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Abstract

Optimal Execution Strategy: Price Impact and Transaction Cost

by

Mauricio José Junca Peláez

Doctor of Philosophy in Industrial Engineering and Operations Research

University of California, Berkeley

Professor Xin Guo, Chair

We study a single risky financial asset model subject to price impact and transaction
cost over infinite and finite horizon. An investor needs to execute a long position in the
asset affecting the price of the asset and possibly incurring in fixed transaction cost. The
objective is to maximize the discounted revenue obtained by this transaction. This problem
is formulated first as an impulse control problem and we characterize the value function using
the viscosity solutions framework. We establish an associated optimal stopping problem that
provides bounds and in some cases the solution of the value function. We also analyze the
case where there is no transaction cost and how this formulation relates with a singular
control problem. A viscosity solution characterization is provided in this case as well. An
explicit solution of the value function is calculated in a particular case. Numerical examples
with different types of price impact conclude the discussion.
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Chapter 1

Introduction

An important problem for stock traders is to unwind large block orders of shares. Ac-
cording to [He and Mamaysky, 2005] the market microstructure literature has shown both
theoretically and empirically that large trades move the price of the underlying securities,
either for informational or liquidity reasons. Several papers addressed this issue and formu-
lated a hedging and arbitrage pricing theory for large investors under competitive markets.
For example, in [Cvitanić and Ma, 1996] a forward-backward SDE is defined, with the price
process being the forward component and the wealth process of the investor’s portfolio being
the backward component. In both cases, the drift and volatility coefficients depend upon the
price of the stocks, the wealth of the portfolio and the portfolio itself. [Frey, 1998] describes
the discounted stock price using a reaction function that depends on the position of the large
trader. In [Bank and Baum, 2004, Çetin et al., 2004] the authors, independently, described
the price impact by assuming a given family of continuous semi-martingales indexed by the
number of shares held ([Bank and Baum, 2004]) and by the number of shares traded ([Çetin
et al., 2004]).

The optimal execution problem has been studied in [Bertsimas and Lo, 1998, Almgren
and Chriss, 2000] in a discrete-time framework and without any transaction cost. In both
cases the dynamics of the price processes are arithmetic random walks affected by the trading
strategy. In [Bertsimas and Lo, 1998], the impact is proportional to the amount of shares
traded. In [Almgren and Chriss, 2000], the change in the price is twofold, a temporary impact
caused by temporary imbalances in supply/demand dynamics and a permanent impact in the
equilibrium or unperturbed price process due to the trading itself. Also, this work takes into
account the variance of the strategy with a mean-variance optimization procedure. Later
on, nonlinear price impact functions were introduced in [Almgren, 2003]. These ideas were
adopted by more recent works under a continuous time framework. [Schied et al., 2010]
proposes the problem within a regular control setting. The authors consider expected-utility
maximization for CARA utility functions, that is, for exponential utility functions. The
dynamics of the price and the market impact function are fairly general, and there is no
transaction cost. [Schied and Schöneborn, 2009] is the only reference that considers an
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infinite horizon model based on the original model in [Almgren and Chriss, 2000].
On the other hand, it is also well established that transaction costs in asset markets are an

important factor in determining the trading behavior of market participants. Typically, two
types of transaction costs are considered in the context of optimal consumption and portfolio
optimization: proportional transaction costs [Davis and Norman, 1990, Øksendal and Sulem,
2002] using singular type controls and fixed transaction costs [Korn, 1998, Øksendal and
Sulem, 2002] using impulse type controls. The market impact effect can be significantly
reduced by splitting the order into smaller orders but this will increase the transaction
cost effect. Thus, the question is to find optimal times and allocations for each individual
placement such that the expected revenue after trading is maximized. The papers [He and
Mamaysky, 2005, Ly Vath et al., 2007] include both permanent market price impact and
transaction cost and assume that the unperturbed price process is a geometric Brownian
motion process. The first one ([He and Mamaysky, 2005]) allows continuous and discrete
trading (singular control setting) and assumes enough regularity in the value function to
characterize it as the solution of a second order nonlinear partial differential equation.

Finally, [Subramanian and Jarrow, 2001] proposes a slightly different model which does
not include any transaction cost but includes an execution lag associated with size of the
discrete trades. It also considers the geometric Brownian motion case and does not discuss
any viscosity solutions.

From the references above, there are two which ideas contributed to develop this disser-
tation both in the modeling part and the mathematical analysis part. In order to make these
contributions clear we discuss those papers in more detail.

Risk aversion and the dynamics of optimal liquidation strategies in illiquid mar-
kets [Schied and Schöneborn, 2009].

Let Xt be the strategy described by the number of shares held at time t, with X0 = x being
the amount of shares to sell, and assume Xt be absolutely continuous. In the model the
incremental order Ẋt induces a permanent price impact γẊtdt which accumulates over time,
and a temporary price impact λẊt which vanishes instantaneously. When the investor is
not active, the price process follows a Bachelier model with volatility σ (assume to have no
drift). The resulting price dynamics are:

Pt = P0 + σBt + γ(Xt −X0) + λẊt.

The strategies are parametrized as Xt = x −
∫ t

0
ξsds with progressively measurable (or

adapted) process ξ such that
∫ T

0
ξ2
sds < ∞, where x is initial amount of shares. It is also

assumed that the strategies are admissible in the sense that Xt(ω) is bounded uniformly in
t and ω. Denote by X the class of admissible strategies. The investor is assumed to be an
investor with a utility function u. Given the dynamics above, the revenue obtained when
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the investor applies the strategy ξ is given by

RT (ξ) = r +

∫ T

0

Ptξtdt

= r + P0(X0 −XT )− γ

2
(XT −X0)2 + σ

∫ T

0

XtdBt − σXTBT − λ
∫ T

0

ξ2
t dt.

When then have

Rξ
∞ := lim

T→∞
RT (ξ) = r + P0x−

γ

2
x2 + σ

∫ ∞
0

XtdBt − λ
∫ ∞

0

ξ2
t dt

:= R + σ

∫ ∞
0

XtdBt − λ
∫ ∞

0

ξ2
t dt.

The objective of the investor is to maximize the expected utility of her revenue:

v(x,R) = sup
ξ∈X

E[u(Rξ
∞)].

The main result in this work is the following:

Theorem 1. The value function v is a classical solution of the HJB equation

inf
c

[
−1

2
σ2x2 ∂

2v

∂R2
+ λ

∂v

∂R
c2 +

∂v

∂X
c

]
= 0

with boundary condition
v(0, R) = u(R) ∀R ∈ R.

This characterization of the value function is not always possible as we will see later when
we discuss continuous strategies.

A model of optimal portfolio selection under liquidity risk and price impact
[Ly Vath et al., 2007].

Consider a continuous time price process of a risky asset (stock) Pt. Let Rt be the amount
of money (cash) and Xt the number of shares in the stock held by an investor at time t.
For a given process Yt, we denote by Yt− the left limit at time t. Let T > 0 the liquidation
date. Only discrete trading on [0, T ) is accepted, this is modeled as an impulse control
(τn, ζn)1≤n≤M , where M ≤ ∞ is the number of trades, τ1 ≤ · · · ≤ τn ≤ · · · < T are stopping
times with respect to the filtration (Ft) that represent the times of the investor’s trades, and
ζn are real-valued Fτn-measurable random variables for all n representing the number shares



CHAPTER 1. INTRODUCTION 4

purchased (if negative) or sold (if positive) at the intervention times. The dynamics of X
are given by

Xs = Xτn , for τn ≤ s < τn+1,

Xτn+1 = Xτn − ζn+1.

Additionally, in this work the authors allow for short selling, that is, the process Xt can be
negative. The investor affects the price of the stock in the following way: The price goes up
when the investor buys shares and go down when the investor sales shares. They consider
the impact of the form:

α(ζ, p) = pe−λζ

where λ > 0. The price dynamics are given by:

dPs = Ps(bds+ σdBs), for τn ≤ s < τn+1,

Pτn = Pτn−e
−λζn .

Every time the investor trades ζ shares of the stock when the pre-trade price is p, the investor
receives ζpe−λζ . In the absence of transactions the process R grows at a rate ρ. Also, the
investor has to pay a fixed fee per trade k > 0. Therefore the cash holdings dynamics are:

dRs = ρRsds, for τn ≤ s < τn+1,

Rτn = Rτn− + ζnPτn−e
−λζn − k.

In general, the impulse control formulation allows multiple actions at the same moment.
Hence, in this case multiple trading is allowed and it could be optimal as well. The presence
of transaction cost will off course forbid infinite trades but do not forbid that for some n we
could have optimally τn = τn+1 and ζn, ζn+1 6= 0. The authors claim that multiple trading
is not optimal: “The assumption that any trading incurs a fixed cost of money to be paid
will rule out continuous trading, i.e., optimally, the sequence (τn, ζn) is not degenerate in the
sense that for all n, τn < τn+1 and ζn 6= 0 a.s.” This claim will have an important impact in
the terminal condition stated in the main result of the paper (see below). The proof of this
condition (Proposition 4.16 in the paper) could be modified in order to avoid this assumption
as we show later in this dissertation.

Suppose now, the investor has r units of cash and x number of shares of the stock at a
price p. For such state value z = (r, x, p) ∈ R2 × (0,∞) her liquidation value is given by

L(z) = max{L0(z), r}1x≥0 + L0(z)1x<0,

where
L0(z) = r + xpe−λx − k.

The interpretation is that if the investor has a long position in stock, she can also choose to
do a bin trade (that is, not to sell the shares).
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Remark 2. It should be also possible to not execute the whole position if is not profitable.
That is, the function L0 could be defined as

L0(z) = r + max
0≤ζ≤x

ζpe−λζ − k.

The solvency region is defined as

S = {z ∈ R2 × (0,∞) : L(z) > 0}.

Also,
∂S = {z ∈ R2 × (0,∞) : L(z) = 0},

S = S ∪ ∂S.

Since L is upper semi-continuous, S is closed in R2 × (0,∞), but S is not open. Given
t ∈ [0, T ], z ∈ S and the initial condition Zt− = z, consider impulse controls (with the
convention τ0 = t) such that Zs = (Rs, Xs, Ps) ∈ S for all s ∈ [t, T ]. Denote by A(t, z)
the set of all such controls. The authors also consider a smooth utility function U strictly
increasing and concave and w.l.o.g U(0) = 0. Also, assume that there exists K1 ≥ 0 and
γ ∈ [0, 1) such that for all w ≥ 0

U(w) ≤ K1w
γ.

Then the value function defined for (t, z) ∈ [0, T ]× S is

v(t, z) = sup
A(t,z)

E[U(L(ZT ))].

The impulse transaction function is defined by

Γ(z, ζ) = (r + ζpeλζ − k, x− ζ, peλζ)

for all z = (r, x, p) ∈ S and ζ ∈ R. This corresponds to an immediate trading at time t of
ζ shares, so that the state process jumps from Zt− = z to Zt = Γ(z, ζ). Consider the set of
admissible transactions

C(z) = {ζ ∈ R : L(Γ(z, ζ)) ≥ 0}.

Then, define the intervention operator by

Mϕ(z, t) = sup
ζ∈C(z)

ϕ(t,Γ(z, ζ)),

for any measurable function ϕ. The infinitesimal generator associated with state variables
when no trading is done is

Lϕ = ρr
∂ϕ

∂r
+ bp

∂ϕ

∂p
+

1

2
σ2p2∂

2ϕ

∂p2
,
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for any C2 function. The HJB equation that follows from the dynamic programming principle
is then

min

{
−∂v
∂t
− Lv, v −Mv

}
= 0 in [0, T )× S. (1.1)

The main result stated in this paper is the following:

Theorem 3. The value function v is continuous in [0, T )×S and is the unique constrained
viscosity solution to (1.1) satisfying

lim
(t′,z′)→(t,z)

z′∈S

v(t′, z′) = 0, ∀(t, z) ∈ [0, T )× {0} × {0} × (0,∞), (1.2)

lim
(t,z′)→(T,z)

t<T,z′∈S

v(t, z′) = max{U(L(z)),MU(L(z))}, ∀z ∈ S, (1.3)

and the growth condition

|v(t, z)| ≤ K
(

1 +
(
r +

p

λ

)γ)
, ∀(t, z) ∈ [0, T )× S, (1.4)

for some K > 0.

As mentioned before, the terminal condition is not the correct one. Also, there is a typo
in the proof of Theorem 5.6 in the paper that could lead to not have the continuity of the
value function: Consider the case where

z0 ∈ ∂S \D0 ∩ K.
After writing the inequalities derived from the viscosity subsolution property, consider the
case where

−q0 − ρr̂iq1 − bp̂iq3 −
1

2
σ2p̂2

iM33 ≤ 0

and notice that the correct explicit form of q′ is

q′ =
(ẑi − ẑ′i)

εi
− 4Dd(ẑ′i)

d(zi)

(
d(ẑ′i)

d(zi)
− 1

)3

.

It is not clear now how the second term above vanishes as i goes to ∞ since d(zi) goes to 0
as i goes to ∞. Similarly, in the explicit form of Qi, factors of the form 1

d(zi)2 and 1
d(zi)

are
missing and again it is not clear how this term would vanish.

Intuitively the possibility of a bin trade when the number of shares x is nonnegative can
create a discontinuity of the value function along the plane {x = 0}. Consider the point
z0 = (r, 0, p) for r slightly bigger than k and given p. Then L(z0) = r > 0 and for any t
v(t, z0) ≥ U(r). For ε small enough zε = (r,−ε, p) ∈ S, but since the investor has to trade,
almost all cash holdings will go to pay the transaction cost and the value function will be
slightly bigger than zero by condition (1.2) for t close to T .

As seen later, the dynamics given in this paper are the starting point of this dissertation,
but we consider a different objective function in order the avoid the problems mentioned
above.
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Main Contribution In this dissertation we study both infinite and finite horizon price
impact models that include transaction cost under the setting of impulse control. Taking
ideas of the [Ly Vath et al., 2007], we describe a general underlying price process and a general
market impact that allows for either temporary or permanent impact but not both. With
help of some classic results for optimal stopping problems and the discontinuous viscosity
solutions theory for nonlinear partial differential equations, developed in references such as
[Crandall et al., 1992, Ishii and Lions, 1990, Ishii, 1993, Fleming and Soner, 2006], we obtain
a full characterization of the value function when the transaction cost is strictly positive
and the price process satisfies some technical condition. These conditions are related with
growth of an associated optimal stopping control problem and most of the price processes
considered in the mathematical finance literature satisfy these conditions. Additionally, we
are able to calculate the value function, in the finite horizon situation, as the expected value
of certain measurable function of the price process at the expiration date.

As mentioned, the previous characterization is not complete when there is no transac-
tion cost. By analyzing the Hamilton-Jacobi-Bellman (HJB) equation obtained before, we
formulate a singular control model to include this case. For this new formulation we are able
to completely characterize the value function. Even though any impulse control is a singular
control, in general the expected revenue obtained when applying the same impulse control
in both formulation is different. However, the value function may be the same. We are able
to show that this is the case for a special case and provide the explicit solution. We also
consider a regular control formulation in the spirit of [Schied and Schöneborn, 2009] and
show that is not appropriate for our model of the optimal execution problem.

The structure of the dissertation is as follows: Chapter 2 include some technical back-
ground needed to develop the mathematical analysis of this dissertation. The first part
reviews the theory of stochastic optimal control and the second part the theory of viscosity
solutions. Chapter 3 describes the impulse control model both in the infinite horizon and
finite horizon settings. In both cases we characterize the value function of the problem as a
viscosity solution of the HJB equation and show uniqueness when the fixed transaction cost
is strictly positive and the price process satisfies certain conditions. An important special
case is considered in finite horizon situation. Chapter 4 considers the case where there is no
transaction cost in the infinite horizon framework and shows the connection with a singular
control model. For this model we also characterize the value function. We also describe
a regular control formulation and show the problems associated with this model. Finally,
we present numerical results of the value function and the optimal strategy for different
underlying stochastic processes that allow to model permanent or temporary price impacts.
Chapter 5 presents some conclusions and future work.
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Chapter 2

Technical Review

In this chapter we include some technical background needed to develop the mathemat-
ical analysis of this dissertation. The first section reviews some aspects of the stochastic
optimal control theory and the second section reviews the theory of viscosity solutions of
fully nonlinear partial differential equations.

2.1 Stochastic Optimal Control

This section will include some mathematical background and literature review about stochas-
tic control theory. Stochastic controls literature include the optimal stopping problem and
problems involving different types of controls such as regular, singular, impulse and switching.
Thorough this section we assume a probability space (Ω,F , P ) and (Bt)t≥0 a m-dimensional
Brownian motion in that space. Let (Ft)t≥0 be the filtration generated by B and assume
that satisfies the usual hypothesis.

2.1.1 Stochastic Differential Equations

Stochastic differential equations are the tool that allows to describe the dynamics of the
stochastic process. We start with the following important theorem:

Theorem 4 (Existence and Uniqueness for Stochastic Differential Equations [Øksendal,
1998]). Let T > 0 and b : [0, T ] × Rn −→ Rn, σ : [0, T ] × Rn −→ Rn×m be measurable
function such that

|b(t, x)|+ |σ(t, x)| ≤ C(1 + |x|), x ∈ Rn, t ∈ [0, T ]

for some constant C, and such that

|b(t, x)− b(t, y)|+ |σ(t, x)− σ(t, y)| ≤ D|x− y|, x ∈ Rn, t ∈ [0, T ]
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for some constant D. Let Z be a r.v. which is independent of the σ-algebra generated by the
Brownian motion B and such that E[|Z|2] <∞. Then the stochastic differential equation

dXt = b(t,Xt)dt+ σ(t,Xt)dBt, 0 ≤ t ≤ T,X0 = Z (2.1)

has a unique continuous solution X such that is adapted to the filtration generated by B and
Z, which satisfies the stochastic integral equation

Xt = Z +

∫ t

0

b(s,Xs)ds+

∫ t

0

σ(s,Xs)dBs,

for t ∈ [0, T ], and

E
[∫ T

0

|Xt|2dt
]
<∞.

The solution is unique up to indistinguishability, that is, if X̂ and X are both solutions of
(2.1), then P (Xt = X̂t, ∀t ∈ [0, T ]) = 1.

The above solution is called a strong solution because the Brownian motion is given.
There are also weak solutions to (2.1) but we are not going to consider them. Stochastic
process that are strong solutions of stochastic differential equations that satisfy the as-
sumptions of the theorem above are called Itô diffusion. Let’s give now some important
properties about diffusions. Let Ex be the expected value with respect to the probability
law Qx = P (·|X0 = x), for x ∈ Rn.

Theorem 5 (Itô’s Formula [Øksendal, 1998]). Let X be a solution of (2.1) and f : [0, T ]×
Rn −→ R be of class C1,2. Then for all t ∈ [0, T ],

df(t,Xt) =
∂f

∂t
(t,Xt)dt+

n∑
i=1

bi(t,Xt)
∂f

∂xi
(t,Xt)dt

+
n∑
i=1

∂f

∂xi
(t,Xt)

m∑
j=1

σij(t,Xt)dB
j
t

+
1

2

n∑
i,k

∂2f

∂xi∂xk
(t,Xt)(σσ

T )ij(t,Xt)dt.

Let’s consider the case where the coefficients b and σ in (2.1) do not depend on t.

Definition 6. Let Xt be a Itô diffusion in Rn. The (infinitesimal) generator A of Xt is
defined by

Af(x) = lim
t↓0

Ex[f(Xt)]− f(x)

t

for each x ∈ Rn. The set of functions f : Rn → R such that the limit exists at x is denoted
by DA(x), while DA denotes the set of functions for which the limit exists for all x ∈ Rn.
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Theorem 7 ([Øksendal, 1998]). Let Xt be the Itô diffusion

dXt = b(Xt)dt+ σ(Xt)dBt.

If f ∈ C2
0(Rn), then f ∈ DA and

Af(x) =
∑
i

bi(x)
∂f

∂xi
+

1

2

∑
i,j

(σσT )ij(x)
∂2f

∂xi∂xj
.

Using Itô’s formula we have the following important identity which provides an important
way of linking PDE and SDE:

Theorem 8 (Dynkin’s formula [Øksendal, 1998]). Let f ∈ C2
0(Rn). Suppose τ is a F (m)

t -
stopping time, Ex[τ ] <∞. Then

Ex[f(Xτ )] = f(x) + Ex
[∫ τ

0

Af(Xs)ds

]
.

2.1.2 Dynamic Programming

A stochastic optimal control problem is composed of a diffusion system, described by Itô SDE;
alternative decisions of certain type than can affect the dynamics of the system; constraints
on the decisions and/or the state of the system; and a criterion that measures the performance
of the system under the decisions. We will focus on the most studied type of control, called
regular control, to describe some of the methods to solve optimal control problems. Other
types of formulations will be discussed later.

Under the same probability space as before, we consider the following stochastic controlled
system for t ∈ [0, T ]:

dXt = b(t,Xt, ut)dt+ σ(t,Xt, ut)dBt, (2.2)

with X0 = x, where Xt ∈ Rn, b : [0, T ] × Rn × U → Rn, σ : [0, T ] × Rn × U → Rn×m.
ut ∈ U ⊂ Rk Borel set, is the control of the process. ut is assumed to be Ft-adapted.
Assume that the process Xt satisfying (2.2) exists. Define the performance function

J(u) = E
[∫ T

0

f(t,Xt, ut)dt+ g(XT )

]
,

which is assumed to be integrable, where f : [0, T ]×Rn ×U → R and g : Rn → R are given
continuous functions. The optimal control problem is then to minimize the performance
function over all admissible strategies u and find the optimal control ū that minimize the
functional, if it exists.

One approach to solve this problem is called Stochastic Maximum Principle (analogous
to Pontryagin Maximum Principle for deterministic systems). This method introduces the
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so-called adjoint variables that satisfy a system of backward (in time) SDE defined in terms
of the Hamiltonian

H(t, x, u, p, q) = pT b(t, x, u) + tr(qTσ(t, x, u))− f(t, x, u),

with (t, x, u, p, q) ∈ [0, T ]×Rn×U×Rn×Rn×m, and the terminal condition defined in terms
of the function h. Since this is not the approach taken in this work we refer the reader to
[Yong and Zhou, 1999] for more information about this method.

The other common approach to solve stochastic control problems is Dynamic Program-
ming Principle (DPP). This is the approach taken in this work. The idea of this method is to
solve the problem simultaneously for different initial times and states, establishing a relation-
ship among these problems trough a nonlinear partial differential equation called Hamilton-
Jacobi-Bellman (HJB) equation. Consider the same SDE (2.2) but only for t ∈ [s, T ],
0 ≤ s ≤ T , with Xs = x. We redefine the performance functional

J(s, x;u) = E
[∫ T

s

f(t,Xt, ut)dt+ g(XT )

]
.

Now, we define the value function for all (s, x) ∈ [0, T )× Rn

V (s, x) = inf
u
J(s, x;u)

with the terminal condition
V (T, x) = g(x),

for x ∈ Rn. Under certain regularity conditions on the functions involved in the problem,
we have Bellman’s principle of optimality or DPP:

Theorem 9 ([Yong and Zhou, 1999]). For any (s, x) ∈ [0, T )× Rn

V (s, x) = inf
u
E

[∫ s′

s

f(t,Xt, ut)dt+ V (s′, Xs′)

]
,

for all s ≤ s′ ≤ T .

Different forms of DPP and the corresponding principle for other type of stochastic
optimal control problems are available in the literature. We will state later the appropriate
form important to us. Recent work [Bouchard and Touzi, 2009] has proved a weak version
of DPP for some cases which avoids the difficulties related to measurability arguments. This
weak form is enough to be able to derive the HJB equation in the sense of viscosity solutions,
which is the ultimate use of the optimality principle. For the problem in hand, the DPP
allows to derive, at least formally, the following PDE:{

−vt +H(t, x,Dv,D2v) = 0, (t, x) ∈ [0, T )× Rn

v(T, x) = g(x), x ∈ Rn,
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where

H(t, x, p, P ) = sup
u∈U
−1

2
tr(Pσ(t, x, u)σ(t, x, u)T )− pT b(t, x, u)− f(t, x, u),

for (t, x, p, P ) ∈ [0, T )× Rn × Rn × Sn. When the value function V is smooth enough, then
[Yong and Zhou, 1999] shows that V solves the above HJB. Unfortunately, this is not always
the case and the value function could not be smooth enough, or the HJB may not have
a classical solution. Here is where the theory of viscosity solutions helps to overcome this
difficulty. The second part of this review will be dedicated to some features of this theory.

On the other hand, when the Hamiltonian do not satisfy some regularity conditions, for
example when it is not locally bounded, we can have a situation where the value function
does not satisfy the HJB equation. In section 4.4.1 we have an example where this occurs.

2.1.3 Two Formulations

In this work we concentrate in two types of stochastic control: Impulse and singular control.
We now review some history and results of these control problems.

Impulse control

Impulse control is perhaps the less studied type of stochastic control, especially in terms
of the analytic properties of the value function and the optimal policy. One of the first
references is [Bensoussan and Lions, 1982] which gives a connection between weak solutions
of quasivariational inequalities and stochastic impulse control. It considers the following
infinite horizon problem: In the absence of control, Xt is governed by the Itô’s stochastic
differential equation

dXt = b(Xt)dt+ σ(Xt)dBt,X0 = x.

An impulse control for the system is the sequence v = (τn, ζn)0≤n≤M for M ≤ ∞, where
0 ≤ τ1 ≤ τ2 ≤ . . . are stopping times and ζ1, ζ2, . . . are the interventions at these times,
which are Fτn-measurable for all n. If a control v = (τn, ζn) is adopted, then Xt evolves as

dXv
t = b(Xv

t )dt+ σ(Xv
t )dBt +

∑
i

δ(t− τi)ζi,

where δ is the Dirac delta function. The performance value is define as

Jv(x) := Ex
[∫ τ

0

e−rtf(Xt)dt+
∑
τi≤τ

e−rτi(k +B(ζi))

]
.

Here, f is the running cost, k > 0, B is the transaction cost function, r > 0 is the discount
factor and τ is the first exit time of X from a given open bounded set O. [Bensoussan and
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Lions, 1982] shows that under some assumptions the value function

u(x) = inf
v
Jv(x),

is the unique solution in the Sobolev spaceH1
0 (O) that satisfies the quasivariational inequality{

〈Au, v − u〉 ≥ 〈f, v − u〉, ∀v ∈ H1
0 (O), v ≤Mv

0 ≤ u ≤Mu,

where the intervention operator is defined as

Mv(x) = k + inf
ξ≥0,x+ξ∈Ō

v(x+ ξ) +B(ξ).

The recent paper [Guo and Wu, 2009] studies a similar problem, with some differences in
the transaction cost function. Using the theory of viscosity solutions, the authors show that
u is the unique viscosity solution in the set of uniformly continuous functions bounded by
below with domain Rn, UCbb(Rn), (note that the domain is an unbounded set) of the HJB
equation

max{Av(x)− f(x), v(x)−Mv(x)} = 0, ∀x ∈ Rn.

In fact, the paper goes beyond and shows that u ∈ C1(Rn) provided σ is differentiable and
its derivatives are Lipschitz.

The general formulation of the stochastic impulse control problem is the following (see
[Øksendal and Sulem, 2005]): Suppose the state of the system Y is described, when no action
is taken, by the Itô diffusion process

dYt = b(Yt)dt+ σ(Yt)dBt, Y0− = y ∈ Rk.

Suppose that at any time t and any state y we can intervene the system and give an impulse
ζ ∈ Z ⊂ Rp, where Z is the set of admissible impulse values. When an impulse ζ is given,
the state variable y = Yt− jumps to Yt = Γ(y, ζ) ∈ Rk where the function Γ : Rk × Z → Rk

is given. Therefore, if the impulse control v is applied, the dynamics of Y v are:

• Y v
0− = y

• Y v
t = Yt for 0 < t < τ1

• Y v
τn = Γ(Y v

τn−, ζn) for n = 1, 2, . . .

• dY v
t = b(Y v

t )dt+ σ(Y v
t )dBt for τn < t < τn+1.

Define the performance value as

Jv(y) = Ey
[∫ τG

0

f(Y v
t )dt+ g(Y v

τG
)1{τG<∞} +

∑
τn≤τG

K(Y v
τn−, ζn)

]
,
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where τG is the first exit time from the open set G. Let Υ be the family of admissible impulse
controls such that there is a unique solution Y v, the performance function is integrable and,
when M = ∞ a.s., lim

n→∞
τn = τG a.s. The problem, as usual, is to find Φ(y) and if possible

v∗ ∈ Υ such that
Φ(y) = sup

v∈Υ
Jv(y) = Jv

∗
(y).

For n = 1, 2, . . . let Υn denote the set of all v ∈ Υ such that v = (τ1, . . . , τn; ζ1, . . . , ζn), that
is, v has at most n interventions. Then for all n

Υn ⊂ Υn+1 ⊂ Υ.

Define
Φn(y) = sup

v∈Υn

Jv(y).

Then Φn ≤ Φn+1 ≤ Φ. Moreover,

Lemma 10 ([Øksendal and Sulem, 2005]). Suppose g ≥ 0. Then for all y ∈ G

lim
n→∞

Φn(y) = Φ(y).

We now define formally the intervention operator:

Definition 11. Let H be the space of all measurable functions h : G→ R. The intervention
operator M : H → H is defined by

Mh(y) = sup
ζ∈Z

Γ(y,ζ)∈G

{h(Γ(y, ζ)) +K(y, ζ)}.

We will be mostly interested in applying M to Φ. In this case, MΦ(y) represents the
value of the strategy that consists of taking the best immediate action in state y and behaving
optimally afterwards.

Singular control

One of the first papers that solved a singular control problem by ad hoc methods is [Benes
et al., 1980]. They consider the problem

V (y) = inf
ξ+,ξ−

E
[∫ ∞

0

e−ρt(Bt + Yt)dt

]
,

where ρ > 0 and Yt = y+ξ+
t −ξ−t . The control (ξ+, ξ−) is a pair of adapted, nondecreasing and

càglàd processes starting at 0. Later, in [Karatzas and Shreve, 1984] the authors considered
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a more general problem in a finite horizon setting and established a connection between the
singular control problem

V (T, y) = inf
ξ=ξ+−ξ−

E
[∫ T

0

h(t, Bt + Yt)dt+

∫
[0,T )

f(t)dξt + g(BT + YT )

]
,

and the optimal stopping problem

u(T, y) = inf
0≤τ≤T

E
[∫ τ

0

∂h

∂y
(t, y +Bt)dt+ f(τ)1{τ<T} + g′(y +BT )

]
.

The authors show that under some conditions, if an optimal control exists then u =
∂V

∂x
.

More recent works [Guo and Tomecek, 2009, 2008] connect a similar problem, with an Itô
diffusion instead of the Brownian motion, with a switching control problem. Using this
connection the authors establish some regularity properties of the value function. Singular
control problems have also played an important role in portfolio selection with consumption
and proportional transaction costs. Some important works in this topic are [Davis and
Norman, 1990, Shreve and Soner, 1994], where explicit solutions are found. It is worth
mentioning that the second reference relies on the concept of viscosity solutions.

The general formulation of the problem is the following (see [Øksendal and Sulem, 2005])
: Let κ ∈ Rk×p and θ ∈ Rp be constants. Suppose the state of the system Yt is described by

dYt = b(Yt, ut)dt+ σ(Yt, ut)dBt + κdξt, Y0− = y ∈ Rk,

where ξt ∈ Rp is an adapted càdlàg finite variation process and ξ0− = 0. Note that dξt may
be singular with respect to Lebesgue measure dt (and hence the name). The process u is an
adapted regular control with values in U as before. Define the performance functional as

Ju,ξ(y) = Ey
[∫ τG

0

f(Yt, ut)dt+ g(YτG)1{τG<∞} +

∫ τG

0

θTdξt

]
.

Let A be the family of admissible controls (u, ξ) such that a unique strong solution Yt exists.
The problem is to find the value function Φ(y) and an optimal control (u∗, ξ∗) ∈ A such that

Φ(y) = sup
(u,ξ)∈A

Ju,ξ(y) = Ju
∗,ξ∗(y).

2.2 Viscosity Solutions

One of the most important references about viscosity solutions is [Crandall et al., 1992].
From there we quote the following paragraph that explains the importance of this theory:
The primary virtues of this theory are that it allows merely continuous functions to be solu-
tions of fully nonlinear equations of second order, that it provides very general existence and
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uniqueness theorems and that it yields precise formulations of general boundary conditions.
Although this reference considers only continuous viscosity solutions, actually, the theory ex-
tends to discontinuous viscosity solutions when there is no a priori knowledge of the solution
of the equation (see [Fleming and Soner, 2006]). We will use this notion hereafter.

Definition 12. Let W be an extended real-valued function on some open set D ⊂ Rn.

(i) The upper semi-continuous envelope of W is

W ∗(x) = lim
r↓0

sup
|x′−x|≤r
x′∈D

W (x′), ∀x ∈ D.

(ii) The lower semi-continuous envelope of W is

W∗(x) = lim
r↓0

inf
|x′−x|≤r
x′∈D

W (x′), ∀x ∈ D.

Note that W ∗ is the smallest upper semi-continuous function which is greater than or
equal to W , and similarly for W∗. Now we define the notion of discontinuous viscosity
solutions that apply to value functions of impulse control problems:

Definition 13. Given an equation of the form

min
{
F (x, ϕ(x), Dϕ(x), D2ϕ(x)), ϕ−Mϕ

}
= 0 in D, (2.3)

where M is defined in 11, a locally bounded function W on D is a:

(i) Viscosity subsolution of (2.3) in D if for each ϕ ∈ C2(D̄),

min
{
F (x0,W (x0), Dϕ(x0), D2ϕ(x0)),W ∗(x0)−MW ∗(x0)

}
≤ 0

at every x0 ∈ D which is a maximizer of W ∗ − ϕ on D̄ with W ∗(x0) = ϕ(x0).

(ii) Viscosity supersolution of (2.3) in D if for each ϕ ∈ C2(D̄),

min
{
F (x0,W (x0), Dϕ(x0), D2ϕ(x0)),W∗(x0)−MW∗(x0)

}
≥ 0

at every x0 ∈ D which is a minimizer of W∗ − ϕ on D̄ with W∗(x0) = ϕ(x0).

(iii) Viscosity solution of (2.3) in D if it is both a viscosity subsolution and a viscosity
supersolution of (2.3) in D.
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2.2.1 Comparison principle

In order to prove uniqueness results for viscosity solutions a common technique, called com-
parison principle, is used. This principle is somehow an extension of the maximum prin-
ciple for semi-continuous functions. Suppose the set D above is open and bounded. Let
u ∈ USC(D̄) be a subsolution of (2.3) and v ∈ LSC(D̄) be a supersolution of (2.3) such
that u ≤ v on ∂D. We say that (2.3) satisfies the comparison principle if u ≤ v in D̄. Now
suppose that W1 and W2 are viscosity solutions of (2.3) such that W1∗ = W ∗

1 = W2∗ = W ∗
2

on ∂D. Therefore
W ∗

1 ≤ W2∗ ≤ W ∗
2 ≤ W1∗ in D̄,

which implies not only uniqueness of the solution but also continuity. When the open set
D is unbounded we have to be more careful and assume some growth conditions in the sub
and super solutions to prove the comparison principle. This is the case in this work.

The key result in order to prove a comparison principle is Ishii’s Lemma. Before stating
it we need a definition.

Definition 14. Let O ⊂ RN arbitrary and u : O 7→ R. Let x̂ ∈ O and (p,X) ∈ RN ×S(N).
We say that (p,X) ∈ J 2,+

O u(x̂) (the second order superjet of u at x̂) if

u(x) ≤ u(x̂) + 〈p, x〉+
1

2
〈X(x− x̂), x− x̂〉+ o(|x− x̂|2) as O 3 x→ x̂.

From the definition we have that J 2,+
O u(x̂) is the same for all sets O where x̂ is an

interior point. This common value is noted as J 2,+u(x̂). We also have that J 2,−
O u(x̂) =

−J 2,+
O (−u)(x̂). An equivalent definition of viscosity solutions can be stated in terms of

superjets. We will use this definition later in uniqueness proofs (see [Crandall et al., 1992]).
Now, we can state the key lemma.

Theorem 15 (Ishii’s Lemma, Theorem 3.2 in [Crandall et al., 1992]). Let Oi be a locally
compact subset of RNi for i = 1, . . . , k,

O = O1 × · · · × Ok,

ui ∈ USC(Oi), and ϕ be twice continuously differentiable in a neighborhood of O. Set

w(x) = u1(x1) + · · ·+ uk(xk) for x = (x1, . . . , xk) ∈ O,

and suppose x̂ = (x̂1, . . . , x̂k) ∈ O is a local maximum of w−ϕ relative to O. Then for each
ε > 0 there exists Xi ∈ S(Ni) such that

(Dxiϕ(x̂), Xi) ∈ J̄ 2,+
Oi ui(x̂i) for i = 1, . . . , k,
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and the block diagonal matrix with entries Xi satisfies

−
(

1

ε
+ ‖A‖

)
I ≤

X1 . . . 0
...

. . .
...

0 . . . Xk

 ≤ A+ εA2

where A = D2ϕ(x̂) ∈ S(N), N = N1 + . . .+Nk.
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Chapter 3

Impulse Control Model

In this chapter we introduce a new model, inspired by the model described in [Ly Vath
et al., 2007], for the Optimal Execution Problem. The main difference is that we do not allow
short-selling and therefore we do not consider any liquidation value function. Our objective
function is just the discounted revenue. In this way we overcome the problems found in
[Ly Vath et al., 2007] mentioned in Chapter 1. The first section describes the model of price
impact and transaction cost. For this model we consider infinite horizon and finite horizon
in sections 2 and 3 respectively. In both cases we provide a characterization of the value
function as viscosity solutions of fully nonlinear PDEs.

3.1 Model

Let (Ω,F , (Ft)0≤t≤∞,P) be a probability space which satisfies the usual conditions and Bt

be a one-dimensional Brownian motion adapted to the filtration. We consider a continuous
time process adapted to the filtration denoting the price of a risky asset Pt. The unperturbed
price dynamics are given by:

dPs = µ(Ps)ds+ σ(Ps)dBs, (3.1)

where µ and σ satisfy regular conditions such that there is a unique strong solution of this
SDE (i.e. Lipschitz continuity). We are mainly interested in dynamics such that the price
process is always non-negative, thus we assume that P is absorbed as soon as it reaches 0.
Also the initial price p is non-negative. We consider price impact functions such that the
price goes up when the investor buys shares and goes down when the investor sells shares.
Also, the greater the volume of the trade, the grater the impact in the price process. The
number of shares in the asset held by the investor at time t is denoted by Xt and it is up
to the investor to decide how to unwind the shares. Different models and formulations will
define the admissible strategies for the investor. At the beginning the investor has x ≥ 0
number of shares and we only allow strategies such that Xt ≥ 0 for all t ≥ 0. Since the
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investor’s interest is to execute the position, we don’t allow to buy shares, that is Xt is a
non-increasing process. Hence, we can see that R+ × R+ = Ō (with interior O) is the state
space of the problem. The goal of the investor is to maximize the expected discounted profit
obtained by selling the shares before the deadline T ≥ 0 (possibly infinity).

In this formulation we assume that the investor can only trade discretely over the time
horizon. This is modeled with the impulse control ν = (τn, ζn)1≤n≤M , where the random
variable M < ∞ is the number of trades, (τn) are stopping times with respect to the
filtration (Ft) such that 0 ≤ τ1 ≤ · · · ≤ τn ≤ · · · ≤ τM ≤ T that represent the times of the
investor’s trades, and (ζn) are real-valued Fτn-measurable random variables that represent
the number of shares sold at the intervention times. Note that any control policy ν fully
determines M . We will consider both infinite horizon (T =∞) and finite horizon.

Given any strategy ν, the dynamics of X are given by

Xs = Xτn , for τn ≤ s < τn+1, (3.2)

Xτn+1 = Xτn − ζn+1. (3.3)

3.1.1 Price impact

For the price impact we let α(ζ, p) be the post-trade price when the investor trades ζ shares
of the asset at a pre-trade price of p. We assume that α is smooth, non-increasing in ζ, and
non-decreasing in p. We will also assume that α(ζ, p) ≤ p for ζ ≥ 0 and α(0, p) = p for all
p. Furthermore, we will also assume that for all ζ1, ζ2, p ∈ R+

α(ζ1, α(ζ2, p)) = α(ζ1 + ζ2, p). (3.4)

This assumption says that the impact in the price of trading twice at the same moment in
time is the same as trading the total number of shares once. This assumption will prevent
any price manipulation from the investor. Two possible choices for α are:

α1(ζ, p) = p− λζ

α2(ζ, p) = pe−λζ

where λ > 0. A linear impact like α1 has the drawback that the post-trade price can be
negative. Given a price impact α and an admissible strategy ν, the price dynamics are given
by:

dPs = µ(Ps)ds+ σ(Ps)dBs, for τn ≤ s < τn+1, (3.5)

Pτn = α(ζn, Pτn−). (3.6)

With this general model, we can achieve different types of price impact by choosing the
appropriate price process. The first type studied in the literature is the permanent impact.
By permanent impact we mean a change in the equilibrium price process due to the trading
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itself, as explained in [Almgren and Chriss, 2000]. The first and widely used price process
that we can use to model permanent price impact is the geometric Brownian motion. Clearly,
the arithmetic Brownian motion also allows for this type of impact.

A second kind of impact present in the references is a temporary impact. We can describe
temporary impact as caused by temporary imbalances in supply/demand dynamics. Mean-
reverting processes like OrnsteinUhlenbeck process and CIR process allow us to model this
temporary impact in the price.

3.2 Infinite Horizon

Given y = (x, p) ∈ Ō we define V (y), the value function as the maximum (or supremum),
taken over all admissible trading strategies such that (X0−, P0−) = Y0− = y. We call β > 0
the discount factor and k ≥ 0 the transaction cost. Note that we can always do nothing, in
which case the expected revenue is 0. Therefore V ≥ 0 for all y. Formally, given y = (x, p) ∈
Ō the value function V has the form:

V (y) = sup
ν

E

[
M∑
n=1

e−βτn(ζnPτn − k)

]
. (3.7)

As usual, we assume that e−βτ = 0 on {τ =∞}.

3.2.1 Hamilton-Jacobi-Bellman equation

In order to characterize the value function we will use the dynamic programming approach.
This principle has been proved for several frameworks and types of control. Some of the
references that prove it in a fairly general context are [Ishikawa, 2004, Ma and Yong, 1999].
We have that the following Dynamic Programming Principle (DPP) holds: For all y =
(x, p) ∈ O we have

V (y) = sup
ν

E

[∑
τn≤τ

e−βτn(ζnPτn − k) + e−βτV (Yτ )

]
, (3.8)

where τ is any stopping time. Let’s define the impulse transaction function as

Γ(y, ζ) = (x− ζ, α(ζ, p))

for all y ∈ Ō and ζ ∈ R. This corresponds to the change in the state variables when a trade
of ζ shares has taken place. We define the intervention operator as

Mϕ(y) = sup
0≤ζ≤x

ϕ(Γ(y, ζ)) + ζα(ζ, p)− k,
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for any measurable function ϕ. Also, let’s define the infinitesimal generator operator associ-
ated with the price process when no trading is done, that is

Aϕ = µ(p)
∂ϕ

∂p
+

1

2
σ(p)2∂

2ϕ

∂p2
,

for any function ϕ ∈ C2(O). The HJB equation that follows from the DPP is then ([Øksendal
and Sulem, 2005])

min {βϕ− Aϕ,ϕ−Mϕ} = 0 in O. (3.9)

We call the continuation region to

C = {y ∈ O :Mϕ− ϕ < 0}

and the trade region to
T = {y ∈ O :Mϕ− ϕ = 0}.

The intuition behind the equation (3.9) is the following: Let y ∈ O. ClearlyMV (y) ≤ V (y).
Now, assuming enough regularity for the value function V , by DPP and Dynkin’s formula

V (y) ≥ E[e−βtV (Yt)] = V (y) + E
[∫ t

0

e−βs(−βV + AV )(Ys)ds

]
,

for all t ≥ 0 where Ys is the process with no intervention. Therefore (−βV + AV )(y) ≤ 0.
If the no intervention is optimal, then (−βV + AV )(y) = 0 and MV (y) < V (y), that is
y ∈ C. On the other hand if the optimal strategy is to trade, then MV (y) = V (y) and
(−βV + AV )(y) < 0, so y ∈ T .

3.2.2 Growth condition

We will define a particular optimal stopping problem and use some of the results in [Dayanik
and Karatzas, 2003] to establish an upper bound on the value function V and therefore a
growth condition. Consider the case where there is no price impact, that is, α(ζ, p) = p for
all ζ ≥ 0. We define

VNI(y) = sup
ν

E

[
M∑
n=1

e−βτn(ζnPτn − k)

]
, (3.10)

where Ps follows the unperturbed price process. It is clear that V ≤ VNI . When there is no
price impact, the investor would need to trade only one time.

Proposition 16. For all y ∈ O

VNI(x, p) = U(x, p) := sup
τ

E[e−βτ (xPτ − k)+] (3.11)

where the supremum is taken over all stopping times with respect to the filtration (Fs).
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Proof. Since (τ, x) is an admissible strategy for any stopping time τ , then U ≤ VNI . Now,
let Υn the set of admissible strategies with at most n interventions. The proof will continue
by induction in n to show that for all n

sup
ν∈Υn

E

[
n∑
i=1

e−βτi(ζiPτi − k)

]
≤ U(y). (3.12)

Clearly (3.12) is true for n = 1. Let ν ∈ Υn. Note that xp − k ≤ U(x, p), therefore,
conditioning on Fτ1 we have

E

[
n∑
i=1

e−βτi(ζiPτi − k)

]
=E

[
E
[
[e−βτ1(ζ1Pτ1 − k)

∣∣Fτ1]]+

E

[
E

[
e−βτ1

n∑
i=2

e−β(τi−τ1)(ζiPτi − k)

∣∣∣∣∣Fτ1
]]

≤E
[
E
[
e−βτ1U(ζ1, Pτ1)

∣∣Fτ1]]+

E
[
E
[
e−βτ1U(x− ζ1, Pτ1)

∣∣Fτ1]]
≤E

[
e−βτ1U(x, Pτ1)

]
≤U(x, p),

where the last inequality follows from the fact that the process e−βsU(x, Ps) is a supermartin-
gale ([Øksendal and Reikvam, 1998]). This proves (3.12). By lemma 10, the left hand side
of (3.12) converges to VNI as n→∞ and the proof is complete.

From the previous proposition we have the bound

0 ≤ V (x, p) ≤ U(x, p) = sup
τ

E[e−βτ (xPτ − k)+], (3.13)

where the supremum is taken over all stopping times with respect to the filtration (Ft).
Following section 5 in [Dayanik and Karatzas, 2003], let ψ and φ be the unique, up to
multiplication by a positive constant, strictly increasing and strictly decreasing (respectively)
solutions of the ordinary differential equation Au = βu and such that 0 ≤ ψ(0+) and
ψ(p)→∞ as p→∞. For any x ≥ 0, let

`x = lim
p→∞

(xp− k)+

ψ(p)
. (3.14)

Then U is finite in O if and only if `x is finite for all x ≥ 0. Furthermore, when U is finite
we also have that for some C > 0

U(x, p) ≤ Cxψ(p) (3.15)

and

lim
p→∞

U(x, p)

ψ(p)
= `x. (3.16)

We will assume that U is finite for the rest of this section.
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3.2.3 Boundary condition

Since the investor is not allowed to purchase shares of the asset we have that V (0, p) = 0 for
all p ≥ 0. Also, the price process gets absorbed at 0, therefore V = 0 on ∂O. If we assume
that U is finite then by (3.15) we have that V (x, p)→ 0 as x→ 0 for all p ≥ 0, that is, V is
continuous on {x = 0}. Now we distinguish two cases:

1. 0 is an absorbing boundary for the price process P . This means that for any p > 0,
P(Pt = 0 for some t > 0|P0 = p) > 0. A simple example is the arithmetic Brownian
motion. Since the process is stopped at 0, we must have that for all x ≥ 0

U(x, 0) = 0.

Also, [Dayanik and Karatzas, 2003] shows that in this case U is continuous at {p = 0}
whenever U is finite. Therefore the boundary conditions for the value function V are

V = 0 on ∂O and lim
y′→y

V (y′) = 0 for all y ∈ ∂O. (3.17)

2. 0 is a natural boundary for the price process P . This means that for any p > 0,
P(Pt = 0 for some t > 0|P0 = p) = 0. For example the geometric Brownian motion.
In this case we can have different situations in V (x, p) as p goes to 0 depending on the
price process. In particular, we can have the situation where V is discontinuous on the
set {p = 0}.

3.2.4 Viscosity solution

We now are going to prove that the value function is a viscosity solution of the HJB equation
(3.9) and find the appropriate conditions that make this value function unique. The appro-
priate notion of solution of the HJB equation (3.9) is the notion of discontinuous viscosity
solution since we cannot know a priori if the value function is continuous in O.

We have the following theorem:

Theorem 17. The value function V defined in (3.7) is a viscosity solution of (3.9) in O.

Proof. By the bounds given in the section 3.2.2, it is clear that V is locally bounded. Now
we show the viscosity solution property.

Subsolution property: Let y0 ∈ O and ϕ ∈ C2(O) such that y0 is a maximizer of V ∗ − ϕ
on O with V ∗(y0) = ϕ(y0). Now suppose that there exists θ > 0 and δ > 0 such that

−βϕ(y) + Aϕ(y) ≤ −θ (3.18)

for all y ∈ O such that |y − y0| < δ. Let (yn) be a sequence in O such that yn → y0 and

lim
n→∞

V (yn) = V ∗(y0).
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By the dynamic programming principle (3.8), for all n ≥ 1 there exist an admissible control
νn = (τnm, ζ

n
m)m such that for any stopping time τ we have that

V (yn) ≤ E

∑
τnm≤τ

e−βτ
n
m(ζnmP

n
τnm
− k) + e−βτV (Y n

τ )

+
1

n
, (3.19)

where Y n
s is the process controlled by νn for s ≥ 0. Now consider the stopping time

Tn = inf{s ≥ 0 : |Y n
s − y0| ≥ δ} ∧ τn1 ,

where τn1 is the first intervention time of the impulse control νn. By (3.19) we have that

V (yn) ≤ E
[
e−βTnV (Y n

Tn)1{Tn<τn1 }
]

+ E
[
e−βTn

(
ζn1 P

n
τn1
− k + V (Y n

τn1
)
)

1{Tn=τn1 }

]
+

1

n

≤ E
[
e−βTnV (Y n

Tn−)1{Tn<τn1 }
]

+ E[e−βTnMV (Y n
τn1 −

)1{Tn=τn1 }] +
1

n
(3.20)

≤ E
[
e−βTnV (Y n

Tn−)
]

+
1

n
(3.21)

Now, by Dynkin’s formula and (3.18) we have

E[e−βTnϕ(Y n
Tn−)] = ϕ(yn) + E

[∫ Tn

0

e−βs (−βϕ(Y n
s ) + Aϕ(Y n

s )) ds

]
≤ ϕ(yn)− θ

β
(1− E[e−βTn ]).

Since V ≤ V ∗ ≤ ϕ and Tn ≤ τn1 , by (3.21)

V (yn) ≤ ϕ(yn)− θ

β
(1− E[e−βTn ]) +

1

n
,

for all n. Letting n go to infinity we have that

lim
n→∞

E[e−βTn ] = 1,

which implies that
lim
n→∞

P[τn1 = 0] = 1.

Combining the above with (3.20) when we let n→∞ we get

V ∗(y0) ≤ sup
|y′−y0|<δ

MV (y′).

Since this is true for all δ small enough, then sending δ to 0 we have

V ∗(y0) ≤ (MV )∗(y0).
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If we show that (MV )∗ ≤MV ∗, then we would have proved that if −βϕ(y0) +Aϕ(y0) < 0,
then MV ∗(y0)− V ∗(y0) ≥ 0 and therefore

min {βϕ(y0)− Aϕ(y0), V ∗(y0)−MV ∗(y0)} ≤ 0.

The proof of this last fact is as follows: Let ϕ be a locally bounded function on Ō. Let (yn)
be a sequence in O such that (yn)→ y0 and

lim
n→∞

Mϕ(yn) = (Mϕ)∗(y0).

Since ϕ∗ is usc and Γ is continuous, for each n ≥ 1 there exists 0 ≤ ζn ≤ xn such that

Mϕ∗(yn) = ϕ∗(Γ(yn, ζn)) + ζnα(ζn, pn)− k.

The sequence (ζn) is bounded (since xn → x0) and therefore converges along a subsequence
to ζ ∈ [0, x0]. Hence

(Mϕ)∗(y0) = lim
n→∞

Mϕ(yn)

≤ lim sup
n→∞

Mϕ∗(yn)

= lim sup
n→∞

ϕ∗(Γ(yn, ζn)) + ζnα(ζn, pn)− k

≤ ϕ∗(Γ(y0, ζ)) + ζα(ζ, p0)− k
≤Mϕ∗(y0).

Supersolution property: Let y0 ∈ O and ϕ ∈ C2(O) such that y0 is a minimizer of V∗−ϕ
on O with V∗(y0) = ϕ(y0). By definition of V and MV we have that MV ≤ V on O and
therefore (MV )∗ ≤ V∗. Let (yn) be a sequence in O such that yn → y0 and

lim
n→∞

V (yn) = V∗(y0).

Now, since V∗ ≤ V is lower semi-continuous and Γ is continuous we have

MV∗(y0) = sup
0≤ζ≤x0

V∗(Γ(y0, ζ)) + ζα(ζ, p0)− k

≤ sup
0≤ζ≤x0

lim inf
n→∞

V (Γ(yn, ζ)) + ζα(ζ, pn)− k

≤ lim inf
n→∞

sup
0≤ζ≤xn

V (Γ(yn, ζ)) + ζα(ζ, pn)− k

≤ lim
n→∞

MV (yn)

= (MV )∗(y0).
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Hence MV∗(y0) ≤ (MV )∗(y0) ≤ V∗(y0). Now suppose that there exists θ > 0 and δ > 0
such that

βϕ(y)− Aϕ(y) ≤ −θ (3.22)

for all y ∈ O such that |y− y0| < δ. Fix n large enough such that |yn− y0| < δ and consider
the process Y n

s for s ≥ 0 with no intervention such that Y n
0 = yn. Let

Tn = inf{s ≥ 0 : |Y n
s − y0| ≥ δ}.

Now, by Dynkin’s formula and (3.22) we have

E[e−βTnϕ(Y n
Tn)] = ϕ(yn) + E

[∫ Tn

0

e−βs (−βϕ(Y n
s ) + Aϕ(Y n

s )) ds

]
≥ ϕ(yn) +

θ

β
(1− E[e−βTn ]).

On the other hand, ϕ ≤ V∗ ≤ V and using the dynamic programming principle (3.8) we have

E[e−βTnϕ(Y n
Tn)] ≤ E[e−βTnV (Y n

Tn)] ≤ V (yn).

Notice that η := lim
n→∞

E[e−βTn ] < 1 since Tn > 0 a.s by a.s continuity of the processes Y n
s ,

then by the above two inequalities and taking n→∞, we have that

V∗(y0) ≥ ϕ(y0) +
θ

β
(1− η) > ϕ(y0)

contradicting the fact that V∗(y0) = ϕ(y0). This establishes the supersolution property.

3.2.5 Uniqueness

Let ψ be defined as before and assume that the function U defined in (3.13) is finite. Also
assume that the transaction cost k > 0. We want to prove that V is the unique viscosity
solution of the equation (3.9) that is bounded by U . We will need an additional assumption
about the function ψ: For all x ≥ 0

lim
p→∞

U(x, p)

ψ(p)
= `x = 0. (3.23)

Following the ideas in [Crandall et al., 1992, Ishii, 1993] let u be an upper semi-continuous
(usc) viscosity subsolution of the HJB equation (3.9) and v be a lower semi-continuous (lsc)
viscosity supersolution of the same equation in O, such that they are bounded by U and

lim sup
y′→y

u(y′) ≤ lim inf
y′→y

v(y′) for all y ∈ ∂O. (3.24)
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Define

vm(x, p) = v(x, p) +
1

m
x2ψ(p)

for all m ≥ 1. Then vm is still lsc and clearly βvm −Avm ≥ 0 by definition of ψ. Now,

Mvm(x, p) = sup
0≤ζ≤x

v(x− ζ, α(ζ, p)) +
1

m
(x− ζ)2ψ(α(ζ, p)) + ζα(ζ, p)− k

≤ sup
0≤ζ≤x

v(x− ζ, α(ζ, p)) + ζα(ζ, p)− k + sup
0≤ζ≤x

1

m
(x− ζ)2ψ(α(ζ, p))

=Mv(x, p) +
1

m
x2ψ(p)

≤ v(x, p) +
1

m
x2ψ(p) = vm(x, p).

Therefore vm is supersolution of (3.9). Now, by the growth condition of u and v and equations
(3.15) and (3.23) we get

lim
|y|→∞

(u− vm)(y) = −∞. (3.25)

We will show now that
u ≤ v in O. (3.26)

It is sufficient to show that sup
y∈Ō

(u − vm) ≤ 0 for all m ≥ 1 since the result is obtained by

letting m → ∞. Suppose that there exists m ≥ 1 such that η = sup
y∈Ō

(u − vm) > 0. Since

u − vm is usc, by (3.25) and (3.24) there exist y0 ∈ O such that η = (u − vm)(y0). Let
y0 = (x0, p0) be the one with minimum norm over all possible maximizers of u − vm. For
i ≥ 1, define

φi(y, y
′) =

i

2
|y − y′|4 + |y − y0|4,

Φi(y, y
′) = u(y)− vm(y′)− φi(y, y′).

Let
ηi = sup

|y|,|y′|≤|y0|
Φi(y, y

′) = Φi(yi, y
′
i).

Clearly ηi ≥ η. Then, this inequality reads i
2
|yi−y′i|4+|yi−y0|4 ≤ u(yi)−vm(y′i)−(u−vm)(y0).

Since |yi|, |y′i| ≤ |y0| and u and −vm are bounded above in that region, this implies that
yi, y

′
i → y0 and i

2
|yi − y′i|4 → 0 (along a subsequence) as i → ∞. We also find that ηi → η,

u(yi) − vm(y′i) → η and u(yi) → u(y0), vm(y′i) → v(y0). By theorem 3.2 in [Crandall et al.,
1992], for all i ≥ 1, there exist symmetric matrices Mi and M ′

i such that (∂φi
∂y

(yi, y
′
i),Mi) =

(di,Mi) ∈ J̄2,+u(yi), (−∂φi
∂y′

(yi, y
′
i),M

′
i) = (d′i,M

′
i) ∈ J̄2,−vm(y′i) and(

Mi 0
0 M ′

i

)
≤ D2φi(yi, y

′
i) +

1

i
(D2φi(yi, y

′
i))

2.
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Since u is a subsolution of (3.9) and vm is a supersolution, we have

min{βu(yi)− µ(pi)di,2 −
1

2
σ(pi)

2Mi,22, u(yi)−Mu(yi)} ≤ 0,

and

min{βvm(y′i)− µ(p′i)d
′
i,2 −

1

2
σ(p′i)

2M ′
i,22, vm(y′i)−Mvm(y′i)} ≥ 0.

Now, if we show that for infinitely many i’s we have that

βu(yi)− µ(pi)di,2 −
1

2
σ(pi)

2Mi,22 ≤ 0, (3.27)

and since it is always true that

βvm(y′i)− µ(p′i)d
′
i,2 −

1

2
σ(p′i)

2M ′
i,22 ≥ 0,

we have that u ≤ vm by following the classical comparison proof in [Crandall et al., 1992].
Suppose then, that there exists i0 such that (3.27) is not true for all i ≥ i0, then for i ≥ i0

u(yi)−Mu(yi) ≤ 0.

Since vm is a supersolution, we must have that

vm(y′i)−Mvm(y′i) ≥ 0.

Since u is usc, there exist ζi such that Mu(yi) = u(xi − ζi, α(ζi, pi)) + ζiα(ζi, pi)− k. Then

u(yi) ≤ u(xi − ζi, α(ζi, pi)) + ζiα(ζi, pi)− k.

Extracting a subsequence if necessary, we assume that ζi → ζ0 as i → ∞. First, consider
ζ0 = 0, then by taking lim sup in the inequality above we get u(y0) ≤ u(y0) − k. This is a
contradiction since k > 0. Now assume that ζ0 6= 0. From the above inequalities we have
that

u(yi)− vm(y′i) ≤ u(xi − ζi, α(ζi, pi)) + ζiα(ζi, pi)− vm(x′i − ζ ′i, α(ζ ′i, p
′
i))− ζ ′iα(ζ ′i, p

′
i),

for any 0 ≤ ζ ′i ≤ p′i. Since p′i → p0, let ζ ′i → ζ0 and taking lim sup in the above inequality we
get that

η ≤ (u− vm)(x0 − ζ0, α(ζ0, p0)).

This is a contradiction since y0 was chosen with minimum norm among maximizers of u−vm
and ζ0 > 0. Therefore (3.27) must hold for infinitely many i’s and (3.26) holds. As usual
continuity inO and uniqueness of V follow from the fact that V is a viscosity solution of (3.9).

We have just proved the following theorem:
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Theorem 18. Assume condition (3.23) and that the transaction cost k > 0. If W is a
viscosity solution of equation (3.9) that is bounded by U and satisfies the same boundary
conditions as V , then W = V . Furthermore, V is continuous in O.

Remark 19. Condition (3.23) is satisfied by Itô processes like Brownian Motion, Geometric
Brownian Motion, Mean Reverting and Cox-Ingersoll-Ross.

3.3 Finite Horizon

In this case we need to know how much time is left to execute the position. Hence, given
y = (x, p) ∈ Ō and 0 ≤ t ≤ T the value function V has the form:

V (t, y) = sup
ν

E

[
M∑
n=1

e−β(τn−t)(ζnα(ζn, Pτn−)− k)

]
. (3.28)

When T is small the effect of discounting could be negligible, so we allow β = 0 in this
formulation.

In general, the impulse control formulation allows multiple actions at the same moment.
Hence, in this case multiple trading is allowed and it could be optimal as well . The presence
of transaction cost will off course forbid infinite tradings but do not forbid that for some
n we could have optimally τn = τn+1 and ζn, ζn+1 6= 0. In fact, sometimes it is optimal
as we will show later in a special case. This is an important difference with respect to the
formulation in [Ly Vath et al., 2007], since they imply that this degenerate behavior is ruled
out because of the presence of transaction cost. This in particular has implications in the
terminal condition (see Chapter 1).

3.3.1 Hamilton-Jacobi-Bellman equation

Again, we will use the dynamic programming approach. In this case, we have that the
following Dynamic Programming Principle holds: For all (t, y) ∈ [0, T )×O we have

V (t, y) = sup
ν

E

[∑
τn≤τ

e−β(τn−t)(ζnα(ζn, Pτn−)− k) + e−β(τ−t)V (τ, Yτ )

]
, (3.29)

where t ≤ τ ≤ T is any stopping time. The HJB equation that follows from the DPP is then
([Øksendal and Sulem, 2005])

min

{
−∂ϕ
∂t

+ βϕ− Aϕ,ϕ−Mϕ

}
= 0 in O. (3.30)
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3.3.2 Growth Condition

As in the infinite horizon case we can use the solution of the optimal stopping problem to
bound the value function. Following the same arguments as in proposition 16 we have that

V (t, y) ≤ U(t, x, p) ≤ x sup
t≤τ≤T

E[e−β(τ−t)Pτ ] =: xU0(t, p). (3.31)

3.3.3 Boundary Condition

Since the investor is not allowed to purchase shares of the asset we have that V (t, 0, p) = 0
for all p ≥ 0 and 0 ≤ t ≤ T . Also, the price process gets absorbed at 0, therefore V = 0 on
[0, T ]× ∂O. Since U0 is finite then by (3.31) we have that V (t, x, p)→ 0 as x→ 0, that is,
V is continuous on {x = 0}. Now, if U0 is continuous at {p = 0} the boundary conditions
for the value function V are

V = 0 on [0, T ]× ∂O and lim
y′→y

V (t, y′) = 0 for all (t, y) ∈ [0, T )× ∂O. (3.32)

3.3.4 Terminal Condition

Assumption (3.4) guarantees that the price impact does not change by splitting the trades,
but the profit obtained by doing so could be greater than with a single transaction. We
define the following sequence of functions for (t, y) ∈ [0, T )×O:

ϕ0(t, y) = 0

and

ϕn(t, y) =Mϕn−1(t, y) = sup
0≤ζ≤x

ϕn−1(t,Γ(y, ζ)) + ζα(ζ, p)− k for n = 1, 2, . . .

So, ϕn(t, y) is the best that we can do by trading n times starting at y at time t. Since these
functions are constant in t we will consider them as functions in Ō only for easy notation.
When k > 0 we cannot trade infinitely many times, but when there is no transaction cost we
can actually trade infinitely many times. Hence, let’s define the following important function

W (y) =

∫ x

0

α(s, p)ds. (3.33)

When α(ζ, p) = pe−λζ for λ > 0, figure 3.1(a) shows ϕn for various n and W = p
λ
(1−e−λx)

for some values of x and keeping p fixed.

Lemma 20. ϕn(y) ≤ W (y) for all n ≥ 0 and all y ∈ O.
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(a) ϕn for n = 1, 2, 3, 4, 5 and W with p =
2.

(b) ϕ∞ with p = 0.5.

Figure 3.1: λ = 0.5 and k = 0.1.

Proof. Since α is non-increasing on x and positive, we have for all y ∈ O

xα(x, p) ≤
∫ x

0

α(s, p)ds. (3.34)

Clearly ϕ0(y) ≤ W (y) for all y ∈ O. Now assume that ϕn(y) ≤ W (y) for all y ∈ O. Hence
for all 0 ≤ ζ ≤ x

ϕn(Γ(y, ζ)) + ζα(ζ, p)− k ≤ W (Γ(y, ζ)) + ζα(ζ, p)− k

= ζα(ζ, p)− k +

∫ x−ζ

0

α(s, α(ζ, p))ds

≤ ζα(ζ, p) +

∫ x

0

α(s, p)ds−
∫ ζ

0

α(s, p)ds

= W (y) + ζα(ζ, p)−
∫ ζ

0

α(s, p)ds

≤ W (y),

where the last inequality follows from (3.34). Therefore

ϕn+1(y) = sup
0≤ζ≤x

ϕn(Γ(y, ζ)) + ζα(ζ, p)− k ≤ W (y).

This completes the proof by induction.
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Let’s define
ϕ∞(y) := sup

n
ϕn(y) ≤ W (y).

ϕ∞ is the best that we can achieve at any particular moment by just thinking what is best
at that moment, without looking into the future of the process. Now, when k = 0 consider
the strategy that trades x

n
number of shares each time for n ≥ 1 . Thus

ϕn(y) ≥ x

n

n∑
i=1

α(i
x

n
, p).

Taking n→∞ we have that
ϕ∞(y) ≥ W (y),

and therefore ϕ∞(y) = W (y). Note that W is not attainable for any strategy.

Lemma 21. The function ϕ∞ is continuous.

Proof. When k = 0 this is clear since α is continuous. Let k > 0, then we cannot trade
infinitely many times, hence for all y ∈ O there exists some n ≥ 0 such that ϕm(y) ≤ ϕn(y)
for all m, that is, ϕ∞ is the sup over a finite number of functions. We need to show now that
these functions are continuous, i.e, we need to show that for any ϕ ∈ C(Ō), Mϕ ∈ C(Ō).
Let (yn) be a sequence in O such that yn → y = (x, p). Since ϕ, Γ and α are continuous,
there exists 0 ≤ ζn ≤ xn such that

Mϕ(yn) = ϕ(Γ(yn, ζn)) + ζnα(ζn, pn)− k.

Since xn → x, let 0 ≤ ζ∗ ≤ x a limit point of the sequence (ζn). Let ζ̂ such that

Mϕ(y) = ϕ(Γ(y, ζ̂)) + ζ̂α(ζ̂ , p)− k.

Hence,

ϕ(Γ(yn, ζ̂)) + ζ̂α(ζ̂ , pn)− k ≤Mϕ(yn) = ϕ(Γ(yn, ζn)) + ζnα(ζn, pn)− k,

and taking n→∞

Mϕ(y) ≤ ϕ(Γ(y, ζ∗)) + ζ∗α(ζ∗, p)− k ≤Mϕ(y).

Therefore Mϕ(yn)→Mϕ(y) and Mϕ is continuous.

For the following lemma we introduce a superscript in the functions ϕ∞ and V that
indicates the value of the transaction cost. Hence, we showed that ϕ

(0)
∞ = W . For easy

notation we will use this only when necessary.



CHAPTER 3. IMPULSE CONTROL MODEL 34

Lemma 22. For all (t, y) ∈ [0, T ]× Ō we have

lim
k→0

ϕ(k)
∞ (y) = ϕ(0)

∞ (y) = W (y)

and
lim
k→0

V (k)(t, y) = V (0)(t, y).

Proof. By lemma 20 the limit on the left is bounded by W . Let ε > 0, then there exist
ζ1, . . . , ζm such that

W (y) ≤
m∑
i=1

ζiα

(
i∑

j=1

ζj, p

)
+ ε.

For any k ≤ ε
m

we have that

W (y) ≤
m∑
i=1

(
ζiα

(
i∑

j=1

ζj, p

)
− k

)
≤ ϕ(k)

∞ (y) + 2ε.

The proof of the other limit is similar. Again, it is clear that V (0) is an upper bound. Let
ε > 0, then there is m ≥ 0 and ν ∈ Υm (as in the proof of proposition 16) such that

V (0)(t, y) ≤ E

[
m∑
i=1

e−β(τi−t)ζiα(ζi, Pτi−)

]
+ ε.

The rest of the proof follows as in the previous case.

We can now state the terminal condition:

Proposition 23. We have

V (T, y) = ϕ∞(y) for all y ∈ O.

Proof. Let y ∈ O and consider a sequence (tn, yn) in [0, T ) × O such that (tn, yn) → (T, y)
and

lim
n→∞

V (tn, yn) = V∗(T, y).

It is clear that V (tn, yn) ≥ ϕ∞(yn). Taking n → ∞, by lemma 21, V∗(T, y) ≥ ϕ∞(y). Now,
let y ∈ O and consider a sequence (tn, yn) in [0, T )×O such that (tn, yn)→ (T, y) and

lim
n→∞

V (tn, yn) = V ∗(T, y).
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(a) Contour plot of n∗. (b) Contour plot of the number of shares to trade.

Figure 3.2: λ = 0.5 and k = 0.1.

For any n there is an admissible control νn = (τnm, ζ
n
m)m such that

V (tn, yn) ≤ E

[
Mn∑
m=1

ζnmP
n
τnm
− k

]
+

1

n

= E

[
Mn∑
m=1

ζnmα

(
m∑
i=1

ζni , pn

)
− k

]
+ E

[
Mn∑
m=1

ζnm

(
P n
τnm
− α

(
m∑
i=1

ζni , pn

))]
+

1

n

≤ ϕ∞(yn) + E

[
Mn∑
m=1

ζnm

(
P n
τnm
− α

(
m∑
i=1

ζni , pn

))]
+

1

n

by condition 3.4 and definition of ϕ∞. Since the process P n
s is a.s. continuous between

intervention times and tn → T then
∣∣P n

τnm
− α (

∑m
i=1 ζ

n
i , pn)

∣∣→ 0 a.s as n→∞ for all m. If
k > 0, the expected number of trades will remain bounded as yn → y, then taking n → ∞
we get the reverse inequality V ∗(T, y) ≤ ϕ∞(y). When k = 0 we use lemma 22 to complete
the proof.

Figure 3.2(a) shows the contour plot of the optimal number of trades n∗ for α as above.
Also, figure 3.2(b) shows the contour plot of the number of shares that the investor must
trade at each state. Both figures display the path of consecutive trades starting with 5 shares
and price 2.
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3.3.5 Viscosity Characterization

Here we can follow the same ideas as in the infinite horizon case. Note that we do not have
to assume that U is finite since this is true in the finite case. Thus, we have the following
theorem.

Theorem 24. The value function V defined by (3.28) is a viscosity solution of (3.30) in
[0, T )×O.

To prove uniqueness before we used the results in [Dayanik and Karatzas, 2003] to guar-
antee the existence of the function ψ. We do not have those results in this case, so let us
assume that there exists ψ ∈ C([0, T )× [0,∞)) such that:

1. −∂ψ(t,p)
∂t

= Aψ(t, p)− βψ(t, p).

2. ψ is non-decreasing in p.

3. For all t ∈ [0, T )

lim
p→∞

U0(t, p)

ψ(t, p)
= 0 (3.35)

Example If the price process is a geometric Brownian motion that satisfies

dPs = µPsds+ σPsdBs

for t ≤ s ≤ T and Pt = p, then it is easy to see that U0(t, p) = pe(µ−β)+(T−t). Therefore, the
function ψ(t, p) = p2e(2µ+σ2−β)(T−t) satisfies the above conditions. Also, by the bound (3.31),
the value function in this case satisfies the boundary condition (3.32).

Theorem 25. Let ψ as above and assume that the transaction cost k > 0. If W is a viscosity
solution of equation (3.30) that is bounded by U and satisfies the same boundary conditions
as V , then W = V . Furthermore, V is continuous in O.

3.3.6 Special Case

A few different price impacts have been proposed in the literature. [Subramanian and Jar-
row, 2001] considers impact functions of the form α(x, p) = pc(x), where 0 ≤ c ≤ 1 is
nonincreasing. In our case, by condition (3.4), c must satisfy c(x1)c(x2) = c(x1 + x2) and
therefore we end up with the following price impact function and its corresponding W :

α(x, p) = pe−λx

W (x, p) =
p

λ
(1− e−λx)

with λ > 0. This function was proposed also in [He and Mamaysky, 2005] and [Ly Vath
et al., 2007]. Let’s consider this price impact function from now on. The advantage of it is
that the impact is linear in p, which is very useful as we will see.
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Theorem 26. Suppose that U(t, x, p) = e−β(T−t)E[(xPT − k)+] for all (t, y) ∈ [0, T ] × Ō.
Then V (t, x, p) = e−β(T−t)E[ϕ∞(x, PT )], where Ps is the unperturbed process.

Proof. We will follow the same idea as in the proof of proposition 16, that is, induction in
the number of trades. Note that the function ζ 7→ ζe−λζ in [0, x] attains its maximum at
x̂ = min{x, 1

λ
}. Then,

sup
ν∈Υ1

E[e−β(τ1−t)(ζ1Pτ1−e
−λζ1 − k)] ≤ U(t, x̂, p)

= e−β(T−t)E[(x̂PT − k)+]

≤ e−β(T−t)E[ϕ∞(x, PT )].

Now, let ν ∈ Υn and P ν
s controlled by ν. Hence,

E[e−β(τ1−t)(ζ1P
ν
τ1
− k)] = E

[
E[e−β(τ1−t)(ζ1Pτ1−e

−λζ1 − k)|Fτ1 ]
]

≤ E
[
e−β(τ1−t)E[U(τ1, ζ1e

−λζ1 , Pτ1−)|Fτ1 ]
]

≤ E
[
e−β(τ1−t)E[eβ(T−τ1)E[(ζ1e

−λζ1PT − k)+]|Fτ1 ]
]

= e−β(T−t)E[(ζ1e
−λζ1PT − k)+].

On the other hand, by induction hypothesis we have

E

[
e−β(τ1−t)

n∑
i=2

e−β(τi−τ1)(ζiP
ν
τi
− k)

]

= E

[
e−β(τ1−t)E

[
n∑
i=2

e−β(τi−τ1)(ζiP
ν
τi
− k)

∣∣∣∣∣Fτ1
]]

≤ E
[
e−β(τ1−t)E[V (τ1, x− ζ1, e

−λζ1Pτ1)|Fτ1 ]
]

= E
[
e−β(τ1−t)E[eβ(T−τ1)E[ϕ∞(x− ζ1, e

−λζ1PT )]|Fτ1 ]
]

= e−β(T−t)E[ϕ∞(x− ζ1, e
−λζ1PT )].

Combining both inequalities above we have

sup
ν∈Υn

E

[
n∑
i=1

e−β(τi−t)(ζiP
ν
τi
− k)

]
≤ e−β(T−t)E[ϕ∞(x, PT )].

By lemma 10 the left hand side converges to V as n→∞. Clearly the other inequality holds
and the proof is complete.

Corollary 27. Let the unperturbed price process be such that e−β(s−t)Ps is a submartingale.
Then for each x ≥ 0, V (t, x, p) solves the problem{

−∂ϕ
∂t

(t, p) + βϕ(t, p)− Aϕ(t, p) = 0 in [0, T )× (0,∞)

ϕ(T, p) = ϕ∞(x, p) on [0,∞).
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Proof. Since the map p 7→ (xp − k)+ is convex, increasing and 0 at p = 0 for all x ≥ 0,
then the process e−β(s−t)(xPs − k)+ is a submartingale. Hence, the theorem holds and by
Feynman-Kac theorem we get the result.

Corollary 28. Let the unperturbed price process be such that e−β(s−t)Ps is a submartingale.
Then

V (0)(t, x, p) = e−β(T−t) 1− e−λx

λ
E[PT ].
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Chapter 4

No Transaction Cost: Infinite Horizon
Case

From the proof of the uniqueness result in the previous chapter we can see that the result
depends on the assumption that the transaction cost k > 0. In this chapter we analyze the
case where there is no transaction cost. Let’s start by pointing out that in this case the
intervention operator becomes

Mϕ(y) = sup
0≤ζ≤x

ϕ(Γ(y, ζ)) + ζα(ζ, p) ≥ ϕ(Γ(y, 0)) = ϕ(y),

for any measurable function ϕ. This implies in particular that any measurable function is a
viscosity subsolution of (3.9). On the other hand, V ≥ MV for the value function. Then
we have that

V ≥MV ≥ V.

Assume now that V ∈ C1(O). Since ζ = 0 is a maximum for ζ 7→ V (Γ(y, ζ))+ ζα(ζ, p), then
for all y ∈ O:

0 ≥ ∂α

∂ζ
(ζ, p)

∂V

∂p
(y)− ∂V

∂x
(y) + α(ζ, p) + ζ

∂α

∂ζ
(ζ, p)

∣∣∣∣
ζ=0

=
∂α

∂ζ
(0, p)

∂V

∂p
(y)− ∂V

∂x
(y) + p.

Recall that α is non-increasing in ζ, so we define

γ(p) = −∂α
∂ζ

(0, p), (4.1)

for all p ≥ 0. Hence, we get the following condition for V :

−γ(p)
∂V

∂p
(y)− ∂V

∂x
(y) + p ≤ 0. (4.2)



CHAPTER 4. NO TRANSACTION COST: INFINITE HORIZON CASE 40

This suggests that if we assume no fixed transaction cost we should look at a different HJB
equation, that is

min

{
βϕ− Aϕ, γ(p)

∂ϕ

∂p
+
∂ϕ

∂x
− p
}

= 0. (4.3)

In fact, equation (4.3) is the associated HJB equation of a singular control problem. We
describe this model and the price impact function in the first section. Sections 2 and 3
characterize the value function in terms of the HJB equation. In section 4 we consider a
special case and find the explicit value function. The last section includes some numerical
examples for different type of price processes.

4.1 Singular Control Model

In this case our control satisfies
dXt = −dξt,

where ξ0 = 0, ξ is an adapted, càdlàg non-decreasing and non-negative process. The price
process in this case follows the dynamics

dPt = µ(Pt−)dt+ σ(Pt−)dBt − γ(Pt−)dξt,

where γ (see (4.1)) is a non-negative smooth function that accounts for the price impact.
The main concern here is the existence and uniqueness of the process Pt. Fortunately we
have a result similar to 4.

Theorem 29 ([Protter, 1990]). Let fi : [0,∞)×R→ R, i = 1, . . . , d be Lipschitz functions.
Let Zi be semimartingales with Zi

0 = 0 for i = 1, . . . , d. Then the equation

Xt = x+
d∑
i=1

∫ t

0

fi(s,Xs−)dZi
s

admits an unique solution. This solution is also a semimartingale.

There is no need to give a full definition of semimartingale but we must say that any
finite variation process and the Brownian motion are semimartingales. Hence, we need γ to
be Lipschitz. Now, the form of the value function V0 changes to

V0(y) = sup
ξ

E
[∫ ∞

0

e−βtPtdξt

]
, (4.4)

for all y ∈ Ō. In this case the appropriate form of the DPP is

V0(y) = sup
ξ

E
[∫ τ

0

e−βsPsdξs + e−βτV0(Yτ )

]
, (4.5)
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for any stopping time τ . As before, we can define the continuation region as

C = {y ∈ O : γ(p)
∂ϕ

∂p
+
∂ϕ

∂x
− p > 0}

and the trade region as

T = {y ∈ O : γ(p)
∂ϕ

∂p
+
∂ϕ

∂x
− p = 0}.

The intuition behind the equation (4.3) is the following: Let y ∈ O and assume enough
regularity for the value function V0. By DPP and Dynkin’s formula, and considering the
process with no intervention we can show that (−βV0 +AV0)(y) ≤ 0, as before. Also, if the
no intervention strategy is optimal, then (−βV +AV )(y) = 0. Now consider any admissible
strategy ξ, by Dynkin’s formula for semimartingales (see [Protter, 1990])

V0(y) ≥E
[∫ t

0

e−βsPsdξs + e−βtV0(Yt)

]
=V0(y) + E

[∫ t

0

e−βs(−βV0 + AV0)(Ys)ds

]
+ E

[∫ t

0

e−βs
(
Ps − γ(Ps)

∂V0

∂p
(Ys)−

∂V0

∂x
(Ys)

)
dξs

]
+ E

[∑
s≤t

e−βs
(
Ps − γ(Ps)

∂V0

∂p
(Ys)−

∂V0

∂x
(Ys)

)
∆ξs

]

for all t ≥ 0. Since this is true for any ξ, we must have that −γ(p)∂V0

∂p
(y)− ∂V0

∂x
(y) + p ≤ 0.

If taking an action is optimal, −γ(p)∂V
∂p

(y)− ∂V
∂x

(y) + p = 0.

Remark 30. Note that any impulse control is also a singular control. However, the revenue
obtained with an impulse control in the first formulation is different to the one obtain with
the same control for the singular formulation.

4.2 Viscosity Solution

When the singular control is discontinuous the stochastic integral may not be properly
defined. To avoid this we will require the control to be continuous to be sure that the
price process has càglàd paths (see [Protter, 1990]). Nevertheless, the value function is still
a viscosity solution of equation (4.3) (which definition is similar to 13).

Theorem 31. The value function V0 defined in (4.4) is a viscosity solution of (4.3) in O.
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Proof. Since the process Pt is continuous, we can approach the integral with respect to a
finite variation process by simple functions. Then by proposition 16 we have that

V0 ≤ U. (4.6)

Therefore, V0 is locally bounded.
Subsolution property: Let y0 ∈ O and ϕ ∈ C2(O) such that y0 is a maximizer of V ∗0 − ϕ

on O with V ∗0 (y0) = ϕ(y0). Now suppose that there exists κ > 0 and δ > 0 such that

−βϕ(y) + Aϕ(y) ≤ −κ and p− γ(p)
∂ϕ

∂p
(y)− ∂ϕ

∂x
(y) ≤ −κ (4.7)

for all y ∈ O such that |y − y0| < δ. Let (yn) be a sequence in O such that yn → y0 and

lim
n→∞

V0(yn) = V ∗0 (y0).

Given any stopping time τ , by (4.5), for all n ≥ 1 there exists an admissible control ξn such
that

V0(yn) ≤ E
[∫ τ

0

e−βsP n
s dξ

n
s + e−βτV0(Y n

τ )

]
+

1

n
,

where Y n
s is the process controlled by ξn for s ≥ 0 starting at yn. Since V0 ≤ V ∗0 ≤ ϕ, using

Dynkin’s formula for semimartingales we have that

V0(yn) ≤ E
[∫ τ

0

e−βsP n
s dξ

n
s

]
+ ϕ(yn) + E

[∫ τ

0

e−βs (−βϕ(Y n
s ) + Aϕ(Y n

s )) ds

]
− E

[∫ τ

0

e−βs
(
γ(P n

s )
∂ϕ

∂p
(Y n

s ) +
∂ϕ

∂x
(Y n

s )

)
dξns

]
+

1

n
.

Consider again the stopping time

τn = inf{s ≥ 0 : |Y n
s − y0| ≥ δ},

then by (4.7)

V0(yn) ≤ −κE
[∫ τn

0

e−βs(ds+ dξns )

]
+ ϕ(yn) +

1

n
.

Taking n→∞ we obtain a contradiction since the integral inside the expectation is bounded
away from 0 for any admissible control ξ by the a.s continuity of the process Y n

s . Hence at
least one of the inequalities in (4.7) is not possible and this establishes the subsolution
property.

Supersolution property: Let y0 ∈ O and ϕ ∈ C2(O) such that y0 is a minimizer of V0∗−ϕ
on O with V0∗(y0) = ϕ(y0). Let (yn) be a sequence in O such that yn → y0 and

lim
n→∞

V0(yn) = V0∗(y0).
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First, suppose that there exists θ > 0 and δ > 0 such that

βϕ(y)− Aϕ(y) ≤ −θ (4.8)

for all y ∈ O such that |y− y0| < δ. Fix n large enough such that |yn− y0| < δ and consider
the process Y n

s for s ≥ 0 with no intervention, i.e. ξ = 0, such that Y n
0 = yn. Let

τn = inf{s ≥ 0 : |Y n
s − y0| ≥ δ}.

Now, by Dynkin’s formula for semimartingales and (4.8) we have

E[e−βτnϕ(Y n
τn)] = ϕ(yn) + E

[∫ τn

0

e−βs (−βϕ(Y n
s ) + Aϕ(Y n

s )) ds

]
− E

[∫ τn

0

e−βs
(
γ(P n

s )
∂ϕ

∂p
(Y n

s ) +
∂ϕ

∂x
(Y n

s )

)
dξs

]
= ϕ(yn) + E

[∫ τn

0

e−βs (−βϕ(Y n
s ) + Aϕ(Y n

s )) ds

]
≥ ϕ(yn)− θE

[∫ τn

0

e−βsds

]
.

As before, from here we can draw a contradiction with V0∗(y0) = ϕ(y0) by the a.s. continuity
of the process Y n

s . Now, take h > 0 and consider the process Yt with control process
dξt = 1

h
1[0,h](t)dt and Y0 = y for given y ∈ O. Using (4.5) we can show that

V0(y) ≥ E
[∫ h

0

e−βsPsdξs + e−βhV (Yh)

]
≥ E

[∫ h

0

e−βsPsdξs + e−βhϕ(Yh)

]
= E

[
1

h

∫ h

0

e−βsPsds+ e−βhϕ(Yh)

]
.

By Dynkin’s formula again,

E[e−βhϕ(Yh)] = ϕ(y) + E
[∫ h

0

e−βs (−βϕ(Ys) + Aϕ(Ys)) ds

]
− E

[∫ h

0

e−βs
(
γ(Ps)

∂ϕ

∂p
(Ys) +

∂ϕ

∂x
(Ys)

)
dξs

]
= ϕ(y) + E

[∫ h

0

e−βs (−βϕ(Ys) + Aϕ(Ys)) ds

]
− 1

h
E
[∫ h

0

e−βs
(
γ(Ps)

∂ϕ

∂p
(Ys) +

∂ϕ

∂x
(Ys)

)
ds

]
.
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Letting h→ 0, we have

V0(y) ≥ ϕ(y) + p− γ(p)
∂ϕ

∂p
(y)− ∂ϕ

∂x
(y).

Therefore, for all n ≥ 1 we have

V0(yn) ≥ ϕ(yn) + pn − γ(pn)
∂ϕ

∂p
(yn)− ∂ϕ

∂x
(yn).

Since γ is continuous, letting n→∞ we get

ϕ(y0) = V0∗(y0) ≥ ϕ(y0) + p0 − γ(p0)
∂ϕ

∂p
(y0)− ∂ϕ

∂x
(y0)

as desired. This establishes the supersolution property.

4.3 Uniqueness

Recall that with the impulse formulation we do not have uniqueness in absence of transaction
cost. This is not the case with the singular control formulation.

Theorem 32. Assume that (3.35) is satisfied. If W is a viscosity solution of equation
(4.3) that is bounded by U and satisfies the same boundary conditions as V0, then W = V0.
Furthermore, V0 is continuous in O.

Proof. The proof follows the same strategy as in the impulse control case. Let u be an upper
semi-continuous (usc) viscosity subsolution of the HJB equation (4.3) and v be a lower
semi-continuous (lsc) viscosity supersolution of the same equation in O, such that they are
bounded by U and condition (3.24) holds. Define

vm(x, p) =

(
1− 1

m

)
v(x, p) +

1

m

(
C(x+ 1)2ψ(p) + 1

)
for all m ≥ 1 and C as in (3.15). Recall that γ is non-negative and ψ is an increasing
function, then (3.15) implies that

−p+
∂vm
∂x

+ γ(p)
∂vm
∂p
≥ −p+

(
1− 1

m

)
p+

∂

∂x

1

m
C(x+ 1)2ψ(p) + γ(p)

∂

∂p

1

m
C(x+ 1)2ψ(p)

= − 1

m
p+

1

m
2C(x+ 1)ψ(p) + γ(p)

1

m
C(x+ 1)2ψ′(p)

≥ − 1

m
p+

2

m
p(x+ 1) + γ(p)

1

m
C(x+ 1)2ψ′(p)

≥ 1

m
p.
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Also (βI − A)
(

1
m

)
= β

m
> 0, where I is the identity operator. Therefore vm is a strict

supersolution of (4.3) in O. Following the same lines and definitions as in the previous proof
we have

min{βu(yi)− µ(pi)di,2 −
1

2
σ(pi)

2Mi,22,−pi + di,1 + γ(pi)di,2} ≤ 0,

and

min{βvm(y′i)− µ(p′i)d
′
i,2 −

1

2
σ(p′i)

2M ′
i,22,−p′i + d′i,1 + γ(p′i)d

′
i,2} ≥ δi,

where δi = min
{
p′i
m
, β
m

}
. Since p′i → p0 and y0 ∈ O, δi > 0 for large enough i. We need to

show now that for infinitely many i’s we have that

βu(yi)− µ(pi)di,2 −
1

2
σ(pi)

2Mi,22 ≤ 0. (4.9)

Suppose then, that there exists i0 such that (4.9) is not true for all i ≥ i0, then for i ≥ i0

−pi + di,1 + γ(pi)di,2 ≤ 0.

Since vm is a supersolution, we must have that

−p′i + d′i,1 + γ(p′i)d
′
i,2 ≥ δi.

Hence,
pi − p′i − (di,1 − d′i,1)− (γ(pi)di,2 − γ(p′i)d

′
i,2) ≥ δi.

Since di, d
′
i goes to 0 as i goes to ∞, we get the contradiction 0 ≥ δ0 = min

{
p0

m
, β
m

}
> 0.

Therefore (4.9) must hold for infinitely many i’s and the comparison result holds. Everything
follows now as before.

4.4 Special Case

Recall the function W defined in (3.33):

W (y) =

∫ x

0

α(s, p)ds for y ∈ O.

This function actually satisfies (4.2) with equality. Indeed, by the condition (3.4) we have
that for any ζ1, ζ2 and p

∂α

∂ζ
(ζ1 + ζ2, p) =

∂α

∂p
(ζ1, α(ζ2, p))

∂α

∂ζ
(ζ2, p),

and taking ζ2 = 0 we obtain

∂α

∂ζ
(ζ1, p) =

∂α

∂p
(ζ1, p)

∂α

∂ζ
(0, p) = −γ(p)

∂α

∂p
(ζ1, p).
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Now, since α is smooth we find

−γ(p)
∂W

∂p
(y)− ∂W

∂x
(y) + p = −γ(p)

∫ x

0

∂α

∂p
(s, p)ds− ∂

∂x

∫ x

0

α(s, p)ds+ p

=

∫ x

0

∂α

∂ζ
(s, p)ds− α(x, p) + p

= α(x, p)− α(0, p)− α(x, p) + p = 0.

Let us consider the price impact function used in section 3.3.6, that is:

α(x, p) = pe−λx (4.10)

γ(p) = λp (4.11)

W (x, p) =
p

λ
(1− e−λx) (4.12)

with λ > 0. Clearly γ is Lipschitz for this price impact. In this case we have the following:

Theorem 33. V0 = W = V if and only if U(x, p) = xp.

Proof. If V0 = W then βW − AW ≥ 0 and therefore βϕ − Aϕ ≥ 0 for ϕ(p) = p. By the
uniqueness result for optimal stopping problems (see Theorem 3.1 in [Øksendal and Reikvam,
1998])

p = sup
τ

E[e−βτPτ ],

that is U(x, p) = xp. Suppose that

U(x, p) = x sup
τ

E[e−βτPτ ] = xp,

for y ∈ O. This means that βϕ − Aϕ ≥ 0 for φ(p) = p. Therefore βW − AW ≥ 0 and W
satisfies the HJB equation (4.3) with T = O. Also, W satisfies the growth condition and
has the same boundary conditions as V0 by (3.13). By Theorem 32, we have that W = V0.
To prove the second equality we will do induction in the number of trades. Note that the
function ζ 7→ ζe−λζ in [0, x] attains its maximum at x̂ = min{x, 1

λ
}. Then,

sup
ν∈Υ1

E[e−βτ1ζ1Pτ1−e
−λζ1 ] ≤ U(x̂, p) = x̂p ≤ W (x, p).

Now, let ν ∈ Υn. Hence,

E[e−βτ1ζ1Pτ1 ] = E
[
e−βτ1E[ζ1Pτ1−e

−λζ1|Fτ1 ]
]
.

On the other hand, by induction hypothesis we have

E

[
e−βτ1

n∑
i=2

e−β(τi−τ1)ζiPτi

]
= E

[
e−βτ1E

[
n∑
i=2

e−β(τi−τ1)ζiPτi

∣∣∣∣∣Fτ1
]]

≤ E
[
e−βτ1E[V (x− ζ1, e

−λζ1Pτ1−)|Fτ1 ]
]

≤ E
[
e−βτ1E[W (x− ζ1, e

−λζ1Pτ1−)|Fτ1 ]
]
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Combining both inequalities above we have

E

[
n∑
i=1

e−βτiζiP
ν
τi

]
≤ E[e−βτ1W (x, Pτ1−)] ≤ W (x, p).

By lemma 10, the left hand side converges to V as n → ∞. Clearly the other inequality
holds and the proof is complete.

If the price process is a geometric Brownian motion the unperturbed price process is

dPt = µPtdt+ σPtdBt,

with σ > 0. It is easy to see that the value function U is finite if and only if β > µ. In this
case the function ψ takes the form

ψ(p) = pa,

where a > 1, therefore condition (3.35) holds. Now, the condition (3.13) reads

0 ≤ V (x, p) ≤ U(x, p) = xp.

This implies that V0 = V = W .

4.4.1 Regular control

Since we are considering continuous trading strategies when there is no transaction cost,
another possibility would be to consider a regular control formulation. In this case the
control has to be absolutely continuous (with respect to Lebesgue measure), therefore we
replace dξt by utdt where u is a non-negative adapted process. Hence, the dynamics and
value function become

dXt = −utdt,

dPt = µ(Pt)dt+ σ(Pt)dBt − γ(Pt)utdt,

V (y) = sup
u

E
[∫ ∞

0

e−βtPtutdt

]
.

The corresponding HJB equation for this formulation is:

inf
u≥0

{
βϕ− Aϕ− pu+ u

∂ϕ

∂x
+ γ(p)u

∂ϕ

∂p

}
= 0. (4.13)

As in the case of impulse and singular control, similar heuristic arguments based on DPP
and Dynkin’s formula can be used to write this equation. Now, observe that equality above
holds if and only if

βϕ− Aϕ = 0
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and

−γ(p)
∂ϕ

∂p
− ∂ϕ

∂x
+ p ≤ 0.

Let u > 0 and consider the strategy dξt = udt, that is, selling shares at a constant speed u
until the investor executes the position. Then,

Pt = p exp{(µ− λu− 1

2
σ2)t+ σBt}

and

E
[∫ ∞

0

e−βtPtdξt

]
= uE

[∫ x/u

0

e−βtPtdt

]

= u

∫ x/u

0

e−βtE[Pt]dt

= up

∫ x/u

0

e(µ−λu−β)tdt

=
pu

µ− λu− β
(
e(µ−λu−β)x/u − 1

)
by using Fubini’s theorem since the integrand is positive. Taking u → ∞ this expression
converges to W . Note that the class of singular controls contains the class of regular controls.
Thus, W is an upper bound for the value function obtained with a regular control formulation.
On the other hand, the calculation above shows that we can approach to W with regular-type
controls. This means that W is the value function in this formulation. However, W does
not satisfy the equation (4.13). This means that it is not possible to prove theorems like 17
and 31 in this context. Here we find a difference with the work in [Schied and Schöneborn,
2009], where the formulation allows to show the characterization of the value function as the
solution of a HJB equation (see Theorem 1). The primary reason for this difference is the
inclusion of both permanent and temporary impact in the price dynamics.

4.5 Numerical Examples

We are now going to present different choices of price processes. Throughout this section we
will continue considering the price impact function:

γ(p) = λp. (4.14)

4.5.1 Permanent impact

By permanent impact we mean a change in the equilibrium price process due to the trading
itself, as explained in [Almgren and Chriss, 2000]. The first price process that we can use
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(a) Value function in the BM case with parame-
ters λ = 0.5, µ = 4, σ = 0.5 and β = 1.

(b) Continuation-trade region in the BM case.
The solid line shows the contour with parameters
λ = 0.5, µ = 4, σ = 0.5 and β = 1. In the
other lines only the indicated parameter has been
changed.

Figure 4.1: Value function and continuation-trade region in the BM case.

to model permanent price impact was already discussed in detail, that is the geometric
Brownian motion. The next easy process that allows a permanent impact is the arithmetic
Brownian motion. The price process becomes

dPt = µdt+ σdBt − λPtdξt,

with σ > 0. In this case the value function is always finite, regardless of µ, due to the
exponential decay of the discount factor. Since 0 is an absorbing boundary for this process
the boundary conditions are given by (3.17). An analytic solution for V does not seem easy
to find here, so we used an implicit numerical scheme following chapter 6 in [Kushner and
Dupuis, 1992]. In particular, we used the Gauss-Seidel iteration method for approximation
in the value space. Figure 4.1(a) shows the value function obtained by this scheme.

The first thing that we notice in this case is that T 6= O, as shown in figure 4.1(b). The
figure also shows how the different parameters affect the continuation/trade regions. Now,
let’s see how the change in the parameters of the model affect the value function V . Figure
4.2(a) shows that the value function is very sensitive to changes in the parameter λ for small
values but not so much for large values. This behavior is common to both processes GBM
and BM. This means that the bigger the investor (i.e. the larger the price impact) the less
sensitive to small changes in the value of λ. Clearly the value function decreases as the
impact increases.
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(a) Change in V (5, 2) as λ varies and
µ = 4, σ = 0.5 and β = 1.

(b) Change in V (5, 2) as β varies and
µ = 4, σ = 0.5 and λ = 0.5.

(c) Change in V (5, 2) as µ varies and
λ = 0.5, σ = 0.5 and β = 1.

(d) Change in V (5, 2) as σ varies and
µ = 4, λ = 0.5 and β = 1.

Figure 4.2: Change in the parameters of the model BM.

If β = 0, the value function would not be finite for any µ > 0, so small values of β yield
a very large value of V . As β increases the effect in V is diminishing. Also, the investor has
to act greedily and therefore the trade region approaches to O and V approaches to W .

For µ ≤ 0 it is not optimal to wait at all, so V = W , but as µ increases clearly the value
function increases in an almost linear fashion.

The effect of σ in the value function is probably the most interesting one. In figure 4.2(d)
we see that it is beneficial for the investor to have some variance in the asset but not too
much. An explanation for this is that when the variance increases it is more likely for the
price process to enter the trading region. On the other hand, if the variance is too big, the
process can hit 0 too fast. Clearly the variance of the revenue increases with σ, thus as part
of future research it would be interesting to consider the risk aversion of the investor.
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(a) Value function in the OU case with parame-
ters λ = 0.5, α = 4, σ = 0.5, m = 5 and β = 1.

(b) Continuation-trade region in the OU case.
The solid line shows the contour with parameters
λ = 0.5, α = 4, σ = 0.5, m = 5 and β = 1. In
the other lines only the indicated parameter has
been changed.

Figure 4.3: Value function and continuation-trade region in the mean-reverting case.
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4.5.2 Temporary impact

We can describe temporary impact as caused by temporary imbalances in supply/demand
dynamics. The OrnsteinUhlenbeck process, also known as the mean-reverting process, allows
us to model the temporary impact in the price. The price process becomes

dPt = α(m− Pt)dt+ σdBt − λPtdξt,

with σ, α > 0. As in the case of arithmetic Brownian motion, the boundary conditions are
given by (3.17), since 0 is an absorbing boundary for this process. Figure 4.3 shows the
value function and the continuation-trade region. In general, the sensitivity of the function
to the parameters is similar to the previous case. The only parameter that is exclusive to the
mean-reverting case is the resilience factor α. As we increase α the value function increases
(Figure 4.4(d)) and the continuation region grows (Figure 4.3(b)).
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(a) Change in V (5, 2) as λ varies and
m = 5, σ = 0.5, α = 4 and β = 1.

(b) Change in V (5, 2) as β varies and
m = 5, σ = 0.5, α = 4 and λ = 0.5.

(c) Change in V (5, 2) asm varies and
α = 4, σ = 0.5, β = 1 and λ = 0.5.

(d) Change in V (5, 2) as α varies and
λ = 0.5, σ = 0.5, m = 5 and β = 1.

(e) Change in V (5, 2) as σ varies and
α = 4, λ = 0.5, m = 5 and β = 1.

Figure 4.4: Change in the parameters of the model OU.
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Chapter 5

Conclusions and Future Work

In this dissertation we analyze two new models for the Optimal Execution Problem in the
presence of price impact. The first model is an impulse control formulation that also includes
fix transaction cost. We considered both infinite and finite horizon cases as well. In this
model we showed that the value function is the unique continuous viscosity solution of the
Hamilton-Jacobi-Bellman equation associated to the problem whenever the transaction cost
is strictly positive. In the finite horizon situation we considered a particular class of price
processes (that includes, for example, the geometric Brownian motion) for which we were able
to calculate the value function as the expected value of certain measurable function of the
price process at the expiration date. The second model is a singular control formulation (no
transaction cost). In this case we also proved continuity and uniqueness of the value function
under the viscosity framework. Although any impulse control is a singular control, in general
the expected revenue obtained when applying the same impulse control in both formulations
is different. Since the singular control formulation was derived naturally from the impulse
control formulation we could expect that both value functions are equal. In fact, we were
able to show that this is the case for a special type of price impact and we provided the
explicit solution. This is particularly challenging since the subsolution property for the HJB
equation (3.9), when there is no transaction cost, has no information at all. However, the
figure 5.1 shows a numerical exercise, with Brownian motion as price process, that reinforces
this conjecture. Notice that the singular control model was formulated only in the infinite
horizon case, that is because the terminal condition for the finite horizon case is not easy to
establish. However, we also conjecture that both terminal conditions, impulse with k = 0
and singular models, coincide. Both conjecture are part of future work.

Another direction for future research would be to find the regularity of the value functions
and the free boundaries between trade and continuation regions. Numerical results provided
in this work, at least for the second formulation, suggest that the function is more than just
continuous and that its regularity is related with the regularity of the function U . Now,
from an economic viewpoint, it would be important to include utility functions to account
for risk aversion of the investor. Also, consider a stochastic process to describe the price
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Figure 5.1: Value function for different values of k with p = 2 and λ = 0.5

impact function at different times.
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