
UC San Diego
Technical Reports

Title
APST-DV: Divisible Load Scheduling and Deployment on the Grid

Permalink
https://escholarship.org/uc/item/4436n65h

Authors
van der Raadt, Krijn
Yang, Yang
Casanova, Henri

Publication Date
2004-04-28
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/4436n65h
https://escholarship.org
http://www.cdlib.org/


APST-DV: Divisible Load Scheduling and Deployment on the Grid

Krijn van der Raadt 1 Yang Yang 2 Henri Casanova 1,2

1San Diego Supercomputer Center 2 Dept. of Computer Science and Engineering

University of California, San Diego

Abstract

Divisible load applications have received a lot of at-

tention in recent scheduling literature. These ap-

plications consist of an amount of computation, or

load, that can be divided arbitrarily into indepen-

dent pieces. The problem of Divisible Load Schedul-

ing (DLS) has been studied extensively, but mostly

from the theoretical standpoint. In this paper we fo-

cus on practical issues and make the following con-

tributions: we implement previously proposed DLS

algorithms as part of a generic production Grid ap-

plication execution environment, APST; we evaluate

and compare these algorithms on a real-world two-

cluster platform; and we uncover several issues that

are critical for using DLS theory in practice effec-

tively. To the best of our knowledge the software re-

sulting from this work, APST-DV, is the first usable

and generic tool for deploying divisible load applica-

tions on current distributed computing platforms.

1 Introduction

The divisible load application model corresponds to

computations that can be divided arbitrarily into ar-

bitrary numbers of independent pieces (i.e., they can

be executed in any order). This application model

is a good approximation of many real-world appli-

cations in scientific computing [25, 33, 2, 34, 45,

15, 9, 20, 42, 15, 4, 23, 17]. Divisible load applica-

tions are amenable to the simple master-worker pro-

gramming model and can therefore be easily imple-

mented and deployed on current parallel computing

platforms ranging from one single cluster to several

clusters aggregated in a Grid platform.

For most parallel applications that must be exe-

cuted on a distributed platform, two key challenges

for users are easy deployment and high performance,

and divisible load applications are no exceptions.

The deployment challenge is particularly severe on

Grid platforms as they contain heterogeneous re-

sources with a range of access methods and policies.

Furthermore, while the current Grid middleware in-

frastructure [22] provides most of the required func-

tionality for Grid application deployment, it is com-

plex and not designed to be used by end users (i.e.,

disciplinary scientists). A successful approach to

solve this challenge has been to provide so-called

“application-level tools” that take on the burden of

all application deployment logistics on behalf of the

user. A taxonomy of such tools is available in [6].

Previous work on divisible load applications, includ-

ing our own, has been either purely theoretical or

specific to a single application. Our first contribu-

tion in this paper is to provide a generic application-

level tool for the easy deployment of these applica-

tions on Grid platforms. We build on an existing Grid

application-level tool, APST [13, 5], which is cur-

rently used in production for several Grid applica-

tions [29, 32, 43, 28], and to which we add support

for divisible load applications. With this new tool,

which we call APST-DV, users can deploy their ap-

plications on a wide variety of resources completely

automatically and transparently.

The challenge of divisible load application per-

formance has received a lot of attention in the lit-

erature and many authors have proposed divisible

load scheduling (DLS) algorithms. Consequently,
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we have implemented some of the most recent and

efficient DLS algorithms within APST-DV. Our sec-

ond contribution in this paper is a practical evalu-

ation and comparison of these algorithms, obtained

by running APST-DV on a real-world platform. Be-

yond demonstrating APST-DV’s functionality, these

experiments allow us to identify issues relevant to the

use of divisible load theory in practice.

This paper is organized as follows. We present

background on divisible load applications and divis-

ible load scheduling in Section 2. Section 3 briefly

describes the APST software and highlight the key

aspects of our implementation of APST-DV, includ-

ing the DLS algorithms. We present our experimen-

tal results in Section 4, and Section 5 concludes the

paper with future directions.

2 Divisible Load: Applications and

Scheduling Algorithms

In this section we define the divisible load model,

give examples of real-world divisible load applica-

tions, and provide a small survey that highlights the

spectrum of application characteristics. Then we re-

view relevant previous work in the area of DLS.

2.1 Divisible Load Applications

The input to a divisible load application consists

of many small independent parts, and the process-

ing time of each part is small compared to the to-

tal time to process the whole input. So the to-

tal input can be divided into chunks of arbitrary

sizes, which may be processed in any order (and

each chunk may itself contain an arbitrary number

of small parts). Correspondingly, the application can

be easily decomposed into sub-tasks and can thus

be easily deployed on distributed computing plat-

forms in a master-worker fashion. Divisible load ap-

plications are similar to many so-called “embarrass-

ingly parallel applications”, but we use the “divisi-

ble load” term to emphasize that these applications

are data-intensive and that communication takes a

non-negligible amount of time. In fact, a large part

of the difficulty of achieving high performance for

these applications comes from the need to orches-

trate communication and computation.

Many real-world applications fit the divisible

load model, including pattern searching applica-

tions in computational biology [25], video compres-

sion applications [33, 2], volume rendering appli-

cations that are used for scientific computing and

biomedicine [34, 45, 15, 9, 20, 42, 15], and even

Data mining applications [4, 23, 17]. These appli-

cations have different characteristics, in terms of to-

tal running time, total data size, and computation-

communication ratio (which we denote by r through-

out). To get an idea of this diversity, we con-

ducted simple experiments for three specific appli-

cations: (1) HMMER [25], a bioinformatics appli-

cation that compares a given protein profile to a

database using a Hidden Markov Model technique

(we used the example profile globin.hmm gener-

ated from the HMMER tutorial dataset against the

nr database from the National Center for Biotech-

nology Information [35]); (2) MPEG4 compression,

using the divx4 library and mencoder frontend [33]

to compress an MPEG2 source file (A more common

example would be compressing an AVI source, but

we used MPEG2 because it is simpler to divide the

load, although the general behavior is similar.); and

(3) VFleet [41], a volume rendering application (we

rendered the 256x256x167 “bigbrain” dataset from

the VolPack site [44], scaled to 512x512x334, which

is more representative of today’s volume rendering

requirements).

Table 1 shows for each of these three applica-

tions the input size in MB, the running time in sec-

onds on an Athlon 1.8GHz, and the computation-

communication ratio r computed assuming a 100

Mb/s data transfer rate. The table also shows

this data for the Data Mining application presented

in [40]. The main point to draw from the data is

that these applications exhibit different characteris-

tics, and in particular a wide range of values for r
(differences of more than one order of magnitude).

The fifth column in Table 1 shows the coefficient

of variance (i.e., standard deviation divided by the

mean, in percentage) of the amount of computa-

tion per unit of load, which we call γ. We can see
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Application input size (MB) running time (sec) r γ max−min

mean

HMMER 802.0 534 6.7 9% 2700%

MPEG 716.8 2494 34.8 10% 30%

VFleet 87.5 600 68.0 1% 2%

Data Mining 400.0 3150 78.0 N/A N/A

Table 1: Characteristics of 4 divisible load applications: input data size, running time on a 1.8GHz Athlon,

communication/computation ratio (r) assuming a 100MB/sec network, coefficient of variation of the run-

ning time of a unit of load (γ), and percentage spread of the running time of a unit of load (max−min
mean

).

that some applications exhibit a γ value up to ap-

proximately 10%, due to data-dependent and/or non-

deterministic computation. In terms of scheduling,

this implies that there will be some uncertainty when

predicting the computation time of a chunk of load,

which can negatively impact the schedule. While

at first glance 10% may seem relatively low, it can

cause significant load imbalance. The last column

of Table 1 shows the value (max − min)/mean,

where max and min are the maximum and mini-

mum running time for each unit of load, respectively,

and mean is the mean running time. We see that

for MPEG4 compression, the slowest work unit may

take 30% longer than the fastest unit, and for HM-

MER, the ratio is 2700%. We can then conclude that,

for some divisible load applications, using the mean

load unit execution time as a prediction of the com-

pute time of a unit of load may lead to considerable

performance prediction errors. In fact, it is likely

that no good prediction can be performed and that

a scheduling algorithm would have to be designed to

tolerate such uncertainty.

2.2 Divisible Load Scheduling

An important problem whose solution holds the key

to high performance for divisible load applications

on distributed computing platforms is Divisible Load

Scheduling (DLS): the decision process by which the

load is divided and assigned to compute resources,

with the goal of minimizing application “makespan”,

i.e. execution time. While the divisible nature of the

load makes DLS more tractable than other schedul-

ing problems (e.g., ones with fixed-size tasks) and

some optimality results are known in a few cases,

many challenging issues must be addressed for ef-

ficient scheduling [8]. The first proposed DLS al-

gorithms were One-Round algorithms, so called be-

cause they assign each worker exactly one chunk of

the load. These algorithms were studied for many

platform topologies (e.g., Linear Networks, Single-

level Trees, Meshes, Hypercubes) and we refer the

reader to the survey in [8] for references to specific

papers. Most of these algorithms assume purely lin-

ear cost for transfer and computation, that is the time

to transfer some amount of data is proportional to

the data size. The most recent ones consider com-

munication start-up costs, i.e. they assume an affine

communication cost model, which is known to be

more realistic as real networks do experience start-up

costs (e.g., latencies, overhead for establishing con-

nections).

One clear limitation of One-Round algorithms is

that they do not overlap communication with com-

putation well, which led to the development of

Multi-Round algorithms that assign multiple chunks

to each worker in rounds and increase chunk size

throughout application execution in an attempt to

pipeline communication and computation. Much

fewer results are available for Multi-Round algo-

rithms than for One-Round algorithms and they are

all on single-level tree topologies. The algorithm

in [10] proposes a multi-round algorithm that as-

sumes purely linear communication and computa-

tion costs. [47] extends this algorithm to affine costs

for both communications and computations, which

is more representative of real-world platforms. Both

these algorithms assume that the number of rounds

is magically fixed and are only applicable to homo-

geneous platforms. By contrast, the UMR algorithm
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in [48] computes a near-optimal number of rounds

with affine costs and is applicable to heterogeneous

platforms, which represents a major advance for us-

ing multi-round DLS in practice.

Finally, the recently proposed RUMR algo-

rithms [48] extends UMR and attempts to mitigate

the effects of uncertainty on chunk communication

and computation times, which can be caused by

the platform (e.g., when resources are non-dedicated

and time-shared) or by the application (i.e., when

the computation is data-dependent). The RUMR

approach is to first increase chunk size for better

pipelining, as UMR, but decrease chunk size towards

the end of the application execution to tolerate uncer-

tainty. The notion of decreasing chunk size for better

robustness to uncertainty was pioneered by the Fac-

toring approach [26, 24, 27].

In this work we focus on Multi-Round algo-

rithms, as they achieve better performance than One-

Round algorithms. We target distributed Grid plat-

forms that aggregate multiple parallel computing

platforms, typically commodity clusters. These plat-

forms can be easily modeled as single-level trees in

which each leaf is a cluster and the root is the mas-

ter holding the application’s input data, which makes

Multi-Round algorithms applicable. We refer the

reader to the recent surveys [11, 37], to the special

issue of the Cluster Computing journal [1], and to the

Web page collecting related literature [38] for com-

plete details about DLS research.

3 The APST-DV Software

3.1 APST Background

APST is a Grid application execution environment

originally targeted to “Parameter Sweep Applica-

tions” that consist of many independent tasks. The

APST software was designed with the goal of fully

automated and transparent deployment of applica-

tions on Grid infrastructures, as well as high perfor-

mance via efficient scheduling. APST runs as two

distinct processes: a daemon and a client. The dae-

mon is in charge of deploying and monitoring ap-

plications. Its central component is a scheduler that

makes all resource allocation decisions. The client is

essentially a console (several APIs are also available)

that can be used by the user to interact with the dae-

mon (e.g., to submit requests for computation). The

user interface is XML-based and no modification of

the application is required.

APST relies on deployed services to access and

monitor storage, compute, and network resources.

Compute resources can be accessed via the Globus

Toolkits [22], or via Ssh as a default. APST can use

the above mechanisms to access batch-scheduled re-

sources via PBS [36], LoadLeveler [31], Sun Grid

Engine [39], Condor [30], etc. APST can read, copy,

transfer, and store application data among storage re-

sources with GASS [18], GridFTP [3], or SRB [7].

As defaults, APST can also use Scp or FTP. Finally,

APST can obtain static and dynamic information

from the MDS [16], NWS [46], and Ganglia [19] in-

formation services. APST also learns about the per-

formance of available resources by keeping track of

their past performance when computing application

tasks or transferring application data.

APST is currently used in production for a number

of applications, including the MCell neuroscience

application [12], the Encyclopedia of Life (EOL)

bioinformatics application [29], the Vizport visual-

ization portal [43], and the discrete-event simula-

tion application SIMGRID [28]. We refer the reader

to [14, 5] for more details about APST.

3.2 APST-DV: Motivation and Design

APST is not well-suited to divisible load applications

as it expects a finite and complete list of application

tasks as input. As a result, current divisible load ap-

plication users are forced to divide the load manually

into some number of sub-tasks. However, the field

of DLS research shows that load division is a diffi-

cult problem and that simple solutions (e.g., divide

the load in many small identical pieces) are bound

to achieve poor performance. So while APST im-

plements good scheduling algorithms and does the

best it can with the divided load submitted by the

user, different division schemes that account for both

application and resource characteristics would inher-

ently allow higher performance.
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The success of APST is mostly due to the fact that

it does not require modification of the application,

requires only a minimal understanding of XML, and

can be used immediately within a small local-area

network with default mechanisms. Users can then

easily and progressively transition to larger scale

Grids because APST transparently builds on the base

Grid software infrastructure. We wish to build on

these strengths and extend APST to support divisible

load applications. We call this extension APST-DV.

APST-DV needs to accomplish the following. It

must provide a way for the user to specify a divisi-

ble load application in XML. It needs to divide the

load into individual tasks (or “chunks”). This must

be done according to a DLS algorithm. Such algo-

rithms typically require information about the appli-

cation and the resources (e.g., how fast one unit of

load runs on a given resource), and APST-DV must

obtain such information automatically. The chunks

must then be sent out to storage resources and com-

putation must be initiated on remote compute re-

sources, which can be accomplished easily as APST

already provides several mechanisms for accessing a

wide range of resources. Finally, output from chunk

computation needs to be returned to the users and,

most likely, “glued” together. This last step is typi-

cally application-specific and we leave it to the user.

We briefly review some of the interesting aspects of

our implementation of APST-DV below.

3.3 XML Divisible Load Specification

We have added a new XML element to APST,

divisibility, within the existing task con-

struct. See Figure 1 for a sample divisible load spec-

ification, and the APST webpage [5] for a complete

description of APST’s XML schema. The input

attribute specifies the file(s) that contain the load’s

input data that must be divided. The method at-

tribute specifies the method used for dividing the in-

put file(s). The uniform method divides the input

every stepsize units, where the unit is specified

by the steptype attribute, from a starting offset

of start. In the sample XML this is the method

used and the input file can be divided at each 10-byte

boundary starting at byte 0 (meaning that the size of

<task

executable="a_divisible_app"

input="bigfile"

>

<divisibility

input="bigfile"

method="uniform"

start="0"

stepsize="10"

steptype="bytes"

algorithm="rumr"

probe="probefile"

/>

</task>

Figure 1: Sample APST-DV XML specification of a

divisible load application.

each load chunk in bytes will be a multiple of 10).

The callback method allows the user to provide

her own script/program that computes the closest le-

gal boundary for a division near a specified offset.

Finally, the index method allows the user to pro-

vide an “index file” that lists all valid division bound-

aries. Note that APST-DV divides the load on-the-

fly, thereby avoiding creating a prohibitive number

of files for each individual chunk.

In our current prototype the algorithm attribute

specifies which DLS algorithm to use for scheduling

the applications (rumr in the example). Eventually

this could be determined automatically by APST.

The meaning of the probe attribute will be ex-

plained in Section 3.4.

3.4 Collection of Resource Information

DLS algorithms, like most scheduling algorithms,

make their decisions based on application and re-

source information. There are two approaches to

gather such information. The first approach is to rely

on application performance models and on resource

information provided by services such as MDS [16],

NWS [46], Glanglia [19]. Some of this informa-

tion can be dynamic and must be retrieved period-

ically. The advantage of this approach is that it is

light-weight. The main drawback is that it is diffi-

cult to obtain accurate estimates of computation and

transfer times. The second approach is to just ob-
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serve application performance for a few application

tasks and data transfers, and use this observation to

estimate the performance of all application compo-

nents. This approach is more costly as real work

needs to be done to obtain performance information,

although this work can be useful to the application,

but more accurate as the performance delivered by

the resources is experienced at the application level.

Since our target applications typically exhibit long

execution times, we opted for the second approach.

This approach has actually been explored in the con-

text of DLS in [21]. The idea is to “probe” the re-

sources by sending out a relatively small chunk of the

overall load to each available resource and observ-

ing chunk transfer time and chunk execution time.

We use a very simple probing strategy in our cur-

rent APST-DV implementation: we do a round of

probing, and then start the real application execution.

Our probes are not part of the actual load but rather a

user specified small input file that is representative of

the application’s load. “Representative” may mean

“close to the average case” for scenarios in which

there is uncertainty on the computational cost of a

unit of load (see Section 2.1). The input file used for

probing is specified by the probefile attribute in

the XML specification of a divisible load application

(see Figure 1). The work in [21] proposes sophis-

ticated probing strategies that overlap probing with

application execution, which we will explore in fu-

ture work to further increase performance.

Finally, some of the scheduling algorithms imple-

mented in APST-DV require estimates for commu-

nication and computation start-up costs. APST-DV

obtains these estimates ahead of time by launching

no-op jobs on each worker and transferring empty

files to storage resources.

3.5 Scheduling in APST-DV

The current APST-DV prototype implements the fol-

lowing four algorithms:

SIMPLE-n – uniformly divides the input

among the workers, and divides the data for

each worker into n chunks. No probing is

used. This is the simplistic “static chunking”

approach that is currently used by divisible

load application users who use APST. We used

SIMPLE-1 and SIMPLE-5 in our experiments.

Uniform Multi-Round (UMR) [49] –

a recently proposed DLS algorithm that

(i) is designed to maximize communica-

tion/computation overlap; (ii) uses multiple

rounds; (iii) accounts for communication and

computation start-up costs; (iv) computes a

near-optimal number of rounds; and (v) can

be used on heterogeneous platforms. Points

(iii)-(v) above represent significant advances

over previously proposed algorithms and make

multi-round DLS feasible in practice. (see Sec-

tion 2.2 for a brief discussion of multi-round

DLS.) UMR increases chunk size geometri-

cally throughout execution to achieve good

pipelining of communication and computation.

This algorithm uses probing.

Weighted Factoring [27] – divides the load

into chunks in rounds, and decreases chunk

size by 2 between rounds (down to a mini-

mal chunk size). Chunks are sent out to work-

ers in a greedy fashion. The algorithm is

called “Weighted” because the size of a chunk

assigned to a worker is proportional to the

worker’s speed, which is known to achieve bet-

ter load-balancing than plain factoring. Our im-

plementation of weighted factoring uses prob-

ing and also observes chunk execution times

throughout application execution to refine its

estimates of worker speeds. The factoring

method was specifically designed to deal with

uncertainty in computation times: application

execution ends with small chunks, which make

it easier to do load-balancing. However, Fac-

toring was not designed to maximize overlap of

communication and computation.

Robust Uniform Multi-Round (RUMR) [48]

– One problem with UMR is that, unlike Fac-

toring, it was not designed to tolerate uncer-

tainty on chunk transfer/execution times (ex-

ecution ends with large chunks). To achieve

the best of both worlds, the RUMR algorithm
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splits application execution into 2 phases. Dur-

ing the first phase chunk size is increased us-

ing the UMR algorithm, and during the second

phase chunk size is decreased using Weighted

Factoring. The RUMR algorithm uses a heuris-

tic to determine when to start the second phase.

We also experiment with a version of RUMR

called Fixed-RUMR presented in [48] that al-

ways schedules 80% of the load in the first

phase. RUMR uses probing.

Some of the above algorithms have been evalu-

ated in simulation in previous work. For instance,

in [49] it was shown that UMR outperforms compet-

ing multi-round algorithms and largely outperforms

SIMPLE-n. In [48] it was shown that RUMR out-

performs both UMR and Factoring for a wide range

of uncertainty on chunk compute and transfer time.

While these results are valuable, our goal here is to

run these algorithms in the real world and observe

what truly happens. In fact, just going through the

process of implementing these algorithms as part of

usable software has highlighted several interesting

practical issues.

4 Experimental Evaluation

4.1 Methodology

Application – We have seen in Section 2.1 that the

fundamental characteristics of divisible load appli-

cations span a range of values. Rather than picking

one single application, which would limit the space

of our evaluation, or trying to run a large number of

different applications, which would require a lot of

unnecessary effort, we opted for using a synthetic

application. (Note that we have tested APST-DV

with the real-world applications mentioned in Sec-

tion 2.1). Our synthetic application reads in an input

file, does some floating point operations on the bytes

read in a loop, l times. This synthetic application

can be tuned to exhibit specific application character-

istics. In particular, the communication/computation

ratio, r, and the uncertainty on load unit computation

time, γ (we use a Normal distribution for generating

random computational costs for units of workload).

In our experiment we experiment with several values

for l and on different platforms, which leads to dif-

ferent values for r, and with γ = 0% and γ = 10%
to look at applications that do not or do exhibit inher-

ent uncertainty (these values are the two extremes of

the range of values with have seen with real-world

applications).

Computing Platform – We used a small Grid con-

sisting of two clusters: the Meteor cluster at the San

Diego Supercomputer Center (SDSC), which con-

sists of 57 dual-processor Pentium III 790∼996MHz

nodes; and the DAS-2 cluster at Vrije Universiteit

in Amsterdam, the Netherlands, which consists of

72 dual-processor 1Ghz Pentium-III nodes. We ac-

cess the clusters via the SGE [39] and PBS [36]

batch schedulers. The APST daemon and initial in-

put for the divisible load application were located

in the Grid and Research and Innovation Laboratory

(GRAIL) at UCSD, about 1/2 mile from SDSC.

Our focus on platforms whose processors are ded-

icated during application execution is representa-

tive of most production environments. Explicitly

accounting for delays incurred to acquire these re-

sources (e.g., batch queue waiting time) is difficult.

In our experiments we just wait for all batch re-

sources to be allocated. This is so that we can ignore

the effects of queue waiting time and perform de-

terministic and fair comparisons among experiments.

In practice, the APST-DV implementation just treats

a set of batch-scheduled clusters as a dynamically

growing and shrinking pool of processors.

Uncertainty – We wish to study the effect of un-

certainty, which causes performance prediction er-

rors, on divisible load scheduling. Indeed, some of

the DLS algorithms described in Section 3.5, namely

RUMR and Factoring, have been specifically de-

signed to tolerate performance prediction errors, and

we wish to evaluate how robust they are in practice.

Uncertainty can come from two sources: the applica-

tion itself, and the compute platform. As seen above,

we experiment with γ = 0% and γ = 10%, with the

latter generating inherent uncertainty in the chunk

execution time. By contrast, our workers are ded-
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icated, as they are batch-scheduled, and do not lead

to (significant) uncertainty. This is required to enable

reproducible, scientifically valid, real-world experi-

ments (in our previous work we experimented with

uncertainty in simulation [48]). Consequently, the

only significant source of uncertainty in our setup is

the application itself which allows us to control our

experiments. Another source of uncertainty was the

network, but we witnessed stable network conditions

during our experiments.

Note that some of our DLS algorithms would also

mitigate the effect of uncertainty due to resource

availability fluctuations. But due to the specific sta-

tistical property of these fluctuations, results may

differ from the ones presented in this paper. It is

outside the scope of this paper to study the impact

of the specific properties of uncertainty on divisible

load scheduling.

4.2 Experimental Results

We ran APST-DV with all the DLS algorithms de-

scribed in Section 3.5, back-to-back. Each data point

corresponds to an average over 4 distinct runs. (Note

that we observed small variations in our experiments,

on the order of a few percents as seen in error bars

in our results). Each application run lasted between

70 minutes and 110 minutes, depending on the re-

sources and the scheduling algorithm used.

DAS-2, 16 nodes, r = 35, γ = 0, 10 – We first

ran our application only on the DAS-2 cluster. For

each algorithm we compute the (average) application

makespan achieved. Results are shown in Figure 2

for γ = 0 and γ = 10.

For γ = 0 we found expected results. The RUMR

and UMR algorithms (note that in this case we have

almost no uncertainty and RUMR degenerates to

pure UMR as there is no second phases) lead to

the best performance as they overlap communica-

tion and computation well and account for the large

start-up costs for communication and computation

(around 6.4s and 0.7s respectively in this case). The

second closest algorithm is SIMPLE-5 (6% slower),

while SIMPLE-1 is 27% slower. The factoring algo-

rithms are roughly 10% slower than UMR/RUMR.

These results confirms some of the simulation results
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Figure 2: DAS-2, 16 nodes

presented in [49, 48].

For γ = 10 something surprising happens. With

more uncertainty we would expect Weighted Factor-

ing to perform relatively better than UMR, which is

the case (e.g., Weighted Factoring is about 7% faster

than UMR). However, the simulation results in [48]

indicate that RUMR should outperform Weighted

Factoring as it is striving to both overlap communi-

cation and computation, and to mitigate the effects of

uncertainty. However, RUMR exhibits poor perfor-

mance when compared to Weighted factoring. After

looking into the detailed execution report generated

by APST-DV, this is what we found. The RUMR al-

gorithm as developed in [48] assumes that the value

for γ is known in advance and, using this value, pre-

determines when the second phase (i.e., the factoring

phase) should begin. However, in our experiments,

the value of γ is “discovered” throughout applica-

tion execution. We found that in most cases, when

RUMR discovers that it should switch to the factor-

ing phase, it is too late and the last round (which is

large since UMR increases chunk size) has already

been started. This prevents RUMR from doing a late

switch to its second phases, meaning that factoring is
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Figure 3: Meteor, 16 nodes

in fact never used. This is a good example of an as-

pect of DLS theoretical research that does not trans-

late well to practice. This observation highlights a

major limitation of the RUMR algorithm (although it

may be argued that uncertainty could be learned from

past application executions). However, we can see

that the Fixed-RUMR algorithm does the best in our

experiments, therefore justifying that RUMR’s two-

phase approach is sound provided there is a mecha-

nism for switching to the second phase in time.

Meteor, 16 nodes, r = 47, γ = 0, 10 – Using only

the Meteor cluster we have a higher value for r and

obtained the results shown in Figure 3.

For γ = 0 we can see that all algorithms achieve

comparable performance, except for SIMPLE-1 and

SIMPLE-5, which are 10% and 12% slower than the

best algorithm. In this environment start-up costs

are low (around 0.7s for communication and 0.1s

for computation) since the Meteor cluster is close to

the APST daemon. (The network bandwidth is also

marginally higher: around 118 kB/sec compared to

94 kB/sec to the DAS-2 cluster.) As a result, the

UMR approach does not lead to any advantage as it

is really designed to handle situations in which start-

up costs are significant. The SIMPLE-n algorithms

do not perform well, as expected.

For γ = 10, the only thing that matters for per-

formance in this environment is adaptation to uncer-

tainty and clearly the Weighted Factoring approach is

the best. UMR and RUMR (both 19% slower) suffer

from the same problems as discussed above for the

DAS-2 experiments. But, importantly, Fixed RUMR

leads to the same performance as Weighted Factor-

ing.

These results show that if the platform is a nearby

dedicated cluster, then a simple factoring approach is

sufficient, which is not surprising.

DAS-2 (8 nodes) + Meteor (8 nodes), γ = 0, 10 – In

these experiments we used nodes from the two clus-

ters, so the communication/computation ratio was a

mix of the ones for the two previous experiments.

Results are shown in Figure 4. The results here show

that with no uncertainty (γ = 0), UMR and RUMR

lead to the best performance (again, they are identi-

cal in this case) and SIMPLE-1 and SIMPLE-5 have

poor performance (28% and 18% slower). When

there is uncertainty (γ = 10), Weighted Factor-

ing and Fixed-RUMR lead to the best performance.

Once again, the SIMPLE-1 and SIMPLE-5 algo-

rithms do not perform well (27% and 11% slower).

4.3 Discussion

From the experimental results above (we also ran ex-

periments with different subsets of our clusters and

different values of l but did not learn anything differ-

ent) we draw the following broad conclusions:

1. The SIMPLE-n algorithm, which is what cur-

rent APST users are using for running divisible

load applications, is always inefficient (on av-

erage SIMPLE-1 and SIMPLE-5 are 24% and

11% slower than the best algorithm). As a re-

sult, our work on APST-DV has already signif-

icantly improved the state of practical deploy-

ment for these applications.

2. The UMR approach is best when uncertainty is

low, as it accounts for communication and com-

putation start-up costs, and overlaps communi-

cation with computation well. Its performance
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Figure 4: Meteor+DAS-2, 16 nodes

is poor when uncertainty becomes significant

(15% slower than the best algorithm).

3. Expectedly, when the platform consist of a sin-

gle, nearby cluster, then a simple factoring ap-

proach is sufficient.

4. The general RUMR approach is the most ef-

fective across the board for low and high un-

certainty, but the algorithm as it was proposed

in [48] does not do well in practice. Indeed,

it does not switch to its second phase in time.

This was shown by the good performance ex-

hibited by the Fixed-RUMR version. A key

direction for further RUMR development is to

solve this problem and in the meantime Fixed-

RUMR should be used by APST-DV users.

5 Conclusion

In this paper we have presented and evaluated APST-

DV, an extension to the APST Grid application-

level tool to support Divisible Load Applications.

These applications are commonplace, as seen in Sec-

tion 2.1, and to the best of our knowledge our work

provides the first generic software environment to

deploy them on current distributed computing plat-

forms. APST-DV embeds a scheduler that currently

implements four Divisible Load Scheduling (DLS)

algorithms. We have demonstrated the use of APST-

DV and experimentally evaluated these algorithms

on a real-world testbed consisting of two geographi-

cally distant clusters. Our experiments show that the

simplistic “static chunking” approach used by cur-

rent APST users to run divisible load applications is

not effective. Among other results, we have found

that the RUMR approach proposed in [48] is the most

effective across the board provided that there is a bet-

ter mechanism for switching between the two phases

of its execution. For now we have given a simple ver-

sion, Fixed-RUMR, that performs very well in prac-

tice, and should be used by APST-DV users.

We will extend this work in several directions.

First, we will investigate new ways in which RUMR

can switch to its second phase appropriately. We will

also implement an adaptive version of RUMR that

updates its view of the platform after each sub-task

completes (note that our version of Weighted Factor-

ing performed such adaptation and thus has some-

what of an unfair advantage over RUMR). The re-

sults in this paper validate our prototype implemen-

tation of APST-DV, and we will release the software

as part of the APST distribution.
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