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Beyond the label: current 
evidence and future directions for 
the interrelationship between 
electronic cigarettes and mental 
health
Malia Bautista , Allison S. Mogul  and Christie D. Fowler *

Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, United States

Electronic cigarette use has dramatically increased over the last decade. With 
this recent technological development and wide range of constituents in various 
products, putative adverse effects on the brain and body have been largely 
unexplored. Here, we review current evidence linking electronic nicotine cigarette 
use with potential health consequences and provide evidence supporting an 
association between drug use and depression in humans. We  also examine 
the biological effects of individual constituents in electronic cigarette aerosols, 
which include labeled ingredients, such as propylene glycol, vegetable glycerin, 
nicotine, and flavorants, as well as unlabeled ingredients found in the aerosols, 
such as carbonyls and heavy metals. Lastly, we examine the effects of electronic 
cigarette use on endogenous metabolism via changes in cytochrome P450 
enzymes, which can thereby impact therapeutic outcomes. While the current 
evidence offers insight into the potential effects of electronic cigarette use on 
biological processes, further studies are necessary to determine the long-term 
clinical relevance of aerosol inhalation.
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Introduction

“We don’t think a lot about addiction here […] anything about health is not on our mind” – 
statement by a JUUL electronic cigarette engineer (1)

Since tobacco cigarette use continues to be a main cause of preventable death in the US and 
worldwide (2), significant efforts have been focused on developing smoking alternatives and 
therapeutics to support long-term cessation (3, 4). Initially developed as an innovative smoking 
cessation tool, electronic cigarettes have become increasingly popular among adult smokers, in 
addition to an unfortunate prevalence of use among adolescents and never-smokers (5, 6). This 
phenomenon may be attributed to how electronic cigarettes have evolved over time. Specifically, 
electronic cigarettes have become more inconspicuous, looking less like a tobacco cigarette, and 
their improved liquid solvents have been formulated to decrease the harshness of the smoking 
experience. Through a heating coil, electronic cigarettes aerosolize a liquid solvent, which is then 
inhaled by the user. Commercial liquids for electronic cigarettes contain nicotine and various 
constituents/flavorants dissolved in a vehicle solution, which is often propylene glycol and 
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vegetable glycerin (7). However, additional constituents are also often 
present in electronic cigarette liquid and aerosol (7, 8), thus exposing 
the smoker to potentially numerous harmful substances.

In adult tobacco smokers, electronic cigarettes have been shown 
to be beneficial as cessation aids, but ultimately, the scientific evidence 
has indicated limited efficacy to reduce tobacco use over the long-term 
(9–14). It is important to note that electronic cigarette use among 
adolescents and never-smokers is increasingly prevalent, with reports 
indicating that use has more than doubled between 2017 and 2019 in 
Americans aged 16–19 (15). Commercial electronic cigarette products 
are continuing to evolve across time which may lead to increased 
intensity of use, for instance based on increasing nicotine levels, pH 
modifications, and potentially other design features. Importantly, 
electronic cigarette use has a high comorbidity with increased self-
reported depression and anxiety symptoms (16, 17) Therefore, the 
association between electronic cigarettes and mental health will likely 
continue to evolve over time, especially given ease of inconspicuous 
use in home environments, school settings, and workplaces. It has 
become essential to understand how electronic cigarette use correlates 
with mental health, the impact on the brain’s neurobiology, and the 
potential impact on pharmaceutical therapies related to mental health. 
In this review, we  examine the effects of individual constituents 
emitted from electronic cigarettes and the potential intersections with 
health. We further discuss how metabolic processes can be disrupted 
by constituents in electronic cigarettes, thereby impacting the 
effectiveness of pharmacological therapeutics used to treat mental 
health disorders, such as depression.

Factors influencing electronic 
cigarette use

Electronic cigarette harm perception

A multitude of factors influence the likelihood to initiate 
electronic cigarette use (18). Not surprisingly, both adolescent and 
adult electronic cigarette users are more likely to start smoking 
tobacco cigarettes within 2 years, as compared to non-users (19, 20). 
Because of this, it is especially important to understand factors that 
may predict the onset of electronic cigarette use in never-smokers. For 
instance, electronic cigarette perception was shown to be a predictor 
of smoking initiation amongst adolescents and adults (21, 22). 
Therefore, by deepening our understanding of how different 
sociodemographic factors and perception interrelate, vulnerable 
populations can be identified to prevent future initiation of drug use.

The relationship between sociodemographic factors and electronic 
cigarette use in adolescents is well established. In a recent survey, 
adolescents between 13 and 18 years of age were found to vary in their 
perceived harm of electronic cigarettes based on socioeconomic 
status, ethnic background, and parental educational attainment (23). 
Specifically, a lower perceived risk of electronic cigarettes was 
associated with a lower-income family, non-Hispanic Black ethnic 
background, or both parents having had no college degree (23). 
Furthermore, adolescents and young adult never users who were 
non-Hispanic Black reported a greater susceptibility to initiate 
disposable or reusable electronic cigarette use (24). As adolescents age, 
perceptions toward electronic cigarettes may persist and thus influence 
their likelihood of nicotine use. Not surprisingly, the internet and 

social media have become a powerful source of influence for both 
adolescents and young adults. Indeed, the advertisement of electronic 
cigarettes has been mainly found in online sources (25). For instance, 
a large number of electronic cigarette vaping-related videos are 
available on TikTok, a short form social media platform popular 
among adolescents and young adults (26). These vaping-related 
TikTok videos were largely found to positively depict electronic 
cigarette use (26). This is alarming given that advertising via social 
media significantly influences the perception of electronic cigarette 
harm in adolescents, even when controlling for exposure to warning 
labels and anti-tobacco advertising (27). Conversely, this highlights 
the potential by which social media can be used to communicate the 
harms of electronic cigarette use to these same adolescent and young 
adult populations.

Interestingly, a study in young adults found that advertising alone 
did not influence electronic cigarette use, but when individuals who 
had a low harm perception of electronic cigarettes viewed this 
advertising, they were then more likely to initiate electronic cigarette 
use (25). These findings are consistent with another study in adults, in 
which harm perception of electronic cigarettes in non-users could 
predict their status a year later (28). Specifically, increased harm 
perception of electronic cigarettes was significantly correlated with a 
lower incidence of future electronic cigarette use, whereas decreased 
harm perception was associated with increased likelihood of drug use 
(28). Given the recent regulations in over 30 states targeting electronic 
cigarette advertising, sales, and use (29), it will be interesting to see 
how electronic cigarette perceptions in adolescents and adults evolve 
to influence future use patterns.

Depression and anxiety

Over 20 million adults in the United States suffer from depression 
(30), and multiple studies have demonstrated comorbidity between 
depression and electronic cigarette use (16, 31–39). This association is 
also dose-dependent, where greater amounts of nicotine consumed 
were associated with greater self-reported depressive symptoms (40). 
Adolescents and adults who suffer from mental illness are more likely 
to be both electronic and tobacco cigarette users (14, 41–44), so these 
populations are disproportionately burdened with health 
consequences associated with both types of cigarettes. Interestingly, 
electronic cigarette use was associated with subsequent tobacco 
cigarette initiation, which then correlated with depression symptoms 
(39), illustrating that the initial use of electronic cigarettes in never-
smokers can lead to adverse health consequences. Additionally, self-
report studies reveal that never smokers and smokers who have quit 
report overall higher levels of positive affect and lower levels of 
negative affect compared to current tobacco smokers (45, 46). 
Although prior studies provide some insight for the intersection of 
nicotine use and depression, it had remained unclear as to whether 
symptoms related to depression led to the initiation of drug use, or if 
the effects of drug use (e.g., alterations in brain circuitry and/or 
induction of withdrawal symptoms during periods of abstinence) 
triggered the onset of depressive symptomology. Two longitudinal 
studies have investigated this question regarding electronic cigarette 
use, yielding somewhat conflicting results (18, 47). In the first study 
(47), college students were surveyed at two time points within 1 year, 
assessing for changes in electronic cigarette use and self-reported 
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depressive symptoms. In this sample, reported symptoms of 
depression predicted electronic cigarette use at both 6 month and 
1 year follow-ups, whereas electronic cigarette use did not predict 
depressive symptoms at either time point (47). These data suggest an 
unidirectional relationship, in which greater depressive symptomology 
increases the likelihood of electronic cigarette use (47). These data also 
support the “self-medication” hypothesis, in which people 
experiencing depression may seek out substances to ameliorate their 
symptoms. Given that nicotine in electronic cigarettes has been shown 
to induce transient effects of mild euphoria, increased energy, 
heightened arousal and relaxation, these effects can theoretically 
counteract an individual’s perceived depression-associated symptoms 
(48). Of note, this phenomenon has also been observed in tobacco 
cigarette users (49, 50). Contrary to these unidirectional effects (47), 
an interesting longitudinal study by Leventhal and colleagues provides 
evidence of a bidirectional relationship between nicotine use and 
depression (18). This study surveyed high school students for 1 year 
who reported never having used any nicotine products and assessed 
their self-reported depression symptoms and electronic cigarette use 
(18). Participants with a self-reported elevation of depression-
associated symptoms at baseline were more likely to use both 
electronic cigarettes and tobacco cigarettes (18), consistent with the 
former study (47). However, the authors also found that sustained 
electronic cigarette use predicted an increase in self-reported 
depression symptoms at 12 months, thereby revealing a bidirectional 
relationship between depressive symptoms and electronic cigarettes 
(18). As these two studies suggest differences in directionality between 
depression and electronic cigarette use, it is important to consider 
factors mitigating these conclusions. For instance, differences in age, 
education, and geographic location have all been shown to affect 
nicotine use (4), and thus, the reported findings may be interdependent 
on other sociodemographic or developmental factors. In addition, the 
dose of nicotine contained in the electronic cigarettes or amount 
consumed by the participants was not recorded or standardized, 
which may have confounded the correlation with depressive 
symptoms. Finally, self-reported symptoms are subjective and may not 
meet the criteria for major depressive disorder (51).

Often closely associated with depression, electronic cigarette use 
is also positively correlated with both self-reported anxiety symptoms 
and generalized anxiety disorder (GAD) in humans (17, 52–56). 
While the directionality of this association is unclear, like depression, 
the relationship between anxiety and electronic cigarette use may also 
be bidirectional. Evidence demonstrates that people with a greater 
score as assessed with the GAD survey are more likely to initiate future 
electronic cigarette use (17). Further, adolescent populations self-
report vaping for relaxation and stress and anxiety coping (54). 
Conversely, electronic cigarette use may increase the risk of anxiety 
disorders, including phobias, obsessive–compulsive disorder, or a 
panic disorder (57). Among adolescents and young adults, electronic 
cigarette use increased the likelihood of anxiety-related disorders by 
37% (57). In addition to electronic cigarette initiation and continued 
use, increased anxiety is also evidenced during nicotine withdrawal 
(58). Interestingly, individuals that self-report greater anxiety 
sensitivity experience greater barriers for cessation (56) and 
individuals with depression diagnoses are more likely to experience 
more severe withdrawal symptoms (59). All in all, these findings 
suggest an intertwined relationship between electronic cigarette use, 
anxiety, and depression, which put those already experiencing these 

disorders at greater risk for electronic cigarette use, difficulties in 
cessation, and increased withdrawal symptomology.

Studying drug exposure in animal 
models

Preclinical research in animal models, particularly rodents, allows 
researchers to investigate the effects of drugs and chemical constituents 
in a controlled setting. A wide range of techniques are available to 
study drug exposure, including both passive and self-administration 
methods. Passive (a.k.a., experimenter-administered) exposure allows 
for the control of both dose and time of administration relative to 
other outcome measures (e.g., examination of brain activation after a 
discrete time period) (60). This method, however, eliminates the 
motivational aspects of dependence. In contrast, intravenous or vapor 
self-administration protocols allow for the examination of the 
motivational and reinforcing drug properties that lead to continued 
use and seeking behaviors, allowing researchers to investigate different 
aspects of addiction processes. Both intravenous nicotine and 
aerosolized nicotine self-administration assays have been established 
for both rats and mice (61–67). Intravenous nicotine self-
administration is considered the most reliable and robust method to 
study nicotine dependence, craving, and withdrawal (68). Intravenous 
nicotine self-administration also allows for the precise quantification 
of the amount of nicotine infused by the animal (69), but there are 
translational limits with this approach as humans typically inhale most 
nicotine-containing products. Recently, vapor nicotine self-
administration paradigms have been developed (61, 62, 70), in which 
animals inhale aerosolized nicotine to more closely mimic human 
nicotine consumption. However, measurement of the net amount of 
nicotine inhaled with vapor self-administration is not feasible; while 
blood samples can be used to examine nicotine and its metabolites, 
the time course of nicotine metabolism in rodents limits the accuracy 
of detection with exposure across a self-administration session 
duration (e.g., 1+ hour). However, electronic cigarette exposure can 
lead to clinically relevant pharmacokinetics that translate to human 
biology (71). To date, rodent vapor self-administration paradigms 
have been demonstrated to be  less robust than intravenous self-
administration; associations between drug reward and active versus 
inactive behavioral responding have been inconsistent across 
published experimental paradigms (62, 65). Nevertheless, both 
intravenous and vapor nicotine self-administration paradigms are 
valuable tools to investigate various aspects of nicotine dependence, 
and established protocols demonstrate blood levels of nicotine’s 
metabolites, cotinine, 5-hydroxycotinine and cotinine N-oxide, 
similar to that found in human smokers (60, 62, 65, 72–74).

Many rodent models have been used to assess a wide range of 
behaviors related to symptoms of psychiatric disorders (75). For 
instance, depression-like behaviors have been classically measured 
using behavioral despair tests, such as forced swim and tail suspension, 
where quicker immobilization times are inferred to be an indicator of 
behavioral despair (75). Anxiety-like behavior in rodents is often 
assessed using open field and elevated plus maze tests, in which more 
time spent in the periphery of open field or in the closed arms of the 
elevated plus maze are associated with anxiety-like effects (76). 
Behavioral assays can also be  used to quantify motivational and 
consummatory behaviors, in which decreased reward consumption or 
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motivation to obtain palatable food reward is considered an indicator 
of anhedonia (75). Intracranial self-stimulation (ICSS) can also serve 
as an assessment of anhedonia or aversive state, in which rodents in 
an aversive state have been found to press a lever or spin a wheel to 
obtain higher levels of brain electrical self-stimulation (77, 78). While 
these tools have proven useful in measuring depression- and anxiety-
associated states in animals, translational limitations are present when 
trying to extrapolate to mental health disorders in humans, given 
complex cognitive and social factors contributing to the human 
psychological state. Therefore, behavioral assessments with rodent 
models can be  used to examine the reinforcing, rewarding, and 
cognitive effects of a variety of constituents found in electronic 
cigarettes. For instance, data from rodents support findings from 
human studies associating electronic cigarette exposure with anxiety- 
and depression-associated behaviors (79–81). Specifically, withdrawal 
from nicotine was shown to induce persistent changes in anxiety-, 
depression- and compulsive-like behaviors following 7 weeks of 
electronic cigarette exposure (79, 80), and surprisingly, these 
behavioral changes persisted 90 days following the last electronic 
cigarette exposure in male mice (79). Behavioral changes have also 
been observed even in the absence of nicotine, as nicotine-free 
electronic cigarette vapor exposure was shown to result in anxiogenic 
phenotypes in both male and female mice (81). With these apparent 
behavioral changes associated with electronic cigarette exposure, 
additional animal model research studies are needed to specifically 
elucidate the neurobiological mechanisms driving, and resulting from, 
electronic cigarette use. In the following sections, we will review the 
impact of various constituents on biological processes with data 
derived from both in vitro and in vivo studies.

Health consequences and 
neurobiological effects of electronic 
cigarettes constituents

Electronic cigarettes have been promoted as a safer alternative 
to tobacco cigarettes, which has led to increased product use 
among various populations (25–28). However, electronic cigarette 
liquid and aerosols can pose many health risks to users (Figure 1). 
Further, while there is significant overlap in gene expression 
changes after electronic cigarette or tobacco cigarette use, there are 
several genes that are distinctly altered by electronic cigarette 
vapor and therefore may pose distinct health risks (82). Likely 
attributed to the lack of federal regulation, unlabeled components 
have been identified in electronic cigarette liquids with nuclear 
magnetic resonance spectroscopy analysis (83). Significant 
differences in labeled nicotine and actual nicotine content have 
also been found in commercially available electronic cigarette 
liquids, ranging from 35% less nicotine than what was labeled, up 
to 30% more nicotine than labeled (84). Alarmingly, nicotine has 
also been detected in electronic cigarette cartridges labeled as 
“nicotine-free” (84–86). These discrepancies between labeled and 
measured nicotine content in electronic cigarette liquids pose a 
significant risk to never smokers, who report a greater desire to use 
nicotine-free electronic cigarettes in comparison to nicotine-
containing electronic cigarettes (87). Indeed, a study in Norway 
found that adolescents were three times more likely to vape 
nicotine-free electronic cigarettes as compared to 

nicotine-containing electronic cigarettes (88). While about half of 
nicotine-free electronic cigarette users from this cohort were able 
to quit the following year, it is important to note that from 2017 to 
2019, about 15% of users each year transitioned from nicotine-free 
to nicotine-containing electronic cigarettes (88). Considering that 
nicotine has been detected in electronic cigarette liquids labeled as 
nicotine-free, these users may have unknowingly consumed 
nicotine, thereby priming their subsequent transition to nicotine-
containing electronic cigarettes.

Nicotine

Nicotine is the main psychoactive constituent present in both 
tobacco cigarettes and electronic cigarette liquid. Nicotine acts on 
ionotropic nicotinic acetylcholine receptors (nAChRs), where ligand 
binding results in channel pore opening and cation influx across the 
membrane (89). nAChRs are pentameric, assembling with various 
combinations of α and β nAChR subunits for a wide variety of nAChR 
subtypes with distinct pharmacokinetics, expression patterns, and 
actions on the cholinergic system (90, 91). Acting on nAChRs, 
nicotine exerts its reinforcing properties through the mesolimbic 
dopaminergic pathway (92). Systemic nicotine administration results 
in dopamine release in the nucleus accumbens (93), an effect shown 
to be mediated by β2* nAChRs in the ventral tegmental area (92, 94). 
Subsequent studies have demonstrated that the α4α6β2* nAChRs are 
necessary for nicotine self-administration in rodents (94). Moreover, 
nicotine also exerts aversive properties, particularly though the medial 
habenula to interpeduncular nucleus pathway (95). The medial 
habenula is enriched in α5*, α3*, β4* nAChRs, which have been 
shown to mediate nicotine aversion, drug-taking behavior, and/or 
withdrawal (96–101).

Nicotine vape solutions

Propylene glycol and vegetable glycerin are additives commonly 
used as humectants (e.g., to control moisture levels in food and 
beauty products) and are the main liquids used to dissolve nicotine 
into solution to generate electronic cigarette aerosol for inhalation. 
Electronic cigarette solutions are marked commercially as “nicotine 
juice,” “e-juice,” “nicotine liquid,” or “nicotine solution.” Although 
the Food and Drug Administration recognizes propylene glycol and 
vegetable glycerin as “generally safe” for oral consumption, they have 
not yet been approved for inhalation (102). With electronic cigarette 
development and use significantly increasing within the last decade 
(4), the potential long-term effects of inhaled propylene glycol, 
vegetable glycerin, or both together on the brain and body have yet 
to be  fully elucidated. Although propylene glycol and vegetable 
glycerin are both used in the electronic cigarette solutions, studies 
have focused on propylene glycol or the combined effects of 
vegetable glycerin and propylene glycol, rather than investigating 
vegetable glycerin alone.

Propylene glycol has been shown to interact with other 
compounds present in electronic cigarettes to induce synergistic 
effects. For example, HEK-293T cells exposed to both propylene glycol 
and vanilla electronic cigarette flavorant exhibited increased calcium 
signaling, which was attributed to activation of the aldehyde-sensitive 
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receptor TRPA1 (103). Specifically, at higher concentrations, vanilla 
flavorant and propylene glycol together induced more robust calcium 
influx than either alone (103). TRPA1 receptors are expressed in brain 
microvasculature and play a functional role to maintain blood–brain-
barrier integrity (104). Since acute exposure to non-flavored electronic 
cigarette aerosol was also shown to activate TRPA1 receptors in 
endothelial cells, this suggests that combined effects of propylene 
glycol and vanilla chemical flavorant may potentiate the adverse effect 
of each other or may exert greater side effects in vivo (105). Moreover, 
propylene glycol has also been shown to interact with nicotine to affect 
brain reward thresholds in male rats, as assessed with ICSS (78). While 
propylene glycol alone did not alter ICSS thresholds, co-administration 
of propylene glycol and nicotine decreased the aversion-associated 
increase in ICSS thresholds, which was induced by the high dose of 
nicotine alone (78). These findings indicate that at doses found in 
commercial electronic cigarette liquids, propylene glycol mitigates 
nicotine’s aversive properties and thus may promote higher levels of 
nicotine consumption (78), thereby increasing the product’s addiction 
liability. Maternal electronic cigarette exposure has also been shown 
to affect offspring. Surprisingly, prenatal exposure to vegetable 
glycerin with propylene glycol vapor was sufficient to induce deficits 
in long-term novel object memory (106), thus highlighting the 
importance of understanding the impact of electronic cigarette 
exposure in utero.

Carbonyls

When heated together, propylene glycol and vegetable glycerin 
decompose to generate carbonyls in the aerosol, which most notably 
include acrolein, acetaldehyde, and formaldehyde (107–109). Many 
studies have found detectable levels of carbonyls in electronic cigarette 
aerosol, but variable levels have been reported across these studies, 
likely due to differences in the vape solution’s pH, heating temperature, 
propylene glycol/vegetable glycerin ratios, and individual differences 
in user vaping behavior (109–112). Importantly, in humans, these 
carbonyls can be detected in the airway following electronic cigarette 
use (113), and their respective metabolites can be further detected in 
the urine (108, 114, 115). While it is important to acknowledge that 
electronic cigarettes emit significantly fewer carbonyls than tobacco 
cigarettes (116), limited studies have investigated the level of carbonyl 
emission from electronic cigarettes, nor have they investigated the 
implications with long-term exposure.

Both acetaldehyde and acrolein are considered neurotoxins due 
to their effects on oxidative stress, which has been proposed to 
underlie neurodegenerative diseases including Alzheimer’s and 
Parkinson’s (117–119). Acetaldehyde and acrolein have been detected 
in both nicotine-free and nicotine-containing electronic cigarette 
aerosol, but interestingly, they are often not detected in the liquids 
themselves (86, 109, 120). These findings indicate that the process of 

FIGURE 1

Labeled and Unlabeled Constituents in Electronic Cigarettes and Identified Effects on Neurobiology and Behavior. Electronic cigarette liquids and/or 
aerosols have been shown to contain nicotine, propylene glycol, carbonyls, flavorants, and metal particulates, all of which can induce effects on 
biological processes and/or behavior. Created with Biorender.com.
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heating the chemicals in the electronic cigarette liquid causes the 
formation of the aerosolized carbonyls. Metabolites of acetaldehyde 
and acrolein can also be detected in the urine following electronic 
cigarette vapor exposure (108, 115). Interestingly, both acetaldehyde 
and acrolein similarly impair cellular respiration. Acetaldehyde was 
shown to alter cellular respiration in cultured microvascular 
endothelial hBMVEC cells, which mainly comprise the blood–brain-
barrier, thereby suggesting negative effects on blood–brain-barrier 
integrity (121).Further, in cultured primary cortical neurons, 
acetaldehyde impaired mitochondrial respiration via NOX-mediated 
activation (122), and in brain mitochondria in vitro, acrolein inhibited 
mitochondrial respiration via complex I (123). Similar effects have 
also been observed in vivo, as 3 days of electronic cigarette vapor 
exposure resulted in NOX2-mediated changes in mitochondrial 
respiration in the frontal cortex of male mice (124). In this study, 
acrolein was proposed to induce the NOX2-mediated impairments in 
cellular respiration (124). Interestingly, a study in humans revealed 
that current electronic cigarette use, but not past electronic cigarette 
use, was significantly correlated with mitochondrial DNA damage and 
dysfunction (82), which supports the translational relevance of these 
pre-clinical findings. Together, these findings indicate the acute nature 
of electronic cigarette exposure in mitigating negative outcomes.

In addition to acetaldehyde and acrolein, formaldehyde is also a 
product of propylene glycol and vegetable glycerin degradation (107–
109). Formaldehyde is a well-documented carcinogen associated with 
adverse health consequences following acute exposure at higher doses, 
in addition to chronic lower levels of exposure (125). Formaldehyde 
levels in electronic cigarette aerosol have been documented to range 
from 0.07–0.15 parts per million (ppm), which is below the 5 ppm 
threshold for acute toxicity (126). Nevertheless, evidence demonstrates 
that chronic exposure to even low levels of formaldehyde can induce 
significant behavioral and molecular changes. For example, 7 days of 
gaseous exposure to a low dose of formaldehyde impaired spatial 
learning in the Morris water maze in male mice (127, 128). 
Furthermore, a chronically administered low dose of formaldehyde 
altered monoamine levels, including norepinephrine, epinephrine, 
dopamine, and serotonin, in the brain of male mice (127). Specifically, 
following 7 days of formaldehyde exposure at levels much lower than 
those emitted from electronic cigarettes, 0.0005 ppm formaldehyde 
exposure decreased norepinephrine and epinephrine levels, whereas 
0.003 ppm decreased all of the monoamine levels (127). Moreover, 
12 weeks of exposure of a low dose of aerosolized formaldehyde 
induced an upregulation in the number of corticotropin releasing 
hormone immunoreactive neurons in the paraventricular nucleus of 
female mice (129). Interestingly, an increased number of corticotropin 
releasing hormone neurons in the paraventricular nucleus has been 
observed in individuals diagnosed with major depressive disorder, as 
compared to healthy controls (130), suggesting clinical relevance of 
the findings from mice. Taken together, these studies provide evidence 
that long-term formaldehyde exposure at levels similar to electronic 
cigarette emission can lead to significant changes in brain mechanisms 
underlying cognitive function, potentially including depression.

Metals

Electronic cigarettes have been considered ‘safer’ than combustible 
tobacco cigarettes, such as with lower carbonyl levels. However, a 

main counterindication of this ‘safe’ assessment is the presence of 
inhaled metal particulates in electronic cigarette aerosols, which are 
at levels greater than that found in tobacco cigarette smoke (131, 132). 
Metals are likely leached into electronic cigarette liquids and vape 
during aerosol production, when electronic cigarette liquids come into 
contact with the metal heating coil (133). Like carbonyls, these metals 
can also be detected in the urine, saliva, exhaled breath, and blood of 
electronic cigarette users (131, 133). Electronic cigarette-emitted 
metal particulates have been shown to readily cross the blood–brain-
barrier, as evidenced by metal accumulation in the mouse brain (134). 
Moreover, following electronic cigarette exposure, arsenic, chromium, 
copper, iron, manganese, nickel, lead, selenium, strontium, and zinc 
were found to accumulate across different regions of the brain, with 
the greatest accumulation observed in the anterior frontal cortex and 
striatum (134). Specifically, in the anterior frontal cortex, copper and 
strontium were enriched, whereas arsenic, chromium, copper, iron, 
lead, and selenium were enriched in the striatum (134). Like other 
types of electronic cigarette emissions, the type and relative proportion 
of metals that might accumulate in the brain are expected to vary 
among commercially available brands due to differences in the vape 
liquid constituents and electronic cigarette device characteristics 
(135). Of note, metal inhalation has been shown to induce behavioral 
changes in male rats, including a decrease in  locomotor activity 
following chromium inhalation (136). Both arsenic and lead are well-
known neurotoxins, with the greatest negative effects occurring 
during earlier neurodevelopmental stages. Maternal exposure to either 
arsenic or lead during gestation or developmental exposure during 
adolescence has been shown to result in an overall increase in 
monoamine signaling in the brain, which persisted into adulthood in 
rats (137). Unexpectedly, co-exposure of both arsenic and lead led to 
an opposing effect with decreased monoamine signaling (137). These 
data highlight the potential differential effects of each constituent and 
unknown effects with multiple metals present in the aerosols. This 
illustrates the need to expand our understanding of the effects of 
metals in electronic cigarettes for various stages of neurodevelopment. 
It is also important to note that metal components are often found in 
higher concentrations in less expensive products (24, 138–140), which 
would presumably be purchased at higher levels by those of lower 
socioeconomic status or adolescent users with limited income. Given 
this, future research should be  directed at investigating whether 
increased health disparities will become more evident with long-term 
product use by marginalized communities of lower 
socioeconomic status.

Electronic cigarette flavorants

As the electronic cigarette market constantly evolves, more 
palatable flavorants consistently emerge to attract a broader audience 
of consumers. In 2014, a study identified over 7,000 commercially 
available electronic cigarette flavors (141), which does not take into 
account the many variations of chemicals used to create a singular 
flavor (e.g., fruit or candy). Mint and fruit electronic cigarette flavors 
are preferred by individuals across ages (young adult to adult) and 
smoking status (never, current, or former electronic cigarette/tobacco 
cigarette user) (142–144). Thus, an enhanced understanding of how 
the chemicals used to generate the variety of electronic cigarette 
flavorants impact the reinforcing properties of nicotine, drug use 
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patterns, and health outcomes will be essential to ascertain. However, 
this has been difficult for the scientific community given the numerous 
chemical combinations used to generate the flavors and limited time/
resources as commercialized flavors constantly evolve from company 
to company and across time.

Mentholated products
One of the most consistent findings for the impact of flavorants 

on nicotine product use is the effect of menthol. More positive 
attitudes have been reported toward mint/menthol flavored electronic 
cigarettes compared to tobacco flavored electronic cigarettes, which 
was evidenced by an increased reported satisfaction and increased 
likelihood to repeat use (145). In those who smoke mentholated 
tobacco cigarettes, decreased smoking cessation rates are found (146), 
indicating that mentholated products have increased addiction 
liability. Unfortunately, due to focused marketing by companies, 
individuals that are younger and/or from marginalized ethnic 
backgrounds disproportionately use menthol-containing products 
(146–149), which has led to notable health disparities within our 
society. Findings in humans have been supported by rodent models 
that demonstrate menthol enhances the rewarding and reinforcing 
properties of nicotine. For instance, administration of menthol-
flavored electronic cigarette extract reduced a conditioned taste 
aversion, as compared to nicotine alone, in a two-bottle test with male 
and female adolescent rats (150). Following menthol administration, 
male rats self-administered more intravenous nicotine infusions and 
increased their motivation to obtain nicotine (151), and male mice 
self-administered electronic cigarette vapor containing menthol and 
nicotine at greater levels than nicotine vapor alone (61). Together, 
these findings provide strong evidence that the addition of menthol to 
electronic cigarette products leads to greater dependence and 
addiction liability.

Green apple flavored products
Green apple is a characterizing fruit flavor commonly found in 

electronic cigarette liquids, which is acquired by the addition of the 
chemical farnesol (61, 152). In adolescents, the green apple flavorant 
was found to increase vaping behavior compared to both menthol-
flavored and unflavored electronic cigarettes (152). These findings 
in humans may be due to a positive association of green apple based 
on the individual’s history (e.g., positive conditioning with fruit 
candy consumption as a child) and/or due to biological effects of 
the chemical on the reward-related neurocircuitry of the brain. 
Henderson and colleagues have led a series of important studies 
that reveal the biological effects of farnesol. They found that green 
apple-flavored nicotine vapor is self-administered at a higher level 
than unflavored nicotine vapor in adult male mice (61), supporting 
the enhanced reinforcing properties of farnesol with nicotine. 
Further, green apple flavorant alone can induce a conditioned place 
preference, in addition to enhancing nicotine’s rewarding effects, in 
both male and female adult mice (153, 154), thereby demonstrating 
rewarding properties on its own. At the cellular level, farnesol can 
affect the kinetics of the nicotinic acetylcholine receptor, which is 
the receptor on which nicotine binds to induce its reinforcing and 
rewarding effects (4, 153). Specifically, 24 h of farnesol pretreatment 
induced a shorter desensitization period for the nicotinic receptors 
containing the α4 and β2 subunits (153), which would allow for 
more permissible receptor re-activation in the presence of nicotine. 

Chronic farnesol administration also increased the firing rate of 
nicotinic acetylcholine receptor-expressing neurons in the ventral 
tegmental area (153). Thus, the addition of the green apple flavorant 
induces neurobiological changes in the brain’s reward-related 
circuitry, which enhances nicotine’s rewarding properties to 
reinforce continued product use.

Impact on inflammatory processes
Nicotine has been shown to induce both inflammatory and 

anti-inflammatory effects based on a number of factors, which may 
include dose, duration of treatment, route of administration, and 
underlying mechanisms (67, 155, 156). In general, nicotine has 
been characterized as exerting mainly anti-inflammatory effects 
throughout the brain and body (157). Like tobacco cigarette smoke, 
flavored electronic cigarette vapor has also been shown to induce 
pro-inflammatory markers in the brain, potentially due to nicotine, 
other constituents present in the vapor, or the interaction of 
nicotine and the constituents (158, 159). After 14 days, grape 
flavored electronic cigarette exposure increased in TNF-α in the 
cerebral cortex of male mice (158). A common electronic cigarette 
brand, JUUL, provides the vape liquid in an encapsulated pod, and 
vapor emitted from the JUUL pod has been shown to induce several 
pro-inflammatory responses in nucleus accumbens sub-regions in 
female mice following long term exposure (159). In the nucleus 
accumbens shell, aerosol from both mint/menthol and mango 
flavored JUULs increased the expression of TNF-α, IL-1β, and IL-6 
following 1 and 3 months of exposure (159). In contrast, 
inflammatory markers in the nucleus accumbens core increased in 
a time-dependent manner; TNF-α expression was increased 
following both 1 and 3 months of JUUL exposure, but IL-1β was 
increased only following 1 month of JUUL exposure (159). 
Consistent with nicotine’s anti-inflammatory effects, chronic 
nicotine administration via an osmotic minipump did not increase 
either TNF-α or IL-1β in the nucleus accumbens in male mice 
(160), thereby supporting the notion that the constituents in the 
JUUL pods, or the interaction of nicotine with the constituents, led 
to the changes in inflammatory markers. Thus, these findings 
highlight the need to understand the potential impact of different 
chemical constituents on signaling in the brain.

In summary, based on the findings reviewed above, it is evident 
that all components of electronic cigarette emissions, including those 
labeled and unlabeled, can possess the potential to alter reward-related 
processing and behavior. However, it is important to acknowledge that 
the relative amounts of acrolein, acetaldehyde, formaldehyde, and 
metals released from electronic cigarette aerosol vary and may 
be lower than that examined in these reviewed studies. It is equally 
important to acknowledge that drug use also affects individuals on a 
longitudinal scale, and as such, chronic exposure to different 
constituents present in electronic cigarette aerosol may influence 
health outcomes, which will not be revealed until after many years of 
product use. Moreover, individual constituents may combine to 
induce synergistic effects that are different than each constituent 
alone, as evidenced by propylene glycol exposure and metal particulate 
exposure. Given that electronic cigarette use has been associated with 
cognitive effects, such as depression (18), and common biological 
pathways metabolize nicotine and psychiatric medications, it is also 
important to consider the intersection of electronic cigarette 
constituents and metabolizing enzymes.
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Alterations to CYP450 enzyme 
function and drug interactions

Cytochrome P450 (CYP450) enzymes play a critical role in drug 
metabolism, especially for therapeutic compounds used to treat 
symptoms associated with depression and other psychiatric disorders. 
Tobacco cigarette smoking has been shown to affect the expression of 
different enzymes within the CYP family, thus increasing the risk for 
CYP-mediated drug interactions. Most notably, polycyclic 
hydrocarbons in tobacco cigarette smoke induce expression of 
CYP1A2, which is essential for the breakdown of the antidepressant 
fluvoxamine (161); thus, given the increased metabolism, one would 
expect a reduced effect of fluvoxamine in a chronic tobacco smoker. 
However, the current clinical implications of electronic cigarette use 
and prescription drug interactions are largely unknown. In this 
section, we  will review current scientific data derived from 
pre-clinical studies.

In vitro studies have demonstrated that electronic cigarette liquid 
can alter CYP450 enzyme activity in various cell culture conditions 
(162–164) (Table 1). Administration of vape liquid has been shown to 
upregulate the expression of CYP2A6, CYP2U1, CYP2E1, and 
CYP2S1 mRNA (162), and exposure to condensed electronic cigarette 
aerosol induces CYP1A1 and CYP1B1 activity (164). In contrast, 
solution from nicotine-free vape liquids (strawberry poptart and apple 
watermelon flavors) was shown to inhibit the activity of CYP2A6 
(163).Together, these findings demonstrate both CYP isoform-specific 
and direction-specific effects following exposure to different electronic 
cigarette solutions. Of note, CYP2A6 is the isoform that metabolizes 
nicotine (73, 174), indicating a potential for altered drug use patterns 
based on the constituents in the vape liquid.

In vivo studies have provided further insight into the potential 
clinical implications associated with altered CYP450 metabolism. In 
an important study by Khokhar and Tyndale, the authors found that 
7 days of nicotine treatment increased CYP2B expression in the brain, 
but not liver, and surprisingly, this change in metabolism was sufficient 
to potentiate the sleep-inducing effects of the general anesthetic 
propofol in male rats (167). In addition to nicotine, carbonyls may 
also influence metabolism. For instance, acrolein has been found to 
inhibit CYP450 enzymes (173), and formaldehyde specifically reduces 
the levels of CYP2C11, CYP2E1, and CYP3A2, but increases CYP1A2, 
in male rats (166). Interestingly, the effects of formaldehyde on 
enzymatic activity led to decreased testosterone (steroid hormone) 
and chlorzoxazone (muscle relaxant) clearance, but increased 
phenacetin (analgesic) clearance (166). Propylene glycol has further 
been shown to inhibit CYP2E1, leading to decreased chlorzoxazone 
clearance by greater than 80% in male mice (172). It is interesting to 
note that CYP2E1 is a minor metabolizer of some antidepressants, 
including the selective serotonin reuptake inhibitor, fluoxetine, and 
monoamine oxidase inhibitor, moclobemide (168).

The CYP2D enzyme family is a well-documented major 
metabolizer of antidepressants, including desipramine, doxepin, 
imipramine, maprotiline, mianserin, nortriptyline, protriptyline, and 
trimipramine (168). Interestingly, in the frontal cortex, hippocampus, 
striatum, and cerebellum, chronic nicotine administration was shown 
to upregulate CYP2D6 mRNA in male rats (169) and CYP2D mRNA 
and protein in African green monkeys (170). This nicotine-mediated 
CYP2D induction has been shown to be sufficient to alter codeine 
metabolism in the brain but not in the plasma of male rats (171). 

Furthermore, these alterations were enough to increase codeine’s 
analgesic effect during the tail flick test (171). This suggests that long-
term electronic cigarette use may alter the metabolism of these 
antidepressants, thereby affecting therapeutic efficacy and side effects. 
Of further note, genetic polymorphisms have been associated with 
drug bioavailability. For instance, altered blood plasma bioavailability 
of the antidepressant fluoxetine is found in individuals expressing 
CYP2D6 polymorphisms (175). Specifically, different allelic variations 
in CYP2D6 influence enzyme activity leading to either ultra-
metabolizers or poor-metabolizers of CYP2D6 substrates (175, 176). 
Theoretically, a higher level of metabolism would be  expected to 
terminate the drug action sooner, thereby limiting the effectiveness of 
the drug. In contrast, a decreased metabolism would be expected to 
allow for prolonged drug effectiveness and/or to increase the 
likelihood of off-target adverse effects with increased side-effects due 
to accumulation of the drug compound. Indeed, individuals with 
genetic polymorphisms in CYP2D6 were more likely to have 
participated in more antidepressant medication trials and also have 
been shown to switch among antidepressants more often (176, 177). 
These findings could either suggest that CYP2D6 polymorphism leads 
to: (1) an increase in depression severity/incidence or (2) an 
insufficient therapeutic response and/or excessive side effects. Given 
that studies have failed to find an association between CYP2D6 
polymorphism and incidence of depression (178), the most likely 
conclusion is the latter, in which individuals have an increased need 
to try different therapeutics in search of a positive therapeutic 
response (176, 177). In sum, individual constituents found in 
electronic cigarette liquid and aerosol can significantly impact 
CYP450 enzyme activity (Table 1), which represents an important 
consideration when evaluating therapeutic effectiveness in the clinic 
for patients suffering from depression.

Conclusion

The recent development and use of electronic cigarettes, as well as 
a general lack of regulatory oversight, has led many individuals to 
be exposed to chemicals that have unknown long-term effects on the 
brain. While a clear positive correlation between electronic cigarette use 
and depression has been established (18, 47), the causality and 
mitigating factors affecting this relationship are largely undetermined. 
Therefore, as we  go forward, it will be  necessary to more precisely 
investigate the acute and long-term effects of all constituents found in 
the aerosols and the impact of these factors at various stages of 
neurodevelopment. This includes both labeled ingredients, such as 
propylene glycol, vegetable glycerin, nicotine, and various chemical 
flavorants (menthol, green apple, mango, and others), as well as 
unlabeled ingredients present in the aerosols of the devices. These can 
include carbonyls (acetaldehyde, acrolein, formaldehyde) and heavy 
metals (arsenic, chromium, copper, iron, manganese, nickel, lead, 
selenium, strontium, zinc). It will also be important to consider the 
effects of these constituents on the CYP450 enzyme family and related 
implications for therapeutic efficacy of psychiatric medications. Due to 
the large variation in the quantities of each constituent across products 
and an ever-evolving product marketplace, it will continue to 
be challenging to fully understand the clinical relevance of electronic 
cigarette use on the individual’s health. However, given our current 
understanding and the potential adverse implications for public health, 
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regulatory agencies should take a more proactive role in overseeing the 
production and commercialization of electronic cigarette products.
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TABLE 1 CYP450 alterations in vitro or in vivo following exposure to constituents in electronic cigarettes.

In vitro evidence

Cytochrome Constituent Cell culture Direction Reference

CYP1A1 Condensed electronic 

cigarette aerosol

MSK Leuk1 Increase (164)

CYP1A2 Polycyclic hydrocarbons HepG2; MCF-7 Increase (165)

CYP1B1 Condensed electronic 

cigarette aerosol

MSK Leuk1 Increase (164)

CYP2A6 Electronic cigarette liquid hCMEC/D3 Increase (162)

CYP2A6 Nicotine-free electronic 

cigarette flavors -strawberry 

poptart, apple watermelon

Microsomal 

Recombinant CYP2A6

Decrease (163)

CYP2E1 Electronic cigarette liquid hCMEC/D3 Increase (162)

CYP2S1 Electronic cigarette liquid hCMEC/D3 Increase (162)

CYP2U1 Electronic cigarette liquid hCMEC/D3 Increase (162)

In vivo evidence

Cytochrome Constituent Animal, Sex Direction Substrate Reference

CYP1A2 Formaldehyde Rat, Male Increase Phenacetin (166)

CYP2B Nicotine Rat, Male Increase Propofol (167)

CYP2C11 Formaldehyde Rat, Male Decrease Testosterone (166)

CYP2D6 Nicotine African Green Monkey

Rat, Male

Increase Desipramine

Doxepin

Imipramine

Maprotiline

Minanserin

Nortriptyline

Protriptyline

Trimipramine

Fluoxetine

Codeine

(168–171)

CYP2E1 Propylene glycol 

formaldehyde

Mice, Male

Rat, Male

Decrease Chlorzoxazone (166, 172)

CYP3A2 Formaldehyde Rat, Male Decrease N/A (166)

CYP450 (non-specific) Acrolein Rat, Male Decrease N/A (173)

Panels highlight the CYP450 isoform affected, the electronic cigarette constituent examined, cell/animal model system, and the directionality of the effect on the CYP450 isoform. Data from 
in vivo findings also indicates pharmacological drug compounds that can be affected by changes in metabolism.
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