
UC San Diego
Technical Reports

Title
Circular Coinduction

Permalink
https://escholarship.org/uc/item/4467x61p

Authors
Rosu, Grigore
Goguen, Joseph

Publication Date
2000-03-14

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/4467x61p
https://escholarship.org
http://www.cdlib.org/

Circular Coinduction

?

Grigore Ro�su

??

and Joseph Goguen

Department of Computer Science & Engineering

University of California at San Diego

Abstract. Circular coinduction is a new technique for behavioral rea-

soning that extends coinduction to speci�cations with circularities. We

show that a congruence criterion due to Bidoit and Hennicker follows

easily from circular coinduction, and we give some natural examples of

circular coinductive proofs. A notation, called BOBJ, appropriate for

our style of behavioral speci�cation is also sketched. Finally, everything

is conducted in a general framework that in a sense is the gcd of previous

behavioral frameworks.

1 Introduction

This paper gives a new inference rule for behavioral reasoning. We call this

rule circular �-coinduction because it handles some examples with circularities

(i.e., in�nite recursions) that could not be handled by our previous rules in

[16, 9, 10, 15]; we will also call it �

	

-coinduction.

In addition, this paper tries to provide a \greatest common divisor" (gcd) or

\international" version of hidden algebra that captures what is most common

among approaches developed in France, Japan, Germany and California, which

are respectively called \observational logic" [12, 2, 1], \coherent hidden algebra"

[3, 4, 13], \swinging types" [14], and \hidden algebra" [16, 9, 10, 15]. We will

call this common approach \gcd hidden algebra" when being precise, and just

\hidden algebra" for short. The fact that all major results hold in this approach

helps to explain the remarkable fact that more or less the same results seem to

hold in every approach.

Similarly, we suggest \behavioral equational logic" or \behavioral algebra"

for a \least common multiple" (lcm) approach, i.e., for an umbrella name that

can include all the variants. But because research in behavioral algebra is now

very active, we cannot regard the meanings of technical terms in the various

approaches, such as \observational," \coherent," \hidden," \behavioral," as en-

tirely �xed, but should rather see them as evolving, often through bene�cial

mutual interactions.

After exploring how to prove the congruence of operations in [16], we became

convinced that this does not di�er essentially from proving other behavioral

properties, except perhaps that it is usually easier. Also certain \coinductive

patterns" that appeared in specifying operations inspired a congruence criterion

?

Supported by NSF grant CCR-9901002.

??

Also Fundamentals of Computing, Faculty of Mathematics, University of Bucharest,

Romania.

2

that could automatically decide whether an operation is congruent [16]; more-

over, this criterion followed from the �-coinduction rule that was strong enough

for all proofs we knew at that time. But the fact that congruence of the zip op-

eration of the STREAM example (in Section 3) does not follow from this criterion,

suggests that more powerful deduction rules are needed.

Results in this paper arose in part through discussions with Michel Bidoit,

R�azvan Diaconescu, Kokichi Futatsugi, and Rolf Hennicker at WDS'99 in Ia�si,

WADT'99 in Bonas, and FM'99 in Toulouse. Bidoit and Hennicker [2] gave a

general congruence criterion from which the congruence of zip followed easily,

and so in
uenced by the relation between coinduction rules and congruence cri-

teria found in [16], we sought a general inference rule from which the criterion in

[2] would follow as naturally as our criterion in [16] followed from �-coinduction,

and which could prove behavioral properties not provable by �-coinduction. The

result of this search was circular �-coinduction

3

.

2 GCD Hidden Algebra

Brie
y, gcd hidden algebra is the logic (or better, the institution [7]) having

equations as sentences, and algebras with behavioral equivalences as models, re-

lated by behavioral satisfaction. Unfortunately, the details are not so easy, for

example because there are two choices for how to declare behavioral operations:

as part of the signature; and as separate sentences. We considered both choices

in [9], showing that there is an interesting morphism between the correspond-

ing institutions, and also that each has certain disadvantages. In particular, the

institution where behavioral operations are given in the signature and models

are algebras contradicts the intuition that signatures should determine the syn-

tax of terms, and is more complex technically, whereas the institution where

each model has its own equivalence relation includes models that are not rel-

evant. However, all approaches to behavioral algebra agree that speci�cations

should have a signature with designated hidden sorts, some equations over that

signature, and some \special" operations, variously called observational [12, 2],

behavioral [3, 4, 9], or destructor [14]. This motivates the following:

De�nition 1. A (gcd) hidden signature is a triple (S;H;�), often written

just �, where S is a set of sorts, � is an S-sorted signature, and H is a subset

of S of hidden sorts; call V = S �H the visible sorts.

A (gcd) hidden speci�cation is a triple (�;�;E), where � is a hidden

signature, � is a subsignature of �, and E is a set of �-equations. We will use

calligraphic letters B;B

1

, etc. for behavioral speci�cations.

Given a �-algebra A with a binary relation �, an operation � 2 �

s

1

:::s

n

;s

is

congruent (or compatible or coherent) for� i� A

�

(a

1

; :::; a

n

) � A

�

(a

0

1

; :::; a

0

n

)

whenever a

1

� a

0

1

, ..., a

n

� a

0

n

. Given � � �, a relation � on A is a � -

congruence i� each � 2 � is congruent for �, and a � -congruence � on A is

called hidden i� it is the identity on visible sorts.

3

We hope readers will �nd this an inspiring example of how science evolves, and of

how scienti�c interaction can improve a subject.

3

The following very basic result, which seems to have �rst appeared in an

early ancestor of [8], extends to gcd hidden algebra, with essentially the same

proof as that given in [16], since nothing there relies on the �xed data algebra

assumed in the framework of that paper.

Theorem2. Given � � �, there is a largest hidden � -congruence on any �-

algebra A, called � -behavioral equivalence and denoted �

�

�

.

The construction of �

�

�

is natural: an (appropriate) � -context

4

of sort s is a

term in T

�

(f?g[Z) with exactly one occurrence of a special variable (\special"

means it is di�erent from any other variable in this situation) ? of sort s, where

Z is an in�nite set of special variables. A visible context is a context with a

visible result. Let C

�

[? : s] denote the set of all visible � -contexts of sort s, and

var(c) the �nite set of variables in c, excluding ?. Given a subsignature � of �

and a �-algebra A, a � -context c determines a map A

c

: A

s

! (A

var(c)

! A)

by A

c

(a)(�) = a

�

�

(c), where a

�

�

is the unique extension of the map (denoted a

�

)

that takes z to a and each z

0

2 var(c) to �(z

0

). Then �

�

�

is given by a �

�

�

a

0

i�

A

c

(a) = A

c

(a

0

) for all visible � -contexts c.

Perhaps the most de�nitive feature of behavioral algebra is its distinction

between hidden and visible sorts, going back to [5]. It is this feature that supports

the existence of the largest � -congruence of Theorem 2, and hence the notion

of behavior, and it is mainly for this reason that we choose the name \hidden

algebra" for our gcd approach.

De�nition 3. An operation � is � -behaviorally congruent for a �-algebra

A i� � is congruent for �

�

�

; we will often say just \congruent" instead of \be-

haviorally congruent". The algebra A � -behaviorally satis�es a �-equation

e = (8X) t = t

0

i� �(t) �

�

�

�(t

0

) for each � : X ! A; in this case we just write

A j�

�

�

e. If E is a set of �-equations, we write A j�

�

�

E i� A � -behaviorally

satis�es each equation in E. When �, � and A are clear from context, we may

write just � and j� instead of �

�

�

and j�

�

�

respectively. We say that A behav-

iorally satis�es (or is a model of) a behavioral speci�cation B = (�;�;E)

i� A j�

�

�

E, and in this case we write A j� B; also, B j� e means A j� B implies

A j�

�

�

e.

Among the various current approaches to behavioral algebra, observational

logic is perhaps closest to gcd hidden algebra; the main di�erence is that the \ob-

servers" of observational logic (which correspond to our behavioral operations)

are pairs (�; i) with � : s

1

:::s

i

:::s

n

! s, which are declared in the signature.

Because pairs (�; i) and (�; j) are allowed for i 6= j, there is greater expressive

power; however we prefer the simpler notion until we have compelling examples

where the extra generality is needed

5

. Coherent hidden algebra signatures di�er

4

Intuitively, contexts can be thought of as \experiments" on a system, consisting of

a number of operations with hidden result followed by a \measurement" using some

visible operation.

5

However, we do have an example (the lambda calculus) where having this capability

in cobases (see Section 2.2 for this concept) would reduce the proof obligations.

4

from those in observational logic and gcd hidden algebra in that only operations

with exactly one hidden argument can be declared behavioral; however, we �nd

this restriction unnecessary. The gcd hidden approach di�ers from our previous

hidden algebra in that a �xed data algebra is no longer assumed; we felt more

comfortable with this loss after we realized that the assumption was not needed

for the soundness of �-coinduction, even though the distinctness of visible ele-

ments is needed in certain correctness proofs (e.g., that 1 6= 0 in the alternating

bit protocol).

2.1 Behavioral Deduction

The following �ve inference rules from [16] are derived from ordinary equational

logic, and all extend to gcd hidden algebra:

(1) Re
exivity :

(8X) t = t

(2) Symmetry :

(8X) t = t

0

(8X) t

0

= t

(3) Transitivity :

(8X) t = t

0

; (8X) t

0

= t

00

(8X) t = t

00

(4) Substitution :

(8Y) l = r 2 E; � : Y ! T

�

(X)

(8X) �(l) = �(r)

(5) Congruence :

8

>

>

>

>

<

>

>

>

>

:

a)

(8X) t = t

0

; sort(t; t

0

) 2 V

(8X;W) �(W; t) = �(W; t

0

); for each � 2 Der(�)

b)

(8X) t = t

0

; sort(t; t

0

) 2 H

(8X;W) �(W; t) = �(W; t

0

); for each congruent � 2 �

9

>

>

>

>

=

>

>

>

>

;

If all operations are congruent then these rules become the usual rules of equa-

tional deduction. Notice that (5b) only applies to congruent operations. There-

fore, the more congruent operations there are, the more powerful the inference

system becomes, and the more behavioral equalities can be proved. Because

all behavioral operations are behaviorally congruent [16], we already have cases

where (5b) applies. Use of this method is facilitated by techniques for proving

that operations are congruent, including easy to check syntactic criteria, given

in [2, 9] and Section 4 below.

As a result, we suggest that speci�cations should declare as many operations

as possible to be behavioral, preferably all of them. We believe the fact that when

doing proofs, one wants as few behavioral operations as possible generating the

intended behavioral equivalence should be considered a veri�cation issue rather

than a speci�cation issue (see Section 2.2).

We also consider this approach easier to use in practice, and hence more

suitable for ordinary software engineers and system designers. Behavioral speci-

5

�cations are intended to capture and analyze the behavior of systems, or more

exactly, their behavioral properties. Before writing a speci�cation, there should

be a pretty good feeling for what the system is intended to do and what it

means for two states to be equivalent, e.g., \two sets are equivalent i� they

have the same elements," or \order and multiple occurrences of elements do not

matter," or \two streams are equivalent i� they have the same elements in the

same order." Then the system designer should check whether the declared oper-

ations preserve this intended behavioral equivalence, which we believe is usually

done informally in practice. The rare cases of non-behavior preserving operations

should be marked with the attribute \nbop".

If it is not clear whether or not a certain operation should be behavioral, it is

safer to let it be behavioral. The risk of letting an operation be behavioral instead

of non-behavioral is that models will have a smaller behavioral equivalence,

so that the speci�cation will have fewer models, which is safer. There are two

further possibilities: either the intended implementation is among those models,

the fortunate case in which more properties can be proved about the system

than if there were more models; or else the intended implementation is not

among those models, in which case a careful rethinking is required to get a

better understanding of the intended behavioral equivalence, and make some

operations non-behavioral.

Therefore, by \behavioral operation" we mean an operation that preserves

(or is compatible with) the intended behavior (or behavioral equivalence). We

consider this approach simpler than the (actually technically equivalent) \indis-

tinguishable under experiments" which suggests chosing a minimal set of \ob-

servers" and then distinguishing the behavior preserving (or coherent) opera-

tions from the non-behavior preserving ones; for us, this seems an unnecessary

complication. In our terminology, both observers and coherent operations are

behavioral.

A second motivation comes from the analogy (by duality) with standard

equational speci�cations and induction, where for the same speci�cation, dif-

ferent constructors (bases for induction) can be chosen depending on the proof

goal. For example, induction schemas with zero and successor, or with zero, one

and double successor, or with prime numbers and multiplication, are possible for

the natural numbers. Similarly, di�erent coinduction schemes can be chosen for

the same behavioral speci�cation. For example, in the case of in�nite streams,

there are at least the following two interesting cobases, � = fhead,tailg, and

�

0

= fhead,odd,eveng (see Section 3). Therefore a speci�cation should not im-

pose an arbitrary choice of just one cobasis, but should rather allow any cobasis

that is convenient. If the user is faithful to the methodology of declaring as many

operations as possible to be behavioral, then (5b) can be modi�ed to say \for

each � 2 �" instead of \for each congruent �".

2.2 Cobases and Coinduction

The notion of cobasis was introduced in [16], but we soon realized it could be

generalized (a common phenomenon in new areas of science) [9, 10, 15]. For this

6

reason, we will add the phrase \in the old sense" if we need to distinguish the

cobases of [16] from the new ones.

De�nition 4. Given a conservative extension B

0

= (�

0

; �

0

; E

0

) of B = (�;�;E),

and a subsignature� of �

0

, let T (�

0

; �; ? :h; Z) be the indexed set of all (�

0

[�)-

terms
 with variables in f?g [Z, such that each subterm of
 rooted in any

operation � in � has exactly one occurrence of ? which is an argument of �, and

these are the only occurrences of ? in
. We let var(
) denote the set of variables

di�erent from ? in
. Then � is a cobasis for B in the old sense i� for any

� -context c over ? of hidden sort h there is some
 in T (�

0

; �; ? :h; var(c)) such

that B

0

j� (8?; var(c)) c =
.

This seemingly complex formulation includes all notions currently in use. We

recall that a complete set of observers (in the sense of [2]) for � is a set of

� -contexts, say �, such that for each visible � -context c there is some context

� 2 � which is a subcontext of c.

Proposition5. The following are all cobases (in the old sense):

1. The in�nite set of all visible contexts

6

.

2. � , the set of behavioral operations.

3. any complete set of observers in the sense of [2].

Proof. The conservative extension B

0

of B = (�;�;E) is respectively:

1. (Der(�); �; E). Notice that all visible contexts belong to T (�

0

; �; ? : h; Z)

in this case.

2. Either B or (Der (�); �; E).

3. (Der(�); �; E) is easy.

The main conceptual di�erence between cobasis in the old sense and the com-

plete set of observers is that our notion relates to a behavioral speci�cation

rather than just a signature, which means that the equations can be also used in

deducing that \for each visible � -context c there is some context � 2 � which

is a subcontext of c"; in addition, the form of equations in a speci�cation might

suggest getting rid of some contexts from the complete set of observers. Our

more general notion of cobasis (see also [9, 10, 15]) is as follows:

De�nition 6. If B

0

= (�

0

; �

0

; E

0

) is a conservative extension of B = (�;�;E)

and if � � �

0

, then � is a cobasis for B i� for all hidden sorted terms t; t

0

2

T

�;h

(X), if B

0

j� (8W;X) �(W; t) = �(W; t

0

) for all appropriate � 2 � then

B j� (8X) t = t

0

.

The following result is proved in [16] (Theorem 12):

Theorem7. Every cobasis in the old sense is a cobasis.

6

This is the case of so- called context induction.

7

Given a cobasis � of B, the following rule called �-coinduction is then sound

for behavioral satisfaction:

(6) �-Coinduction:

(8W;X) �(W; t) = �(W; t

0

) for all appropriate � 2 �

(8X) t = t

0

However, we show in the next section that these six rules are not powerful enough

to prove certain simple behavioral properties, thus motivating the introduction

of circular coinduction.

2.3 Congruent Operations and Equivalent Behavioral Speci�cations

The common interest in proving that operations are congruent [3, 2, 16] has a

variety of motivations, depending on the methodological approach. Our approach

emphasizes removing congruent operations from cobases, so that coinduction

proofs can be as e�cient as possible. We now remind the reader of the notion

of equivalent behavioral speci�cations and some related results (for more detail,

see [9, 10, 16]):

De�nition 8. Behavioral speci�cations B

1

= (�;�

1

; E

2

) and B

2

= (�;�

2

; E

2

)

are behaviorally equivalent i� they have the same models, each with the same

behavioral equivalence; in this case, we write B

1

� B

2

.

Notice that � is an equivalence relation on behavioral speci�cations.

Theorem9. If B

1

= (�;�

1

; E) and B

2

= (�;�

2

; E) are behavioral speci�ca-

tions such that �

1

� �

2

, and if E contains no equation with hidden sorted

conditions, then B

1

� B

2

i� all operations in �

2

��

1

are behaviorally congruent

for B

2

, and in this case, �

1

is a cobasis for B

2

.

Therefore, if one suspects that a certain subset of behavioral operations � � �

is a cobasis for B = (�;�;E), the following can be done:

1. Let B

�

= (�;�;E).

2. Show that all operations in � �� are congruent for B

�

.

3. Conclude that � is a cobasis for B.

We will apply these steps implicitly in proofs below, without citing Theorem 9.

2.4 Speci�cation Notation

The CafeOBJ language [4] was the �rst, and so far is the only, language to

implement a version of behavioral algebra, and in particular, is the only language

to support behavioral veri�cation and the declaration of behavioral operations.

We used CafeOBJ in several of our previous papers, but were criticized for

doing so in a way that con
icted with the o�cial CafeOBJ methodology. As a

consequence of this and of the continuing evolution of our own ideas, we hope

8

it will be less confusing if we use a notation that corresponds more directly

to our own current approach, and which in particular allows the declaration of

behavioral operations with multiple hidden sorts.

The choice of syntax is often a sensitive issue, due in part to the di�culties

of learning a new notation, and of shifting back and forth between notations.

As a result, established user communities tend to be rather conservative about

syntax. On the other hand, researchers have a natural desire to establish their

own territories, and these are often marked by syntactic innovations. For reasons

based in semiotics [6], as well perhaps as sentiment, we prefer a conservative

approach with respect to the syntax of OBJ3 [11], and wish to depart from the

conventions of OBJ3 only when there is a clear necessity for so doing. We call

the resulting notation \BOBJ," from \behavioral OBJ." In BOBJ, behavioral

speci�cations have the form

bth <NAME> is protecting DATA

...

end

where DATA is an imported theory of visible sorts, and all new sorts declared

within the pattern are considered hidden. Operations are declared with the key-

word op, and are considered behavioral, i.e., in � , unless they are given the

attribute \nbop." This is justi�ed by the design principle that the most common

cases should be the simplest, noting that non-congruent operations are rare in

behavioral theories. All equations are considered behavioral. Final periods are

not needed if we assume that the user has taken some extra e�ort to prevent

confusing the parser, for example, by using parentheses to separate the two terms

of an equation if there are operations named eq or = . We can illustrate this

syntax with the following behavioral speci�cation for nondeterministic stacks of

bits, based on [16]:

bth NDSTACK is protecting BIT

sort Stack

op top : Stack -> Bit

op pop : Stack -> Stack

op empty : -> Stack

op push : Stack -> Stack [nbop]

var S : Stack

eq pop(empty) = empty

eq pop(push(S)) = S

end

3 Limitations of Ordinary Coinduction

We give some speci�cations where the six rules of Section 2.1 are not enough

to prove certain simple properties. Section 5 shows that these properties can

be proved with circular �-coinduction. The �rst example speci�es in�nite bit

streams, with an operation that reverses each bit. The data theory for bits is

given �rst; here sorts and operations are considered visible.

9

dth BIT is

sort Bit

ops 0 1 : -> Bool

op not : Bool -> Bool

eq not(1) = 0

eq not(0) = 1

end

bth REV is protecting BIT

sort Stream

op head : Stream -> Bool

op tail : Stream -> Stream

op _&_ : Bool Stream -> Stream

op rev : Stream -> Stream

var B : Bool var S : Stream

eq head(B & S) = B

eq tail(B & S) = S

eq head(rev(S)) = not(head(S))

eq tail(rev(S)) = rev(tail(S))

end

We can apply a congruence criterion from [16] (see also Corollary 15) to

see that & is congruent for the behavioral speci�cation with only head and

tail considered behavioral. Similarly, a more general congruence criterion from

[2] (see also Corollary 14) implies that rev is congruent too. Thus Theorem

9 implies that � = fhead,tailg is a cobasis for REV. Now it is easy to use

�-coinduction to prove properties like rev(B& S) = not(B) & rev(S), since it

is immediate that head(rev(B & S)) and head(not(B) & rev(S)) are both

equal to not(B), and that tail(rev(B & S)) and tail(not(B) & rev(S)) are

both equal to rev(S).

On the other hand, �-coinduction plus the six rules of Section 2.1 cannot

prove the behavioral equality rev(rev(S)) = S, because tail(rev(rev(S))) =

tail(S), and tail(tail(rev(rev(S)))) = tail(tail(S)), and so on through

an in�nite recurrence. However, circular �-coinduction can prove this property,

and much more, including operation congruence properties that do not follow

from the congruence criterion of [2]. Moreover, all operations that are congru-

ent by the criteria of [2, 16] can be proved congruent by �

	

-coinduction (see

Corollaries 14 and 15).

The following behavioral speci�cation of in�nite streams of natural numbers

is interesting not only because natural properties of it cannot be proved by

coinduction, but also because it admits two unrelated cobases:

bth STREAM is protecting NAT

sort Stream

op head : Stream -> Bool

op tail : Stream -> Stream

op _&_ : Nat Stream -> Stream

op odd : Stream -> Stream

10

op even : Stream -> Stream

op zip : Stream Stream -> Stream

var N : Nat var S S' : Stream

eq head(N & S) = B *** 1

eq tail(N & S) = S *** 2

eq head(odd(S)) = head(S) *** 3

eq tail(odd(S)) = even(tail(S)) *** 4

eq head(even(S)) = head(tail(S)) *** 5

eq tail(even(S)) = even(tail(tail(S))) *** 6

eq head(zip(S,S')) = head(S) *** 7

eq tail(zip(S,S')) = zip(S',tail(S)) *** 8

end

As usual, head, tail and & give the �rst element, the rest but the �rst element,

and add an element to the front of a stream, respectively, while odd and even give

the streams formed by the elements in the odd and even positions, respectively,

and zip interleaves two streams. For example, odd(1 2 3 4 5 6 7 8 9 ...)

is 1 3 5 7 9 ..., while even(1 2 3 4 5 6 7 8 9 ...) is 2 4 6 8 ..., and

zip(1 3 5 7 9 ..., 2 4 6 8 ...) is 1 2 3 4 5 6 7 8 9

Notice that all operations are behavioral, because they preserve the intended

behavioral equivalence, which is \two streams are equivalent i� they have the

same elements in the same order." However, given a model, there are at least

two interesting ways to generate this behavioral equivalence on that model. One

uses observations (or contexts) built with head and tail, and the other uses

observations built with head, odd and even. For example, both

head(tail(tail(tail(tail(S)))))

head(even(odd(odd(S))))

\observe" the �fth element of S, while the term

head(even(even(odd(even(odd(S))))))

\observes" the 27th element:

S = a

1

a

2

a

3

a

4

a

5

a

6

a

7

a

8

a

9

� � �

odd(S) = a

1

a

3

a

5

a

7

a

9

a

11

a

13

a

15

� � �

even(odd(S)) = a

3

a

7

a

11

a

15

a

19

a

23

a

27

a

31

� � �

odd(even(odd(S))) = a

3

a

11

a

19

a

27

a

35

a

43

a

51

a

59

� � �

even(odd(even(odd(S)))) = a

11

a

27

a

43

a

59

� � �

even(even(odd(even(odd(S))))) = a

27

a

59

� � �

head(even(even(odd(even(odd(S))))))= a

27

There are reasons to consider the second cobasis better than the �rst. For

example, a stream's elements can be reached more quickly (e.g., the 27th element

can be observed in 6 steps instead of 27), so that less computation is needed for

testing. Also properties like zip(odd(S),even(S)) = S have much easier proofs

with fhead, odd, eveng-coinduction, but seem impossible using fhead,tailg

as observers without circular �-coinduction. Section 5 shows that indeed � =

fhead,tailg and �

0

= fhead,odd,eveng are both valid cobases.

11

Adding circular �-coinduction to �-coinduction and the �ve rules adapted

from equational reasoning yields an inference system for behavioral properties

which allows us to prove everything we know so far, but of course there is no

guarantee that new inference rules will not be needed for more exotic examples.

In fact, our experience so far with behavioral deduction leads us to the following,

which again parallels the situation for ordinary induction, and means that no

�nite set of rules can be fully adequate:

Conjecture 1 Behavioral equational logic is incomplete.

4 Circular Coinduction

Let B = (�;�;E) be a behavioral speci�cation that is �xed within this section,

and let � be a complete set of observers, i.e., a cobasis in the sense of Proposition

5 and Theorem 7. To simplify notation, we consider all equations to be quanti�ed

by exactly the variables that occur in their two terms, and omit them whenever

possible; also write t � t

0

instead of B j� (8X) t = t

0

.

De�nition 10. Substitutions �

1

; �

2

: X ! T

�

(Y) are behaviorally equiva-

lent, written �

1

� �

2

, i� �

1

(x) � �

2

(x) for every x 2 X . Terms t

1

and t

2

are

strongly behaviorally equivalent, written t

1

�

� t

2

, i� for any B-algebra A

and any �

1

; �

2

: X ! A with �

1

(x) �

�

�

�

2

(x) for each x 2 X , �

1

(t

1

) �

�

�

�

2

(t

2

).

Notice that

�

� is symmetric and transitive but may not be re
exive, since, for

example, terms of the form �(x

1

; :::; x

n

) are not strongly equivalent to any term

if � is not congruent.

Proposition 11. The following assertions hold:

1. t

1

�

� t

2

implies t

1

� t

2

;

2. t

�

� u i� t � u, whenever u is a � -term

7

;

3. t

1

�

� t

2

i�
[t

1

]

�

�
[t

2

] for all appropriate visible � -contexts
;

4. t

1

�

� t

2

and �

1

� �

2

imply �

1

(t

1

)

�

� �

2

(t

2

);

5. � is congruent i� �(x

1

; :::; x

n

)

�

� �(x

1

; :::; x

n

).

For the rest of the section, we assume some well-founded partial order < on

� -contexts which is preserved by the operations in � . For example, one such

order is the depth of contexts.

De�nition 12. Terms t

1

and t

2

are �

	

-coinductively equivalent, written

t

1

�

	

�

t

2

, i� for each appropriate � 2 �, either �[t

1

] � �[t

2

] � u for some � -term

u, or �[t

1

] � �

1

(c[t

1

]) and �[t

2

] � �

2

(c[t

2

]) for some �

1

� �

2

and c < �.

Theorem13. t

1

�

	

�

t

2

implies t

1

�

� t

2

.

7

We write \� -terms" for simplicity, but all results hold for terms built with congruent

operations.

12

Proof. We �rst show by well-founded induction that for every appropriate visible

context
,
[t

1

]

�

�
[t

2

]. Let
 be any visible context and assume that

0

[t

1

]

�

�

0

[t

2

] for all visible contexts

0

<
. Since � is a complete set of observers, there

is some context

00

such that
 =

00

[�] for some � 2 �. If there is some � -term

u such that �[t

1

] � �[t

2

] � u then
[t

1

] �
[t

2

] �

00

[u] and

00

[u] is a � -term, so

by 2 of Proposition 11,
[t

1

]

�

�
[t

2

]. On the other hand, if �[t

1

] � �

1

(c[t

1

]) and

�[t

2

] � �

2

(c[t

2

]) for some �

1

� �

2

and c < �, then since the variables appearing

in contexts are assumed to be always di�erent from the other variables, one

gets that
[t

1

] = �

1

(

00

[c[t

1

]]) and
[t

2

] = �

2

(

00

[c[t

2

]]), and so by the induction

hypothesis for

0

=

00

[c] <

00

[�] =
 and 4 of Proposition 11,
[t

1

]

�

�
[t

2

]. The

rest follows by 3 of Proposition 11.

Therefore, the following inference rule is sound for behavioral satisfaction:

(7) �

	

-Coinduction :

t

1

�

	

�

t

2

(8X) t

1

= t

2

The following congruence criterion, which we will call the BH criterion, is the

essence of that in [2]:

Corollary 14. Given a complete set � of observers and given � 2 � such

that for each � 2 �, either �[�(x

1

; :::; x

n

)] � u for some � -term u, or else

�[�(x

1

; :::; x

n

)] = c[�(t

1

; :::; t

n

)] for some � -terms t

1

; :::; t

n

and c < �, then � is

congruent.

Proof. Theorem 13 with t

1

= t

2

= �(x

1

; :::; x

n

) and �

1

= �

2

= � with �(x

i

) = t

i

for all 1 � i � n, gives �(x

1

; :::; x

n

)

�

� �(x

1

; :::; x

n

). Then 5 of Proposition 11

gives congruence of �.

The following simpler but common congruence criterion, which we here call

the RG criterion, was presented in [16] together with the suggestion that it

could be easily implemented in a system like CafeOBJ:

Corollary 15. Given an operation � 2 � such that for each � 2 � , if the

equation �[�(x

1

; :::; x

n

)] = u for some � -term u is in E, then � is congruent.

Proof. This is the special case of the BH criterion where � = � and there is no

circularity (i.e., recurrence) in the de�nition of �.

5 Further Examples

Section 3 argued that �-coinduction plus equational reasoning cannot prove

rev(rev(S)) = S for the REV speci�cation. We now show that �

	

-coinduction

is adequate for this problem. First notice that � = fhead,tailg is a coba-

sis for REV. It is easy to show that head(rev(rev(S))) � head(S) and that

tail(rev(rev(S))) � rev(rev(tail(S))). Then from De�nition 12, where

for � = tail one takes c = ? (the trivial context) and �

1

(S) = �

2

(S) = tail(S),

13

we get that rev(rev(S))�

	

�

S, and so Theorem 13 and 1 in Proposition 11 give

rev(rev(S)) = S.

We now consider a number of properties of the STREAM speci�cation of Section

3. First, we show that � = fhead,tailg really is a cobasis for STREAM. Notice

that & is congruent by the RG criterion, that even and zip are congruent by

the BH criterion, but that the congruence of odd does not follow by the BH

criterion as formulated in [2], because a di�erent non-observational operation is

used in the right hand term, namely even; however its congruence does follow

from Corollary 14 with the remark that there is no distinction between � -terms

and \terms built with congruent operations" (see footnote 7).

The equalities of visible sort Nat in the list below are easy, and are left as

exercises; similarly, when proving behavioral equalities t � t' by fhead, tailg-

coinduction, the interesting subtask is tail(t) � tail(t'), and the other

subtask is skipped. Since all operations are behavioral, equational reasoning

is sound.

{ head(tail(S))� head(even(S)).

{ odd(tail(S)) � even(S). We use fhead,tailg-coinduction. By equation

4, tail(odd(tail(S)))� even(tail(tail(S))); by 6, tail(even(S)) �

even(tail(tail(S))); therefore tail(odd(tail(S)))� tail(even(S)).

{ even(tail(S)� tail(odd(S)). By equation 4.

{ head(N & S) � N.

{ odd(N & S) � N & even(S). We use fhead,tailg-coinduction. By equa-

tions 4 and 2, tail(odd(N & S)) � even(S); by 2, tail(N & even(S)) �

even(S); therefore tail(odd(N & S)) � tail(N & even(S)).

{ even(N & S) � odd(S). We use fhead,tailg-coinduction. It follows from

equations 6, 2, and 4 that tail(even(N & S)) � tail(odd(S)).

{ head(zip(S,S'))� head(S).

{ even(zip(S,S'))� S'. By equations 6 and 8, tail(even(zip(S,S')))�

even(zip(tail(S),tail(S'))). Now we use fhead,tailg

	

-coinduction.

De�nition 12 where for � = tail one takes c = ? (the trivial context) and

�

1

(S) = �

2

(S) = tail(S), gives even(zip(S,S'))�

	

�

S', so by Theorem 13

and 1 of Proposition 11, even(zip(S,S'))� S'.

{ odd(zip(S,S'))� S. We use fhead,tailg-coinduction. By equations 4 and

8 and the previous behavioral equality, tail(odd(zip(S,S')))� tail(S').

Therefore the congruence criterion (Corollary 14) and Theorem 9 give that �

0

=

fhead,odd,eveng is another cobasis for STREAM, and actually, we can prove that

STREAM is equivalent to the following speci�cation, since every equation of STREAM

can be proved in STREAM' equationally and/or by fhead,odd,eveng-coinduction.

bth STREAM' is protecting NAT

sort Stream

op head : Stream -> Bool

op tail : Stream -> Stream

op _&_ : Nat Stream -> Stream

op odd : Stream -> Stream

14

op even : Stream -> Stream

op zip : Stream Stream -> Stream

var N : Nat var S S' : Stream

eq head(tail(S)) = head(even(S)) *** 1

eq odd(tail(S)) = even(S) *** 2

eq even(tail(S)) = tail(odd(S)) *** 3

eq head(N & S) = B *** 4

eq odd(N & S) = N & even(S) *** 5

eq even(N & S) = odd(S) *** 6

eq head(zip(S,S')) = head(S) *** 7

eq odd(zip(S,S')) = S *** 8

eq even(zip(S,S')) = S' *** 9

end

The behavioral equality

zip(odd(S),even(S))� S

follows easily by fhead,odd,eveng-coinduction, but it cannot be proved by

fhead,tailg-coinduction plus equational reasoning, because of the in�nite chain

of subtasks that is created,

zip(odd(tail(S)),even(tail(S)))� tail(S)

zip(odd(tail(tail(S))),even(tail(tail(S))))� tail(tail(S))

.........

However, this equality can be proved by fhead, tailg

	

-coinduction, taking

c = ? (the trivial context) and �

1

(S) = �

2

(S) = tail(S).

References

1. Gilles Bernot, Michael Bidoit, and Teodor Knapik. Observational speci�cations

and the indistinguishability assumption. Theoretical Computer Science, 139(1-

2):275{314, 1995. Submitted 1992.

2. Michael Bidoit and Rolf Hennicker. Observer complete de�nitions are be-

haviourally coherent. Technical Report LSV-99-4, Ecole Normale Superior de

Cachan, 1999.

3. R�azvan Diaconescu. Behavioural coherence in object-oriented algebraic speci�ca-

tion. Technical Report IS{RR{98{0017F, Japan Advanced Institute for Science

and Technology, June 1998. Submitted for publication.

4. R�azvan Diaconescu and Kokichi Futatsugi. CafeOBJ Report: The Language, Proof

Techniques, and Methodologies for Object-Oriented Algebraic Speci�cation. World

Scienti�c, 1998. AMAST Series in Computing, Volume 6.

5. Joseph Goguen. Types as theories. In George Michael Reed, Andrew William

Roscoe, and Ralph F. Wachter, editors, Topology and Category Theory in Com-

puter Science, pages 357{390. Oxford, 1991. Proceedings of a Conference held at

Oxford, June 1989.

6. Joseph Goguen. An introduction to algebraic semiotics, with applications to user

interface design. In Chrystopher Nehaniv, editor, Computation for Metaphors,

Analogy and Agents, pages 242{291. Springer, 1999. Lecture Notes in Arti�cial

Intelligence, Volume 1562.

15

7. Joseph Goguen and Rod Burstall. Institutions: Abstract model theory for speci-

�cation and programming. Journal of the Association for Computing Machinery,

39(1):95{146, January 1992.

8. Joseph Goguen and Grant Malcolm. A hidden agenda. Technical Report CS97{

538, UCSD, Dept. Computer Science & Eng., May 1997. To appear in special issue

of Theoretical Computer Science on Algebraic Engineering, edited by Chrystopher

Nehaniv and Masamo Ito. Extended abstract in Proc., Conf. Intelligent Systems:

A Semiotic Perspective, Vol. I, ed. J. Albus, A. Meystel and R. Quintero, Nat. Inst.

Science & Technology (Gaithersberg MD, 20{23 October 1996), pages 159{167.

9. Joseph Goguen and Grigore Ro�su. Hiding more of hidden algebra. In Jeannette

Wing, Jim Woodcock, and Jim Davies, editors, FM'99 { Formal Methods, pages

1704{1719. Springer, 1999. Lecture Notes in Computer Sciences, Volume 1709,

Proceedings of World Congress on Formal Methods, Toulouse, France.

10. Joseph Goguen and Grigore Ro�su. A protocol for distributed cooperative work.

In Proceedings, Workshop on Distributed Systems, 1999. Springer, to appear 1999.

(Ia�si, Romania) Electronic Lecture Notes in Computer Science, Volume 28.

11. Joseph Goguen, Timothy Winkler, Jos�e Meseguer, Kokichi Futatsugi, and Jean-

Pierre Jouannaud. Introducing OBJ. In Joseph Goguen and Grant Malcolm,

editors, Software Engineering with OBJ: Algebraic Speci�cation in Action. Kluwer,

to appear. Also Technical Report SRI-CSL-88-9, August 1988, SRI International.

12. Rolf Hennicker and Michel Bidoit. Observational logic. In Algebraic Methodology

and Software Technology (AMAST'98), volume 1548 of Lecture Notes in Computer

Science, pages 263{277. Springer, 1999.

13. Shusaku Iida, Michihiro Matsumoto, R�azvan Diaconescu, Kokichi Futatsugi, and

Dorel Lucanu. Concurrent object composition in CafeOBJ. Technical Report IS{

RR{96{0024S, Japan Advanced Institute for Science and Technology, 1997.

14. Peter Padawitz. Swinging types = functions + relations + transition systems,

1999. http://issan.informatik.uni-dortmund.de/~peter. Submitted to Theo-

retical Computer Science.

15. Grigore Ro�su. Behavioral coinductive rewriting. In Kokichi Futatsugi, Joseph

Goguen, and Jos�e Meseguer, editors, OBJ/CafeOBJ/Maude at Formal Methods

'99, pages 179{196. Theta (Bucharest), 1999. Proceedings of a workshop held in

Toulouse, France, 20 and 22 September 1999.

16. Grigore Ro�su and Joseph Goguen. Hidden congruent deduction. In Ricardo Ca-

ferra and Gernot Salzer, editors, Proceedings, 1998 Workshop on First Order The-

orem Proving, pages 213{223. Technische Universit�at Wien, 1998. (Schloss Wil-

helminenberg, Vienna, November 23-25, 1998). Full version to appear in Lecture

Notes in Arti�cial Intelligence, Springer, 1999.

This article was processed using the L

A

T

E

X macro package with LLNCS style

