytes. 
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Figure 2.4. Cell subpopulation-specific transcription factor regulation in late-stage AD 

a, Left: snATAC-seq and snRNA-seq integrated UMAP colored by SPI1 motif variability with microglia circled. Right: 

Violin plots of SPI1 motif variability in significant snATAC-seq microglia clusters, split by diagnosis. b, Left: Integrated 

UMAP colored by SPI1 target gene score with microglia circled. Right: Violin plots of SPI1 target gene score in 

significant snRNA-seq microglia clusters, split by diagnosis as in a. c, Tn5 bias subtracted TF footprinting for SPI1 by 

snATAC-seq microglia cluster (top) and by AD diagnosis (bottom). TF binding motif shown as motif logo above. d, Left: 

Integrated UMAP colored by NRF1 motif variability with oligodendrocytes circled. Right: Violin plots of NRF1 motif 

variability in significant snATAC-seq oligodendrocyte clusters, split by diagnosis as in a. e, Left: Integrated UMAP 

colored by NRF1 target gene score with oligodendrocyte circled. Right: Violin plots of NRF1 target gene score in 

significant snRNA-seq oligodendrocyte clusters, split by diagnosis as in a. f, Tn5 bias subtracted TF footprinting for 
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NRF1 by snATAC-seq oligodendrocyte cluster (top) and by AD diagnosis (bottom) as in b. g, h, TF regulatory networks 

showing the predicted candidate target genes for the following TFs: ELF5, ETS1, ETV5, SPIC, and SPI1 in 

microglia (g); SOX9, SOX13, SREBF1, SREBF2, OLIG1, and NRF1 in oligodendrocytes (h). For violin plots, two-sided 

Wilcoxon test was used to compare control versus AD, ns: p > 0.05, *: p <= 0.05, **: p <=0.01, ***: p <= 0.001, ****: p 

<= 0.0001. 

 

Integrated trajectory analysis of disease-associated glia 

To further uncover molecular mechanisms driving glial heterogeneity in AD, we performed 

pseudotime trajectory analysis using monocle3 (150–152) on the integrated snATAC-seq and 

snRNA-seq data in oligodendrocytes, microglia, and astrocytes (Supplementary Notei). Multi-omic 

trajectory analysis allows us to investigate the dynamics of gene expression, chromatin 

accessibility, and TF motif variability throughout a continuum of cell-state transitions. We modeled 

gene expression and chromatin accessibility dynamics using a recurrent variational autoencoder 

(RVAE) (153). Briefly, RVAE is an encoder-decoder neural network framework that uses long 

short-term memory (LSTM) units to effectively model temporal biological data, yielding a two-

dimensional latent representation of the input features as well as a de-noised reconstructed 

version of the original input (Supplementary Notei). For each cell-type, we identified genes that 

are differentially expressed along the trajectory (t-DEGs, Supplementary Data 7i) and used these 

genes as features to train the RVAE until the loss function converged (Supplementary Notei, 

Extended Data Fig. 2.6). 
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Extended Data Figure 2.6. Pseudotime trajectory analysis to identify dysregulated TFs and gene expression 
in glia. 
a, Line plot showing the RVAgene training loss at each epoch for oligodendrocyte (ODC), microglia (MG), and astrocyte 

(ASC) RVAE models. b-d, Heatmaps showing TF motif variability smoothed using loess regression and scaled to 

minimum and maximum values for TFs up- and down-regulated in AD as well as cell-type marker TFs along the 

oligodendrocyte trajectory (b), microglia trajectory (c), and astrocyte trajectory (d). TFs are ordered by trajectory rank 

(point in trajectory where of 75% maximum value is reached). e-g, Dot plot showing the enrichR combined score for 

the top enriched GO terms in oligodendrocyte (e), microglia (f), and astrocyte (g) t-DEGs. 

 

Oligodendrocyte trajectory reveals SREBF1 dysregulation 

We constructed an integrated oligodendrocyte trajectory using 58,221 nuclei from snATAC-seq 

and 36,773 nuclei from snRNA-seq (Fig. 2.5a), noting that the proportion of nuclei from late-stage 

AD samples appears to increase along the trajectory (Fig. 2.5b, Pearson correlation R = 0.32, p-

value = 0.022). To clarify the functional state of oligodendrocytes associated with late-stage AD, 

we examined the gene expression signatures (68, 70) of newly formed oligodendrocytes (NF-

ODC), myelin-forming oligodendrocytes (MF-ODC), and mature oligodendrocytes (mature ODC) 

(Fig. 2.5c, see Supplementary Notei for gene signature lists). Interestingly, we found that the 

mature oligodendrocyte gene expression signature increased at the end of the trajectory, whereas 

the myelin-forming oligodendrocyte gene signature decreased. In addition, the newly formed 

oligodendrocyte gene signature decreased throughout the trajectory, altogether suggesting that 

the oligodendrocyte pseudotime trajectory appears to recapitulate oligodendrocyte maturation. 

Chromatin accessibility of 9,231 oligodendrocyte gl-cCREs and gene expression of 1,563 

oligodendrocyte t-DEGs reconstructed with RVAE showcases the vast amount of chromatin 

remodeling and transcriptional reprogramming that may be underlying oligodendrocyte 

maturation (Fig. 2.5d). 
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Figure 2.5. Multi-omic oligodendrocyte trajectory analysis 

a, UMAP dimensionality reduction of oligodendrocytes from the integrated snATAC-seq (n=58,221 nuclei) and snRNA-

seq (n=36,773 nuclei) analysis. Each cell is colored by its pseudotime trajectory assignment. b, Scatter plot showing 

the proportion of oligodendrocyte nuclei from AD samples at 50 evenly sized bins across the trajectory. The black line 

shows a linear regression, and the gray outline represents the 95% confidence interval. Pearson correlation coefficient 

and p-value from two-sided test are shown. c, Scatter plot of module scores for newly formed oligodendrocyte (NF-

ODC), myelin forming oligodendrocyte (MF-ODC) and mature oligodendrocyte gene signatures (68, 70) 

(see Supplementary Notei for full gene lists) averaged for nuclei in each of the 50 trajectory bins. Solid colored lines 

represent loess regressions for each signature, and the gray outlines represent 95% confidence intervals. d, Left: 

heatmap of chromatin accessibility at 9,231 oligodendrocyte gl-cCREs reconstructed using RVAE. Right: heatmap of 

gene expression for 1,563 oligodendrocyte trajectory DEGs (t-DEGs) reconstructed using RVAE. Annotated genes are 

DEGs in oligodendrocytes, in respect to other cell-types, or AD upregulated genes in oligodendrocytes. e, 2D latent 

space learned by RVAE modeling of oligodendrocyte t-DEGs (left) and gl-cCREs (right), where each dot represents 

one gene. Left: genes colored by trajectory rank, the point in the trajectory where the gene reaches 75% of max 

expression. Right: genes colored by correlation of RVAE reconstructed expression with AD diagnosis proportion as 

in b. f, Oligodendrocyte t-DEG latent space colored by correlation of reconstructed gene expression to NRF1 (left) and 

SREBF1 (right) motif variability. The shape of each point represents the regulatory relationship between the TF and 

each gene, while genes without regulatory evidence are shown as small gray dots. Annotated genes are AD 

upregulated genes in oligodendrocytes (AD DEGs). TF binding motifs are shown as motif logos. 
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Additionally, the latent feature space (Z) learned by the RVAE provides further biological insight 

into the pseudotime trajectory and gene regulation in disease (Fig. 2.5e). Here, each dot 

represents a single feature (gene or chromatin region), and they are organized in 2D space based 

on their pseudotemporal dynamics learned by the RVAE. We ranked each feature based on the 

point in the trajectory that it reaches 75% of its maximum value, which we termed as the feature’s 

“trajectory rank”. We then correlated the reconstructed feature trajectories, as in Fig. 2.5d, to the 

proportion of late-stage AD nuclei, as in Fig. 2.5b, to see which features consistently change with 

AD. For both genes (t-DEGs) and chromatin regions (gl-cCREs), the latent space clearly groups 

features together that are positively or negatively correlated with the proportion of late-stage AD 

nuclei and groups features together with similar trajectory ranks, demonstrating the power of this 

RVAE model for the analysis and interpretation of multi-omic pseudotemporal dynamics. 

We showcase two key TFs in oligodendrocytes: NRF1 and sterol regulatory element binding 

transcription factor 1 (SREBF1). SREBF1 is critical in regulating the expression of genes involved 

in cholesterol and fatty acid homeostasis (154), and it is proposed that Aβ inhibits SREBF1 

activation (155). We found that NRF1 motif variability is upregulated in oligodendrocytes in late-

stage AD (Bonferroni adjusted p-value = 5.13 x 10−20, Fig. 2.4g), and SREBF1 motif variability is 

downregulated with disease in oligodendrocytes (Bonferroni adjusted p-value = 2.67 x 10−191, 

Extended Data Fig. 2.4). We correlated TF motif variability trajectories (Extended Data Fig. 2.6) 

with the reconstructed t-DEG expression trajectories and visualized the correlation between the 

TF and each gene within the 2D latent space, identifying candidate target genes activated or 

repressed by TF binding events (positive or negative trajectory correlation, respectively) (Fig. 2.5f, 

Supplementary Notei). We found that NRF1 is negatively correlated with target genes at the end 

of the trajectory, while SREBF1 is positively correlated with target genes at both the beginning 
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and the end of the trajectory, indicating that SREBF1 acts as a transcriptional activator throughout 

the trajectory. 

 

Microglia trajectory to define disease-associated microglia 

Using the same analytical approach as our oligodendrocyte trajectory analysis, we constructed 

an integrated microglia trajectory using 10,768 nuclei from snATAC-seq and 4,119 nuclei from 

snRNA-seq (Fig. 2.6a). The proportion of nuclei from late-stage AD samples significantly 

increased throughout the microglia trajectory (Fig. 2.6b, Pearson correlation R = 0.53, p-value = 

6.9 x 10−5). We next sought to investigate gene signatures of disease-associated microglia 

(DAMs), which were introduced in Keren-Shaul et al.’s single-cell transcriptomic study (77) of 

5XFAD mice and are highly debated in the field of AD genomics. DAMs are described as AD 

associated phagocytic microglia that are sequentially activated in TREM2-independent and -

dependent stages (stage 1 and stage 2, respectively). We found that the integrated microglia 

trajectory follows a decrease in the homeostatic signature, an increase in the stage 1 DAM 

signature, and a distinct global depletion of the stage 2 TREM2-dependent DAM signature (Fig. 

2.6c, see Supplementary Notei for gene signature lists), suggesting that this microglia trajectory 

describes the transcriptional and epigenetic changes during the transition from a homeostatic to 

disease-associated cell-state. 

To further dissect the microglia trajectory, we modeled the chromatin accessibility and gene 

expression dynamics of 9,163 microglia gl-cCREs and 2,138 microglia t-DEGs, respectively, 

using RVAE (Fig. 2.6d-e). We highlight two ETS family TFs, SPI1 and ETS variant 5 (ETV5), both 

of which showing upregulated motif variability in late-stage AD (Bonferroni adjusted p-values 1.19 

x 10−20, 6.68 x 10−19 respectively), and their candidate target genes along the trajectory (Fig. 2.6f, 

Supplementary Notei). We observed that the SPI1 motif trajectory is negatively correlated with 
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genes at the end of the trajectory, supporting our previous findings that SPI1 acts as a repressor 

in late-stage AD. 

 

 

Figure 2.6. Multi-omic microglia and astrocyte trajectory analyses 

a, UMAP dimensionality reduction of microglia from the integrated snATAC-seq (n=10,768 nuclei) and snRNA-seq 

(n=4,119 nuclei) analysis. b, Scatter plot of the proportion of AD microglia nuclei as in Fig. 2.5b. c, Scatter plot of 

module scores as in Fig. 2.5c for gene signatures from Keren-Shaul et al.  (77): homeostatic microglia, Stage 1 disease-

associated microglia (DAM), and Stage 2 DAM (see Supplementary Notei for full gene lists). d, Heatmaps of RVAE 

reconstructed chromatin accessibility and gene expression as in Fig. 2.5d, for 9,163 microglia gl-cCREs (left) and 2,138 
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microglia t-DEGs (right). e, 2D latent space learned by RVAE modeling of microglia t-DEGs (left) and gl-cCREs (right), 

as in Fig. 2.5e. f, Microglia t-DEG latent space colored by correlation of gene expression to SPI1 (left) and ETV5 (right) 

motif variability, as in Fig. 2.5f. g,UMAP dimensionality reduction of astrocytes from the integrated snATAC-seq 

(n=12,112 nuclei) and snRNA-seq (n=4,704 nuclei) analysis. h, Scatter plot of the proportion of AD astrocyte nuclei as 

in b. i, Scatter plot of module scores as in c for gene signatures from Habib et al. 2020 (79):GFAP-low, GFAP-high, 

and Disease Associated Astrocytes (DAA, see Supplementary Notei for full gene lists). j, Heatmaps of RVAE 

reconstructed chromatin accessibility and gene expression as in d for 12,487 astrocyte gl-cCREs (left) and 1,797 

astrocyte t-DEGs (right). k, 2D latent space learned by RVAE modeling of astrocyte t-DEGs (left) and gl-cCREs (right), 

as in e. l, Astrocyte t-DEG latent space colored by correlation of gene expression to CTCF (left) and ETV5 (right) motif 

variability, as in f. 

 

Disease-associated astrocytes in human AD 

We also constructed an integrated astrocyte trajectory using 12,112 nuclei from snATAC-seq and 

4,704 nuclei from snRNA-seq (Fig. 2.6g), and we again found that the proportion of late-stage AD 

nuclei significantly increases throughout the trajectory (Fig. 2.6h, Pearson correlation R = 0.57, 

p-value = 1.9 x 10−5). In a similar fashion to our analysis of the DAM signature in the microglia 

trajectory, we investigated the gene signature of disease-associated astrocytes (DAAs), 

described in a recent snRNA-seq study of the hippocampus in 5XFAD mice (79) as an AD-specific 

GFAPhigh astrocyte subpopulation that is distinct from another GFAPhigh astrocyte subpopulation 

found in aged wild-type and 5XFAD (GFAP-high). Based on DAA gene signature analysis, we 

reasoned that this trajectory follows a trend from a GFAP-low state to GFAP-high and DAA-like 

states (Fig. 2.6i, see Supplementary Notei for gene signature lists). 

RVAE modeling of 12,487 astrocyte gl-cCREs and 1,797 astrocyte t-DEGs revealed rich gene-

regulatory dynamics across the trajectory (Fig. 2.6j-k). We investigated the relationship between 

astrocyte t-DEGs and two TFs: CCCTC-binding factor (CTCF) and FOSL2, whose motif variability 

we have found to be downregulated and upregulated in late-stage AD, respectively (Bonferroni 
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adjusted p-values 6.45 x10−17, 5.65 x10−99 respectively). CTCF is known as a master chromatin 

regulator (156, 157), and we observed that the CTCF motif variability trajectory is anti-correlated 

with the DAA and GFAP-high signatures (end of the trajectory, Extended Data Fig. 2.6) and 

positively correlated with t-DEGs in the GFAP-low phase of the trajectory (Fig. 2.6l). Alternatively, 

we found a positive correlation between the motif variability trajectory of FOSL2 with the GFAP-

high and DAA gene signatures and a positive correlation with genes at the end of the trajectory 

(Fig. 2.6l, Supplementary Notei). These findings suggest that FOSL2 may be an activator of the 

disease-associated astrocyte signature, whereas CTCF may promote a more homeostatic or non-

diseased astrocyte state. By relating gene expression with TF motif enrichment, TF binding site 

accessibility, and using the temporal information learned by the RVAE, we begin to unravel the 

role of TFs in regulating cell states, such as disease-associated astrocytes. 

 

Cell-type-specific cis-regulation at AD genetic risk loci 

To further our understanding of AD genetic risk signals, we performed cell-type-specific linkage-

disequilibrium score regression (LDSC) (131) analysis in our snATAC-seq clusters using GWAS 

summary statistics in AD (9, 15) and other relevant traits (132, 133, 135–138, 158)  (Methods, 

Supplementary Table 6, Supplementary Notei). Microglia clusters MG.b and MG.c showed a 

significant enrichment (FDR < 0.05) for AD GWAS SNPs from the Kunkle et al. study, and all five 

microglia clusters showed a significant enrichment (MG.a, MG.e FDR < 0.005; MG.b, MG.c, MG.d 

FDR < 0.0005) for GWAS SNPs from the Jansen et al. study, which included familial AD-by-proxy 

samples in addition to AD patient data (Fig. 2.7a). The results of this GWAS heritability analysis 

supports previous findings in non-diseased human (72) and mouse (73) snATAC-seq data. We 

further investigated AD risk signals in microglia using gchromVAR (159) to compute the 

enrichment of fine-mapped AD-associated polymorphisms from Jansen et al. along the microglia 
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pseudotime trajectory and observed a significant increase (Pearson correlation, p-value = 0.0048, 

Methods, Fig. 2.7b-c) in the gchromVAR deviation score in distal peaks throughout the microglia 

trajectory, in stark contrast with a significant decrease in the deviation score for the analogous 

gene-proximal peak analysis (Pearson correlation, p-value = 0.0053), highlighting AD-associated 

SNPs at distal enhancers in disease-associated microglia. By overlaying the co-accessibility map 

with chromatin accessibility signal and GWAS statistics along the genomic axis, we unraveled the 

potential cis-regulatory relationships disrupted by causal disease variants in GWAS genes, such 

as BIN1, ADAM10, APOE and SCL24A4 (Fig. 2.7d-i). We found that the APOE locus, which 

harbors the main determinants of AD heritability and is one of the best studied AD risk loci, has 

cis-regulatory chromatin networks altered in disease in microglia and astrocytes, highlighting 

cCREs that are prime candidates for further study using genome editing technologies. 
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Figure 2.7. Cell-type specific regulatory landscapes of GWAS loci in the AD brain 

a, Heatmap showing LDSC enrichment of GWAS traits and disorders in snATAC-seq clusters. P-values are derived 

from LDSC enrichment tests, and FDR corrected p-values are overlaid on the heatmap (*: FDR < 0.05, **: FDR < 0.005, 

***: FDR < 0.0005). b, c, Scatter plots showing gchromVAR enrichments along the microglia pseudotime trajectory in 

distal peaks (b) and gene-proximal peaks (c) averaged for nuclei in each of the 50 trajectory bins. The black line shows 

a linear regression, and the gray outline represents the 95% confidence interval. Pearson correlation coefficient and p-

value are shown. d-i, Cis-regulatory architecture at the following GWAS loci and cell-types: BIN1 (d) and ADAM10 (e) 

in oligodendrocytes; BIN1 (f) and APOE (g) in microglia; SLC24A4 (h) and APOE (i) in astrocytes. Co-accessible links 

for late-stage AD and control are shown separately, with the line height and opacity corresponding to the co-accessibility 

score; links with a score below the gray dotted line are removed for visualization purposes. Genomic coverage plots 

for AD and control are shown separately. Jansen et al. AD GWAS statistics for SNPs at each locus are shown. Lead 

SNPs are shown as diamonds, and SNPs in 99% credible set are shown as triangles. Chromosome ideogram indicates 

genomic coordinates in a 500 kilobase radius centered at each GWAS gene. Chromosome coordinates are the 

following: BIN1 chr2:127047027-127110355; ADAM10 chr15:58587807-58752978; APOE chr19:44902754-

44910393; SLC24A4 chr14:92319581-92502483. 

 

Single-cell co-expression networks using scWGNCA 

To recontextualize snRNA-seq data in systems-level framework, we sought to develop a gene 

co-expression network analysis approach for single-cell data based on weighted gene co-

expression analysis (WGCNA) (139, 140) a powerful analytical approach for identifying disease-

associated gene modules (30, 160) originally designed for bulk gene expression data. Our revised 

approach uses aggregated expression profiles in place of potentially sparse single cells, where 

metacells are constructed from specific cell populations by computing the mean expression from 

50 neighboring cells using k-nearest neighbors (Methods, Extended Data Fig. 2.7, Supplementary 

Notei). We re-processed published AD snRNA-seq data from Mathys et al. (75) and used iNMF 

to integrate with our snRNA-seq data (Methods, Extended Data Fig. 2.8). Additionally, we 

performed bulk RNA-seq in early- and late-stage AD cases, as well as pathological controls and 
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curated additional AD bulk-tissue RNA-seq samples from ROSMAP (46). Finally, we used 

consensus WGCNA (45), a meta-analytical approach, to jointly form co-expression networks in 

metacells constructed from the integrated snRNA-seq dataset and bulk-tissue RNA-seq data of 

the human PFC from two distinct cohorts. We call this approach Single-nucleus Consensus 

WGCNA (scWGCNA; Extended Data Fig. 2.1, 2.7, 2.9, 2.10; Supplementary Data 7i), performed 

iteratively for each cell-type, where each edge in a co-expressed module is supported by both 

bulk-tissue RNA-seq data (this study and ROSMAP (46)) and aggregated snRNA-seq data (this 

study and Mathys et al.). 

We specifically highlight our scWGCNA analysis for oligodendrocytes; we found four co-

expression modules significantly correlated with AD diagnosis—OM1, OM2, OM4, and OM5 (Fig. 

2.8a-b, Supplementary Data 7i). For example, hub genes of the AD-downregulated module OM1 

encode ribosomal subunits (RPS15A, RPL30, RPL23A, etc.), consistent with its enrichment of 

GO terms related to protein synthesis and sorting (Supplementary Fig. 11i). OM2 gene members 

MAG, CNP, and PLP1 are known to be involved in myelination, and unsurprisingly we found OM2 

downregulated with disease. 
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Extended Data Figure 2.7. Metacell aggregation and SREBP. 

a, Heatmap showing the enrichment of cell-type marker genes in standard WGCNA modules constructed from our 

snRNA-seq data. b, Schematic showing generation of 30,218 metacells from the integrated transcriptomic dataset of 

132,106 nuclei from our snRNA-seq and Mathys et al. c-e, Heatmap showing enrichment of oligodendrocyte (c), 

microglia (d), and astrocyte (e) scWGCNA modules constructed with 12 metacells, 25 metacells, 100 metacells, and 
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200 metacells in the scWGCNA modules constructed with 50 metacells, as shown in Fig. 2.7 and Supplementary Fig. 

15-16i. f, SREBP protein-protein interaction (PPI) network. Green circle denotes proteins involved in ribosome 

processing and transcription pathway, cyan circle for mTOR pathway, and red circle for lipid processing 

pathway. g, Left: Representative immunohistochemistry images from postmortem human brain tissue for SREBP with 

nuclear counterstain. Right: Quantification of SREBP staining. n = 4 pathological controls, 3 late-stage AD. Data is 

represented as the mean of four equally sized regions per sample. Scale bar represents 100 μm. Linear mixed-effects 

model ** p < 0.01. Box boundaries and line correspond to the interquartile range (IQR) and median respectively. 

Whiskers extend to the lowest or highest data points that are no further than 1.5 times the IQR from the box boundaries. 

 



 54 

  
Extended Data Figure 2.8. iNMF integration of snRNA-seq with Mathys et al. snRNA-seq. 

a, Schematic representation of iNMF integration of snRNA-seq with Mathys et al. snRNA-seq. UMAP plots are colored 

by cell-type assignments. b, Dot plot of iNMF metagene expression in each cell-type, split by dataset of origin. c, UMAP 
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plots of the integrated dataset colored by selected iNMF metagenes. d, Dot plots showing the iNMF loading for the top 

30 genes for the same metagenes in c. 

 

 

  
Figure 2.8. Robust co-expression modules revealed using integrated bulk and single-cell co-expression 

network analysis 

a, Co-expression plots for modules OM1, OM2, OM4, and OM5. b, Signed correlation oligodendrocyte co-expression 

modules with AD diagnosis. c, Enrichment of SREBF1 target genes in oligodendrocyte co-expression 

modules. d, Boxplots showing RNA (top) and protein expression (144) (bottom; n = 98 controls, 76 early-pathology, 

101 late-pathology) of SREBF1’s targets with AD pathological staging. Two-sided Wilcoxon test. e, Boxplots showing 

quantification of SREBF1 puncta per MOG+ oligodendrocyte. n = 3 cognitively healthy controls, 5 late-stage AD. Data 
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is represented as the mean of four equally sized regions per sample. Linear mixed-effects model. f, Boxplots showing 

quantification of ACSL4 puncta per MOG+ oligodendrocyte. n = 4 cognitively healthy controls, 4 late-stage AD. Data is 

represented as the mean of four equally sized regions per sample. Linear mixed-effects model. g, Representative RNA 

fluorescence in situ hybridization (RNAscope) images from postmortem human brain tissue for 

combined SREBF1 and MOG staining as in e (left) and ACSL4 and MOG staining as in f (right) with DAPI nuclear 

counterstain. For box and whisker plots, box boundaries and line correspond to the interquartile range (IQR) and 

median respectively. Whiskers extend to the lowest or highest data points that are no further than 1.5 times the IQR 

from the box boundaries. 

 

Additionally, we examined SREBF1’s downstream regulatory targets in the context of co-

expression networks (Methods). Notably, we found that three of the oligodendrocyte modules 

were significantly enriched for targets of SREBF1, indicating the importance of SREBF1 in 

regulating gene expression in these modules (Fig. 2.8c). Using a multi-scale dataset of bulk-tissue 

RNA-seq, high-throughput proteomics (144), and SREBF1 ChIP-seq data (ENCODE), we defined 

a protein-protein interaction (PPI) network of SREBF1 target genes (Extended Data Fig. 2.7). 

Additionally, we found module eigengene expression of SREBF1 targets downregulated in early- 

and late-pathology AD cases at the level of proteins (144) and RNA (Fig. 2.8d), corroborated by 

downregulation of SREBF1 motif variability in snATAC-seq data (Extended Data Fig. 2.4). We 

also validated the downregulation of SREBF1 in late-stage AD through RNA in situ hybridization 

and immunohistochemistry and found a decrease in ACSL4 expression, one of SREBF1’s targets 

identified in ENCODE ChIP-seq data, in late-stage AD (Fig. 2.8e-g, Extended Data Fig. 2.7). 

Overall, our co-expression network analysis approach facilitates the identification of cell-type-

specific disease biology, and we have highlighted TF SREBF1, largely unstudied in the context 

of AD, in oligodendrocytes to demonstrate our approach’s ability to yield novel disease insights. 
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Extended Data Figure 2.9. scWGCNA in microglia and astrocytes. 

a, Signed correlation of astrocyte modules to AD diagnosis. b-d, Co-expression plots for modules AM1 (b), AM2 (c), 

and AM5 (d). e, GO term enrichment of astrocyte modules. f, Heatmaps showing row-normalized Seurat module 

scores of astrocyte modules in snRNA-seq (left) and snATAC-seq (right) astrocyte clusters. g, Signed correlation of 

microglia co-expression modules with AD diagnosis. h-j, Co-expression plots for modules MM1 (h), MM2 (i), and 

MM4 (j). k, GO term enrichment of microglia modules. l, Heatmaps showing row-normalized Seurat module scores of 

microglia modules in snRNA-seq (left) and snATAC-seq (right) microglia clusters. 
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Extended Data Figure 2.10. scWGCNA in neurons. 

a, Signed correlation of excitatory neuron modules to AD diagnosis. b-e, Co-expression plots for modules EM1 (b), 

EM2 (c), EM5 (d), and EM7 (e). f, GO term enrichment of excitatory neuron modules. g, Heatmaps showing row-

normalized Seurat module scores of excitatory neuron modules in snRNA-seq (left) and snATAC-seq (right) excitatory 

neuron clusters. h,Signed correlation of inhibitory neuron modules to AD diagnosis. i-n, Co-expression plots for 

modules IM1 (i), IM2 (j), IM3 (k), IM4 (l), IM5 (m), and IM6 (n). o, GO term enrichment of inhibitory neuron 

modules. p, Heatmaps showing row-normalized Seurat module scores of inhibitory neuron modules in snRNA-seq (left) 

and snATAC-seq (right) inhibitory neuron clusters. 

 
 
Discussion 

Our integrated multi-omic analysis of late-stage AD provides a unique lens into the continuum of 

cellular heterogeneity underlying disease pathogenesis. Pinpointing causal mechanisms of 

complex diseases requires a rigorous understanding of cell population specific gene regulatory 

systems at both the epigenomic and transcriptomic level. While single-cell chromatin accessibility 

can provide important insights into disease, it is a challenging data modality to work with due to 

its inherent sparsity. We circumvented the issue of sparsity by integrating single-nucleus open-

chromatin and single-nucleus transcriptomes from the same samples, in addition to using 

aggregation methods for pseudo-bulk accessibility profiling and co-accessibility analysis. Taking 

these considerations into account, our multi-omic analysis enabled us to analyze cell-type-specific 

epigenomic dysregulation in neurodegeneration and expands on previous work to decipher the 

transcriptomes of single nuclei in human AD. 

A major contribution of our study is that we identified cell-type specific gl-cCREs, which may be 

mediating gene regulatory changes in late-stage AD, along with TFs that may be binding to these 

gl-cCREs within the given cell-type. While cCREs can be identified with epigenetic data alone, 

our analysis is substantiated by integrating single-nucleus transcriptomic data, as we link the gene 

expression of candidate target genes with cCRE chromatin accessibility. Previous studies of AD 
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have not explored cis-gene regulation at a cell-type or cell subpopulation level. We have 

highlighted both cis- and trans-gene regulation disrupted in late-stage AD, providing potential 

targets for further study into AD, like NRF1 in oligodendrocytes and FOSL2 in astrocytes and their 

corresponding gl-cCREs. Further, we examined cis-regulatory interactions in our multi-omic 

dataset to elucidate cell-type and disease specific patterns of genes implicated in inherited AD 

risk by GWAS, which are of particular interest as candidate therapeutic targets. For a subset of 

AD GWAS loci, we compared cis-regulatory networks between AD and control cell populations to 

identify interactions that are uniquely found in disease. Thus, this study serves as a resource for 

the broader AD community to explore cell-type and cell-state-specific regulatory landscapes of 

genes and genomic regions that may be of particular interest, such as AD GWAS loci. 

Moreover, independent and joint analyses of the transcriptome and chromatin profiles of 

oligodendrocytes revealed disrupted gene regulation and biological pathways in AD 

(Supplementary Notei). We described a multi-omic oligodendrocyte trajectory and evaluated gene 

expression signatures in the transition from newly formed to mature oligodendrocytes, observing 

that the trajectory seemed to follow oligodendrocyte maturation. Notably, we analyzed the 

trajectory dynamics of SREBF1, a TF involved in regulation of cholesterol and lipid metabolism 

that has been shown to be involved in Aβ-related processes (155). We found that SREBF1 motif 

variability was decreased in late-stage AD, indicating that fewer SREBF1 binding sites are 

accessible in disease, and SREBF1 gene expression is also downregulated in AD 

oligodendrocytes. Trajectory analysis revealed that SREBF1 motif variability is positively 

correlated with t-DEGs throughout the trajectory, suggesting that it acts as a transcriptional 

activator in oligodendrocytes. 

Co-expression network analysis methods like WGCNA have been widely used for discovery of 

disease-associated gene modules in bulk gene expression data (39, 47); however, these 

approaches are rarely used in single-cell transcriptomics, with some exceptions (161) due to 
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challenges in network construction from noisy data. Here we introduced scWGCNA, a method for 

interrogation of cell population-specific co-expression networks that leverages aggregated 

metacells to combat the sparsity of single-cell gene expression. Using scWGCNA, we found gene 

co-expression networks in human AD by jointly analyzing our snRNA-seq and bulk RNA-seq with 

additional snRNA-seq and bulk RNA-seq samples from the ROSMAP cohort (46, 75). This meta-

analytical approach ensured robustness of our network analysis and allowed us to evaluate the 

resulting gene modules in early-stage AD (Supplementary Notei). Notably, scWGCNA identified 

three oligodendrocyte modules that were enriched for target genes of SREBF1 and showed that 

the gene and protein expression of these targets were decreased in late-stage AD. With our co-

expression and trajectory analysis of SREBF1 in oligodendrocytes, SREBF1 is clearly a gene to 

prioritize for follow-up studies as a candidate target for AD therapeutics, demonstrating the utility 

of our approach in identifying novel gene targets for disease. 

While the causative molecular mechanisms of sporadic AD remain unknown, our work offers new 

insights which assist in unraveling the nature of gene regulation in AD, especially in regard to 

genomic loci with well-described heritable disease risk. Additional work is needed to spatially 

resolve the complexity of gene expression and epigenomics in AD and neurodegeneration in 

general. The data presented here are a valuable resource for understanding regulatory 

relationships in the diseased brain, and our analysis framework serves as a blueprint for making 

discoveries in complex traits using single-cell multi-omic data. Finally, our intuitive web portal for 

exploring single nuclei in the human brain allows for the accessibility of our results to anyone with 

an internet-equipped device. 

 

 
i Please access at https://doi.org/10.1038/s41588-021-00894-z  
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Chapter Three: A comparative study of the Alzheimer’s disease transcriptome 

with spatial and cellular resolution 

Introduction 

Dating back to Santiago Ramón y Cajal and Korbinian Brodmann, it was revealed that the human 

brain is highly spatially organized at both macro- and microscopic levels, where both brain circuitry 

and function underlie this structural organization. Cajal’s drawings depicted the laminar 

organization of the brain and great morphological diversity across neurons. Multiple single-cell 

(scRNA-seq) and single-nucleus RNA-sequencing (snRNA-seq) studies over the past few years, 

however, discovered that brain cell populations are even more heterogeneous at the molecular 

level (51, 54–62). In the Alzheimer’s disease (AD) brain, specific cell subpopulations have been 

identified as under- or overrepresented relative to the cognitively healthy brain (75, 76, 78, 84, 

85). Determining the functional significance of this multitude of cell subpopulations remains a 

large challenge; these single-cell studies majorly relied on approaches that result in a loss of 

potentially critical spatial information that could help us decipher the roles of these cells. Although 

earlier studies used laser capture microdissection to carefully profile cells by layer, this is a low-

throughput method compared to the now “gold-standard” sc- or snRNA-seq approaches, and 

large numbers of cells are required to detect rarer cell populations. There is also a pressing need 

to increase sample numbers to robustly define disease-associated changes.  

Recently, several spatial profiling methods were developed with varying levels of resolution, 

numbers of genes, and throughput (94–97, 162, 163). Spatial transcriptomics relies on spatial 

spots with primers to uniquely barcode transcripts based upon their spatial location and does not 

require pre-determined gene targets, thus allowing an unbiased assessment of gene expression 

changes. Further, this technique allows us to profile a whole coronally sectioned mouse 

hemisphere, compared to only single brain regions. The caveat, however, is a lack of single cell 
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resolution. Therefore to circumvent this lack of single cell resolution, we generated both spatial 

transcriptomic and snRNA-seq data to perform an integrated analysis of AD with cellular and 

spatial resolution. 

Here we examined the spatial and single-cell transcriptome of clinical AD samples including both 

early- and late-stage pathology cases, as well as AD in Down syndrome (AD in DS). Although 

individuals with DS aged >65 years old have an 80% risk of dementia (22), only one previous 

study has profiled cell-type specific gene expression changes in DS brains (164).  Moreover, 

despite shared features between AD in the general population and AD in DS (23), there are no 

published single-cell or spatial transcriptomic studies examining both populations, and DS is a 

potentially advantageous group for clinical studies of AD. We discovered spatial and cellular AD 

transcriptomic changes in both DS and the general population and additionally extended our 

analyses to a commonly used amyloid mouse model of AD, 5XFAD, by generating an additional 

spatial transcriptomic dataset. Our analyses highlight the value of integrating not only different 

models of investigation, but also different data modalities. We identified a set of amyloid-

associated genes shared between human and mouse, by integrating imaging data. Furthermore, 

we revealed spatially restricted cellular communication pathways dysregulated in disease, and 

we assessed the protein expression of genes identified in our analyses with a spatial proteomic 

approach. 

 

Materials and Methods 

Postmortem human brain tissue 

Human brain tissue from prefrontal cortex and posterior cingulate cortex was obtained from UC 

Irvine’s Alzheimer’s Disease Research Center and the NIH NeuroBioBank under UCI’s 

Institutional Review Board (IRB). Samples were assigned to groups based on both NFT and 
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plaque staging, in addition to clinical diagnoses. Samples were also selected based upon several 

covariates, including age, sex, race, postmortem interval (PMI), RNA integrity number (RIN), and 

disease comorbidity. RIN values were obtained by isolating total RNA with the Zymo Direct-zol 

RNA Isolation kit and assessing with the Agilent TapeStation 4200. Sample information is 

available in Supplementary Table 1ii. 

 

Mouse brain tissue 

All mouse work was approved by the Institutional Animal Care and Use (IACUC) committee at 

UCI. 5XFAD hemizygous (C57BL16) and wildtype littermates were bred and housed until sacrifice 

at 4, 6, 8, and 12 months. Sample information is available in Supplementary Table 1ii. For 

genotyping, we used the following primers (for PSEN1): 5’ – AAT AGA GAA CGG CAG GAG CA 

– 3’ (Forward), 5’ – GCC ATG AGG GCA CTA ATC AT – 3’ (Reverse). Mice were euthanized by 

carbon dioxide inhalation. After PBS transcardiac perfusion, one brain hemisphere was flash 

frozen in isopentane chilled with dry ice for spatial transcriptomics. 

 

Single-nucleus RNA-sequencing 

Single-nucleus isolations were performed in randomized groups of 12 samples. ~50mg fresh 

frozen postmortem human brain tissue was homogenized in Nuclei EZ Lysis buffer (NUC101-

1KT, Sigma-Aldrich) and incubated for 5 min before being passed through a 70μm filter. Samples 

were then centrifuged at 500 g for 5 min at 4°C and resuspended in additional lysis buffer for 5 

min. After another centrifugation at 500 g for 5 min at 4°C, samples were incubated in Nuclei 

Wash and Resuspension buffer (NWR, 1xPBS, 1% BSA, 0.2U/μl RNase inhibitor) for 5 min. To 

remove myelin contaminants, we prepared sucrose gradients with Nuclei PURE Sucrose Buffer 

and Nuclei PURE 2M Sucrose Cushion Solution from the Nuclei PURE Nuclei Isolation Kit (NUC-
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201, Sigma-Aldrich), and samples were carefully overlaid and centrifuged at 13,000 g for 45 min 

at 4°C. Samples were then washed in NWR before processing with the Nuclei Fixation Kit 

(SB1003, Parse Biosciences). After nuclei fixation and permeabilization, samples were 

cryopreserved with DMSO until day of library preparation.  

Library preparations were performed as 4 batches of 24 samples, with an additional batch to 

increase numbers of nuclei/sample for 16 samples. We generated single-nucleus libraries with 

the WTK Whole Transcriptome Kit (SB2001, Parse Biosciences). cDNA library quantification and 

quality were assessed with Qubit dsDNA HS assay kit (Q32851, Invitrogen) and D5000 HS kit 

(5067-5592, 5067-5593; Agilent) or D1000 HS kit (5067-5584, 5067-5585; Agilent) for the Agilent 

TapeStation 4200. Libraries were sequenced using Illumina Novaseq 6000 S4 platform using 

100bp paired-end sequencing for a sequencing depth of 50,000 read pairs/cell. 

 

Spatial transcriptomics 

Fresh frozen tissue samples were sectioned on a HM525NX cryostat (Fisher) at -15°C for 10μm 

thick sections that are immediately mounted onto 10x Genomics Visium slides. Slides were 

individually stored in slide mailers (sealed airtight in a plastic bag) at -80°C until staining. We 

followed 10x Genomics Methanol Fixation, Immunofluorescence Staining & Imaging for Visium 

Spatial Protocols (RevC), except after tissue sections were fixed in methanol and blocked, the 

sections were incubated with Amylo-glo (TR-300, Biosensis) for 20 min. Sections were then 

incubated with the primary antibody OC (polyclonal, AB2286, Millipore) and respective secondary 

antibody (goat anti-rabbit secondary antibody Alexa Fluor 488, Life Tech or Alexa Fluor 647, Life 

Tech). Immediately after immunostaining, capture areas were imaged on a widefield Nikon Ti2-E 

microscope at 20X magnification. Spatial transcriptomic libraries were then generated from the 

tissue sections according to the 10x Genomics Visium User Guide. Library quantification, quality 
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check, and sequencing were performed as previously described, but sequencing depth was 

based on an estimated 60% tissue area coverage per sample for 50,000 read pairs per covered 

spot. 

 

Spatial proteomics 

Fixed and cryoprotected tissue was sectioned on a HM525NX cryostat (Fisher) at -15°C for 14μm 

thick sections onto Fisher Superfrost Plus slides. Slides were stored at -80°C until staining, sealed 

airtight in a plastic bag. We followed the fresh frozen staining protocol from Standard BioTools 

(Fluidigm); however, since the tissue was previously fixed, we skipped the fixation step. Slides 

were transferred on dry ice to incubate at 37°C for 5 min on a PCR machine, similar to the 10x 

Genomics Visium protocol. Sections were washed in PBS 3 times for 5 min before drawing a 

hydrophobic barrier. After the hydrophobic barrier dried, we incubated the sections with 3% BSA 

in PBS with 0.2% Triton X-100 for 45 min at room temperature. We then incubated the sections 

with the primary antibody cocktail diluted in 0.5% BSA/PBS with 0.2% Triton X-100 overnight at 

4°C. The antibodies and dilutions used in the primary antibody cocktail are in Supplementary 

Table 7ii. Sections were then washed in PBS with 0.2% Triton X-100 twice for 8 min before 

incubating with the iridium intercalator (1:100 in PBS) for 30 min at room temperature. We then 

washed the sections in water twice for 5 min before allowing them to air dry before ablation. 

Ablations were performed in 1000x1000μm regions of interest, with the exception of one due to 

unexpected consumption of Argon gas that resulted in a 1000x922 acquisition. 

 

Preprocessing gene expression data 

For the snRNA-seq dataset, we aligned sequencing reads to the reference transcriptome 

(GRCH38) and quantified gene expression using splitpipe (version X, Parse Biosciences) in each 
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of the five snRNA-seq experiments. We quantified and corrected ambient RNA signal present in 

our samples using Cellbender (165) remove-background (v 0.2.0). Heterotypic barcode collisions 

were inferred in each snRNA-seq experiment using Scrublet (166) (v 0.2.3) with default settings. 

We merged the individual snRNA-seq experiments into a single anndata (v 0.8.0) object, totaling 

611,999 barcodes and 29,889 genes before quality control (QC) filtering. For each snRNA-seq 

experiment, we removed barcodes in the 95th percentile for number of UMIs detected, doublet 

score from Scrublet, and percentage of mitochondrial reads. We also applied dataset-wide cutoffs 

to remove barcodes with less than or equal to 250 UMIs, greater than or equal to 50,000 total 

UMIs, and greater than or equal to 10% mitochondrial reads. For one of the snRNA-seq 

experiments, we applied a more stringent filter to remove cells with less than or equal to 500 

UMIs, and greater than or equal to 5% mitochondrial reads. We retained 431,534 barcodes for 

downstream analysis. 

The 10X Genomics Loupe Browser image alignment tool was used to select Visium ST spots that 

intersected the tissue based on the fluorescent images. Sequencing reads from the human and 

mouse Visium experiments were processed using the 10X Genomics Spaceranger (v 1.2.1) 

pipeline, with GRch38 and MM10 as the respective reference transcriptomes. Spaceranger count 

was used to align sequencing reads to the reference, quantify gene expression, and perform a 

preliminary clustering analysis for each sample. Unlike the snRNA-seq dataset, we did not filter 

out additional spots based on sequencing QC metrics. The UMI counts matrices and fluorescent 

images for the human and mouse samples were combined into merged Seurat (167–169) objects 

for the respective species. 
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Initial snRNA-seq data analysis 

Following QC filtering, we processed the snRNA-seq dataset using SCANPY (170) and scVI 

(171). The UMI counts matrix was first normalized using the functions sc.pp.normalize_total and 

sc.ppl.log1p. We set up the anndata object to train the scVI model using snRNA-seq as the batch 

key and the following additional continuous and categorical covariates: sample ID, diagnosis, 

brain region, age at death, percentage of mitochondrial counts, number of UMI, postmortem 

interval (PMI) and RNA integrity number (RIN). We set up the scVI model with two hidden layers, 

128 nodes per layer, a 30-dimensional latent embedding after the encoder phase, and a dropout 

rate of 0.1. We trained the model over 50 epochs and noted a flattened loss curve by the end of 

the training procedure. The latent embedding learned from the scVI model accounts for the batch 

effects and additional covariates specified in the model setup step, and we used this embedding 

for Leiden clustering and UMAP (172) dimensionality reduction in SCANPY. With a resolution 

parameter of 1.5 we identified 43 clusters. We inspected gene expression patterns in these 

clusters for a panel of canonical CNS cell-type marker genes to assign major cell-type labels to 

each cluster. We also checked the distribution of QC metrics in each cluster to identify outlier 

clusters. Six clusters (7, 29, 33, 35, 50, 51) were removed from downstream analysis as QC 

outliers, or due to presence of potential doublets. We recomputed the UMAP and Leiden 

clustering (resolution = 1.2) after filtering these clusters, yielding 29 clusters. Glutamatergic 

neuron clusters were annotated based on expression of known cortical layer marker genes, and 

GABAergic neuron clusters were annotated based on expression of known markers (VIP, SST, 

PVALB, LAMP5). At this stage, non-neuronal cell clusters were simply labeled by their major cell-

type (astrocytes, microglia, oligodendrocytes, oligodendrocyte progenitors, vascular cells). To 

identify subpopulations in non-neuronal cells, we performed subclustering analysis in each of the 

major non-neuronal cell populations (microglia, astrocytes, oligodendrocytes, vascular cells). 
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Each group was isolated in its own anndata object, and Leiden clustering was performed (see 

GitHub repository for subclustering parameters). 

 

Reprocessing publicly available single-nucleus gene expression datasets 

We obtained sequencing data from obtained three published snRNA-seq studies (173–175) of 

AD. Sequencing data from the Mathys et al. 2019 and Zhou et al. 2020 datasets were downloaded 

from Synapse (syn18485175 and syn21670836), and the data from the Morabito et al. 2021 study 

generated by our own group was not re-downloaded. We used a uniform pipeline to process each 

of these datasets, with slightly varying parameters which are noted in our GitHub repository. This 

pipeline and the resulting anndata objects are identical to those used in another study from our 

group (176), and we reiterate the main analysis steps here. Sequencing reads were 

pseudoaligned to the reference transcriptome (GRch38) and gene expression was quantified 

using the count function from kallisto bustools (177). Ambient RNA signal was corrected in UMI 

counts matrices for each sample using Cellbender (165) remove-background, and we used 

Scrublet (166) to identify barcodes attributed to more than one cell. Individual samples were then 

merged into one anndata object for each of the three studies. Analogous to the snRNA-seq data 

we generated in this study, we performed percentile filtering based on the following QC metrics: 

doublet score, number of UMI per cell, and percentage of mitochondrial reads per cell. The 

downstream processing was performed using SCANPY (170). Gene expression was normalized 

using the functions sc.pp.normalize_total and sc.pp.log1p, resulting in a ln(CPM) transformation 

of the input UMI counts data. Highly variable features were identified using 

sc.pp.highly_variable_genes, which were then scaled to unit variance and centered at zero using 

sc.pp.scale. Linear dimensionality reduction was performed on the scaled expression matrix using 

PCA with the function sc.tl.pca. Harmony (178) was used to batch correct the PCA representation 
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with the function sc.external.pp.harmony_integrate. A cell neighborhood graph was computed 

based on the harmony representation using sc.pp.neighbors, followed by Leiden (179) clustering 

and non-linear UMAP dimensionality reduction with sc.tl.leiden and sc.tl.umap respectively. 

Canonical CNS cell-type marker genes were used to assign coarse-grain identities to each 

cluster, and to identify additional doublet clusters that passed our previous filtering steps. We 

inspected the distribution of the QC metrics in each cluster and removed outlier clusters. After 

filtering additional low-quality clusters, we ran UMAP and Leiden clustering again to result in the 

final processed anndata object for each dataset. 

 

Spatial transcriptomics clustering analysis 

In the human and mouse ST datasets, we grouped spots into biologically relevant clusters by 

accounting for transcriptome measurements and spatial coordinates. The BayesSpace (180) 

clustering algorithm uses a low-dimensional representation of the transcriptome with a spatial 

prior to encourage assignment of neighboring spots in the same cluster. Critically, BayesSpace 

produces a single unified clustering across many different ST experiments, rather than separate 

clustering and annotation for each ST slide. Seurat objects were converted to the 

SingleCellExperiment format using the function as.SingleCellExperiment. Absolute and relative 

spatial coordinates were stored in the meta-data compartment of the SingleCellExperiment 

objects to inform the BayesSpace model of the spatial information, ensuring to offset each sample 

such that there was no overlap. Each dataset was log normalized and linear dimensionality 

reduction was performed with PCA using the function spatialPreprocess from the BayesSpace R 

package. Harmony batch correction was applied on the basis of individual samples using the 

RunHarmony function. For the human dataset, we ran BayesSpace clustering using the 

spatialCluster function in the BayesSpace R package, varying the q parameter (number of 
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resulting clusters) from 5 through 10. We inspected the output of each clustering and found that 

q=9 produced results that were most consistent with the underlying anatomy of the cortex, 

allowing us to annotate clusters based on cortical layers and white matter. Similarly, we ran 

BayesSpace clustering on the mouse dataset varying the q parameter between 10 and 20, and 

we selected q=15 for downstream analysis. 

 

Reference-based integration of snRNA-seq datasets 

We performed reference-based integration of the snRNA-seq dataset from the current study with 

the three published AD snRNA-seq datasets. Using our new snRNA-seq dataset as the reference, 

we projected the three published datasets into the reference latent space using scANVI (181), 

and we performed transfer learning to predict cell identities using scArches (182). While scANVI 

shares similarities with the scVI model that we previously used to process our snRNA-seq data, 

it is a semi-supervised model that leverages cell annotations in the reference dataset to inform 

the latent representation of the query dataset. We trained the scANVI model separately for each 

of the query datasets using the class scvi.model.SCANVI, training for 100 epochs in each case. 

For each query dataset, this process resulted in a low-dimensional representation of the 

transcriptome in the latent space originally learned from the reference snRNA-seq dataset with 

the model.get_latent_representation function, and predicted cell annotation labels from the 

model.predict function. We merged the reference dataset with the three query datasets, and we 

ran UMAP on the scANVI latent representation to visually represent the unified dataset in two 

dimensions. 
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Differential expression analysis 

We used MAST (183) with the function FindMarkers from Seurat to identify differentially 

expressed genes for each single-nucleus or spatial cluster. For both human datasets, we 

compared the disease group (early-stage AD, late-stage AD, or AD in DS) to control, and for the 

5XFAD dataset, we compared 5XFAD to WT for each timepoint. The following latent variables 

were used for each dataset: Study and nCount_RNA (late-stage AD snRNA-seq); Batch, 

nCount_RNA, and PMI (AD in DS snRNA-seq); Sequencing batch, Library batch, RIN, PMI, and 

nCount_Spatial (Human Visium); Sequencing batch, Library batch, Sacrifice batch, and 

nCount_Spatial (5XFAD Visium). Gene ontology term enrichment was performed using enrichR 

(129, 130)  (v 3.0), and we used ComplexHeatmap (124) (v 2.10.0) for visualization and 

hierarchical clustering. Human genes were converted into mouse orthologs with biomaRt (184, 

185) (v 2.50.0). 

 

Spatial mapping of snRNA-seq data 

We mapped our snRNA-seq dataset into spatial coordinates using the R package CellTrek (186) 

(v 0.0.94). Briefly, the CellTrek pipeline enables spatial mapping of single-cell transcriptomes by 

creating an integrated co-embedding of ST and single-cell data, followed by a multivariate random 

forest model to predict the biological coordinates from the shared feature space. In our testing, 

we found that this algorithm was limited in that it could not scale to large datasets comprising 

hundreds of thousands of single cells. Additionally, this algorithm only maps data to a single ST 

slide at a time. We also found that the CellTrek algorithm only provided predicted coordinates for 

a subset of the input single cell transcriptomes. For these reasons, we mapped our snRNA-seq 

frontal cortex data to the human ST dataset in a pairwise fashion for each snRNA-seq sample 

and each ST sample. For a given pair of ST and snRNA-seq samples, we constructed an 
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integrated co-embedding using the CellTrek function traint with default parameters. We then 

iteratively mapped the single-cell transcriptomes into the ST coordinates using the celltrek 

function over three iterations. The second iteration only included cells that were not mapped in 

the first iteration, and the third iteration only included cells that were not mapped in the first or 

second iterations. We then computed the Euclidean distance between each mapped cell and 

each of the ST spots, and we labeled each cell with a spatial annotation based on the most 

frequently observed annotation among the labels of the ten closest spots. After running the 

pairwise CellTrek mappings, we compiled the results into a single table. In sum, this process 

yielded multiple spatial coordinates and multiple annotations for each cell across the 39 human 

ST samples in this study. Given that these tissue samples varied in their grey and white matter 

content, the CellTrek mappings and inferred spatial annotations are generally not consistent 

across the ST samples. To come up with a consensus regional annotation across the different 

spatial mappings, we excluded the mappings from ST samples which were excessively high in 

white matter or grey matter content. We computed a metric summarizing the grey to white matter 

ratio in each ST sample by counting the number of grey matter spots and white matter spots, 

taking the difference, and dividing by the total number of spots. Positive values indicate higher 

grey matter content, while negative values indicate higher white matter content. We excluded 

samples with greater than 0.9 and less than -0.3, thereby retaining mappings from 34 of the ST 

samples. For each cell, we counted the number of times it was mapped to each spatial region, 

and labeled the cell based on the most frequently mapped region across the different samples. 

We further simplified these spatial annotations by upper cortical, lower cortical, or white matter 

regions. 
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Cell-cell signaling analysis  

We performed cell-cell signaling analysis in our snRNA-seq frontal cortex dataset with CellChat 

(187) (v 1.1.3), using the predicted spatial annotations in addition to cell-type labels. The human 

CellChatDB ligand-receptor interaction database was used for this analysis. To facilitate 

downstream comparisons of the signaling networks in DSAD versus control samples, we ran the 

CellChat workflow separately based on disease status. The CellChat object was created using 

the normalized gene expression matrix and the cell-type annotations with the predicted spatial 

regions from CellTrek, removing any cell groups with fewer than 30 cells. We then ran the 

recommended CellChat workflow using the following functions: identifyOverExpressedGenes, 

identifyOverExpressedInteractions, projectData, computeCommunProb, filterCommunication, 

subsetCommunication, computeCommunProbPathway, aggregateNet, and 

netAnalysis_computeCentrality. The DSAD and control CellChat objects were merged into one 

object using the mergeCellChat function. We compared the signaling networks across conditions 

both functionally and structurally using the computeNetSimilarityPairwise function. Further, we 

used the rankNet function to compute the relative information flow changes between DSAD and 

control across all signaling pathways. We identified differentially expressed ligands and receptors 

as well as their signaling pathways using the identifyOverExpressedGenes function, visualizing 

selected results with the netVisual_bubble function. 

 

Integration of amyloid imaging data and spatial transcriptomic data 

We used custom automated imaging analysis protocols (General Analysis protocols on NIS-

Elements) to obtain Amylo-glo+ and OC+ binaries, thresholding by intensity and size, as well as 

accounting for autofluorescence/non-specific staining by negative thresholding based on an 

empty channel. We exported the following values for each binary: Area (μm2), EqDiameter, center 
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X and Y coordinates. Only 5XFAD samples were used for the mouse samples, as there is no 

amyloid pathology in WT mice. Samples with high background were excluded. We calculated the 

number of Amylo-glo or OC+ binaries per spot by testing for an intersection between a spot and 

binary with the following equation: 

!"𝑋!"#$ − 𝑋%&'()*%
+ + "𝑌!"#$ − 𝑌%&'()*%

+ 	≤ 	 𝑟!"#$ +	𝑟%&'()* 

Xspot = X coordinate of spatial spot, Yspot = Y coordinate of spatial spot 

rspot = radius of spatial spot  

Xbinary = X coordinate of binary, Ybinary = Y coordinate of binary 

rbinary = radius of binary  

The radius of a spatial spot was calculated according to values provided by 10x Genomics, where 

a spot is 55μm with a 100μm distance between spot centers, and expanded the radius of a spot 

to account for the gap between spots. The radius of a binary was calculated with EqDiameter. 

The number of binaries intersecting a given spot were summed, as well as their respective area 

and diameter, and the metrics were added as metadata values for the spatial spot in the 

SeuratObject. Amyloid-associated genes were identified by differential testing as previously 

described for diagnosis comparisons, but spots were grouped Amylo-glo+/- or OC+/-. Latent 

variables used were as follows: Library batch, RIN, and nCount_Spatial (human); Library batch, 

Sacrifice batch, and nCount_Spatial (mouse). We likewise used biomaRt to convert human genes 

to mouse orthologs to detect intersecting genes between human and mouse. Mouse genes were 

limited to those identified in the cortex and white matter. 

 

Analysis of spatial proteomic data 

Image preprocessing, segmentation, and single-cell measurements were performed using the 

steinbock pipeline (188) (v 0.15.0) with the Ilastik pixel classification and CellProfiler object 
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segmentation workflow. Briefly, we trained an Ilastik classifier to identify nuclei based on the 

Ir191 and Ir193 channels, and we adjusted the CellProfiler pipeline to identify cells by dilating 

the nucleus objects with the DilateObjects module (star, size = 5). We also used steinbock to 

calculate object measurements, like mean intensity. We then imported the steinbock results as 

a SpatialExperiment object with imcRtools (v 1.0.0). Counts were transformed as an inverse 

hyperbolic sine, and we accounted for batch effects (different slides) with Harmony. We then 

used scran (v 1.22.1) to perform Louvain clustering (k = 20, rank-based edge weighting) and 

annotated clusters into neurons, microglia, and astrocytes based on marker gene expression. 

We used dittoSeq (189) (v 1.6.0) and Seurat, in which the SpatialExperiment object was 

converted into a SeuratObject with the as.Seurat function, for data visualization. 

 

Results 

Studying the Alzheimer’s disease transcriptome with spatial and cellular resolution  

We performed a cross-species study of spatially resolved gene expression changes in AD by 

generating spatial transcriptomic data (10x Genomics Visium) from both postmortem human 

prefrontal cortical tissue (n = 10 cognitively healthy controls, 9 early-stage AD, 10 late-stage AD, 

and 10 AD in DS; median 1,316 genes per spatial spot) and 5XFAD and wildtype (WT) mouse 

brains (n = 8-12 per group, 4 separate timepoints; median 2,438 genes per spatial spot) (Fig. 

3.1a, Supplementary Fig. 3.1, Methods). We used BayesSpace, a clustering algorithm leveraging 

neighboring spot information, (103) to identify 9 transcriptionally distinct clusters in our human 

dataset—3 white matter (WM) clusters and 6 grey matter clusters encompassing the cortical 

layers—and 15 brain-region specific clusters in our mouse dataset (Fig. 3.1b-c, Methods). We 

annotated these clusters post hoc based on the expression of known marker genes and their 

localization within the tissue sections (Supplementary Fig. 3.1a-b, Supplementary Table 2 ii). Due 
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to clear heterogeneity across the human samples, we examined the distribution of the spatial 

spots by diagnosis for each cluster and found that most clusters are well represented across the 

diagnoses, except for WM3 in early-stage AD cases (Supplementary Fig. 3.1c). In addition, two 

mouse clusters were sparsely distributed throughout tissue sections with no clear localization. 

One we identified as a mixture of erythrocytes and neurons based on marker gene expression, 

while we determined the other to be low quality spots based on the number of UMIs and did not 

include it in the rest of our analyses (Supplementary Fig. 3.1d). 

We additionally generated snRNA-seq data (Parse Biosciences, SPLiT-seq) from cognitively 

healthy controls (n = 27 prefrontal cortex/FCX, 27 posterior cingulate cortex/PCC) and AD in DS 

(n = 21 FCX, 21 PCC; 55 individuals total) and integrated this dataset with 3 previously published 

datasets (75, 78, 85) (FCX; total n = 27 cognitively healthy controls, 23 early-stage AD, and 48 

late-stage AD) for a total of 585,042 nuclei (Fig. 3.1d, Supplementary Fig. 3.2, Methods). In this 

integrated dataset, we identified not only layer-specific excitatory neuron subpopulations, but also 

vascular subpopulations as described previously (74) (Fig. 3.1e). Furthermore, we examined the 

expression of an “ex vivo activation” signature, previously defined as an artifact of sample 

processing (190). Although we did find expression of select ex vivo activation genes, like 

HSPA1A, HSPA1B, FOS, and JUN, in our datasets, the overall expression, calculated as a score 

(191), of this gene expression signature was relatively low (Supplementary Fig. 3.1h-i, 3.2g). 
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Figure 3.1. Spatial transcriptomics and snRNA-seq to study Alzheimer’s disease  

a, Schematic overview of the spatial transcriptomic datasets. b, Plots of spatial spots and their x, y coordinates from 

representative human samples, colored by BayesSpace cluster assignments. WM = white matter. c, Plots as in (b) 

from representative mouse samples. Ctx = cortex, pyr. = pyramidal, hypothal. = hypothalamus, c. peduncle = cerebral 

peduncle. d, Schematic overview of the snRNA-seq datasets. e, UMAP visualization of snRNA-seq clusters in the 
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integrated dataset, colored by cluster assignments. ASC = astrocyte, Arterial = arteriole endothelial cell, Capillary = 

capillary endothelial cell, EX = excitatory neuron, INH = inhibitory neuron, MG = microglia, M. Fibro. = meningeal 

fibroblast, M-Pericyte = extracellular matrix pericyte, ODC = oligodendrocyte, OPC = oligodendrocyte precursor cell, P. 

Fibro. = perivascular fibroblast, SMC = smooth muscle cell, T-Pericyte = transport pericyte). f, Heatmap of differentially 

expressed genes (average log2(fold-change) cutoff = 0.5) by chromosome in AD in DS samples from the spatial 

transcriptomic dataset. g, Violin plots of genes residing in chromosome 21 by diagnosis and spatial cluster. h, Heatmap 

as in (f) but from the snRNA-seq dataset. i, Violin plots of genes residing in chromosome 21 by diagnosis and cell-type. 
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Supplementary Figure 3.1. Quality control for spatial transcriptomic datasets 

a-b, Dot plots of marker gene expression in human spatial clusters (a) and mouse spatial clusters (b). Size of the dot 

is the percent of spots expressing a gene. c, Left: Dot plot of percent of spots per human spatial cluster by diagnosis. 

Right: Bar plot of the total spatial spot number for each human spatial cluster. d-e, Violin plots of the number of unique 



 82 

molecular identifiers (UMIs) by mouse spatial cluster (d) and by human spatial cluster (e). f-g, Violin plots as in (d) by 

individual human samples (f) and by individual mouse samples (g). h-i, Violin plots of ex vivo activation score (190) by 

group across human (h) and mouse (i) spatial clusters. 
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Supplementary Figure 3.2. Quality control for single-nucleus RNA-seq dataset 

a, Violin plots of the number of unique molecular identifiers (UMIs) by sample, split by region frontal cortex (FCX, top) 

and posterior cingulate cortex (PCC, bottom). b, Violin plots as in (a) but showing the number of genes. c, UMAP 

visualizations of the individual snRNA-seq datasets comprising the integrated snRNA-seq dataset. Nuclei are colored 

by their cluster assignments in the integrated dataset. d, Bar plot of the number of nuclei in each cluster. e-f, Heatmaps 

of snRNA-seq  cluster marker genes identified by differential expression analysis, split by the late-stage AD datasets 

(e) and AD in DS dataset (f). g, Violin plots of ex vivo activation score (190) by group across the snRNA-seq clusters. 

 

Regional and cell-type specific gene expression changes in clinical Alzheimer’s disease 

To identify disease-associated gene expression changes with cellular and spatial resolution, we 

performed differential expression analysis (with respect to controls) for our human spatial and 

single-nucleus datasets (Methods, Supplementary Table 3 ii). We focused our analyses on the 

FCX, since we had both spatial and single-nucleus data for this region. Considering the extra 

copy of chr21 suggests there will be overexpression of chr21 genes in our AD in DS samples, we 

first wanted to examine the differential expression of genes by chromosome. However, we found 

that not all chr21 genes are upregulated in both our spatial and single-nucleus datasets, and 

upregulation was dependent on region or cell-type (adjusted p-value < 0.05, Fig. 3.1f-h). For 

example, APP expectedly is upregulated in AD in DS samples but interestingly is not significantly 

different from control samples in spatial cluster L3/4. Our findings are in line with Palmer & Liu et 

al.’s snRNA-seq study of DS (164). Moreover, we found genes residing in other chromosomes 

are also significantly changing, similar to early- and late-stage AD (Supplementary Fig. 3.3a-b).  
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Supplementary Figure 3.3. Differential expressed genes by diagnosis in spatial and snRNA-seq data  

a, Heatmaps of differentially expressed genes (DEGs, average log2(fold-change) cutoff = 0.5) by chromosome in early- 

(left) and late-stage AD (right) samples from the spatial transcriptomic dataset. b, Heatmap of DEGs as in (a) in late-

stage AD samples from the snRNA-seq dataset. c, Upset plots of DEGs stratified by upregulated or downregulated in 

each diagnosis for each human spatial cluster. d, Heatmap of correlation coefficients from comparing average log2(fold-

change) values. All comparisons were significant.  

 

We next wanted to further assess the convergence or divergence of disease-associated gene 

expression changes between diagnoses for each cluster. In our spatial data, although the majority 

of DEGs were unique to a diagnosis, we still discovered many are conserved, including genes 

previously associated with AD, like CST3, VIM, NEAT1, and CLU in cluster L3-5 (Supplementary 

Fig. 3.3c). We also found significant and positive fold-change correlations across spatial and 

single-nucleus clusters, except in smaller vascular clusters and OPC2 (Supplementary Fig. 3.3d, 

3.4). Notably correlations were stronger in grey matter clusters, compared to WM clusters, and 

this was matched in the single-nucleus data, where the correlations were also stronger in neuronal 

clusters, relative to glial clusters. We focused on the DEGs shared between late-stage AD and 

AD in DS, considering both conditions exhibit extensive amyloid and tau pathology. Disease-

associated gene expression changes conserved between late-stage AD and AD in DS 

demonstrated strikingly region-specific patterns, separating by grey and WM (Fig. 3.2a). We 

additionally examined gene ontology (GO) term enrichment of these shared DEGs and found 

region-specific enrichment of AD-relevant biological pathways, such as upregulation of genes 

related to calcium signaling in WM3 and downregulation of those related to amyloid fibril formation 

in L3/4 and L3-5 (Fig. 3.2b). Furthermore, we found similar GO term enrichment in our cell 

subpopulations (Fig. 3.2c). Genes associated with NIK/NF-kappaB signaling were downregulated 

in spatial cluster L3/4 and excitatory neuron clusters EX L2/3 and L3-5. We also examined the 

differential expression of these same genes in the PCC and found that most are positively 
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correlated with that in the FCX, with few unchanging in either region (Supplementary Fig. 3.5). In 

addition, effect sizes appeared to be larger in the PCC for select clusters (β > 1). Previously, we 

observed that gene expression changes mirror the anatomic progression of AD (45), and the PCC 

is a site of early changes in AD (192). Altogether we identified conserved regional and cellular 

transcriptional changes between late-stage AD and AD in DS, supporting the utility of studying 

AD in DS to understand AD molecular changes in both DS and the general population. 
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Figure 3.2. Spatially resolved transcriptomic changes in clinical Alzheimer’s disease  

a, Heatmap of average log2(fold-change) for differentially expressed genes (DEGs) shared between late-stage AD and 

AD in DS (adjusted p-value < 0.05 in both comparisons, average log2(fold-change) cutoff = 0.2) by diagnosis and spatial 

cluster. b, Dot plots of gene ontology (GO) term enrichment of late-stage AD and AD in DS shared DEGs (adjusted p-

value < 0.05 in both comparisons) by spatial cluster, split by upregulated (top) and downregulated genes (bottom). c, 

Dot plots as in (b) but from snRNA-seq data, split by upregulated (top) and downregulated genes (bottom). d, Overview 

of our integration of spatial transcriptomics and snRNA-seq. Spatial transcriptomic samples were used to map nuclei 

profiled by snRNA-seq with CellTrek to spatial coordinates within tissue sections. We used our annotations of our 

spatial transcriptomic clusters to then assign spatial annotations to the snRNA-seq nuclei. e, Stacked bar plot of 

signaling pathways enriched in control (green) or AD in DS (purple) nuclei. f-g, Circle plots of ANGPTL (f) and CD99 

(g) signaling pathway networks in control nuclei (left) and AD in DS nuclei (right) by spatially annotated snRNA-seq 

cluster. Arrows indicate direction (sender/receiver). 
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Supplementary Figure 3.4. Correlations of snRNA-seq DEGs identified in late-stage AD and AD in DS 

Scatterplots comparing average log2(fold-change) values in late-stage AD (X-axis) and AD in DS (Y-axis) for each 

snRNA-seq cluster. Points are colored blue if shared between the diagnoses, yellow if their directionalities are opposite, 

and grey if below average log2(fold-change) cutoff of 0.05.  

 
 
Supplementary Figure 3.5. Regional correlations of snRNA-seq DEGs identified in late-stage AD and AD in 

DS 

Scatterplots comparing average log2(fold-change) values in posterior cingulate cortex (PCC) (X-axis) and frontal cortex 

(FCX) (Y-axis) for each snRNA-seq cluster with more than 20 significant DEGs shared between late-stage AD and AD 

in DS. Points are colored blue if shared between the regions, yellow if their directionalities are opposite, and grey if not 

significant (adjusted p-value < 0.05). 

 

Spatial annotation of cell clusters to identify cell-cell signaling dysregulated in disease 

While excitatory neuron subpopulations clustered and easily could be annotated by cortical layer, 

in the case of inhibitory neurons and glia, we were not able to stratify these populations by region 
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with snRNA-seq alone. Therefore, we sought to leverage our spatial transcriptomic data to infer 

the region localization of our snRNA-seq clusters. We used CellTrek, a method integrating spatial 

and single-cell data to predict the spatial coordinates of a cell in a tissue section (193) (Fig. 3.2d, 

Methods). With this expanded annotation of our snRNA-seq clusters, we wanted to assess how 

cell-cell communication may be dysregulated in AD with CellChat (194). CellChat identifies 

signaling pathways between cells based on the expression of a ligand and corresponding 

receptor. We rationalized that the additional spatial information would provide greater evidence 

for a communication pathway than snRNA-seq alone, since cells in proximity are more likely to 

be in communication with each other. We identified several signaling pathways up- or 

downregulated in disease (Fig. 3.2e, Supplementary Table 4 ii) and highlight ANGPTL and CD99 

signaling pathways. We found ANGPTL signaling is upregulated in AD in DS, and in control 

samples, astrocyte clusters in cortical lower layers and the white matter (ASC1 and ASC3, 

respectively) communicate with a variety of cell-types, including neurons, pericytes, and 

oligodendrocyte progenitor cells (OPCs), by the ligand ANGPTL4 (Fig. 3.2f). However, in AD in 

DS, additional astrocytes, like ASC1 and ASC3 in the cortical upper layers, also express 

ANGPTL4. Increased ANGPTL4 expression has been previously observed in astrocytes from AD 

patients with vascular changes (195). Interestingly, we also see a loss of astrocyte-inhibitory 

neuron communication with disease. On the other hand, CD99 signaling is downregulated in AD 

in DS (Fig. 3.2g); we discovered pericyte and astrocyte (ASC3) communication with excitatory 

and inhibitory neuronal populations is absent, indicating that disrupted CD99-CD99L2 signaling 

may underlie the neurovascular changes seen in AD. Notably, despite the overall downregulation 

of CD99 signaling in AD in DS, we also found CD99-PILRA signaling between cortical lower layer 

pericytes and microglia exclusively in AD in DS. PILRA, a myeloid inhibitory signaling receptor, 

has been associated with AD genetic risk (9, 11, 196, 197); our findings implicate pericytes in the 

modulation of microglial function in AD via PILRA activity. 
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Species-conserved disease-associated gene expression changes 

In addition, we wanted to identify evolutionary-conserved AD transcriptional changes, since drug 

development largely relies on mouse models. However, mouse models of AD have been criticized 

for discrepancies with clinical AD. Considering previous literature shows baseline regional 

differences between human and mouse (56, 198), we hypothesized that there may be also 

regional differences in disease. In addition, we believe that identification of the features shared 

between human and mouse will help forward in vivo research. We performed differential 

expression analysis on our mouse spatial transcriptomic dataset (5XFAD vs WT for each 

timepoint) and found an increasing number of upregulated genes over time, except in thalamic 

clusters, where the maximum was at the earliest timepoint, 4 months (Supplementary Fig. 3.6a-

b, Supplementary Table 5 ii). Upregulated genes at 4 months in the thalamus included disease-

associated microglia (DAM) genes (77), like Cst7, Tyrobp, Ctsd, and Trem2, suggesting an early 

response to plaques localized to the thalamus, and with increasing age, we found upregulation of 

these genes across brain regions.  
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Supplementary Figure 3.6. 5XFAD differentially expressed genes and human amyloid analysis 

a, Bar plots of upregulated (top) and downregulated (bottom) genes identified in the 5XFAD by timepoint and spatial 

cluster. b, Lollipop plots of gene ontology (GO) term enrichment for upregulated (top) and downregulated (bottom) 

genes by timepoint and cluster. c, Representative whole-section images of the Amylo-glo and OC staining for amyloid 
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pathology in early-stage (left) and late-stage AD (right) samples as in Fig. 3.3d. d-f, Plots of spatial spots and their x, y 

coordinates from the samples as in (c), colored by Amylo-glo score (total number of intersecting Amylo-glo+ detections 

multiplied by the summed area) (d), OC score (total number of intersecting OC+ detections multiplied by the summed 

area) (e), and normalized ADARB1 expression (f). 
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Figure 3.3. Species-conserved disease-associated gene expression changes  

a, Heatmap of correlation coefficients from comparing average log2(fold-change) values between human and mouse 

spatial transcriptomic data for differentially expressed genes (DEGs) identified in human spatial transcriptomic data by 

cluster (adjusted p-value < 0.05). DEGs were identified individually for all diagnoses, and human L3-5, L5/6, and L6b 

DEGs were compared with mouse orthologs in mouse ctx (deep layers) at each timepoint. Human L1, L2/3, and L3/4 

DEGs were compared with mouse orthologs in mouse ctx (upper layers) at each timepoint. * p < 0.05, ** p < 0.01, *** 

p < 0.001. b, Heatmap as in (a) but in human and mouse WM clusters. DEGs for each diagnosis from each human WM 

cluster was compared individually to a mouse WM cluster at each timepoint. c, Heatmap of average log2(fold-change) 

for DEGs identified in human spatial transcriptomic data that are also significantly changing in mouse spatial 

transcriptomic data (adjusted p-value < 0.05 in both human and mouse and with same directionality) by timepoint and 

mouse spatial cluster. d, Representative whole-section images of the Amylo-glo and OC staining for amyloid pathology 

in a human AD in DS sample (left) and a 12-month 5XFAD sample (right). The tissue sections were sectioned onto 10x 

Genomics Visium slides to perform immunofluorescence and generate cDNA libraries from the same tissue section. e, 

Plots of spatial spots and their x, y coordinates from the samples as in (d), colored by cluster as in Fig. 3.1b-c. f-h, 

Plots of spatial spots as in (e), colored by Amylo-glo score (total number of intersecting Amylo-glo+ detections multiplied 

by the summed area) (f), OC score (total number of intersecting OC+ detections multiplied by the summed area) (g), 

and normalized ADARB1 expression (h). 

 

We then examined the expression of DEGs identified in our human spatial dataset in a matched 

comparison with our mouse spatial dataset (Fig. 3.3a-c). Mouse cortical upper and deep layer 

clusters were compared with the corresponding human cortical layer clusters (L1, L2/3, and L3/4; 

L3-5, L5/6, and L6b, respectively). However, white matter clusters were all individually compared 

with each other. We found significant and positive fold-change correlations in most cortical layer 

comparisons, except L1 and L6b. Like our comparison of AD in DS and late-stage AD, WM 

correlations were weaker, altogether indicating that the 5XFAD model recapitulates some, but not 

all, clinical AD changes. Our analyses compiled a list of species-conserved, regional DEGs 

comprising some of the genes previously identified in disease-associated glial signatures (77, 79, 

82) (Supplementary Table 5 ii). 
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Furthermore, we investigated the preservation of amyloid-associated genes between mouse and 

human. The 5XFAD harbors five familial AD mutations inducing robust amyloid pathology. We 

performed immunostaining for amyloid pathology with Amylo-glo (199) and the conformation-

specific antibody OC (200) prior to generating cDNA libraries for our mouse and human tissue 

sections, thus obtaining both protein and RNA expression data from the same tissue section (Fig. 

3.3d-e). We integrated imaging analysis with the spatial transcriptomic data in order to obtain 

amyloid deposition scores for each spatial spot and identified genes upregulated in spatial spots 

with amyloid pathology (amyloid-associated genes, Fig. 3.3f-g, Supplementary Fig. 3.6-7, 

Supplementary Table 6 ii, Methods). Similar to Chen et al. (99), we found limited overlap between 

mouse and human amyloid-associated genes, and our list of shared amyloid-associated genes 

contained 6 genes from their plaque-induced genes (PIGs)—Apoe, Clu, Cst3, Gfap, Grn, and 

Vsir. Serpine2, Cpe, and Vim were previously found in a proteomic study (201). We also identified 

novel genes, like Adarb1/ADARB1, which catalyzes adenosine to inosine RNA editing (Fig. 3.3h, 

Supplementary Fig. 3.6-7). Although a previous study found RNA editing decreases in AD (202), 

our results suggest that this may be spatially dependent, where differential RNA editing may be 

spatially restricted to amyloid pathology—possibly as a response to amyloid pathology. 



 98 

 

Supplementary Figure 3.7. 5XFAD amyloid analysis 

a, Representative whole-section images of the Amylo-glo and OC staining for amyloid pathology in 4, 6, and 8-month 

5XFAD samples as in Fig. 3.3d. Amylo-glo intensity was increased to improve visualization of the tissue section. b-d, 

Plots of spatial spots and their x, y coordinates from the samples as in (a), colored by Amylo-glo score (total number of 

intersecting Amylo-glo+ detections multiplied by the summed area) (b), OC score (total number of intersecting OC+ 

detections multiplied by the summed area) (c), and normalized Adarb1 expression (d). 

 

Protein validation of transcriptomic analyses 

Since gene expression measurements may not be reflective of protein expression, we used a 

spatial proteomic approach, imaging mass cytometry (IMC), in which antibodies are conjugated 
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to metals, thereby avoiding autofluorescence issues inherent to aged postmortem human brain 

tissue. We generated IMC data from FCX tissue from 3 cognitively healthy controls, 4 late-stage 

AD, and 4 AD in DS and analyzed protein expression changes from a total of 76,178 cells (Fig. 

3.4, Methods). After the removal of batch effects, we clustered the cells and annotated them 

based on the expression of GFAP, Map2, and Iba1 (Fig. 3.4c). We found that Cystatin C (CST3) 

is increased in microglia and astrocytes from late-stage AD and AD in DS (Fig. 3.4d). In our spatial 

transcriptomic data, CST3 was upregulated in both groups in spatial clusters L3-5 and L5/6; 

however, we did not find the same congruence in our snRNA-seq data. CST3 was upregulated in 

only ASC1 for AD in DS and MG2 for late-stage AD. We additionally discovered CD44 is 

upregulated in astrocytes from both diagnoses, but microglial upregulation of CD44 was confined 

to AD in DS (Fig. 3.4e). Similar to CST3, we found that CD44 expression in the spatial 

transcriptomic data was more concordant than that in the snRNA-seq data. We expected CD44  

upregulation in astrocytes, but we did not detect microglial upregulation of CD44 at the single-

nucleus transcriptome. This discrepancy may be due to a variety of reasons, like lower resolution 

of microglia, but nevertheless points to the need for a comprehensive multi-omic approach. 
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Figure 3.4. Spatial proteomics in clinical AD samples 

a, Representative IMC images from control, late-stage AD, and AD in DS samples with select targets from the panel. 

b, Zoomed-in images as in (a) but showing only cell-type markers (left); amyloid and tau pathology localization with 

microglia and astrocytes, along with Cystatin C (right top) or CD44 (right bottom). c, Heatmap of transformed expression 

values for select targets in randomly sampled 5,000 cells. Louvain cluster assignments and cell-type annotations are 

shown above. d, Violin plots of Cystatin C expression in astrocytes (top) or microglia (bottom) for each diagnosis. e, 

Violin plots as in (d) but of CD44 expression. Two-sided Wilcoxon test (ns: p > 0.05, *: p <= 0.05, **: p <= 0.01, ***: p 

<= 0.001, ****: p <= 0.0001). 
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Discussion 

Single-cell sequencing has uncovered cell-type and cell subpopulation-specific changes in 

disease, yielding novel insights into disease pathophysiology and gene targets for further study. 

However, a critical limitation of these methods is their inability to capture spatial information, and 

many disorders have spatially defined characteristics. AD pathology progresses in a predictably 

anatomical manner that may be linked to brain circuitry. We generated spatial transcriptomic data 

from postmortem human brain tissue samples of clinical AD, encompassing early- and late-stage 

AD in the general population, as well as AD in DS. Due to technical limitations, we could not profile 

gene expression at a macroscopic level of multiple brain regions, and our samples had varying 

amounts of cortical layers and white matter. We additionally generated spatial transcriptomic data 

from the 5XFAD mouse model of AD, in which we could assess both multiple brain regions and 

the temporal dynamics of disease progression, with the added benefit of lowered sample 

heterogeneity.  

We identified regional transcriptomic changes shared between AD in the general population and 

DS, in line with previous accounts of shared genetic, clinical, and biomarker features (23–25). 

Further, we generated the first snRNA-seq study of AD in DS and integrated previously published 

AD studies to uncover cellular changes conserved between both populations. Both our human 

spatial and single-cell datasets are of the largest among currently published AD studies (n = 39 

individuals; 55 new individuals in the integrated dataset, respectively). We leveraged a newly 

published method, CellTrek (193), to provide spatial coordinates for our snRNA-seq populations 

and the cell-cell communication analytical package CellChat (194) to reveal disease-associated 

cellular communication changes, which highlighted the role of astrocytes in AD pathophysiology 

and pinpointed downstream targets of AD astrocyte phenotype changes.  

Our mouse spatial dataset is additionally the largest of our knowledge (n = 80 total), altogether 

representing a large resource for the AD community, and we investigated the expression of DEGs 
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identified in clinical AD in the 5XFAD. Identification of cross-species disease changes are of 

particular interest for mouse model development and preclinical translation. We found regional 

evolutionary-conserved disease gene expression changes by analyzing both human and mouse 

spatial datasets. Furthermore, we integrated imaging analysis to reveal amyloid-associated genes 

shared between both species. Although previous 5XFAD studies identified amyloid-associated 

subpopulations and genes, not all may be recapitulated in clinical AD, and this has been 

previously highlighted in human AD snRNA-seq studies examining the DAM signature. While this 

may be due to single-cell vs single-nucleus comparisons, a previous study of snRNA-seq of 

human AD and 5XFAD (78), in addition to our previous re-analysis (85), demonstrated that this 

may be a species difference. In the present study, we present a list of species-conserved amyloid-

associated genes, including previously identified and novel genes. However, we also note that 

the current resolution of spatial transcriptomics may have limited our findings. 

Finally, we generated a spatial proteomic dataset to examine the protein expression of genes we 

identified in our transcriptomic datasets. Notably we found that findings in the spatial 

transcriptomic data were upheld at the protein level; however, we could not confirm layer-specific 

expression due to technical limitations. snRNA-seq results were less concordant with the 

proteomic data. Although this may be due to profiling only nuclear RNA, resultant protein 

expression may also be affected by posttranscriptional and posttranslational regulatory changes, 

as well as protein trafficking, which may not be captured in transcriptomic data. High-throughput 

methods to assess protein expression, however, are still limited, and the availability of effective 

antibodies remains a large impediment in the study of proteins. Altogether, this study clarifies the 

molecular changes occurring in clinical AD at both spatial and cellular levels and highlights those 

that are recapitulated in a commonly used AD mouse model. 

 
ii Please contact for access. 
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Dissertation Concluding Remarks 

AD remains a large societal issue, in which not only the patient, but also family and caregivers 

are affected. Years of research were poured into elucidating the role of Aβ in AD. Although the 

recent success with the anti-amyloid antibody lecanemab is uplifting, amyloid-targeting 

therapeutics have been largely underwhelming in clinical trials (203). Additionally, tau pathology 

was revealed to better correlate with cognitive decline than Aβ, thus causing attention to shift 

towards the mechanisms behind tau aggregation and propagation; however, anti-tau therapies 

likewise have been disappointing (204). Cognitively intact individuals with high amyloid and tau 

pathology (205), moreover, indicate that AD pathophysiology is more complex than its 

pathological hallmarks and impress a need to delineate the underlying biological pathways and 

regulators of neurodegeneration. 

Early genetic studies of AD uncovered APOE as the strongest genetic risk factor for LOAD (6, 7), 

and revolutionary technological advancements, in addition to the organization of several 

consortia, empowered us to perform large-scale AD GWAS. AD genetics is incredibly complex, 

and we have continued to identify novel loci associated with AD risk (8–15). However, there is 

also rising concern of the validity of these increasing numbers and whether they are truly AD risk 

factors, since recent cohorts have been comprised of individuals without pathologically confirmed 

diagnoses (206). Nevertheless, AD GWAS has expanded our knowledge of the disease by 

pinpointing new avenues for study, like the role of microglia and neuroinflammation in AD, and is 

a strong example of the beneficial outcomes of the ever-expanding “-omics” fields. 

RNA and protein expression are more functional assessments of genomic changes, and multiple 

published studies have examined the transcriptome of AD (26–35), with increasing sample 

numbers as RNA-seq has become cheaper, as well as more widely accessible. Services, like 

Novogene, allow labs without RNA-seq expertise to generate transcriptomic data, and the 
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increasing accessibility allows interdisciplinary research required for comprehensive investigation 

of complex disorders, like AD. We now realize, however, that “bulk” or tissue-level RNA-seq is 

limited; we obtain only the average of gene expression signals for a given tissue. The human 

brain is cellularly complex, and it is increasingly clear that we need to study the transcriptome at 

a cellular level. We and others have generated sc- or snRNA-seq data to study AD, revealing 

disease-associated gene expression changes are dependent on cell-type and cell subpopulation 

(75–79, 82, 84, 85, 104). In this dissertation, we build on previous literature describing disease-

associated, transcriptionally-defined glial subpopulations in the 5XFAD mouse model and 

characterize similar subpopulations in human late-stage AD samples at both the transcriptome 

and epigenome (Chapter Two).  

Much like the rapid emergence and adoption of single-cell profiling, we are now seeing a parallel 

in spatial profiling methods. The human brain is structurally organized into distinct functional 

regions, and neurons are spatially arranged in a laminar organization. AD pathology follows an 

anatomical progression (207), and cell-types, such as microglia and astrocytes, are 

morphologically distinct when in proximity or distal to Aβ pathology, suggesting that they may also 

be transcriptionally distinct. However, because snRNA-seq does not retain spatial information, we 

could not concretely associate AD molecular phenotypes with spatial localization. With spatial 

transcriptomics, we also cannot guarantee a 1:1 cell to spot ratio; one spatial barcode may 

represent the transcripts of a mixture of cells rather than one cell. Therefore, to overcome both 

assays’ limitations, we integrated spatial transcriptomic data with snRNA-seq data to define the 

spatial relationships between disease molecular signatures, and we expanded our analyses to 

the 5XFAD, as well as AD in DS, to perform a comprehensive, comparative study of the AD 

transcriptome (Chapter Three). 

Although our analyses encompassed both neuron and glial populations, I will focus on our findings 

from microglia, oligodendrocytes, and astrocytes—the cell populations for which we constructed 
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multi-omic trajectories. Microglia have been heavily implicated in AD; many AD GWAS risk genes 

are immune-related or expressed by microglia. With our snATAC-seq data, we confirmed the 

association of AD genetic risk factors and microglia. Our multi-omic trajectory analysis portrayed 

a transition from homeostatic to a disease-associated microglial state, similar to that identified in 

the 5XFAD (77).  However, we found that the DAM signature identified in the 5XFAD is not fully 

recapitulated in clinical AD, and this is consistent with other snRNA-seq studies (78, 83). We 

further revealed inconsistences between clinical AD and the 5XFAD mouse model in our spatial 

analyses but identified several microglial genes dysregulated in both species, including C1qa, 

C1qb, Cd74, B2m, and Timp2. We also highlighted the microglial TF PU.1, encoded by SPI1, in 

our single-nucleus multi-omic analysis, providing evidence of its role as a transcriptional repressor 

and its potential downstream targets. We note, though, several limitations that may have impeded 

our examination of microglia: artificial effects from sample processing, limited resolution or 

statistical power due to lower cell numbers, and a smaller cell size that impedes spatial profiling.  

Oligodendrocytes are the dominant cell population of white matter regions and have been 

understudied in the context of AD. Dysregulation of oligodendrocytes may contribute to 

neurodegeneration through impairments in myelin formation and maintenance. We discovered 

substantial oligodendrocyte heterogeneity at both transcriptomic and epigenomic levels, mirroring 

that identified in other human and mouse studies (60, 68–70). We found a decrease in both newly-

formed and myelinating oligodendrocytes in late-stage AD, suggesting that there are changes in 

OPC differentiation and oligodendrocyte maturation. Additionally, we revealed SREBF1 as an 

oligodendrocyte-specific TF downregulated in AD, regulating genes that are members of AD-

correlated oligodendrocyte gene co-expression networks. SREBF1 appears to act as a 

transcriptional activator, and we confirmed the downregulation of SREBF1 and its downstream 

target ASCL4 with RNA in situ hybridization. Surprisingly we did not identify oligodendrocytes 

outside of the white matter in our integration of spatial and snRNA-seq data, but this may be a 
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limitation of our integrative analysis that can be alleviated with a single-cell spatial profiling 

method.  

Finally, astrocytes are morphologically and functionally diverse, with single-cell profiling 

expanding our understanding of astrocyte heterogeneity. Reactive astrocytes, marked by an 

increase in GFAP expression, around Aβ plaques have long been documented (208). Our multi-

omic analysis similarly identified a disease-associated astrocyte state with increased GFAP 

expression, and these astrocytes had a similar gene expression signature to that found in the 

5XFAD (79). We likewise discovered some of the same genes composing this signature (Gfap, 

Ctsb, Vim, Serpina3n) are upregulated in our human and mouse spatial data. Evolutionary-

conserved amyloid-associated genes were also astrocytic (Apoe, Clu, Cst3, Gfap, Vim). 

Moreover, integration of snRNA-seq and spatial data allowed us to stratify our astrocyte 

subpopulations by WM and cortical layer localization, and cell-cell signaling analysis revealed 

regional changes in astrocyte communication with a broad number of cell-types, including 

neurons and pericytes. Astrocytes are known to be involved in synaptic transmission and blood-

brain barrier maintenance; we discovered changes in astrocytic ANGPTL and CD99 signaling that 

highlight astrocyte modulation of brain vascular integrity in AD. Several AD dysregulated genes 

in astrocytes also include those related to the extracellular matrix (CD44, CHI3L1, COLEC12). 

Secreted and cell surface molecules, however, may not be fully captured with transcriptomics, 

and we can expect the rise of epitranscriptomics and proteomics, specifically secretomics, to 

further disentangle the molecular changes of AD.  

Collectively this dissertation represents both technical and biological advancements in the study 

of AD. We developed protocols for technically challenging postmortem human brain tissue 

samples and generated precedent datasets for the AD community. In addition, the evaluation of 

both human and mouse samples is critical to forward our development of mouse models and 
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therapeutics. We present six datasets available for researchers to further examine and highlight 

several areas for follow-up in vitro and in vivo mechanistic studies.  
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