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Hybrid Machine Learning Forecasting for Online
MPC of Work Place Electric Vehicle Charging

Graham McClone, Avik Ghosh, Adil Khurram, Byron Washom and Jan Kleissl

Abstract—This work proposes a novel EV forecasting tech-
nique that predicts each EV’s arrival time (AT), energy demand
(ED) and plug duration (PD) over the course of a calendar
day using a hybrid machine learning (ML) forecast. The ML
forecasts as well as persistence forecasts are then input in a
model predictive control (MPC) algorithm that minimizes the
electricity costs incurred by the charging provider. The MPC
with the hybrid ML forecast reduced peak loads and monthly
electricity costs over a base case scenario that determined costs
for uncontrolled L2 charging: Reductions in weekday mean peak
load during a 30 day summer time case study were 47.0% and
3.3% from the base case to ML MPC and persistence to ML
MPC, respectively. Reductions in utility costs during the summer
case study were 22.0% and 1.4% from base case to ML MPC
and persistence to ML MPC respectively. Results are similar for
a 30 day winter case study.

Index Terms—Energy Resources, Forecasting, Learning Sys-
tems, Model Predictive Control, Neural Network Applications,
Optimal Control.

NOMENCLATURE

α Weight applied to Arrival Time vector
β Weight applied to Plug Duration vector
γnc Non coincident demand peak
γop On-peak period demand peak
δ Weight applied to Energy Demand vector
∆t Time step duration
ζforec Unassigned weighted sum of over-forecasted EVs
ζreal Unassigned weighted sum of real under-forecasted

EVs
η Vector of [α β δ]T

cost Matrix of squared errors yreal and yforec

E Total energy dispatched to an EV
gdc Demand charges
gec Energy charges
goc Other charges
J Daily cost for charging all EVs
k Time index
L Aggregated net load dispatched each time step
M Linear assignment array of the cost matrix
N Number of time steps in MPC horizon
NEV Number of EVs
NT Number of time steps in forecasts
P Individual net load for each EV
rec Energy charges rate
rnc Non-coincident demand charge rate
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rop On-peak demand charge rate
u Actual individual EV load during a time step
xforec Daily array of forecasted AT, PD, and ED
xreal Daily array of real AT, PD, and ED
x̂forec Normalized xforec

x̂real Normalized xreal

yreal Weighted sum of real AT, PD, and ED
yforec Weighted sum of forecasted AT, PD and ED
ADED Aggregated Daily Energy Demand
ALM Adaptive Load Management
AT Arrival Time
DT Departure Time
ED Energy Demanded by each EV
EV Electric Vehicle
kNN k Nearest Neighbors
L2 Level 2 charging
LSTM Long Short Term Memory
MIMO Multi-input multi-output
ML Machine Learning
MPC Model Predictive Control
NAPM Number of EV Arrivals Per Minute
NL Net load dispatched at a given time step
PD Plug Duration: Time duration each EV is plugged in
PV Photo voltaic solar power
RNN Recurrent Neural Network
SOC State of Charge
TOU Time of use

I. INTRODUCTION

A. Motivation

The number of electric vehicle (EV) charge ports in the US
has steadily increased over the past few years. This growth
is expected to continue due to state and national mandates
for zero emission transportation [1]. Frequently, drivers utilize
EVs for their commute to and from work, making their work
place a convenient location to charge. If this charging were to
be controlled, it could help mitigate grid operation challenges
associated with frequency regulation [2], peak demand reduc-
tion [3] and shifting charging load to hours during which solar
and wind generation are high [4].

A large percentage of EV charge station growth is from
work place Level 2 (L2) charge stations [5]. L2 charge
stations are able to distribute between 6.2-7.6 kW of maximum
charging power depending on the EV charging capabilities.
The University of California, San Diego (UCSD) offers work
place L2 EV charging to students, faculty, and staff through
a variety of different companies [6]. One of these companies,
PowerFlex, specifically requests a driver’s preferred energy
demand (ED) in addition to a driver’s plug duration (PD).
Then, PowerFlex utilizes an Adaptive Load Management
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(ALM) algorithm that ensures EV users are satisfied upon
departure while reducing peak loads incurred by the utility
customer [7]. ALM algorithms would benefit from a forecast
technique that predicts the arrival time (AT), ED and PD to
optimally schedule EVs as to to reduce peak load and costs.

B. Previous Work

There are a small number of papers that address forecasting
of EV charging for short-term dispatch. Papers that forecast
EV charging tend to focus on aggregate EV utilization impacts
to the grid, aggregated charging demand, forecasting load or
forecast specific EVs assuming perfect knowledge of which
EVs will arrive as explained next.

A method for forecasting day-ahead aggregated daily energy
demand (ADED) based on previous measurements is presented
in [8]. In [9] the authors predicted aggregated EV load to
schedule EV charging; in [10] the authors do the same but
take user convenience into account by prioritizing low SOC
and earlier departure times [10]. In [11], cluster analysis was
used to forecast aggregate traffic patterns, charging start times,
and initial battery SOC. The authors of [12] implemented
an adaptive load forecasting algorithm, based on historical
load data and meteorological conditions, to determine optimal
scheduling using vehicle to grid (V2G) charging. The authors
used predetermined initial and final SOC values to obtain
their results. In [8]–[13], aggregate forecasts are considered
for the purpose of understanding the aggregate impact of
large number of EVs. But only forecasting individual EV
characteristics allows each EV’s constraints to be incorporated
into the charging controller to guarantee user satisfaction.

AT, ED, and PD are the most relevant variables to forecast
for scheduling EVs as these variables are sufficient to optimize
dispatch schedules. The authors of [14] used machine learning
models to predict PD and ED for specified EVs with perfect
knowledge of each EV’s AT. Assuming perfect knowledge of
the number of EVs and AT is unrealistic yet forecasting AT,
ED, and PD together has not been considered. These variables
are important for optimizing charging schedules.

In the literature, EV error analysis is generally performed in
one of two ways. (i) In aggregate level forecasting, forecasted
behavior such as a load curve or ADED is compared to
corresponding real quantities. In this case, the forecasted
number of EVs can be different from the actual number of
EVs. However, since the error analysis is performed using
aggregate quantities, the difference between forecasted and
actual number of EVs does not impact the analysis. (ii) In
agent based forecasting, forecasted behavior of each EV is
compared to the real behavior. In this case, each forecasted
EV must be mapped to its corresponding real EV. In either
case, there is no need to compare the number of EVs that
arrive or how closely any two unknown EVs are related.

Optimization of EV scheduling for peak reduction or for
providing other ancillary services has been considered exten-
sively in literature. Specifically, EV charge scheduling can be
divided into two broad categories: offline and online charging.
Offline charge scheduling assumes perfect knowledge of ED
or SOC, AT, and PD to optimize charge scheduling, while

online charge scheduling copes with unknowns, i.e., imperfect
forecast. EV charge scheduling using perfect forecasting is
unrealistic as perfect knowledge of AT, ED, and PD is not
available. Thus, the following review focuses only on online
EV scheduling techniques.

In [7], the authors presented the online model predictive
control (MPC) algorithm currently utilized by PowerFlex to
perform online dispatch of EVs. A regularization term in
the objective function encourages dispatch in the morning
hours, to reduce charging costs during afternoon peak hours.
The authors considered several MPC formulations including
a time-of-use (TOU) cost structure with demand charges.
However, forecast of EV behavior is not included in the MPC
formulation. In [15], an online MPC optimally scheduled
EV charging using a convex quadratic cost function which
is formulated as the square of the net-load (summation of
EV charging and building load) over the MPC horizon. The
problem formulation in [15] assumes “earliest departure first
to charge”, to determine individual EV charging schedules.
This assumption can result in individual EV dispatch power
constraint violations, as an EV may be required to charge at a
rate higher than the dispatch capacity of the L2 charge station.
The authors of [16] presented an online MPC technique to
obtain EV charge schedules that minimize total system energy
cost. In [17], the authors presented an MPC technique for
online charge scheduling incorporating ED uncertainty using
a Markov Chain Monte Carlo technique. A multi-objective
MPC smooths the load curve and minimizes costs associated
with TOU energy rates.

The authors of [18] minimize the mean waiting time for
EVs with a long term constraint on cost. In [19], the authors
formulate a stochastic optimization problem that schedules EV
charging assuming uncertain departure times in the presence
of hourly time-of-use pricing tariffs. In [20], an optimal
EV scheduling algorithm is demonstrated for offline global
scheduling and online local scheduling to minimize the costs
that customers pay.

There are gaps in the literature pertaining to effective
forecasting of AT, PD, and ED of EVs for the purpose of
implementing online MPC to minimize electricity costs based
on realistic energy and demand charges. Specific research gaps
include:

1) Forecasting of individual AT, ED, and PD for an un-
known number of unidentified EVs has not been con-
sidered. This information is important to ensure that in-
dividual ED requirements are satisfied while determining
charging schedules.

2) MPC based methods usually consider initial and final
SOC for scheduling EV charging. This requires two
variables to be forecasted, whereas MPC with ED re-
quires forecast of only a single variable. Reducing the
number of forecast variables can reduce forecast error
and improve performance.

C. Present Work and Novelty

The present work proposes a novel forecasting and con-
trol scheme. First, a hybrid ML technique is developed that
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constructs a day-ahead forecast for individual EV AT, ED,
and PD. Then, finite time horizon MPC is used to deter-
mine the optimal charging profile at each time step in real
time. The MPC objective function is convex and incorporates
both demand charges and TOU energy costs. The proposed
MPC formulation initially generates charging profiles using
forecasted AT, ED and PD. These charging profiles are then
updated with the actual values of AT, ED and PD as the EVs
plug in throughout the day. A modular architecture enables
implementation across a variety of different charge networks
independent of location or charging cost structure.

The hybrid ML technique developed in this work forecasts
both the number of EVs as well as the AT, ED and PD of each
EV for which both the aggregate error analysis and agent based
error analysis described above are not applicable, because:

1) The number of forecasted EVs can vary from the number
of EVs that actually arrive, creating a challenge of
determining error between values at different indices
within arrays of differing length.

2) The order in which forecasted EVs arrive may not be
the same as the real order of EV arrival. For example,
an EV that is forecasted to arrive at a given time with
specified ED and PD may actually arrive earlier or later
than expected, likely changing the EV’s order within
the array of daily EVs. The best way to determine error
between a forecast and reality in this case is not by
comparing the first EV that arrives with the first EV
that is forecasted, but rather by comparing a forecasted
EV that most closely matches a real EV counterpart.

To account for these difficulties, a novel error analysis tech-
nique is presented. This technique compares distances between
forecasted and actual EVs AT, PD, and ED to construct a ma-
trix of errors from which the linear assignment algorithm [21]
is used to determine which forecasted EVs are closest to real
EVs.

The main novelties of this paper are:

1) A hybrid ML forecasting method is presented that
forecasts ED, AT and PD for individual EVs instead
of aggregate EV load at work place charge stations.

2) Forecasting an undetermined number of unidentified
individual EVs rather than forecasting a known number
of EVs or EVs as known agents.

3) An error analysis technique that allows EV charging
data (AT, PD, ED) of differing indices within vectors
of differing length to be compared individually.

The rest of this paper is organized as follows. Section II
discusses the data utilized in this study. Section III describes
the utility customer cost structure. Section IV discusses the
mathematical formulation for the MPC optimization problem.
Section V describes the linear assignment and error analysis
for individual EVs. Section VI discusses the process for fore-
casting AT, ED and PD and presents the novel error analysis
technique for forecasted EVs. Section VII presents the results
and discussion, including a sensitivity study. Section VIII is
the conclusion.

TABLE I: Time of use energy charge rates: SDG&E AL-TOU
tariff [24].

Rate Type Commodity Rate
($/kWh)

Utility Distribution
Company Rate ($/kWh)

Summer On-Peak 0.11957 0.00671
Summer Off-Peak 0.10008 0.00671
Winter On-Peak 0.09955 0.00671
Winter Off-Peak 0.08835 0.00671

II. DATA

The data used in this work comes from EVs that charged
with ChargePoint [22], but it is assumed that there is an ALM
system in place based on the ALM developed by Power-
Flex [7] [23]. To increase the sample size, the ChargePoint
data is associated with EVs that charged at 24 different charge
stations with a combined 48 charge ports (two per station)
from two different parking plazas on the UCSD campus.

Once an EV plugs into a ChargePoint station, it begins
charging and continues to do so until fully charged. Most
EV charging commences at a given power setting which is
reduced progressively after the battery reaches a large state of
charge . Charge session data does not include a time series
of dispatched power, only the AT, PD, and ED are included.
For “dumb charging” it is therefore assumed that the power
for each uncontrolled charging session is constant at a charge
rate of 7.2kW until the ED is satisfied.

The raw data for this analysis included 23, 545 charge
sessions between the dates of November 10, 2018 and March
30, 2020. Charge sessions with less than 15 min PD or
ED equal to 0 kWh were removed from the raw data since
they were likely accidental. It is assumed that each charge
session ends prior to 00:00 h of the following calendar day.
This removes overnight charging from the control algorithm
and focuses on work place daytime charging. To effect this
assumption, overnight charging sessions were removed from
the data set. The remaining data set used in the analysis
consisted of 21, 756 charge sessions.

III. COST STRUCTURE

The electricity cost incurred by the utility customer as a
result of EV charging is a function of energy and demand
charges. Energy charge rates ($/kWh) consist of TOU com-
modity rates, and a uniform utility distribution company rate,
as depicted in Table I, as obtained from San Diego Gas &
Electric (SDG&E). Each year is divided into summer and
winter seasons: summer lasts from June 1 through October 31,
with the rest of the year being winter. Each day has an on-
peak period covering the time period from 16:00 h to 21:00 h,
with the others being off-peak hours.

The second major component of electricity costs are demand
charges, whose rates ($/kW) are depicted in Table II. Demand
charges are applied to monthly peak loads and are of two
types: non-coincident and on-peak demand charges. The non-
coincident demand charge is the price owed by the utility
customer due to its peak demand in a month. Added to non-
coincident demand charges are on-peak demand charges which
determine the price owed by the utility customer due to its
peak demand during the on-peak hours of a month.
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TABLE II: Seasonal and time of day demand charge rates:
SDG&E AL-TOU tariff.

Rate Type Commodity Rate
($/kW)

Utility Distribution
Company Rate ($/kW)

On-peak summer 9.78 19.14
On-peak winter N/A 19.23
Non-Coincident N/A 24.48

IV. PROBLEM FORMULATION

We present the MPC problem formulation in this section
in which all pertinent EV charging session data is assumed
known. The pertinent data for a day includes the PD, ED, and
AT for all EVs charging at a plaza. The forecasting methodol-
ogy for AT, PD and ED is described in the next section. The
problem formulation in this work follows [25] with the SOC
formulation in [25] adjusted to the ED formulation. The MPC
problem is solved with a finite time horizon with control input
only applied to the EVs that are plugged in at the current time
step.

A. Optimization Problem

The MPC cost function J provides the total cost in dollars
consisting of demand charges (gdc), energy charges (gec) and
other utility specific charges (goc

1.) and is given by,

J(k, L) = gdc(k, L) + gec(k, L) + goc(k, L) (1)

where k ∈ {1, . . . , N} is the starting time index of the MPC
horizon, N = 24h

∆t is the final time index of the MPC horizon,
∆t is the time resolution of the control action, L(j) is the net
load at the j-th time step and L = (L(1), . . . , L(N))⊤. In this
work, ∆t = 0.25 h (15 minutes) resulting in N = 96. The
demand charges and energy charges are given by,

gdc(k, L) = rncγnc(k) + ropγop(k), (2)

gec(k, L) = ∆t

N∑
j=k

rec(j)L(j), (3)

where rec ∈ RN is the vector of TOU rates of energy. The
non-coincident demand charges are calculated from the net
load L starting from the current time step k to N as follows,

γnc(k) = max{L(m)}Nm=k. (4)

In (4) rnc is the non-coincident demand charge rate. Similarly,
the on-peak demand charge rate is rop and the on-peak demand
charges are computed from L but only between Tstart =

16h
∆t +1

and Tend = 21h
∆t as follows,

γop(k) = max{L(m)}m∈Iop(k), (5)

where Iop(k) is the set of indices corresponding to the on-peak
time given by,

Iop(k) =

{
{max{k, Tstart}, ..., Tend}, if k < Tend,

ϕ, otherwise . (6)

1Other charges consist of the DWR bond charge ($0.00580× total energy
usage in a month), the City of San Diego Franchise fee ($0.0578 ×
{rncγnc(k)+ ropγop(k)+∆t

∑N
j=k rec(j)L(j)}), the DWR bond franchise

fee ($0.0688×DWR bond charge), the CA State Surcharge ($0.00030×total
energy usage in a month), and the CA state regulatory charge ($0.00058×total
energy usage in a month) [25].

Then at every MPC starting time index k ∈ {1, . . . , N}, the
following optimization problem is solved,

min
L,P,E

J(k, L) (7)

0 ≤ Pi(j) ≤ Pmax, (8)
Ei(j) = Ei(j − 1) + Pi(j)∆t (9)

L(j) =

NEV∑
m=1

Pm(j), ∀j ∈ {k, . . . , N}, (10)

Pi(j) = 0, ∀j < ATi or j > DTi, (11)
Ei(DTi) = EDi, ∀i ∈ {1, . . . , NEV}. (12)

Equation (8) provides limits on charging power. Equation
(9) is the energy balance equation. Equation (10) states that the
net load at each time step is the sum of individual loads of each
EV, given by Pi where NEV denotes the number of EVs that
are plugged in. Equation (11) states that no EV can receive
dispatched energy prior to arriving at the charge station or
after departing the charge station. Departure time is expressed
as the sum of AT and PD (i.e., DTi = ATi +PDi). Equation
(12) states terminal constraints.

The optimization problem minimizes the daily total electric-
ity cost associated with EV charging. Due to the cost of energy
being orders of magnitude lower than the cost of demand, and
with the ability to shift energy between on-peak and off-peak
periods limited by the PD and the overlap of the layover period
with both on and off-peak periods, the most effective EV
charging scheme will flatten the load associated with charging
to reduce demand peaks. While the demand charge is only
applied to the single highest monthly load value, the MPC
optimization is run daily. This ensures that the daily peak load
and the TOU energy charges are minimized.

In this work, the energy and demand charges in the objective
function correspond to SDG&E’s cost structure. However the
various rates and corresponding time periods can be adjusted
to any other utility’s cost structure. Finally, the MPC problem
is solved using CVX [26], [27], a package for solving convex
programs in the MATLAB environment.

B. Assumptions

First, it is assumed that once an EV arrives, the EV user
populates accurate values for PD and ED, consistent with how
PowerFlex currently operates. Second, all charging operates
using a 15 minute update. This creates 96 discrete time steps
each calendar day during which any change in the number of
EVs that are plugged in must be updated. This work assumes
that an EV cannot start charging until the 15 minute time step
after the EV arrives. For example, if an EV arrives at 08:05 h,
the EV cannot commence charging until 08:15 h. It is also
assumed that an EV’s ED must be satisfied by the end of the
15 minute interval prior to its departure time. This assumption
effectively shortens the PD for each EV from what actually
occurred.

When the time of day reaches the AT of a forecasted EV,
that EV will be removed from the remaining forecasted EVs.
The scheduling algorithm will only update every time a real
EVs plug in as the associated ED and PD update at that time.
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Energy cannot be dispatched to forecasted EVs, only to real
EVs upon their arrival.

V. ERROR ANALYSIS FOR INDIVIDUAL EVS

This work considers EV behavior on an individual basis
rather than on an aggregate scale and also relaxes the assump-
tion of prior knowledge of specific EVs and the exact number
of EVs that will arrive, thereby simulating a more realistic
case. However, the present process also creates challenges
in identifying error between a forecasted EV and a real EV.
The order in which EVs arrive in the forecast may not be
the same as the order in which EVs arrive in reality; while
traditional error metrics would assign large errors to an out-
of-order forecast, the error in the order does not necessarily
determine forecast quality for the purposes of implementing
MPC. Also a forecast may predict a different number of EVs
than those that actually arrive. If the number of forecasted
EVs is equal to or fewer than the number of real EVs, each
forecasted EV should be matched with its most similar real
EV counterpart with leftover real EVs accounting purely for
under forecasting error. Conversely, when the forecast predicts
more EVs will arrive than actually do; each real EV should
be matched with the most similar forecasted EV with leftover
forecasted EVs accounting purely for over forecasting error.

Algorithm 1 was developed to match forecasted EVs to real
EVs. As described in Algorithm 1, each of the AT, PD and
ED are first normalized based on the maximum and minimum
values. These normalized quantities are used to compute a
single quantity for each EV that consists of the weighted sum
of AT, PD and ED. For this work the weights are 10, 1, 7 for
AT, PD and ED, respectively. The squared differences between
the weighted metrics of all forecasted and real EVs are used
to populate a cost matrix. Entries in the cost matrix quantify
the similarity between real and forecasted EVs. Then, the
linear assignment algorithm [21] is used to uniquely match
forecasted and real EVs.

The linear assignment determines the minimum cost of
selecting one value from each row and column of the cost
matrix. The output of the linear assignment is an array of
matching pairs (forecasted to real) and the associated cost for
the difference between each EV. If the number of forecasted
EVs is greater (or less) than the number of real EVs, the cost
of each of the unmatched forecasted (or real) EVs is set equal
to the worst case cost of the matched EVs.

VI. FORECASTING

A. Smart Persistence Forecasting

A commonly used benchmark for forecasting is persistence
forecasting. 24 hour persistence forecasting assumes that a
given behavior is periodic on a daily basis, therefore the
number of EVs that are charging at a given moment and their
associated PD and ED will be the same as observed on the
previous day. Persistence forecasts offer low computational
costs, making them useful in situations where a high level
of accuracy is not needed. Due to the extreme difference in
work place charging behavior between weekdays, weekends,
and holidays, this smart persistence forecast assumes that

Algorithm 1 Process for determining the distance between
forecasted EVs and real EVs for one day.

Input: Daily forecasted and real EV arrays for each
EV given by xreal = [ATreal PDreal EDreal] and xforec =
[ATforec PDforec EDforec]. Weights: α, β, δ.

Output: Array M(min(length(xforec, xreal), 2)), which
matches each forecasted EV (number in column 1) to the most
similar real EV (number in column 2). Arrays ζreal and ζforec
contain the additional unmatched EVs if the forecast either
under- or over- predicted the number of EVs, respectively.

1: x̂real = norm(xreal)
2: x̂forec = norm(xforec)
3: η = [α β δ]T ▷ α, β, δ are weights
4: yreal = x̂realη
5: yforec = x̂forecη
6: for i = 1 : length(yforec) do
7: for j = 1 : length(yreal) do
8: cost(i, j) = (yreal(j)− yforec(i))

2

9: end for
10: end for
11: M = linear_assignment(cost) ▷ Reference [21]
12: if length(yreal) > length(yforec) then
13: ζreal = yreal

14: ζreal(M(:, 2)) = [ ];
15: else if length(yforec) > length(yreal) then
16: ζforec = yforec

17: ζforec(M(:, 1)) = [ ];
18: end if

weekdays will persist from weekdays, weekends will persist
from weekends, and holidays will persist from holidays, i.e.

xp(t) = xp−1(t) ∀ t = 1, 2, . . . , NT , (13)

where x is any one-dimensional variable to be forecasted (such
as AT, ED or PD), t indexes the time of the day, NT is the
total number of time indices within a day for a given δt.
In this work, forecasts are performed with minute resolution,
therefore NT = 1440. p refers to the type of day, including,
weekdays, weekends, and holidays. For example, charge be-
havior on Mondays persist from Fridays, Sundays persist from
Saturdays, and a holiday persists from the previous holiday.

B. Machine Learning Forecast Overview

The flowchart in figure 1 depicts the process for completing
the hybrid forecast. An overview of the process is given in this
section, while each block on the flowchart is described in more
detail in the following sections including the error analysis. In
each block, the choice of the particular forecast methodology
was made after comparing its performance with other forecast
methodologies as described next. An example of the training
data used to forecast for January 10, 2020 is described in Table
III. The observed EV AT, PD and ED on January 10, 2020
are then used in the forecast for the next day.

Forecasting AT, PD and ED is a multi-step process. Initially,
a forecast for ADED is performed using Matlab’s TreeBagger
function. TreeBagger was selected to forecast ADED because
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12

3 4
Fig. 1: Flowchart depicting the hybrid forecast method for
forecasting individual EVs.
TABLE III: Example of respective forecast methods and
associated training data with Jan 10, 2020 as the testing day.
Forecast methods in (parenthesis) are used for comparison.

Block in
Figure 1 Forecast Method Training Data

1 Smart Persistence Nov 10, 2018 - Jan 9, 2020

2 Tree Bagger, (Persistence,
LSTM) Nov 10, 2018 - Jan 9, 2020

3 LSTM, (Persistence) Nov 10, 2018 - Jan 9, 2020
4 kNN Nov 10, 2018 - Jan 9, 2020

it performed better than LSTM and Persistence forecasting
techniques. The ADED value becomes a feature for a Long
Short Term Memory (LSTM) algorithm that forecasts NAPM
from a given starting point to the end of the calendar day.
LSTM was selected to forecast NAPM because it performed
better than TreeBagger and Persistence forecasting techniques.
The LSTM output is a vector of real numbers associated with
the cumulative number of EVs that have plugged in at each
minute during the calendar day. These values are then rounded
to the nearest integer as it is not possible to have a non integer
number of EVs, and corrected to be monotonically increasing.

The output of the LSTM forecast is input to a k-nearest
neighbor (kNN) algorithm that compares the LSTM output
with the NAPM from previous days in the data set. The kNN
algorithm determines which previous day best matches the
forecasted NAPM and populates the forecasted AT, PD, and
ED for each EV forecasted to arrive that day. The result from
the kNN algorithm is the forecast utilized by the MPC. The
kNN algorithm was selected because it finds the NAPM vector
in the past that most closely matches the LSTM forecasted
NAPM in the previous step and then provides realistic PD
and ED values for all EVs that are expected to arrive.

C. TreeBagger for ADED

Matlab’s TreeBagger function was used to forecast ADED
[28]. The TreeBagger algorithm trains on two features: ADED
from all prior days and the corresponding number of EVs
that charged on all prior days. The training data begins on
November 10, 2018 and ends on the day prior to that which
is forecasted. The value for the number of EVs that arrive on
the day to be forecasted is determined using the same smart
persistence technique described in Section VI-A.

Figure 2 compares TreeBagger, LSTM (trained with the
same data as TreeBagger), and persistence forecast results

TABLE IV: ADED (kWh) forecast errors against real mea-
sured ADED using LSTM, TreeBagger, and persistence tech-
niques from January 10 to February 28, 2020.

LSTM TreeBagger Persistence
MAE [%] 20.61 18.73 24.14
RMSE [%] 32.96 32.74 38.07
MBE [%] -4.46 -0.85 0.07

against real measured ADED for 50 days from January 10,
2020 to February 28, 2020. TreeBagger outperforms the other
forecast techniques in mean absolute error (MAE) and root
mean squared error (RMSE) as depicted in Table IV. The
mean bias error (MBE) in Table IV suggests that on average,
each of the techniques forecasts below the actual value. While
there is greater bias in the two machine learning methods,
the TreeBagger forecast strongly outperforms the other two
techniques in MAE and RMSE, demonstrating that it is more
accurate. The result from the TreeBagger forecast is then used
as a feature in the LSTM forecast for NAPM.

Fig. 2: Forecasted and measured ADED from January 10 to
February 28, 2020.

D. Long Short Term Memory for NAPM

LSTM is a form of recurrent neural network (RNN) [29]. It
can be thought of as a RNN with a hidden layer that is replaced
by a memory cell. LSTM helps to overcome the challenge of
vanishing gradients in RNNs. A full description of LSTM can
be found in [30].

The LSTM forecast is trained using features depicted in
Table V with data spanning from November 10, 2018 up until
the day prior to that which will be forecasted. The validation
set is composed of data from the day being forecasted. A
quadruplet of time parameters can be used to describe the
LSTM forecast: the forecast horizon is 24 h, the resolution
is minutely, the lead time is 0 minutes, and the update rate
is daily. The lead time of 0 minutes means that the forecast
occurs at the start of the calendar day being forecasted. The
LSTM forecast estimates NAPM one calendar day at a time.
The ADED and the forecasted total daily number of EVs are
provided from the TreeBagger and smart persistence forecasts
respectively as discussed in Section VI-C. Each of the other
features help classify temporal information. The output of the
LSTM forecast is a vector in which each value represents the
cumulative sum of EVs that have arrived by a corresponding
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TABLE V: List of the features used in the LSTM forecast for
NAPM.

Feature Binary Feature Binary
ADED No In academic session Yes
Aggregate # EVs per day No Minute of the hour No
Day of the month No Month No
Day of the week No # EVs at a given time No
Holiday Yes Weekend Yes
Hour of the day No

(a)

(b)

Fig. 3: (a) Measured cumulative NAPM on Jan 27, 2020
compared to forecasted cumulative NAPM from kNN, LSTM
and smart persistence. (b) Measured number of EVs plugged
in throughout the day compared to kNN and smart persistence
forecasts.

minute of a day. An example of the NAPM forecasted by
both persistence and LSTM techniques compared against the
measured NAPM vector is shown in Figure 3(a).

In testing over the same 50 days from January 10, 2020
to February 28, 2020, LSTM outperformed the persistence
forecast, as shown in Table VI.

E. kNN for EV AT, PD, and ED

The output of the LSTM NAPM forecast is provided as
the input vector for a kNN algorithm that finds the nearest
neighbor NAPM to the LSTM output. Using kNN to determine
the nearest historical NAPM vector to the LSTM output also
yields associated PD and ED values. Using a previous day’s
EV data automatically ensures that ED does not exceed the
maximum power rating of 7.2 kW multiplied by the respective
EV’s PD. The LSTM forecast is trained using features depicted

TABLE VI: Errors in NAPM for different forecast methods.
Errors cover the time period from January 10 to February
28, 2020. The percentage error for each of these values was
determined by normalizing using the actual total daily number
of EVs that arrived.

LSTM kNN Persistence
MAE (%) 7.12 5.47 12.81
RMSE (%) 9.59 8.43 24.52
MBE (%) -4.42 -0.99 -0.17

TABLE VII: Errors for ADED (kWh) and total daily # of
EVs plugged using kNN and smart persistence forecasting
compared to historical data for January 10 to February 28,
2020. The percentage error for total daily # of EVs was
determined by normalizing using the actual maximum daily
number of EVs that plugged in during a time step.

MAE RMSE MBE
kNN ADED (%) 18.95 22.60 -15.09
Persistence ADED (%) 24.14 38.07 0.07
kNN EVs Plugged in (%) 8.24 12.68 -0.66
Persistence EVs Plugged in (%) 6.84 10.54 0.84

in Table V with data spanning from November 10, 2018 up
until the day prior to that which will be forecasted.

The NAPM errors for the kNN algorithm and LSTM are
depicted in Table VI. The errors for the kNN forecasted NAPM
improves upon the error from LSTM.

Errors for ADED and total daily number of EVs plugged
in for kNN and persistence forecasts are depicted in Table
VII. The kNN forecast perfromed better in ADED error but
incurred a slightly larger error in total daily number of EVs.

The individual error analysis for EVs was executed on a
daily basis per Algorithm 1. The hybrid ML forecast outper-
formed the persistence forecast in mean AT error and mean
PD error, with slightly worse performance in ED, as depicted
in Table VIII.

To account for cases in which a forecast had either more
or fewer EVs than actually arrived, a cost equal to the single
largest daily cost of all linearly assigned pairs is allocated
to each unmatched EV. The total daily cost for all paired
and unpaired EVs is the sum of the individual costs of all
forecasted EVs plus costs allocated to each remaining real
EV in cases where under forecasting occurred. The sum of all
50 daily costs from Jan 10 to Feb 28, 2020 for the hybrid ML
forecast is 3, 551 and for persistence it is 5, 077. Persistence
forecasting results in a larger distance metric as the number
of EVs that are either over- or under-forecasted is 354 versus
112 for hybrid ML.

F. Implementation and Computational Cost

Figure 4 depicts the implementation strategy. The ML
algorithm trains once daily at 00:00 h which consumes on

TABLE VIII: Mean individual EV forecast errors for hybrid
ML and persistence forecasting compared to historical data for
January 10 to February 28, 2020.

AT
(minutes)

PD
(minutes)

ED
(kWh)

Cumulative #EVs
Over/Under
Forecasted

Hybrid ML 1.25 1.75 -1.64 112
Persistence 15.8 -13.03 -1.36 354
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TABLE IX: Weekday mean peak loads and total monthly cost.

Summer
(kW)

Winter
(kW)

Summer
($)

Winter
($)

Dumb Charging 137.4 128.3 8,447 7,686
No Forecast MPC 80.8 77.4 7,281 6,049
Persistence Forecast MPC 75.3 71.0 6,686 5,566
Hybrid ML Forecast MPC 73.2 70.0 6,680 5,512
Perfect Forecast MPC 67.0 65.1 6,073 5,069

average 9 minutes of run time. The run time for a single
24 hour MPC is 34 seconds or less. The overall ML MPC
algorithm has a run time of 36 minutes for forecasting and
controlling EV charging that takes place in a single day.

Fig. 4: Block diagram depicting the implementation of the
forecasting and control scheme.

VII. RESULTS AND DISCUSSION

A. Peak and Cost Reduction

Two 30-day case studies were executed with a summer
(S) case study ranging from September 23 to October 23,
2019, and a winter (W) case study ranging from January 20
to February 19, 2020. While the periods cover two calendar
months, for the purpose of demand charges we assume that
only one demand charge is assessed over the 30 days. Both
time periods are in academic session. Figures 5 and 6 depict
the EV load profiles for each of the techniques over the 30
day period of case study S and W, respectively.

Dumb charging in Figs. 5 and 6 depict what actually
occurred with uncontrolled charging. Dumb charging results
in large morning peaks and declining charging power in the
afternoons due to many customers arriving during morning
hours. Occasionally there is a minor afternoon peak that is
associated with new customers arriving shortly after 12:00 h.
Additionally, the MPC was executed for a no forecast case
which optimizes only over EVs that are plugged in at any given
moment with known ED and PD (while ignoring EVs that plug
in in the future) and a perfect forecast case (assuming future
charging demand to be known), demonstrating the worst and
best case scenario for this MPC formulation. The ML MPC
significantly reduces the peaks experienced by both dumb
charging and no forecast MPC, reducing monthly electricity
costs. Hybrid ML MPC also outperforms Persistence MPC.

Average peak load values for the 22 weekdays during the
two case studies are depicted in Table IX. For case study
S, the MPC with ML forecasts reduced the 22-day weekday
average peak load by 46.7% from dumb charging, 9.4% from
MPC with no forecast and 2.8% from MPC with persistence
forecasts. For case study W, the MPC with ML reduced the 22-
day weekday average peak load value by 45.4% from dumb
charging, 9.6% from MPC with no forecast and 1.4% from

(a)

(b)

Fig. 5: (a): 30 day EV dispatch load curve for case study S.
Non Coincident Demand Charge event values for each dispatch
are labeled with arrows depicting the corresponding dispatch
color. (b): Zoomed in dispatch load curve of 3 days of case
study S.

MPC with persistence. The 22-day weekday average peak
loads demonstrate consistent performance, but demand costs
are only associated with the single highest peak experienced
during the month for each MPC implementation. The monthly
peak for persistence MPC in winter was 88.2 kW versus
89.2 kW for hybrid ML MPC and 97.1 kW versus 90.5 kW
for case study S. The total cost for both case studies was lower
for the hybrid ML forecast MPC than the Persistence MPC.

In order for the LSTM NAPM forecast to accurately predict
EV behavior the LSTM learning parameters must be properly
tuned, otherwise the Persistence forecast may outperform the
Hybrid ML MPC method. For this work case study W used
150 hidden untis and case study S used 200 hidden units.
Future research will look into the impact of training parameters
on forecast performance.

Case study S costs for the ML MPC method decreased
20.9% from dumb charging cost, 8.3% from the no forecast
MPC cost and 0.1% from the persistence MPC cost. Case
study W costs for the ML MPC method decreased 28.3% from
the dumb charging cost, 8.9% from the no forecast MPC cost
and 1% from the persistence MPC cost. These improvements
suggest that the hybrid ML forecasting paired with MPC is
an effective charge dispatch method for reducing electricity
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(a)

(b)

Fig. 6: (a): 30 day EV dispatch load curve for case study W.
Non Coincident Demand Charge event values for each dispatch
are labeled with arrows depicting the corresponding dispatch
color. (b): Zoomed in dispatch load curve of 3 days of case
study W.

costs. MPC with hybrid ML forecasts is most useful during
the summer because of the increased summer commodity peak
demand charge cost.

B. MPC Sensitivity to Forecast Error

Two 30-day sensitivity studies were executed for the same
date ranges of case studies S and W. The sensitivity studies
demonstrate how the MPC algorithm performs under varying
forecast errors. Each sensitivity study is composed of four
error analysis tests that determine how the MPC performs
under 1) a normally distributed error with a standard deviation
of 10% relative to each value of PD and ED with perfect
forecast for AT, 2) a normally distributed error with a standard
deviation of 50% on PD and ED with perfect forecast for AT,
3) an over forecasting scenario that assumes perfect forecast
for all real EVs plus additional EVs drawn randomly from
all previous EV charging data equaling 30% of the total that
arrived on a given day and, 4) an under forecasting scenario
that assumes perfect forecast for all real EVs minus a number
of EVs equal to 30% of the total that arrived on a given day
which are removed randomly from the total.

Fig. 7: Sensitivity study dispatch load for Sept 27, 2019.

TABLE X: Sensitivity study weekday mean peak loads and
total monthly cost.

MPC Using: Summer
(kW)

Winter
(kW)

Summer
($)

Winter
($)

No Forecast 80.8 77.4 7,281 6,049
10% Error on PD and ED 66.0 65.0 6,326 5,172
50% Error on PD and ED 66.6 65.8 6,451 5,425
30% Over Forecasting 78.8 75.7 6,484 5,331
30% Under Forecasting 64.8 63.4 6,518 5,312
Perfect Forecasting 67.0 65.1 6,073 5,069

Figure 7 depicts an example dispatch of each case on Sept
27, 2019. Over forecasting schedules charging earlier in the
day because of anticipated future EV arrivals. This leads to
large morning peaks, but reduces afternoon charging during
on-peak hours. Under forecasting reduces morning dispatch
which results in higher afternoon costs during the on-peak
period. The worst case scenario of under forecasting is MPC
with no forecast, which we demonstrated in the primary S and
W case studies in Table IX and Figures 5-6.

Table X depicts the average peak loads for the 22 weekdays
and the total costs incurred during the summer and winter
sensitivity studies. While MPC with 30% over forecasting
experiences larger peak loads, the costs incurred by over and
under forecasting cases are within 0.6% of each other, due to
the increased on-peak period energy and demand charge costs
incurred by the under forecasting study.

VIII. CONCLUSIONS

This work developed a hybrid machine learning model to
forecast individual EV ATs, EDs, and PDs for 48 charge ports
at UC San Diego. These forecasted values were input to an
MPC based charge scheduler that reduced utility customer
costs associated with demand charges and TOU energy rates.

This work addresses a gap in the literature associated with
using advanced forecasts to predict individual EV charging
characteristics for real time MPC. This work is novel in the
following ways:

1) It utilized a hybrid ML forecast to estimate AT, ED, and
PD for individual EVs.

2) It utilized ED rather than SOC for forecasting and
implementing MPC, thereby reducing the number of
forecasted variables and simplifying the MPC problem.

3) It implemented a novel comparison technique for vari-
ables at differing indices within vectors of differing
length for individual error analysis.
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The results demonstrate that forecasting and controlling
individual EV charging at a plaza effectively reduces utility
customer electricity costs. The novelties enumerated above led
to reduced peak loads and reduced costs. Weekday average
peak loads using the ML MPC method were 47.0% lower than
the dumb charging scenario, 10.0% lower than the no forecast
MPC charging scenario and 3.3% lower than the persistence
forecast MPC for case study S. ML MPC monthly costs were
22.0% lower than dumb charging scenario, 9.5% lower than
the no forecast MPC and 1.4% lower than the persistence
forecast case for the S case study. Results for a winter case
study were similar.

A sensitivity study was carried out to determine the im-
pact of forecast accuracy on the MPC algorithm. While the
sensitivity study forecast with an error having a standard
deviation of 10% to PD and ED outperformed the other
sensitivity studies, the MPC successfully mitigated the risk
of significantly increased cost due to poor forecasting. For the
S and W sensitivity studies, the costs for each of the four
error analysis tests decreased between 10.5% − 13.1% and
10.3%− 14.5% from the no forecast MPC, respectively.

While this work focused on solving an objective function
with the primary purpose of peak reduction through demand
charge management, the objective and constraints could be
adjusted slightly to encourage the bulk of charging to occur
during periods of high solar PV production, low building
demand, or low market prices. The hybrid ML forecasting
technique could be used on its own for determining charging
demand at any level of granularity. The problem formulation
presented in this work only requires knowledge of AT, PD,
and ED rather than AT, PD, and EV SOC. Updated forecasts
throughout the day could better assist the MPC implemen-
tation. Future work will look into how the forecast can be
updated most effectively.
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