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Network Analysis Guided Synthesis of Weisaconitine D and 
Liljestrandinine
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Qin2, R. Lilien2, and R. Sarpong1,*

1Department of Chemistry. University of California, Berkeley, CA 94720, United States

2Cadre Research Labs, Chicago, IL 60654, United States

Abstract

General strategies for the chemical synthesis of organic compounds, especially of architecturally 

complex natural products, are not easily identified. Here, we present a method to establish a 

strategy for such syntheses, which begins with a process termed ‘network analysis’. This exercise, 

along with other considerations, has been used to identify a versatile synthetic intermediate that 

facilitated syntheses of the diterpenoid alkaloids weisaconitine D and liljestrandinine, as well as 

the core of gomandonine. The diterpenoid alkaloids comprise some of the most architecturally 

complex and functional group dense secondary metabolites ever isolated. For these reasons, they 

present a significant challenge for chemical synthesis. The synthesis approach described herein is 

a notable departure from other strategies adopted for the syntheses of related structures and affords 

not only the targeted natural products, but also intermediates and derivatives in the three 

subfamilies of diterpenoid alkaloids (i.e., C-18, C-19, and C-20), providing the first unified 
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synthetic strategy to these natural products. This work validates the utility of network analysis as a 

starting point for identifying strategies for the syntheses of architecturally complex secondary 

metabolites. An easily accessible web-based graphing program has been developed for this 

purpose.

Introduction

Chemical synthesis remains a cornerstone of the enterprise of preparing small molecule 

active pharmaceutical ingredients (APIs).1,2,3,4 Advances in the field of chemical synthesis 

continue to be benchmarked by the methods and strategies for the preparation of complex 

natural products, which, more effectively than any other exercise, expose challenges that still 

exist in the field.5,6 Over the last half century, natural product synthesis has continued to be 

driven by three general motivations: 1) to achieve the practical synthesis of highly complex 

structures for which a synthesis plan is not readily apparent, 2) to highlight the power, as 

well as identify the scope and limitations of a newly developed synthesis method, and 3) to 

facilitate exploration of biological function of the synthetically prepared molecules (and 

their derivatives). While the latter two motivations have received considerable attention 

(especially over the last two decades), the former motivation, which has historically served 

to advance the field, has waned as the notion that any desired molecule can be prepared 

given enough resources and time, has prevailed.7,8,9 Yet, efficient, and versatile syntheses of 

many complex molecules still have not been realized. This is especially true for molecules 

that feature polycyclic, highly caged, frameworks for which effective strategic solutions are 

not immediately obvious. For these architecturally complex skeletons (e.g., aconitine, 1, 

Figure 1A), the biosynthetic transformations that lead to these secondary metabolites in 

Nature are often not fully vetted, are low yielding, or cannot be efficiently reproduced in the 

laboratory.10,11 Therefore, de novo strategic approaches for their chemical syntheses are 

required.12

Here, we demonstrate that for a subset of topologically complex and functional group dense 

secondary metabolites in the diterpenoid alkaloid family (representative of the aconitine 

type; >700 members), the serial application of a concept termed ‘network analysis’ at the 

initial stages of synthetic planning has unveiled a unified strategy for their synthesis. This 

type of analysis has proved unexpectedly enabling by identifying a strategy that is a notable 

departure from previously established synthesis strategies for related alkaloids. The network 

analysis approach, first introduced by Corey in 1975,13 involves ‘strategic bond 

disconnections’ of bridged polycycles. Despite the emergence of other philosophies, 

guidelines, and methods for synthesis in the interim four decades, network analysis remains 

immutable. Total syntheses of weisaconitine D (2; a C-18 alkaloid) and liljestrandinine (3; 

C-19), as well as the preparation of the skeleton of natural products in the denudatine family 

(e.g., gomandonine, 4; C-20) reported herein illustrate the power of this type of analysis.

Beyond their imposing architectures, the diterpenoid alkaloids (including weisaconitine D 

and liljestrandinine) have also gained in prominence as small molecule ligands for voltage-

gated Na+ and K+ ion channels.14 In some cases, these small molecules may be isoform 

specific in their interactions with ion channels (presumably binding at the aconitine binding 
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site) and therefore hold potential as the basis for novel therapeutics to address myriad 

channelopathies.15,16 For example, the Na+ channel blocker lappaconitine (allapinin®; 5) is 

already administered as a non-narcotic analgesic drug.17 However, to better identify the 

salient features of these molecules that lead to desirable medicinal properties, versatile de 

novo syntheses are required as they facilitate the synthesis of analogs featuring deep-seated 

skeletal changes that may not be otherwise efficiently accessed (e.g., by a biomimetic 

pathway or semi-synthesis).

Results and Discussion

Network analysis as a starting point in retrosynthesis

The application of network analysis to the diterpenoid alkaloids is illustrated in our 

retrosynthesis of the C-18 diterpenoid alkaloid weisaconitine D (Figure 1B). At the heart of 

this analysis is to minimize, in the retrosynthetic direction, the number of bridged rings, 

which, in addition to the density of stereochemically disposed functional groups, heightens 

the complexity of these molecules. Targeting the maximally bridged ring (highlighted in red 

for perspective IV of 2; see box in Figure 1B) possessing five bridgehead atoms (highlighted 

in purple), for disconnection leads back to 6, where in the forward sense, a bicyclization/

cycloaddition could be applied to forge the bicyclo[3.2.1]framework. In turn, identification 

of the piperidine ring in 6 as the maximally bridged ring for this compound triggered a 

retrosynthetic simplification by disconnection of the C19–N bond (see B for atom 

numbering) leading back to a bicycle that could be derived from 7. Bicycle 7 was anticipated 

to be available from diene 8 and dienophile 9 using a Diels–Alder cycloaddition. Of note, 

while alternative Diels-Alder cycloadditions (compare C, D and E in Figure 1C) have been 

deployed in related elegant total syntheses,18,20,21 the serial application of network analysis, 

along with other considerations, led us to an alternative bond construction. Dehydro-

hydrindane 7 possesses a variety of strategic synthetic handles that facilitate divergence in 

the synthetic scheme.

Similar retrosynthetic analyses can be proffered for the C-19 diterpenoid alkaloid 

liljestrandinine and for the C-20 alkaloid gomandonine (see the Supporting Information, SI, 

for more details). However, in these cases, the C4 bridgehead carbon would need to be 

quaternized, and 7 is suited for this purpose. From our analysis, 7 may also be employed in 

the syntheses of other diterpenoid alkaloids of the hetidine, hetisine, denudatine, and 

aconitine type (>900 members). Prior reported syntheses of diterpenoid alkaloids have 

mainly focused on specific targets (e.g., creative syntheses by Fukuyama,18 Baran,19 Gin,20 

and Wiesner),21 whereas our synthetic plan targets the range of C-18, C-19 and C-20 

diterpenoid alkaloids.

Syntheses of weisaconitine D and liljestrandinine

Our synthesis of weisaconitine D (Figure 2A) commenced with the cycloaddition of known 

diene 822 and cyclopentenone derivative 9,23 yielding a cycloadduct that upon hydrogenation 

gives bicyclic ketone 10 (70%; 2 steps). Vinyl triflate formation and Pd(0)-catalyzed cross-

coupling with cyanide24 yields α,β-unsaturated nitrile 7 (70%; 2 steps), which served as a 

substrate for a Rh-catalyzed conjugate addition with in situ generated lithium boronate 11, to 
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afford 12 in 60% yield. This conjugate addition step, which required careful optimization, 

provides a modular way to introduce the guaiacol derivative with high diastereocontrol and 

sets the stage to access various oxidation patterns on the C/D bicycle of the diterpenoid 

alkaloids by using other differently substituted arenes. Selective reduction of the ester group 

of 12 (in the presence of the cyano group) with Red-Al25 and reoxidation of the resulting 

alcohol group to the aldehyde using the Dess-Martin periodinane reagent gives 13. At this 

stage, Wittig olefination of the aldehyde group and hydration of the nitrile group using the 

conditions of Chang26 provides carboxamide 14. Hofmann rearrangement of the amide 

group and attendant trapping of the intermediate isocyanate with methanol, followed by 

fluoride-mediated cleavage of the TBS group gives 15. Activation of the primary hydroxyl 

as the mesylate and exposure to KOtBu effects alkylation to forge the C19–N bond and 

fashion the piperidine ring of 16 to complete the AEF rings (see A, Figure 1B, for ring 

labeling) of the C-18 diterpenoid alkaloids. In preparation for the installation of the BCD 

rings, the MOM group of 16 was removed and the resulting phenol subjected to oxidative 

dearomatization27 to afford 17. Dienone 17 smoothly undergoes intramolecular Diels–Alder 

cycloaddition upon heating to 150 °C to provide 18, which is the core framework of the 

C-20 denudatine type diterpenoid alkaloids (e.g., gomandonine, 4), bearing a bicyclo[2.2.2] 

moiety. The structure of this polycycle was secured by X-ray crystallographic analysis of 

benzoylated derivative 24 (Figure 2B). In preparation for the transformation of the 

bicyclo[2.2.2] structural motif to the bicyclo[3.2.1] framework characteristic of the 

aconitine-type C-18 and C-19 alkaloids, the carbonyl group of 18 was reduced 

stereoselectively (presumably steered away from torsional strain with the β-disposed 

methoxy group of the dimethylketal), and the ketal hydrolyzed to unveil α-ketol 19. 

Protection (MOM) of the secondary hydroxyl of 19 and diastereoselective reduction of the 

ketone group provides alcohol 20. At this juncture, in preparation for a Wagner-Meerwein 

type rearrangement in accordance with the precedent of Wiesner21 and Wang,28 the alcohol 

group of 20 was activated by triflation and upon subjection of the triflate to DBU and 

DMSO, hexacycle 21 was isolated in 55% yield over the two steps. In principle, while two 

isomeric allylic alcohols could result from the Wagner-Meerwein rearrangement, 21 is 

computed to be the more stable of the two (by 8.7 kcal/mol (gas phase) and 8.4 kcal/mol 

(DMSO) using DFT/M06-L/6-311G(d,p); see the SI for more details) presumably because it 

does not possess a strained bridgehead double bond. Several tactics were then explored to 

achieve a formal hydro-methoxylation of the C15–C16 double bond. These included the use 

of methanol in the presence of various protic and π-acids to activate the double bond,29 

hydroboration (both inter and intramolecular – directed by the secondary hydroxyl at C14 of 

21 following MOM cleavage),30 and variants of the hydration method of Mukaiyama31 and 

Isayama.32 In the end, the successful route to install the requisite methoxy group at C16 of 

21 required the use of an epoxide intermediate. Thus, hydroxyl-directed epoxidation of the 

C15–C16 olefin group of 21 from the β-face using m-CPBA (see CYLview of 25, Figure 

2B) and ethylation of the tertiary hydroxyl yielded 22 (76% over 2 steps). Regioselective 

reductive opening of the epoxide using the conditions of Cuerva and Oltra33 gave a β-

disposed secondary alcohol group that was methylated to furnish 23 (66% over 2 steps). 

With the oxygenation of the D-ring of weisaconitine D secured, all that remained was to 

install the ethyl group on the piperidine nitrogen and to remove the MOM group to complete 

the synthesis. These tasks were accomplished in three steps entailing removal of the 
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methoxycarbonyl (MOC) group of 23 (using KOH), acylation of the resulting secondary 

amine group (using Ac2O), reduction of the acetamide (using LiAlH4) and finally treatment 

with acid (in the same pot) to remove the MOM group. The total synthesis of weisaconitine 

D was achieved in 29 total steps from diene 8 and dienophile 9.

One key challenge that remains unmet in the previous syntheses of C-18, C-19, and C-20 

diterpenoid alkaloids is how to achieve modular functionalization of the C4 position of the 

shared carbon framework. Here, we demonstrate that alcohol 15, a derivative of hydrindene 

7, can be utilized in the synthesis of the C-19 diterpenoid alkaloid liljestrandinine, which 

possesses a methoxymethylene group at C4 (Figure 3A). The primary hydroxyl of 15 was 

first oxidized using Swern conditions to the corresponding aldehyde (not shown). Various 

attempts to alkylate the aldehyde enolate (as well as the enolates of related 6,5-bicycles) 

proved unfruitful and resulted in either non-specific decomposition or the addition of the 

electrophile from the undesired α-face (presumably due to developing syn-pentane 

interactions of the electrophile with the angular vinyl group). Ultimately, it was found that 

an aldol-Cannizzaro sequence on the intermediate aldehyde, effected using KOH and 

formaldehyde, furnishes a geminal bis-methylene diol which was functionalized as the bis-

mesylate (see 27), where the C4 stereocenter is ablated. At this stage, in accord with the 

precedent of Wiesner,34 alkylation of the carbamate nitrogen was accomplished with KOtBu 

to forge the piperidine ring and reconstitute the C4 stereocenter (see 27). Displacement of 

the remaining mesylate group with methoxide, reinstallation of the nitrogen protecting MOC 

group (which is partially cleaved during the methoxide displacement) and removal of the 

MOM group provides 28. Phenol 28 was advanced to an intermediate analogous to 21 (8 

steps) and then to liljestrandinine using a sequence analogous to that described for 23 → 2 
(3 steps; see the SI for details). Overall, the synthesis of liljestrandinine proceeds in 29 steps 

from diene 8 and dienophile 9.

An enantioselective Diels-Alder cycloaddition

The chemical syntheses of weisaconitine D and liljestrandinine described here rely on 

subsequent diastereoselective installation of all stereocenters from the four contiguous 

stereocenters that are introduced in the Diels–Alder reaction between diene 8 and dienophile 

9. As such, a catalytic, enantioselective, Diels–Alder cycloaddition would enable 

enantioselective access to the natural products. In this regard, initial attempts to render the 

cycloaddition between 8 and 9 enantioselective with the aid of chiral, non-racemic, Lewis 

acid catalysts (e.g., using the method of Mezzetti)35,36 resulted in low enantioselectivity and 

non-specific decomposition (primarily of diene 8 under the acidic conditions). Ultimately, 

success was attained using 2937 (for which we have developed a new, scalable, synthesis; see 

the SI) as a dienophile. This dienophile has enhanced reactivity because of an added 

intramolecular H-bond,38 as well as a more highly organized transition state (see 30 for a 

model) that places the enantio-discriminating substituents (e.g., the t-butyl group of the bis-

oxazoline ligand) proximal to the reacting dienophile double bond. In the event, a 68% yield 

of cycloadduct 31 (92% ee; >20:1 d.r.; see CYLview) was obtained using the conditions 

described in Figure 3B. Furthermore, 31 is easily converted to 32, which intercepts the 

racemic syntheses described in Figures 2 and 3A.
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A web-based network analysis program

Finally, our iterative application of Corey’s network analysis approach to initiating a strategy 

for the syntheses of weisaconitine D and liljestrandinine has inspired us to develop general 

ways to conduct such analyses. Past implementations of network analysis in retrosynthesis, 

especially in the identification of the maximally bridged ring, have been carried out in a 

probabilistic manner, which invariably heightens the risk of errors.39,40 To overcome this 

shortcoming, we have developed a web-based deterministic graphing program that permits 

the identification of the maximally bridged ring (or rings) for any molecule using the 

Chemistry Development Kit (CDK) software library41,42 (see Figure 4A for the output of a 

test set; see the SI for more details). The algorithm we have developed for this purpose is 

guaranteed to identify the maximally bridged ring each time it is run. The program allows 

control of several criteria (e.g., the number of atoms that comprise the maximally bridged 

ring or that span bridging atoms in the maximally bridged ring). The program outputs the 

maximally bridged ring or in the case of ties (e.g., for nominine and arcutinidine in Figure 

4A), all maximally bridged rings.

While many considerations are taken into account in retrosynthetic analyses of topologically 

complex molecules, the role of network analysis can often unlock novel strategic 

disconnections. For example, consider the denudatine core (Figure 4B), which contains three 

rings that each possesses four bridgehead atoms. By focusing on these rings for 

disconnection, maximum retrosynthetic simplification (i.e., removal of bridging chains and 

fused rings) is achieved in the least amount of steps with our approach (see F). A 

retrosynthetic analysis of the aconite framework, informed by network analysis (Figure 4C) 

suggests that disconnections represented by I would provide maximum simplification. These 

latter strategic disconnections, which guided our approach to the syntheses of weisaconitine 

D and liljestrandinine, also indicate that a direct bicyclization to construct the bicyclo[3.2.1] 

moiety would provide the maximum benefit. Efforts to achieve this type of bicyclization are 

the subject of our ongoing studies. The creation of this web-based program should further 

facilitate the use of network analysis in developing retrosyntheses of other architecturally 

complex molecules and enable the identification of an efficient path to their syntheses.

Conclusion

In sum, our preparation of the denudatine core and total syntheses of weisaconitine D and 

liljestrandinine presented herein reaffirm the utility of complex molecule synthesis as a 

driver for the implementation of chemical synthesis strategies that advance the field. Our 

approach offers a plan for the synthesis of a subset of C-18 and C-19 diterpenoid alkaloids 

and sets the stage to access related secondary metabolites including those in the C-20 family. 

The web-based deterministic graphing program developed to analyze these topologically 

complex molecules, which builds on the work of Corey, should find utility beyond this initial 

intent and may prove valuable in the analysis and synthesis of other architecturally 

challenging molecules (http://www.cadrerl.com/maxbridge).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Molecules references in this work and design strategy
Figure 1A: Selected C-18, C-19, and C-20 aconitine type and denudatine type diterpenoid 

alkaloids. Figure 1B: Perspective drawings of weisaconitine D (in box), retrosynthetic 

analysis highlighting maximally bridging rings (in red) and the corresponding bridgehead 

atoms (in purple) as well as the labeling of rings and atom numbering for the aconitine-type 

skeleton (in box). Figure 1C: Highlighted bonds that are forged in three different Diels-

Alder approaches to the A ring of diterpenoid alkaloids.
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Figure 2. 
Figure 2A: Reaction sequence for the total synthesis of weisaconitine D. Reagents and 

conditions: 1. 9 (1.0 equiv.), 8 (2.0 equiv.), toluene, 110 °C, 64 h. 2. Pd/C (10 wt%), H2 gas 

(1 atm), EtOAc, room temperature (r.t.), 3 h, 70% over two steps. 3. LiHMDS (1.3 equiv.), 

PhNTf2 (1.4 equiv.), THF, −78 °C to r.t., 12 h. 4. NaCN (2.2 equiv.), Pd(PPh3)4 (0.06 

equiv.), CuI (0.12 equiv.), MeCN, reflux, 2 h, 70% over two steps. 5. Lithium boronate 11 
(3.0 equiv.), [RhCOD(OH)]2 (0.05 equiv.), dioxane/water, 16 h, 60%. 6. Red-Al® (10 

equiv.), CH2Cl2, −78 °C to r.t., 1 h, 82%. 7. Dess-Martin periodinane (2.0 equiv.), NaHCO3 

(5.0 equiv.), CH2Cl2, 0 °C, 1.5 h, 91%. 8. PPh3MeBr (3.0 equiv.), LiHMDS (2.5 equiv.), 

THF, 0 °C to r.t., 1 h, 94%. 9. RhCl(PPh3)3 (0.3 equiv.), CH3CHNOH/PhMe, reflux, 15 h, 

81%. 10. KOH (3.4 equiv.), Phenyliodonium diacetate (1.3 equiv.), MeOH, 0 °C to r.t., 3 h. 

11. TBAF (3.0 equiv.), THF, r.t., 5 h, 96% over 2 steps. 12. MsCl (1.5 equiv.), CH2Cl2/Et3N, 

0 °C, 3 h, 96%. 13. KOtBu (3.0 equiv.), THF, 0 °C to r.t., 2 h, 76%. 14. 2N HCl/iPrOH, 0 °C 

to r.t., 3.5 h, 99%. 15. Phenyliodonium diacetate (1.5 equiv.), NaHCO3 (5.0 equiv.), MeOH, 
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0 °C, 1 h, 99%. 16. p-xylene, 150 °C, 17.5 h, 77%. 17. NaBH4 (3.0 equiv.), MeOH, 0 °C to 

r.t., 3 h. 18. CHCl3/TFA/water, 4 °C, 2 h, 99% over 2 steps. 19. MOMCl (4.9 equiv.), DIPEA 

(10 equiv.), 4 °C to r.t., 16 h, 92%. 20. NaBH4 (3.3 equiv.), MeOH, 4 °C, 2 h, 95%. 21. Tf2O 

(10 equiv.), pyridine, CH2Cl2, −78 °C to r.t., 16 h. 22. DBU (3.3 equiv.), DMSO, 120 °C, 1 

h, 55% over 2 steps. 23. mCPBA (5.2 equiv.), CH2Cl2, 0 °C to r.t., 16 h, 83%. 24. NaH (15 

equiv.), EtI (15 equiv.), THF, 40 °C, 16 h, 95%. 25. Cp2TiCl2 (2.2 equiv.), Mn (7.6 equiv.), 

H2O (38 equiv.), THF, r.t., 16 h. 26. NaH (12 equiv.), Me2SO4 (7 equiv.), THF, 60 °C, 2 h, 

66% over 2 steps. 27. 4M KOH, ethylene glycol, 100 °C, 120 h. 28. Ac2O (9.4 equiv.), 

pyridine (28 equiv.), CH2Cl2, 0 °C to r.t., 16 h. 29. LAH (10 equiv.), Et2O, 40 °C, 2 h; 2N 

HCl, THF, 16 h, 54% over 3 steps.

Figure 2B: CYLview images of various intermediates (24, 25) and of derivatized 
weisaconitine D (26). Most hydrogens (except stereocenters) have been removed for clarity.
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Figure 3. 
Figure 3A: Reaction sequence for the synthesis of liljestrandinine. Reagents and 

conditions: 1. Oxalyl chloride (2. 9 equiv.), DMSO (6.2 equiv.), Et3N (12 equiv.), CH2Cl2, 

−78 °C to r.t., 1 h, 95%. 2. Formaldehyde (21 equiv.), 2N KOH, MeOH, r.t., 15 h, 96%. 3. 
MsCl (3.5 equiv.), pyridine, 0 °C to r.t., 2 h, 78%. 4. KOtBu (5 equiv.), THF, 50 °C, 4 h. 5. 
0.5M NaOMe in MeOH, 120 °C, 24 h. 6. Methyl chloroformate (20 equiv.), K2CO3 (40 

equiv.), acetone, reflux, 20 h; 2N HCl, isopropanol, r.t., 4.5 h, 26% yield over 3 steps.

Figure 3B: Enantioselective Diels–Alder cycloaddition approach employing dienophile 29.
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Figure 4. 
Figure 4A: Selected molecules of a test set analyzed using the newly developed 
graphing program to detect the maximally bridging ring. The program output is a pdb 

image in gray. The maximally bridging ring is indicated by a combination of gray and purple 

spheres. The purple spheres represent bridgehead atoms in the maximally bridging ring and 

the gray spheres represent other atoms in the maximally bridging ring. ChemDraw 

renditions of the graphing program output are provided for longifolene and liljestrandinine. 

For an extensive test set, see the SI. 3D views of the output of the test set are located at 

http://www.cadrerl.com/ring/. To use the program go to http://www.cadrerl.com/maxbridge. 

Figure 4B: ChemDraw renditions of the program output. Conducted for the denudatine 

core and other key retrosynthetic disconnections applied in this work and in Ref. 18. Figure 
4C: ChemDraw renderings of the program output for the aconite core and key retrosynthetic 

disconnections applied in Ref. 20 and in this work.
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