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ARTICLE

Ultrafast relaxation of photoexcited superfluid
He nanodroplets
M. Mudrich 1*, A.C. LaForge 2,3, A. Ciavardini4,17, P. O’Keeffe4, C. Callegari 5, M. Coreno4,

A. Demidovich5, M. Devetta 6,18, M. Di Fraia 5, M. Drabbels 7, P. Finetti5, O. Gessner 8, C. Grazioli 19,

A. Hernando9,10, D.M. Neumark 8,11, Y. Ovcharenko12,20, P. Piseri6, O. Plekan5, K.C. Prince5, R. Richter 5,

M.P. Ziemkiewicz8,11, T. Möller12, J. Eloranta13, M. Pi 14,15, M. Barranco 14,15,16 & F. Stienkemeier 2

The relaxation of photoexcited nanosystems is a fundamental process of light–matter

interaction. Depending on the couplings of the internal degrees of freedom, relaxation can be

ultrafast, converting electronic energy in a few fs, or slow, if the energy is trapped in a

metastable state that decouples from its environment. Here, we study helium nanodroplets

excited resonantly by femtosecond extreme-ultraviolet (XUV) pulses from a seeded free-

electron laser. Despite their superfluid nature, we find that helium nanodroplets in the lowest

electronically excited states undergo ultrafast relaxation. By comparing experimental pho-

toelectron spectra with time-dependent density functional theory simulations, we unravel the

full relaxation pathway: Following an ultrafast interband transition, a void nanometer-sized

bubble forms around the localized excitation (He�) within 1 ps. Subsequently, the bubble

collapses and releases metastable He� at the droplet surface. This study highlights the high

level of detail achievable in probing the photodynamics of nanosystems using tunable XUV

pulses.
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Understanding the ultrafast response of condensed phase
nanosystems to photoexcitation is essential for many
research areas, including atmospheric science1, radiation

damage in biological matter2,3, light-harvesting mechanisms in
natural and artificial complexes4,5, and photocatalysis6. However,
the complex couplings of electronic and translational degrees of
freedom often present major theoretical challenges7. In addition,
the complexity of heterogeneous solid or liquid systems, as well as
difficulties in preparing well-controlled samples and performing
reproducible measurements, make it difficult to unravel the ele-
mentary steps in the relaxation process. In this respect, superfluid
He nanodroplets are ideal model systems for studying the pho-
todynamics in weakly-bound nanostructures, both experimentally
and theoretically; He atoms have a simple electronic structure,
interatomic binding is extremely weak, and the structure of He
nanodroplets is homogeneous and nearly size-independent due to
their superfluid nature8,9. Exploring transient phenomena asso-
ciated with superfluidity is a particularly intriguing aspect of He
nanodroplet spectroscopy10,11. By probing the dynamics of laser-
excited molecular systems coupled to He droplets, one gains
insight into the fluid dynamics, dissipation, and transport prop-
erties of a superfluid on the molecular scale12–14.

The properties of pure He droplets can be directly studied
using electron bombardment or XUV radiation. From previous
theoretical15,16 and static photoexcitation studies17–23, the fol-
lowing dynamical response to resonant absorption of an XUV
photon has been inferred: The electronic excitation created in the
droplet localizes on an atomic or molecular center He�n,
n ¼ 1; 2; ¼, within a few 100 fs24. Subsequently, a void cavity or
bubble forms around He�n due to Pauli repulsion between the
excited electron and the surrounding ground state He atoms21,
which expands up to a radius of 6.4Å25 within about 350 fs26.
Depending on how close to the droplet surface the excitation
localizes, the bubble either collapses before fully forming thereby
ejecting He� or He�2 out of the droplet, or remains in a metastable
state inside the droplet21. Using laser-based high-harmonic light
sources27, various ultrafast processes initiated by exciting high-
lying states in the autoionization continuum of He nanodroplets
have been revealed, including the emission of slow electrons22,
the ejection of Rydberg atoms and excimers28,29, and ultrafast
interband relaxation23. However, the dynamics of low-lying states
below the autoionization threshold and in particular the bubble
formation have not been probed for pure He nanodroplets, nei-
ther at the strongest absorption band associated with the atomic
He� 1s2p 1P state (photon energy around hν ¼ 21:6 eV18), nor at
the lowest optically accessible 1s2s 1S state (hν ¼ 21:0 eV18).

In the present study, we excite these lowest excited states to
directly probe the relaxation dynamics of neutral pure He
nanodroplets. The experiment is carried out using tunable XUV
pulses generated by the seeded free-electron laser (FEL) FERMI30.
The comparison of time-resolved photoelectron spectra (PES)
with time-dependent density functional theory (TD-DFT) cal-
culations reveals an ultrafast three-step relaxation process.
Despite the extremely weak binding of the He atoms in the
droplets and the superfluid nature thereof, energy dissipation is
very efficient even for the lowest excited states; more than 1 eV of
electron energy is dissipated in <1 ps due to the coupling of
electronic and nanofluid nuclear degrees of freedom.

Results
Resonant two-photon ionization scheme. The pump-probe
scheme is sketched in Fig. 1. The gray shaded area in Fig. 1a
shows the absorption spectrum of He nanodroplets taken from
Joppien et al.18; for reference, the He� atomic levels are given on
the right-hand side of Fig. 1a. The massive broadening and
shifting of the excited state is due to a repulsive interaction

between the 2p Rydberg electron and the 1s core electrons at large
interatomic distances31. The straight vertical arrows illustrate the
pump (red) and probe (blue) steps, realized by one XUV pulse
and one time-delayed UV pulse. The electron kinetic energy, Te,
measured by means of electron velocity-map imaging (VMI)30,32,
is represented as a black double-sided arrow. The most likely
relaxation pathway for 1s2p 1P-excited He nanodroplets is indi-
cated by the dotted curved arrows. The inset shows a schematic
view of a He nanodroplet exposed to a pair of laser pulses,
containing a localized excitation marked by (�).

Time-resolved photoelectron spectra. Examples of time-
dependent PES measured by exciting He droplets to the 1s2s 1S
state (hν ¼ 21:0 eV) and on the blue edge of the 1s2p 1P band
(hν ¼ 22:2 eV) are shown in Fig. 2a and b, respectively. The
horizontal dashed lines indicate the electron energy one would
expect for direct 1+1′ ionization of He by absorption of one
pump and one probe photon,

Tdirect
e ¼ hν þ hν0 � Ei; ð1Þ

where Ei ¼ 24:6 eV is the ionization energy of He and
hν0 ¼ 4:8 eV is held fixed. The panels on the right-hand sides
show the PES at selected pump-probe delays. For positive delays
(XUV first, UV second), the PES mainly consist of two spectral
components in both cases a) and b). A broad feature labeled ‘D’
dominates the PES at short delays t ≲ 0:5 ps, whereas a sharp
peak ‘A’ becomes prominent at longer delays. The PES for each
value of the pump-probe delay were fit with the sum of three
Gaussian functions. The fit parameters were mildly constrained to
ensure the convergence of two Gaussians to peaks ‘A’ and ‘D’,
whereas the third Gaussian approximates the electron back-
ground signal. Fig. 2c and d show the amplitudes and center
positions of these two peaks obtained from the fits of the PES
measured at various hν. Peak D (solid lines in Fig. 2c) rises within
the first 0.5 ps delay time and then slowly decreases, accompanied
by a rapid increase of peak A (dashed lines). The opposite trends
of these two components indicates a redistribution of population
from D to A within 0.5–2.5 ps.

The energy of peak D (Fig. 2d) rapidly decreases within t < 1
ps, followed by a slow decrease beyond 2.5 ps. Peak A slightly
shifts from 0.9 to 0.8 eV within t < 1 ps and remains constant
thereafter. Its linewidth is limited by the resolution of the
spectrometer. The final peak position matches the electron energy
expected for ionization of a He atom in the lowest excited singlet
state,

TS;atom
e ¼ Eð1s2s1SÞ þ hν0 � Ei ¼ 0:8 eV; ð2Þ

where E(1s2s 1S)= 20.6 eV. Therefore, we associate peak A with
the ionization of a 1s2s 1S-excited He� which is either weakly
bound to the droplet surface or ejected into vacuum. This
interpretation is supported by PES measured for various He
droplet sizes presented in the Supplementary Fig. 1 and discussed
in Supplementary Note 1. While for larger droplets peak A
appears slightly later and remains less intense in proportion to
peak D, its position converges to the same final value (0:8 eV).
Consequently, peak D is assigned to a He� located further inside
the He droplet such that it is energetically shifted up. This
assignment is backed by the evolution of the Heþ and Heþ2 ion
yields as a function of delay, see Supplementary Fig. 2. When
exciting the He droplet to its 1s2s 1S state at hν ¼ 21:0 eV
(Fig. 2a), the initial position of peak D (1:2 eV) matches the
electron energy one expects based on the droplet absorption
spectrum (Fig. 1a),

TS;drop
e ¼ 21 eVþ hν0 � Ei ¼ 1:3 eV: ð3Þ
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At higher hν, where mainly the 1s2s 1P droplet state is excited
(Fig. 2b), feature D corresponds to a superposition of 1S and 1P
states which relaxes into the 1S droplet state faster than the cross
correlation of the two laser pulses (250 fs FWHM) and thus
cannot be fully resolved. Note that not all droplets evolve into
the atomic 1S state (peak A); in the final stage of relaxation, the
state that converges to an energy 0.1–0.2 eV above the 1S atomic
value (feature D) and the atomic 1S state are nearly equally
populated.

Potential energy curves of the He�2 excimer. How can the
extremely weakly bound, ultracold van der Waals He clusters
induce ultrafast energy relaxation by up to 1.6 eV within 1 ps? To
answer this question, we first consider the potential curves of the
He�2 excimer correlated to the atomic 1s2s 1S and 1s2p 1P levels as
the simplest model system for the excited He droplet, shown in
Fig. 1b. The blue-shifted absorption profiles with respect to the
atomic levels can be related to the steep upwards bending of
the optically active A, D, and F states in the range of most
probable interatomic distances (3.6Å), indicated by the gray oval
line. When exciting He in a nanodroplet, these diatomic states are
expected to be strongly coupled to form a band-like structure.
Following ultrafast intraband relaxation to the lowest state B of
this manifold, the system further relaxes by internal conversion via
the crossing of potential curves B and C at short interatomic
distance, as illustrated by the dotted arrows. Subsequently, the
local environment rearranges to accommodate the newly formed
1s2s 1S He� atom. On the longer timescale of the fluorescence
lifetime, some of the He� stabilize by forming He�2 excimers19,20,33.

Time-dependent density functional theory calculations. To
simulate this process for He droplets in three dimensions, we
carried out TD-DFT calculations for a He� excitation in the
1s2s 1S state, as outlined in the Methods section. Note that this
transition is forbidden in free atoms. Therefore it preferentially

takes place in the surface region of the droplets where the
radially-varying He density breaks the symmetry of the free He
atom and makes the transition partly allowed (see Methods).

As seen in Fig. 3, the system evolves differently depending on
the initial position d of He� with respect to the droplet surface.
The radius of the droplet containing N ¼ 1000 He atoms is
RD ¼ 2:2 nm. Shown are snapshots of the He density distribu-
tion at fixed times t after He� excitation. Such snapshots for
intermediate values of d are shown in Supplementary Fig. 3 and
discussed in Supplementary Note 2. When He� is initially placed
at the surface of the droplet (d ¼ 0, left column), the surrounding
region is locally compressed and forms a spherical dimple, while
He� flies off within t ≲ 1 ps. This scenario resembles the
dynamics of excited alkali metal atoms which initially reside in
dimple states at the droplet surface34–37. When He� is initially
placed deeper in the bulk of the droplet (d ¼ 0:7 nm, right
column), first a bubble forms around He�, which then bursts at
t � 4 ps, thereby allowing He� to escape out of the droplet. This
scenario has also been studied theoretically and experimentally
for photoexcited silver atoms38 and indium atoms embedded in
He nanodroplets14.

Besides visualizing the dynamics ensuing excitation of the
droplet, the TD-DFT model allows us to simulate the time-
dependent PES, see Methods section. Figure 4a shows the
resulting electron kinetic energies Tsim

e for different values of d. In
the case He� is initialized close to the droplet surface (d ¼ 0 and
0:2 nm), Tsim

e rapidly drops from about 1.4 eV at t ¼ 0 to the final
value of 0:8 eV within t ¼ 250–500 fs due to prompt desorption
of He�. When He� is placed deeper inside the droplet (d ¼ 0:4,
0:7, and 1:2 nm), an initial fast drop of Tsim

e from 1.6 to
0.9�1:1 eV is followed by a slow decrease to 0.9 eV at t ¼ 2 ps.

The average of all curves in Fig. 4a, weighted by the geometric
factor ðRD � dÞ2, is shown in Fig. 4b as a dashed line. It nicely
follows the experimental curve for the droplet feature D (red solid
line in Fig. 4b) up to about 2 ps delay and eventually converges to
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the final value of the atomic peak A. In particular, the fast drop
between 0 and 1 ps coincides with the drop of peak D energy in
the experimental PES (Fig. 2d) and with the appearance of peak A
as the bubble forms around He�. Thereafter it slowly decreases
from 0.9 to 0.8 eV as the bubble migrates to the droplet surface
and eventually releases an unperturbed He�. Note that the
simulated curve for d ¼ 0:7 nm shows an oscillatory behavior
between t ¼ 0:4 and 2 ps. We attribute this nearly periodic
modulation of Te to the oscillation of the He bubble around He�.
He bubble oscillations around impurity atoms (Ag and In) have
also been discussed14,38.

Discussion
From the comparison of the experimental and theoretical results,
we can now map out the full picture of the relaxation dynamics of
excited He nanodroplets: Initiated by the excitation of the 1s2p 1P
nanodroplet state, which is likely delocalized over several He
atoms24, ultrafast interband relaxation to the 1s2s 1S droplet state
occurs within <250 fs induced by curve crossings of the He�2
potentials (step 1). This is in line with earlier photoluminescence
studies which showed that the 1s2p 1P droplet state mainly decays
by XUV-photon emission of He�2 in its A state correlating to the
1s2s 1S state of He�19.
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Further relaxation proceeds within the 1s2s 1S droplet band by
localization of the excitation due to the local opening of a void
bubble around an excited He� atom (step 2). The relaxation time
associated with this step (0.5 ps) is in good agreement with the
established model of bubble formation around an electron, if we
assume a final bubble radius of 6.4Å25,26. It is nearly independent
of the location of He� within the droplet and of the droplet size N .
This explains the weak variation of the experimental pump-probe
PES when changing N .

Subsequently, the bubble migrates to the droplet surface and
bursts to release a free He� (step 3). The fact that in our
experiment, both free and bubble-bound He� are measured at
t ¼ 2:5 ps shows that the migration of the bubble to the surface is
a slow process that strongly depends on the initial He� location
and therefore on N . A recent study of the excited state dynamics
of xenon clusters revealed electronic relaxation and the emission
of free xenon atoms39. Thus, our findings appear not to be spe-
cific to He nanodroplets but of rather general relevance for weakly
bound condensed phase systems. Eventually, the He� atoms that

remain attached to the droplet surface further relax by forming
He�2 as seen in time-independent measurements19,20. The latter
radiatively decay to the ground state after undergoing vibrational
relaxation and partly detaching from the droplet33.

The presented measurements show that it is now possible to
follow the relaxation dynamics of free nanodroplets in great detail
using ultrashort tunable XUV pulses. Diffractive imaging of He
droplets and embedded impurities has recently attracted con-
siderable attention40–42. However, direct time resolved imaging of
the bubble dynamics is at the present stage challenging, given the
small size of the bubbles and the expected low contrast. Further
development of ultra-bright X-ray light sources is needed to enter
the regime of atomic resolution in single clusters and will then
deliver a wealth of detailed information. The present technique
could be used for probing the photodynamics of more complex
natural or synthetic nanosystems in various regimes of excitation
of the valence shell43 and even inner shells44.

Methods
The experiments described were performed at the low density matter (LDM) end
station of the seeded free-electron laser FERMI30.

He droplet generation. The He nanodroplets were formed by expanding He gas
from a high pressure reservoir (50 bar) through a pulsed, cryogenically cooled
Even-Lavie nozzle at a pulse repetition rate of 10 Hz45. The mean size of the He
droplets formed in this way was controlled by changing the temperature of the
nozzle in the range of 5–28 K.

Light sources. Linearly polarized XUV pulses in the photon energy range
21.0–22.2 eV were provided by the FERMI free electron laser set to the 5th har-
monic of the seed laser wavelength46. The XUV pulses generated in this way have a
bandwidth <0:1 eV and a temporal duration of about 100 fs FWHM. A
Kirkpatrick-Baez mirror system was used to focus the FEL light to a spot size of 0.5
mm in the interaction region of the spectrometer. To minimize non-linear effects
due to absorption of more than one photon per droplet the XUV pulses were
strongly attenuated by a combination of a N2 filled gas cell and an aluminum filter.
The pulse energy in the interaction region was estimated to be 6 μJ.

The UV probe pulses (170 fs duration, 7 μJ pulse energy) were generated by
frequency tripling part of the 775 nm Ti:Sa laser used to generate the seed light for
the FEL. The UV pulses were focused to the same focal spot size as the XUV beam
and superimposed with the XUV pulses in a quasi collinear geometry via reflection
from a holey mirror. The temporal cross-correlation function was measured using
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Fig. 3 Evolution of the He density distribution. In this simulation, the
probability distribution of He� is represented as a yellow dot. The initial
position of He� is 0 (left column) and at 0.7 nm (right column) away from
the droplet surface.
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the He� excitation. The geometric weight of each curve as well as the
experimental pulse cross correlation function are taken into account.
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two-photon ionization of He atoms via the He 1s5p 1P state. A Gaussian fit yields a
FWHM of 250 fs.

Electron detection, data acquisition, and analysis. PES from the He nano-
droplets are recorded using a VMI spectrometer, in which electrons are accelerated
by electrostatic optics imaged onto a position sensitive detector consisting of a
75 mm microchannel plate and phosphor screen assembly. For each step of the
pump-probe delay of 50 fs delay, VMI spectrometer images from 2000 shots were
saved. A background subtraction procedure was implemented in which the bun-
ches of He nanodroplets were periodically desynchronized from the FEL pulses so
that spurious signals such as scattered light could be subtracted. The VMI spec-
trometer images for each delay were then summed and subsequently inverted using
the pBasex routine to extract the photoelectron kinetic energy and angular
distributions47.

Ab initio calculations of He–He� and He–Heþ potentials and transition dipole
moment. The He�–He interaction potentials corresponding to 2s and 2p He atomic
asymptotes were obtained at the CC3-EOM level48,49 by using the Psi4 code50. The
basis set was taken from ref. 51. All the calculated potentials were corrected for basis
set superposition errors by the counterpoise method of Boys and Bernardi52.

The transition dipole μ!2s as a function of He�(2s)–He(1s) distance was
evaluated at the multi-reference configuration interaction (MRCI) level using the
Molpro code53,54. The active space consisted of the molecular states originating
from 1s and 2s atomic states. These calculations employed the basis set given in
refs. 55,56. The transition dipole induced by the inhomogeneous He density in the
droplet surface region is calculated as the vector sum of dipole moments of a single
He�–He pair weighted by the radial He density distribution,

μ!drop
2s ¼

Z
dr ρðrÞ μ!2sðjr� rX jÞ

¼
Z

dr ρðrÞ μ!2sðjr� rX jÞ
�� �� r� rX

jr� rX j
:

ð4Þ

We find the transition dipole moment to be peaked nearly at the He droplet radius

r0N
1=3, r0 ¼ 2:22Å, where it takes the value j μ!drop

2s j ¼ 0:17 Debye.

Time-dependent density function theory. The dynamics of the excited He
droplet was simulated using time-dependent density functional theory (TD-DFT)
for droplets consisting of 1000 He atoms15,16, to which the dynamics of the He�
atom is self-consistently coupled.

Due to the light mass of the He� “impurity”, its dynamics is followed by solving
the Schrödinger equation for it, where the potential term is given by the He�-
droplet interaction. The expected high velocity of the impurity makes it
advantageous to use the test-particles method for solving the Schrödinger
equation16,34. We obtain the excess energy transfered to the photoelectron as
TeðtÞ ¼ hν0 � ½UþðtÞ � U�ðtÞ�. Here, the interaction energies of He� with its local
environment in the He droplet in the (t-dependent) initial state, U�ðtÞ is computed
as

U�ðtÞ ¼
Z Z

dr dr0 Φ2ðr0; tÞ ρðr; tÞ VHe�He� ðjr0 � rjÞ; ð5Þ

where Φ2 is the probability density of He� , ρ is the ground-state He density, and
VHe�He� is the He–He� interaction pair potential, respectively. The interaction
energy of Heþ with the droplet in the final state, UþðtÞ, is obtained in the same
way using the He–Heþ interaction potential, VHe�Heþ .

Data availability
The data that support the findings of this study are available from the corresponding
author upon request.

Code availability
The results of the simulation were obtained by adapting to the test particles approach the
4He-DFT BCN-TLS computing package which is freely available at M. Pi, F. Ancilotto, F.
Coppens, N. Halberstadt, A. Hernando, A. Leal, D. Mateo, R. Mayol and M. Barranco,
4He-DFT BCN-TLS: A Computer Package for Simulating Structural Properties and
Dynamics of Doped Liquid Helium-4 Systems, https://github.com/bcntls2016/.
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