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ABSTRACT OF THE THESIS

Leveraging Human Reasoning to Understand and Improve Visual Question Answering

by

Hammad Abdullah Ayyubi

Master of Science in Computer Science

University of California San Diego, 2020

Professor Garrison W. Cottrell, Chair

Visual Question Answering (VQA) is the task of answering questions based on an image.

The field has seen significant advances recently, with systems achieving high accuracy even

on open-ended questions. However, a number of recent studies have shown that many of these

advanced systems exploit biases in datasets, text of the question or similarity of images in the

dataset.

To study these reported biases, proposed approaches seek to identify areas of images or

words of the questions as evidence that the model focuses on while answering questions. These

mechanisms often tend to be limited as the model can answer incorrectly while focusing on the

correct region of the image or vice versa.

x



In this thesis, we seek to incorporate and leverage human reasoning to improve inter-

pretability of these VQA models. Essentially, we train models to generate human-like language

as evidence or reasons/rationales for the answers that they predict. Further, we show that this

type of system has the potential to improve the accuracy on VQA task itself as well.
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Chapter 1

Introduction

The task of Visual Question Answering (VQA) is formulated as follows: given a question

(Q), an image (I), the model must predict the correct answer (A). This answer, A, generally needs

to be chosen from apriori defined set of possible choices. For example, in fig. 1.1, given the

top left image and the question, “What is the moustache made of?”, the model must answer

”Banana”.

This task is challenging on many levels. First of all, the model needs to understand the

text of the question and the visual signals from image. Secondly, it should correctly correlate text

with the visual signals. On top of understanding text and visual signals, the model also needs

to use commonsense reasoning, knowledge base reasoning, identify context and setting of the

image.

Recently proposed systems have started to achieve remarkable success in these multi-

modal settings (Chen et al. [2019], Lu et al. [2019]). However, multiple studies have shown that

these models could be exploiting biaes in questions, images or datasets. For example, in fig. 1.2

left, Cadene et al. [2019] show that the model memorizes from the training dataset that bananas

are associated with yellow color, without actually understanding its color. Hence, when provided

with a green banana during test time, it still predicts its color to be yellow. Similarly, Agrawal

et al. [2016b] show, in fig. 1.2 right, that the model predicts the car has a license plate, even

without looking at the image.
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Figure 1.1. Visual Question Answering (VQA), image from Agrawal et al. [2016b]

Existing methods propose to identify such biases by providing evidence of parts of

question or image that the model attends to while predicting the answer (Shah et al. [2019],

Agrawal et al. [2016a], Das et al. [2017], Goyal et al. [2016]). Such approaches are limiting

because the model can still predict the wrong answer despite attending to the correct parts and

vice versa.

We seek to address these issues by proposing the task of generating reasons or rationales,

as a means to provide evidence for what the model bases its decisions on. The ability to generate

correct reasons/rationales requires first and foremost correct understanding and comprehension

of text (question) and visual (image) modalities and their correct correlation. Besides, it calls

2



Figure 1.2. VQA bias. Left: figure from Cadene et al. [2019] show that the model learns biases
from train dataset and hence can’t generalize to a green banana during test. Right: figure from
Agrawal et al. [2016b] show that model can answer question without even looking at the image.

into effect the reasoning abilities of the model as well. Another advantage with such a sytem

is that the evidence is directly human readable. We don’t need to engineer another system to

extract evidences.

We seek to study such human readable evidence generation in two settings:

• Rationale Generation: In this setting, the model first predicts the answer from question

and image, and then justifies its answer through a rationale as a post hoc measure.

• Reason Generation: The model, in this case, generates a reason from question and the

image. Then, it uses this generated reason along with question and image to arrive at the

answer.

Further, we show through experiments that such a reasoning and rationalization ability

has the potential to improve upon the main task of VQA itself.

3



Chapter 2

Generating Rationales in Visual Question
Answering

2.1 Introduction

Visual Question Answering (VQA) (Agrawal et al. [2016b]) tasks are an important

assessment of joint language-vision understanding. To perform well on VQA, a model must

understand the given question and then find a relevant answer from the image. A great deal of

success has been achieved in this task with state-of-the-art models (Chen et al. [2019]) achieving

high accuracy on challenging VQA datasets (Goyal et al. [2017], Ren et al. [2015]).

However, a critical question is how well these models “understand” the image, questions,

and the answers that they are predicting. Are they just exploiting biases in the questions

(Ramakrishnan et al. [2018], Johnson et al. [2017a], Cadene et al. [2019]), images (Agrawal

et al. [2018], Goyal et al. [2017]) or the data (Jabri et al. [2016], Manjunatha et al. [2018])?

Answering these questions can help shed light on the limitations of existing VQA approaches,

and could also lead to more interpretable/explainable VQA systems.

It is a non-trivial task to evaluate a model’s simultaneous understanding of the three

components (questions, images, and answers). Previous work has analyzed models’ understand-

ing of questions (Shah et al. [2019], Agrawal et al. [2016a]), images (Das et al. [2017], Goyal

et al. [2016]) and answers (Chandrasekaran et al. [2018]) individually. They have done so by

perturbing words (language modality) or investigating heat-maps of images (vision modality).

4



A joint measure of question, image and answer understanding requires an approach which can

simultaneously understand and test both linguistic and visual modalities.

To address the above challenges, we propose the novel task of generating rationales in

VQA as a measure of model’s comprehensive understanding. This task not only requires the

model to understand the questions (linguistic modality) and the images (visual modality), but it

also requires the model to rationalize the predicted answer in relation to the question and image.

As we need gold standard rationales to compare to the generated rationales, we use the

dataset provided by the Visual Commonsense Reasoning (VCR) task (Zellers et al. [2018]). This

dataset contains questions, images, multiple-choice answers (four choices) and four options

for rationales, out of which one is correct. We train models for this particular VQA task in

this dataset: choose a correct answer from four options, given a question and image. Then,

we task the model with generating rationales for the answers they predict. We compare the

generated rationale against the ground-truth rationale from the dataset, as a measure of the

model’s comprehensive ability.

We employ this approach to investigate one of the leading models on the VCR task—

ViLBERT (Lu et al. [2019]). Further, we propose a way to explicitly inject commonsense

understanding into the model by jointly training ViLBERT and the language model, GPT-2 (Rad-

ford et al. [2019]) on the multi-task objective of predicting the answers and generating rationales.

The idea is that by backpropagating the loss of rationale generation into the answer prediction

model, sound reasoning can be injected to improve model’s comprehensive understanding.

2.2 Approach

The proposed task is illustrated in Figure 2.1. We approach our task of generating

rationale by breaking it into two essential components: first calculating a predicted answer

embedding, EAp , from the VQA model (pretrained ViLBERT) by providing it with the given

image I and the question Q; and second, feeding the predicted answer embedding EAp to a

5



Figure 2.1. High-level overview of the proposed task. We ask the VQA model to generate
rationale for the answer it is predicting.

language model (pretrained GPT2).

2.2.1 Predicted Answer Embedding

Our VQA task is represented in terms of a question Q, an image I, and four answer

choices A1 . . .A4, among which the model must choose the correct option.

The models approach this task by outputting an embedding for each answer options, EAi .

The four answer embeddings are later passed through a linear-softmax layer to predict answer

scores. So, if f is a VQA model (e.g., ViLBERT) parameterized by θ , then the embeddings and

softmax scores are calculated as follows:

EAi = f (Q, I,Ai;θ) ∀i ∈ {1, . . . ,4} (2.1)

si = Softmax(Linear(EAi;θl)) ∀i ∈ {1, , . . . ,4} (2.2)

6



The act of choosing the most probable answer embedding out of four options will

make the network non-differentiable. To address this issue, we calculate the predicted answer

embedding by taking the average of each answer option embedding EAi weighted by their softmax

scores:

EAp =
4

∑
i=1

EAi× si (2.3)

2.2.2 Generating Rationales

We formulate the task of generating rationale as conditional language generation, condi-

tioned on the predicted answer embedding and previously generated rationale tokens. Specifically,

if r = r1, . . . ,rn is the rationale, and EAp is the predicted answer embedding, we maximize the

following log likelihood:

log(P(r)) =
n

∑
i=1

log(P(ri|EAp ,r1, . . . ,ri−1))

Here, ri is the ith token of the rationale. The language model is then fine-tuned using the gold

standard rationale for the corresponding visual question-answer from the VCR dataset.

2.3 Experiments

We use the Visual Commonsense Reasoning (VCR) dataset (Zellers et al. [2018]) since

(in addition to visual questions and answers) this dataset includes rationales. The dataset has

290,000 multiple choice questions derived from 110,000 movie scenes. We report all results on

the validation set as the test set labels are not available while the VCR challenge is ongoing.

We use ViLBERT (Lu et al. [2019]) as the reference VQA model. For the language

model, we use the 124 million parameter pretrained GPT-2 (small) (Radford et al. [2019]). We

use a batch size of 32, initial learning rate of 2e-5 and train the models for 20 epochs for all our

experiments.

7



2.3.1 Evaluating VQA Model Understanding

Since we want to investigate how well the VQA reference model (ViLBERT) already

“understands” the image, the question and the answer, we freeze the pretrained weights of the

model. We extract predicted answer embeddings using eq. (2.3), and generate rationales using

GPT-2, conditioned on this answer embedding. We fine-tune GPT-2 using the ground-truth

rationale from the dataset. We call this model ViLBERT-Fr (ViLBERT-Frozen).

2.3.2 Injecting Commonsense into VQA

In this setting, we want to explicitly enforce commonsense understanding in the VQA

model while predicting the answer. We follow the same procedure as in Section 2.3.1, except the

weights of ViLBERT are fine-tuned as well. We train ViLBERT with GPT-2 in an end-to-end

fashion with the dual loss of answer prediction, LA (via a cross-entropy loss) and rationale

generation, LR (via a causal language modeling loss). The final loss is:

L = λLA +LR (2.4)

where λ is the weight fine-tuned during our experiments.

2.3.3 Evaluation Metric

We use BLEU (Papineni et al. [2002]) and ROUGE (Lin [2004]) to compare generated

and gold standard rationales. In addition to these n-gram metrics, we are also interested in

comparing the semantic similarity of rationales. We follow Huang [2018] and calculate sentence

embeddings using the InferSent model proposed by Conneau et al. [2017], followed by cosine

similarity measurement to compare generated rationales with the gold standard.

2.3.4 Results

Multi-task objective

Since we are dealing with multiple losses (and objectives) of answer prediction and

rationale generation (eq. (2.4)), we report a comparative study on different losses we explored in

8



Table 2.1. Comparison of Losses. λ is from eq. (2.4), var = Homoscedastic Uncertainty loss and
kldiv = KL-Divergence regularizer added.

Loss VQA Accuracy BLEU-1

λ = 1 70.18 11.24
λ = 3 69.96 10.78
λ = 10 70.24 10.55
λ = 1000 69.84 11.27
var 70.19 11.15
kldiv (ViLBERT-Ra) 70.45 11.27

Table 2.1.

Weighted Losses: We vary the λ in eq. (2.4) as 1, 3, 10 and 1000.

Uncertainty Loss (var): We weight the losses LA and LR by considering the ho-

moscedastic uncertainty of each task as in Cipolla et al. [2018].

KL-Divergence (kldiv): We add Kullback–Leibler divergence (Kullback and Leibler

[1951]) loss between predicted answer scores eq. (2.2) and answer scores from pretrained

ViLBERT as an added regularizer. This was done to prevent our model from diverging too much

from the trained ViLBERT on the original VQA task.

We see from Table 2.1 that the model trained with KL-Divergence loss performs best on

both the VQA task and rationale generation task. As such, we do all further comparison with

this model and name it ViLBERT-Ra (ViLBERT-Rationale).

Quantitative Results

Rationale generation: We compare the performance of ViLBERT-Fr and our model,

ViLBERT-Ra in Table 2.2. We see that our model consistently out performs ViLBERT-Fr over

both n-gram metrics – BLEU and ROUGE and semantic similarity measurement metric – cosine

similarity. This demonstrates how we can leverage rationale generation task to improve model

comprehension abilities of existing VQA models.

VQA task: We also compare the performance of the two models on the original VQA

task in Table 2.1. Since we trained all our models with a batch size of 32 (due to limited compute

9



Table 2.2. Comparison of generated rationale vs gold standard rationale on the validation set of
VCR dataset.

Metrics
Models

ViLBERT-Fr ViLBERT-Ra

BLEU-1 8.92 11.27
BLEU-4 0.56 0.68
ROUGE-1 13.52 17.08
ROUGE-L 11.28 14.15
Cosine Similarity 0.57 0.60
VQA Accuracy 69.58 70.45

resources), we ran a control experiment to train ViLBERT with the same batch size instead of

original 64 for fair comparison.

We find that ViLBERT-Ra gives superior performance on the rationale generation task

without compromising accuracy on the original VQA task (Table 2.2). In fact, VQA performance

is slightly improved. This suggests that training the model to generate rationales can improve

model’s comprehension which in turn can lead to better answer prediction judgement.

Qualitative Results

Human Evaluation: We presented 100 randomly selected samples from the VCR valida-

tion set containing an image, question, correct answer and rationales generated by ViLBERT-Fr

and ViLBERT-Ra to human evaluators. The generated rationales were shuffled randomly to

hide which rationale came from which model. We then asked them to choose which of the two

candidate rationales better explains the answer in the given sample. The results are summa-

rized in Table 2.3. Humans consistently rate the rationales generated by ViLBERT-Ra as better

explanations for the answers.

We show an illustrative example of a rationale generated by the two models in Figure 2.2.

During training, we replaced tags like [person1], [person2] with random names, so in both

rationales we can observe random names being generated. However, we note that our model

was able to generate key words of the gold rationale and convey the relevant meaning. We have
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Type Text

Question What are the occupations of [person1], [person2], [person3],
and [person4] ?

Answer [person1], [person2] and [person3] , and [person4] are
among the others military officers.

Gold Rationale They are all wearing decorated military uniforms.
ViLBERT-Fr Avon is about to cross the range to save Osiris
ViLBERT-Ra Myrl Tommie are wearing military uniforms.

Figure 2.2. Generated rationales samples. Highlighted portions show key points of the rationale
for the given answer.

Table 2.3. Percent of rationales preferred by three human judges. Here, H stands for Human.

Models H-1 H-2 H-3 Majority Voting

ViLBERT-Fr 31 29 38 20
ViLBERT-Ra 69 71 62 80

provided more such examples in the attached appendix.

2.4 Related Work

Evaluating VQA model comprehension.

VQA models (Malinowski and Fritz [2014], Malinowski et al. [2015], Jiang et al. [2018],

Su et al. [2019], Li et al. [2019], Alberti et al. [2019], Lu et al. [2019]) have achieved remarkable

results on multiple challenging datasets (Ren et al. [2015], Agrawal et al. [2016b], Goyal

et al. [2017]). This naturally raises the question of whether the models are exploiting biases

(Ramakrishnan et al. [2018], Johnson et al. [2017a], Cadene et al. [2019], Jabri et al. [2016],

11



Manjunatha et al. [2018]) or genuinely answering the questions. Researchers have employed

various kinds of attention mechanisms over words and images to point out sections of images

and words that the model attends to while answering the question (Das et al. [2017], Goyal et al.

[2016], Agrawal et al. [2016a]). Another set of approaches use various kinds of ‘selection’ tasks

as a means to interpret models. Goyal et al. [2017] propose picking another image for the same

question that has a different answer. Berg and Belhumeur [2013] propose selecting visual facts

(image regions) from the image while Zellers et al. [2018] propose picking one rationale from a

set of four options.

An orthogonal set of methods Andreas et al. [2016], Hu et al. [2017], Mascharka et al.

[2018], Vedantam et al. [2019] approach this task by generating symbolic programs to reason

about the question. We note that such an approach would quickly become intractable given

the size of the symbol vocabulary required to cover free-form rationale generation, as we are

considering.

In contrast to all discussed approaches, we propose generating rationales as a means of

interpreting models.

Generating rationales.

The task of generating explanations has previously been employed by Hendricks et al.

[2016] to explain fine-grained bird recognition decisions. In our case, we explain answers to

visual questions with rationales. Rajani et al. [2019a] generate reasons and rationales to explain

question answering tasks, but only in a purely textual mode.

To the best of our knowledge no prior work has proposed the task of generating rationales

as a measure of evaluating comprehensive understanding of images, questions and answers in

VQA models.
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2.5 Conclusion

In this paper, we proposed the novel task of generating rationales as a measure of model

understanding for Visual Question Answering tasks. A well-reasoned explanation implies a

thorough understanding of all components of the task: the image, the question and the answer.

We further proposed an end-to-end training method to improve the model’s commonsense

understanding. We demonstrated the effectiveness of our proposed method through quantitative

and qualitative results.

Chapter 2, in full, is a reprint of the material as it appears in arXiv:2004.02032. Hammad

A. Ayyubi*, Md. Mehrab Tanjim*, Julian J. McAuley and Garrison W. Cottrell. “Generating

Rationales in Visual Question Answering”. The thesis author was the first co-author of this

paper.
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Chapter 3

Generating Reasons for Understanding
and Improving VQA

3.1 Introduction

Visual Question Answering (VQA) (Agrawal et al. [2016b]) tasks require complex reason-

ing over both text and vision modalities. For example, in fig. 3.1, the task entails understanding

the context and dynamics of interaction between [person2] and [person3], before being able to

predict that they do indeed know each other. Deep Learning model often learn to predict answers

directly from raw data (image and text) in a black box, end-to-end fashion. This obscures the

reasoning path taken by the model. The resulting abstraction raises a number of question about

their interpretability, trustworthiness and biases. We propose an approach which incorporates the

reasoning path into the model prediction, thus making this process explicit and interpretable.

Existing methods which seek to explicit this reasoning process in their models can be

broadly categorized into three approaches: (a) Using attention maps, (b) Using neuro-symbolic

methods, (c) Using human explanations. Method that use attention maps in their reasoning

process, either point to region or patches of image or words in question that the model attends to

while answering the question (Das et al. [2017], Goyal et al. [2016], Agrawal et al. [2016a]), or

seek to align the image attention of model to a ground truth image region provided by an external

source such as humans (Wang et al. [2020], Wu and Mooney [2019]).

Neuro-symbolic methods extract executable programs from question and execute it on
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Figure 3.1. Visual Question Answering (VQA) task from Zellers et al. [2018] requires model to
predict the correct answer (A) from four given choices, given question (Q) and image (I). This
task is abbreviated as Q→A.

images (Vedantam et al. [2019]) or on a visual scene graph extracted from the image (Hudson

and Manning [2019]). Such approaches explicit the reasoning process in the form of executable

programs which trace out the reasoning path taken by them.

The last category of reasoning approaches employed is using explanations in the form of

human language, thus making the explanations grounded in real world knowledge and directly

interpretable. These approaches justify the predicted answer with an explanation in the form

of human language (Patro et al. [2020], Li et al. [2018b]). All these methods present their

justification in a post-hoc manner, i.e. they first predict the answer and then justify their answer

using explanations. In contrast, our proposed method first generates a reason and then uses this

generated reason to predict the answer.

In particular, we use the question and image to generate the reason. In the next step,

we use these generated reasons along with image and question to predict the answer. Such an

approach clearly explicit the reasoning process in the form of generated reason. We hypothesize

that this can be a critical approach to address the trust and bias issues of VQA systems. This has

the added advantage of being directly interpretable since it’s in the form of human language, thus

eliminating the need for any third party tool for model investigation. Further, we show that such

reasoning architectures has the potential to improve upon the original VQA task itself as well.
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3.2 Related Work

Reasoning using Attention Maps

Attention maps have been widely used to justify and provide evidence for the answer

predicted by the model. Das et al. [2017], Goyal et al. [2016] point to patches in the image

region where the VQA model attends to while predicting the answer. Agrawal et al. [2016a] also

add attention over words in question. Further, other approaches use these attention maps more

actively. They utilize ground truth attention maps provided by humans or obtained heuristically

to improve and refine answer prediction further (Wang et al. [2020], Wu and Mooney [2019]).

Reasoning using Neuro-Symbolic Methods

Symbolic artificial intelligence represent real world objects as symbols and map their

relations using rules. They use this as a knowledge base to answer question about the world they

have built. As such, they are naturally suited for reasoning tasks. However, mapping symbols

from real world objects is a manual process, hence these symbols are not directly co-related

with real world objects. On the other hand, neural methods are adept at perceiving world and

identifying objects. As such, neuro-symbolic methods seek to combine the best of both worlds

by using neural methods to identify/perceive objects from real world, mapping it to symbols, and

using symbolic reasoning methods to answer questions on top of the learned world. Johnson

et al. [2017b], Vedantam et al. [2019], Hudson and Manning [2019] represent a typical way of

employing such an approach.

Reasoning using Explanations in Human Language form

Due to the black box nature of deep learning models, investigating the reasons or decisions

taken by it can be difficult at times. As such, certain methods seek to simplify this process

by training the models to explain themselves in human readable form. Li et al. [2018b], Park

et al. [2018] train VQA models to justify the answers that they predict with an explanation in

human language form. However, these approaches use explanation in a post-hoc manner, i.e.

explanations are generated after predicting the answer. Our proposed approach, on the other
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hand, first generates a reason and then uses the generated reason to predict the answer.

The closest work to our approach is Rajani et al. [2019b], who generate a reason to arrive

at the answer as well, but they do it in text only mode. Also, they use a language model to

generate reason while we use an encoder-decoder framework. We note that Li et al. [2018a] do

use explanation for predicting answer. However, they generate the explanations from image only.

As such, it’s a description or caption of the image. In contrast, we generate reason conditioned

on image and the question, and as such it’s relative to the particular question. In addition, we use

the image during answer prediction as well unlike their approach.

3.3 Approach

3.3.1 Preliminaries

Objective

The underlying task, that we are addressing, is Visual Question Answering (VQA). Given

a question (Q) and an image (I), the model must predict the correct answer (Ap) from four given

answer choices (Ai∀i ∈ {1, . . . ,4}). We propose to generate reason first using Q and I, and then

use the generated reason along with Q and I to predict the answer. As such, for training, we need

question, image and answer triplets along with the associated reasons.

Annotated Reason

Since we need a large dataset of question, image and answer pairs along with reasons,

we turn to the Visual Commonsense Reasoning (VCR) dataset (Lu et al. [2019]). Each sample

in the dataset consists of a question (Q), image (I), four answer choices (Ai∀i ∈ {1, . . . ,4}), out

of which one is correct (Ac), and four rationale choices (Ri∀i ∈ {1, . . . ,4}), out of which one

is correct (Rc). There are two sub-tasks associated with the dataset. The first requires models

to predict answer (A) from question and image, i.e. (Q→ A). The second asks the models to

predict rationale (R) for the correct answer, i.e. (QAc→ R). We work on the first Q→ A task

and use the provided correct rationales (Rc) as reasons (Re).
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Figure 3.2. Our encoder decoder framework to generate reason from question and image.
Encoder network is pretrained ViLBERT (Lu et al. [2019]) model and decoder network is a
pretrained transformer.

3.3.2 Proposed Method

We propose to employ a two stage training method. First, we use question (Q) and image

(I) to generate reason (Re), i.e. QI→ Re. Then, in the second phase, we use the generated reasons

along with question and image to predict the answer our of four given choices (Ai∀i∈ {1, . . . ,4}),

i.e. QIRe→ A.

Generating Reasons

In the first phase of training, we use an encoder decoder framework, as illustrated in

fig. 3.2, to generate Re from Q and I. For encoder, we use the recently proposed ViLBERT model

(Lu et al. [2019]). ViLBERT model consists of two BERT (Devlin et al. [2018]) transformer

blocks, one each for text modality and vision modality. The two transformer blocks interact with

each other using co-attention blocks. In co-attention blocks, the key and value associated with

text query comes from vision block and vice versa for vision query. This kind of co-attention

produces extremely useful and meaningful vision-linguistic representations which have shown to

perform exceedingly well on downstream tasks.

For decoder, we experiment with two different kind of transformer architectures, namely
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BERT and GPT2 (Radford et al. [2019]). We share the visual-linguistic features from encoder at

all your layers of decoder through cross-attention as done by Vaswani et al. [2017].

We input image and question to the ViLBERT encoder and generate reason through

the decoder. We train the whole network using cross entropy loss between each generated and

ground truth token. Additionally, we use teacher forcing in the decoder network. For both

encoder and decoder network, we use pretrained models provided by the original authors and

fine tune all layers during training. Once trained, we generate reasons for all examples in training

and validation set and store them to be used by the answer prediction network, as described in

next section.

Predicting Answer from generated reason

We use another pretrained ViLBERT model for predicting answers from the given

question and image, and the generated reason. The question is appended by the generated reason

using the ‘[SEP]’ token, followed by an answer option Ai, again separated by ‘[SEP]’ token.

This forms four different pairs, one for each answer option Ai. These four pairs are fed to text

transformer stream of ViLBERT and the image is fed to the vision transformer stream. The final

text and vision representation is combined, followed by a linear layer to predict final probability

scores for each of the four pairs.

3.4 Experiments

3.4.1 Dataset

We use the Visual Commonsense Reasoning (VCR) dataset (Lu et al. [2019]) for all

our datasets. The dataset has 290,000 multiple choice questions from 110,000 images. All the

images are scenes from movies. We report all our results on validation dataset as the test is not

available, since the VCR challenge is ongoing. Further, since we are not following the exact

protocol of sub-tasks listed in Zellers et al. [2018], we don’t submit to that leaderboard.
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3.4.2 Generating Reasons

The encoder in our encoder decoder framework, for all experiments, is pretrained ViL-

BERT model (Lu et al. [2019]). The model has been pretrained on Conceptual Captions dataset

Sharma et al. [2018], using BERT like masking and entailment pre-training strategy. For decoder,

we experiment with pretrained BERT (Devlin et al. [2018]) and pretrained GPT-2 (Radford et al.

[2019]).

For experiments with both GPT2 and BERT, we form our text input using question (Q)

only. Additionally, we also train a network where the text input is formed by appending all

answer choices (Ai∀i ∈ {1 . . .4} to the question separated by ‘[SEP]’ token. We train this model

using GPT-2 decoder and call it GPT 2ans appended . We do this following Rajani et al. [2019b].

The image input in all experiments is the ground truth objects from the image, as provided in the

dataset.

We use automatic quantitative evaluation metric BLEU (Papineni et al. [2002]) to judge

how well the generated reason aligns with gold reason. Further, we also use perplexity metric to

measure the language quality of generated sentences.

Training Hyperparameters

We train our models for 20 epochs using BertAdam optimizer. We use a batch size of

384, initial learning rate of 2e-5 and a linear scheduler.

Quantitative Results

The results are summarized in section 3.4.2. We make the following observations:

– Low BLEU scores. We see that all the decoders record quite low scores in the range

1.75-2.0. This is not very surprising considering Rajani et al. [2019b] also reported BLEU

scores of 4.0 for generated reasons in text only mode. We do further analysis qualitatively

in the next section.

– Low perplexity numbers. All the decoder models post quite low perplexity values. This
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Table 3.1. Comparison of the quality of generated reason using different decoders. All numbers
are reported on validation set of VCR dataset.

Decoder BLEU Perplexity

BERT 2.088 14.938
GPT2 1.817 14.88
GPT2ans appended 1.824 13.79

could potentially mean that advanced sampling strategy while decoding has the possibility

of improving the quality of generated samples. We leave that for future explorations.

Qualitative Results

We provide samples of correctly generated reason in fig. 3.3 and incorrectly generated

reason in fig. 3.4. We mention here that denoted objects ([person1], [person2] etc) are replaced

by random unisex names as done by Zellers et al. [2018]. We observe that in fig. 3.3, although

the generated reason has the same meaning as the gold reason, there is very less syntactic word

overlap. This has a major impact on BLEU metric, resulting in very low scores. Further, the

incorrectly generated samples in fig. 3.4 are way off the gold reason. In general, we found that

many more samples had poorly generated samples than correctly generated ones. We provide

more analysis in the discussion section, detailing the possible reasons which could be the cause

behind it.

3.4.3 VQA

The text input in these experiments are formed by concatenating Q, Re and answer choice

Ai, all separated by ‘[SEP]’ token. The vision input is the ground truth objects from the image,

provided in the dataset. The text and image input is fed to ViLBERT model to obtain probability

scores for each, Ai, per question.
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Type Text

Question Are these religious women?
Answer Yes they are.
Gold Reason You can tell by the crosses around each of their necks.
Generated Reason They have religious garb they are wearing wigs which

indicates they are in the worship of such material.They
are also wearing traditional church garments.

Type Text

Question What is going on here?
Answer This is a shopping center where a group of businessmen

are coming.
Gold Reason Kelin is pushing a shopping cart through the store.
Generated Reason Kelin is carrying shopping bags.Kelin has an adult su-

pervision box in his hands.

Figure 3.3. Samples of correctly generated reasons.
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Type Text

Question What are [person1] and [person2] feeling?
Answer Everyone seems to be trying to avoiding each other.
Gold Reason Everyone is looking down and avoiding eye contact.
Generated Reason Mandeep Mica are looking at Mandeep Chandlar with

expressions of appreciation, which is common when
people talk.Mandeep

Type Text

Question Why does [person3] have her hands behind her back?
Answer [person3] wants to courteous but does not know how.
Gold Reason Gaylin is in a royal palace but looks like she is dressed

in peasant’s clothes.
Generated Reason It’s polite to hold a camera to your face when meeting a

stranger.Jaz.

Figure 3.4. Samples of wrongly generated reasons.
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Training Hyperparameters

We train our models for 20 epochs using BertAdam optimizer. We use a batch size of

512, initial learning rate of 2e-5 and a linear scheduler.

Quantitative Results

We use two baselines in our experiments:

– Qonly: Only Q appended by Ai is fed as the text input to ViLBERT model. This is similar

to what the authors of ViLBERT did, except they trained this model along with the second

sub-task of VCR dataset QA→ R by sharing the same parameters. As such, the accuracy

reported in our experiments is lower than theirs.

– QRc: Q appended by gold reason, and followed by Ai is fed as text input. This forms the

upper bound of the accuracy models can achieve using reasons as part of input.

The quantitative results are summarized in section 3.4.3. All reported number are

averaged across four different seeds. We make the following observations from the results:

– Advantages of using reasons. We observe that appending reason to question (QRc)

acheives superhuman accuracy of 91.935. This provides strong evidence of the advantages

of using reasoning as part of input to improve VQA accuracy.

– GPT2ans appended performs best. The reasons generated by appending the answer choices

to questions, performs best on the downstream task of VQA. This suggests that appending

answer choices to question is a useful strategy and provides more contextual information

to generate reason.

– Input with reasons doesn’t have significant effect on VQA accuracy. As can be seen

by the performance of our three models: QRBERT ,QRGPT 2 and QRGPT 2ans appended . The

performance improvement to question only input (Qonly) is minor to negligible. However,

we did see superhuman accuracy of 91.935 while appending gold reason (QRc). It can be
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Table 3.2. VQA results with reason appended to question in the text input. In QR{.}, {.} denotes
the decoder used to generate reason. All numbers are reported on validation set of VCR dataset.

Model VQA Accuracy

Human accuracy 91.0
Qonly 69.605
QRc 91.935
QRBERT 68.509
QRGPT 2 67.983
QRGPT 2ans appended 69.928

concluded from this that our generated reason were not good enough. We provide more

analysis in the discussion section.

3.5 Discussion and Analysis

Model performs well on descriptive reasons

On investigation, we found that reasons which entailed description of objects in the

scene or description of the image, were more correctly generated by our model. For example, in

fig. 3.3 top, the reason describes that the women are religious because they are wearing cross.

The generated reason was also able to pick up that they were religious since it could describe

their religious attire. Similarly, for fig. 3.3 bottom, where the reason required description of the

shopping center scene, the model generated relevant reasons.

In contrast, samples in fig. 3.4 require generating information which are latent and require

sophisticated reasoning abilities. It’s not very surprising that the model fails in those cases. This

shows that models currently are good at describing images and objects, while it will require more

modifications before they can start applying sophisticated reasoning about the world.

Latent/hidden information are too difficult for the model to generate

A number of reasons in this VCR dataset deal with reason which call upon latent or

hidden information, which need to be inferred. For expample, in fig. 3.4 bottom, the model needs
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world knowledge about what royal places look like and how peasants are dressed. Further, it

needs to infer from the context of royal place and the person dressed in peasant clothes, that

the person is uncomfortable and doesn’t know how to behave. To break it down, first external

knowledge base is required to inform how royal places and peasants look like. Secondly, explicit

reasoning mechanism is required to connect these sources of information. All this is too much to

ask from the model, which looks at just a single image frame.

Similarly, in fig. 3.4 top, reasoning that the two persons are avoiding eye contact requires

the model to understand a lot of hidden dynamics. One needs to understand how people interact

when they are socializing and when they are trying to avoid each other. Then, those clues need

to be identified in the image before generating that kind of reason.

We argue that for generating reasons of the quality provided in this dataset, we need to

incorporate (a) external knowledge base (b) explicit reasoning mechanisms to connect different

sources of information. It’s hardly surprising then that our model, which inputs only the image,

generates poor quality reasons.

Using reasoning in VQA has strong potential

Despite the poor quality of generated reasons, we did see from section 3.4.3 that incorpo-

rating correct reasons in modeling VQA systems leads to superhuman accuracy. This suggests

that there is strong advantages to be derived out of using such a reasoning mechanism in VQA

systems. We hypothesize that using external knowledge base, explicit reasoning mechanism

or perhaps advanced sampling strategy while decoding reasons could lead to significant im-

provements. Further, such reasoning methods also lead to explicti and interpretable models,

contributing to its trustworthiness and bias elimination.
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Appendix A

Generated Rationales Samples

A.1 Comparison of ViLBERT-Fr and ViLBERT-Ra

Here we have provided additional examples of rationales generated by the two models:

ViLBERT-Fr and ViLBERT-Ra.

Type Text

Question Why is [person2] sitting on the bench?
Answer [person2] is waiting for the bus.
Gold Rationale She is sitting and waiting outside with a suitcase and other

bags, indicating she is traveling somewhere.
ViLBERT-Fr Lavern is walking away from the car and looking down at

the ground she seems unsure of what to do next.
ViLBERT-Ra There is a bus stop in front of Aarin
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Type Text

Question Where are [person9] and [person14] going?
Answer They are going to school.
Gold Rationale They are dressed in a school uniform and walking towards a

building that resembles a school.
ViLBERT-Fr She is holding a notebook , one in line with a trip map.
ViLBERT-Ra They are all carrying backpacks and are walking towards

bus.

Type Text

Question What is the [person2] doing here?
Answer He is the official responsible for managing this even.t
Gold Rationale He has a ribbon on his chest that probably shows he is the

official.
ViLBERT-Fr Eastyn Remy are wearing elaborate discipline officers uni-

forms there is a government building on the other side of the
room Storm is behind Ekam

ViLBERT-Ra He is wearing the usk badge he has a serious look on his
face.
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Type Text

Question What does the [person2] work?
Answer [person2] works in a medical facility.
Gold Rationale [person2] is wearing medical scrubs and is standing next to

a hospital bed.
ViLBERT-Fr Nieves is in Drue ’ s office and looking to see what is going

On.
ViLBERT-Ra Kary is wearing a hospital gown and a nurses outfit , and her

hair is messy , indicating that she has been there long.

Type Text

Question Why does [person5] look upset?
Answer [person5] is thankful because he hadn’t had a good meal in

a while and is overcome with emotion.
Gold Rationale Sometimes when people haven’t ate properly or do not come

from much money meals may come infrequently and this is
why he looks upset.

ViLBERT-Fr It is breakfast time , and Zaelyn is about to eat.
ViLBERT-Ra Blind people often eat their cake at the birthday party.
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Appendix B

Generated Reason Samples

Type Text

Question Is everyone at school?
Answer Yes, a school or library.
Gold Reason Amari Ryley are carrying book bags.
Generated Reason All are wearing uniforms which indicates they are at

school.Everyone is wearing school uniforms.They are
also wearing uniforms.It looks like
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Type Text

Question What is [person1] thinking?
Answer [person1] is wondering if [person2] is going to kiss her.
Gold Reason They are dancing and they are looking intently at each

other.
Generated Reason Karsen is looking at Karsen.Her eyes are on Karsen.He

is looking at Karsen.

Type Text

Question What era are [person1] and [person2] from?
Answer They are from eighteen hundreds.
Gold Reason Their dress indicates that this is the time period.
Generated Reason They are wearing the same clothes as the others.The

background is that of Shiloh.The clothing of Shiloh, but
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Type Text

Question What position does [person2] hold?
Answer [person2] is a butler.
Gold Reason Butler’s wear formal close and greet people as they

enter.
Generated Reason Devlyn’s wide, white hair suggests he is of Eastyn’s age

and is
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