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Abstract: In the past decade, a thriving family of 2D nanomaterials, transition-metal carbides/nitrides
(MXenes), have garnered tremendous interest due to its intriguing physical/chemical properties,
structural features, and versatile functionality. Integrating these 2D nanosheets into 3D monoliths
offers an exciting and powerful platform for translating their fundamental advantages into practical
applications. Introducing internal pores, such as isotropic pores and aligned channels, within the
monoliths can not only address the restacking of MXenes, but also afford a series of novel and, in
some cases, unique structural merits to advance the utility of the MXene-based materials. Here,
a brief overview of the development of MXene-based porous monoliths, in terms of the types of
microstructures, is provided, focusing on the pore design and how the porous microstructure affects
the application performance.

Keywords: 2D nanomaterials; MXenes; porous architecture; assembly

1. Introduction

Transition-metal carbides/nitrides (MXenes) are a thriving family of 2D nanomaterials
that have attracted tremendous attention since their discovery in 2011 [1]. Generically,
MXenes have a chemical formula of Mn+1XnTx, where M, X, and Tx represent the transition
metal site, carbon and/or nitrogen, and surface terminations of O/OH/F, respectively, and
n equals to 1–4 [2,3]. They have a structure consisting of two or more layers of transition
metal atoms packed into a 2D lattice that are intervened by carbon and/or nitrogen layers
occupying the octahedral sites between the adjacent transition metal layers, with multiple
surface terminations on the surface of the outer transition metal layers [4]. MXenes with
two transition metal elements occupying M sites possess two forms that are the solid
solution form and ordered form. The former form represents a random distribution of
two metals in the M layers, showing a chemical formula of (M′,M”)n+1XnTx (M′ and M′ ′

represent two different metals) [5–7]. The latter one can be further divided into in-plane
ordering, where M′ and M′ ′ atoms generate alternating chains within the same M layer
(termed as i-MXenes) [8,9], and out-of-plane ordering, where M′ ′ atoms form the inner
M layers while M′ atoms are placed in the outer layers (termed as o-MXenes) [10,11].
Moreover, a kind of high-entropy MXene with four transition metals, TiVNbMoC3Tx
and TiVCrMoC3Tx, also was synthesized recently [12]. To date, more than 30 MXene
members have been experimentally made, and over 100 have been theoretically predicted.
Such a large family with sufficient, tunable composition, structure, and surface/interlayer
chemistry has shown useful and versatile properties, e.g., high electrical conductivity [13],
high internal light-to-heat conversion efficiency [14], superior hydrophilicity, and notable
mechanical property [15–18], leading to promising potential in energy storage [18–20]
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and harvesting [21], electromagnetic interference (EMI) shielding [22,23], sensing [24],
catalysis [25–28], etc.

MXenes are produced by selectively etching the A-layer atoms (such as Al, Si, and Ga)
of MAX phases [29]. This top-down process can be scaled up, not limited by the scalability
issue like with bottom-up synthesis adopted by some 2D materials, allowing MXenes the
potential to transition from laboratory use to industrial production [30]. However, when
integrating MXenes into macroscopic architectures for practical utilization, they always
suffer from inevitable restacking and aggregation due to the van der Waals forces, impeding
the accessibility of surface-active sites, reducing the elasticity/mechanical strength, and
limiting the effective loading of other functional materials [31–34]. The close packing results
in a large wave and mass transport resistance [35,36] that have become the major challenge
for the development of MXene-based functional devices.

Viewing from the success of the integration of graphene (GO), two effective strategies,
including adding interlayer spacers and introducing internal pores into the constructs, can
address the restacking issue [37–40]. In 2017, Gogotsi and co-workers made a significant
step forward by applying two distinct designs for Ti3C2Tx MXene electrodes, where one is
noted as a hydrogel film with water molecules serving as interlayer spacers, while the other
film has a 3D macroporous structure [41]. Both electrodes show improved ion accessibility
to redox-active sites, delivering exceptional capacitance performance, and opening new
opportunities for energy harvesting and storage. Yet, a smaller ion transport resistance was
presented in the macroporous film, displaying the potential of porous microstructure in
some applications required for fast mass transport. Since then, porous MXene architectures
have ushered in rapid development.

Macroscopic porous monoliths, such as aerogels with very high porosities, provide
scaffolding with exceptionally high surface-to-volume ratios that can support 2D materials,
giving a superior strategy for the integration of MXenes, evidenced by the following
merits: (1) the aggregation of MXenes can be reduced, even eliminated, in the matrix;
(2) the artificial internal pores facilitate the wave/mass transport, and the high specific area
enables easy access to MXenes; and (3) the inner pores and pore walls can, in turn, serve as
scaffolding to support functional materials, engineering multilevel hierarchical structures
for a variety of applications. In the past several years, advanced MXene aerogels, hydrogels,
and foams have garnered much interest and have been used for energy conversion and
storage, EMI shielding/electromagnetic wave (EMW) absorption, wearable piezoresistive
sensors, and water steam generator/solar water desalination [42–47], with a rapid growing
number of related research publications (Figure 1).

Nanomaterials 2022, 12, x FOR PEER REVIEW 2 of 32 
 

 

internal light-to-heat conversion efficiency [14], superior hydrophilicity, and notable me-
chanical property [15–18], leading to promising potential in energy storage [18–20] and 
harvesting [21], electromagnetic interference (EMI) shielding [22,23], sensing [24], cataly-
sis [25–28], etc. 

MXenes are produced by selectively etching the A-layer atoms (such as Al, Si, and 
Ga) of MAX phases [29]. This top-down process can be scaled up, not limited by the scala-
bility issue like with bottom-up synthesis adopted by some 2D materials, allowing 
MXenes the potential to transition from laboratory use to industrial production [30]. How-
ever, when integrating MXenes into macroscopic architectures for practical utilization, 
they always suffer from inevitable restacking and aggregation due to the van der Waals 
forces, impeding the accessibility of surface-active sites, reducing the elasticity/mechani-
cal strength, and limiting the effective loading of other functional materials [31–34]. The 
close packing results in a large wave and mass transport resistance [35,36] that have be-
come the major challenge for the development of MXene-based functional devices. 

Viewing from the success of the integration of graphene (GO), two effective strate-
gies, including adding interlayer spacers and introducing internal pores into the con-
structs, can address the restacking issue [37–40]. In 2017, Gogotsi and co-workers made a 
significant step forward by applying two distinct designs for Ti3C2Tx MXene electrodes, 
where one is noted as a hydrogel film with water molecules serving as interlayer spacers, 
while the other film has a 3D macroporous structure [41]. Both electrodes show improved 
ion accessibility to redox-active sites, delivering exceptional capacitance performance, and 
opening new opportunities for energy harvesting and storage. Yet, a smaller ion transport 
resistance was presented in the macroporous film, displaying the potential of porous mi-
crostructure in some applications required for fast mass transport. Since then, porous 
MXene architectures have ushered in rapid development. 

Macroscopic porous monoliths, such as aerogels with very high porosities, provide 
scaffolding with exceptionally high surface-to-volume ratios that can support 2D materi-
als, giving a superior strategy for the integration of MXenes, evidenced by the following 
merits: (1) the aggregation of MXenes can be reduced, even eliminated, in the matrix; (2) 
the artificial internal pores facilitate the wave/mass transport, and the high specific area 
enables easy access to MXenes; and (3) the inner pores and pore walls can, in turn, serve 
as scaffolding to support functional materials, engineering multilevel hierarchical struc-
tures for a variety of applications. In the past several years, advanced MXene aerogels, 
hydrogels, and foams have garnered much interest and have been used for energy con-
version and storage, EMI shielding/electromagnetic wave (EMW) absorption, wearable 
piezoresistive sensors, and water steam generator/solar water desalination [42–47], with 
a rapid growing number of related research publications (Figure 1). 

 
Figure 1. Growing importance of MXene-based porous monoliths in increasing number of SCI in-
dexed publications (source: SciFinder 2022). 
Figure 1. Growing importance of MXene-based porous monoliths in increasing number of SCI
indexed publications (source: SciFinder 2022).



Nanomaterials 2022, 12, 3792 3 of 30

An emerging aspect of MXene-based porous monoliths is to design and tailor the
structure of pores to meet the requirement of application. Growing attention is being
drawn into the multiscale design of the microstructure, ranging from geometries, such
as morphology (pore, channel, and lamella), pore size/channel spacing, and openings
throughout the walls, to regularity (isotropic, local oriented, and long-range ordered
configuration). Particularly, a type of aligned porous microstructure with oriented walls
and channels is of great potential. In 2018, Yang and co-workers firstly achieved the vertical
alignment of MXene by applying a uniaxial in-plane mechanical shear force to the discotic
lamellar liquid crystal phase of Ti3C2Tx [48]. A 2D macroscopic film with highly ordered,
vertically aligned structure was then fabricated. The unique microstructure imparts the
film with a shorter ion transport path and a larger number of available active sites than
the stacked MXene films. This aligned film shows an excellent thickness-independent
electrochemical performance when using as supercapacitor electrodes. Very closely, Zhang
and co-workers demonstrated remarkable EMI-shielding performance in a Ti3C2Tx-based
hybrid 3D aerogel with an aligned structure [49]. It was found that the ingenious design
of the microstructure can not only enhance the instinct performance of MXene monoliths,
but also benefit it by exploring new applications, e.g., solar seawater desalination [50].
Such state-of-the-art progress and achievements are highly expected to be summarized
and discussed to inspire the development of the next generation of MXene-based materials
and devices.

Here, we review the recent progress on the MXene-based porous monoliths, where
the different types of microstructures and the structure–property–application affinity
are examined (Figure 2). Finally, opportunities that lie ahead in this emerging field
are discussed.
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ref. [51]. Copyright 2016, Wiley-VCH. Reproduced with permission from ref. [52]. Copyright 2019,
Elsevier. Reproduced with permission from ref. [53]. Copyright 2022, American Chemical Society.
Reproduced with permission from ref. [54]. Copyright 2020, Elsevier. Reproduced with permission
from ref. [55]. Copyright 2022, American Chemical Society.
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2. Types of Microstructures and Fabrication of MXene-based Porous Monoliths

Porous monoliths discussed in this review are designated by 3D macroscopic archi-
tectures with a very large volume ratio of internal pores. Taking aerogel as an example, it
possesses a solid skeleton with porosity over 90%, seen as the least dense material [56–58].
Since the morphology and regularity of pores play significant roles in the property and
function of monoliths, classifying the microstructures is of interest. There are five typical
types of microstructures, including isotropic cellular, aligned honeycomb, and aligned
lamellar configurations for which the last can be further divided into local oriented, long-
range ordered, and radial ones. To date, all of them have been introduced into the MXene
monoliths (Figure 3) [34,53,55,59,60]. Moreover, by adjusting the interactions between
the components (MXenes and additives), or by varying the manufacturing parameters
(concentrations, and freezing rate/direction), a high degree control of the microstructure
over the MXene monoliths has been achieved, enabling a wide range of hierarchies at the
nano-, micro-, and mesoscales.
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2.1. Isotropic Cellular Structure

Porous monoliths with isotropic cellular microstructure feature an interconnected
framework, where the pores have no preferential orientation. The building blocks in cell
walls are closely packed, while individual cells range from nanoscopic- to microscopic-
length scales. MXene monoliths, having isotropic pores, are easily produced and can be
achieved by network pre-assembly followed by the solidification process, where the pre-
assembly can be realized by either an assisted gelation or a melding of emulsion droplets.

2.1.1. Assisted Gelation

Gelation is a commonly used method to integrate nano-building blocks into 3D mono-
liths, but is hardly adopted to MXenes on their own, due to the aggregating and stacking
tendency of MXenes. The superior hydrophilicity imparted by the surface groups further
challenges their assembly in an aqueous environment [18,31]. Introducing a second compo-
nent as crosslinkers or gelators is a simple strategy to counterbalance the hydrophilicity
of MXenes to generate 3D assemblies. In general, the continuous phase in MXene gel is
confined within a 3D structured network that is physically and/or chemically crosslinked
by gelators, which can be GO, polymers, metal cations, or a combination of these.

The tailorable hydrophilic–hydrophobic balance of GO-reduced GO (rGO) endows
them with an extraordinary gelation ability [40], enabling MXene nanosheets to be inte-
grated into their 3D framework. Xu and co-workers showed that, by heating a mixture
of Ti3C2Tx and GO, the Ti3C2Tx partially remove the oxygen-containing surface species
on GO by a valence transfer, reducing GO to rGO, and increasing the hydrophobicity and
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π-conjugated structures of rGO [34]. rGO then assemble into a 3D porous framework, while
Ti3C2Tx are self-converged and incorporated into this framework driven by hydrogen
bonding, thereby generating a Ti3C2Tx/rGO hydrogel with an interconnected network
with open pores and thin walls (Figure 4a). It is notable that a TiO2 phase always appears
in the prepared hydrogel, probably ascribing to the oxidation of Ti3C2Tx. MXenes are
susceptible to oxidation when stored in water at room temperature [61,62]. Generally,
the oxidation starts from the edges, causing the degradation of the MXene structure and
the formation of metal-oxide nanocrystals, then develops through nucleation and growth
throughout the entire surface, which will impede the electrical conductivity [18,61]. To
overcome this issue, a reducing agent, NaHSO3, was introduced in the preparation pro-
cedure of Ti3C2Tx/rGO hydrogel. No TiO2 phase was observed in the resultant hydrogel,
indicating that the oxidation of Ti3C2Tx was effectively suppressed. Afterward, using
the hydrogels as precursors, MXene/rGO aerogels can be easily fabricated after freeze
drying [63–66]. SEM images show that the microstructure of aerogel is akin to the precursor
with a pore size range at the micron level (Figure 4b,c). By introducing interfacial mediators
into MXene and rGO, the structure of the walls within the hybrid monoliths can be finely
engineered. For instance, when using small molecules, such as ethylenediamine (EDA) [67]
or amino-propyltriethoxysilane [68], as interlayer spacers to bond the rGO layers and
Ti3C2Tx nanosheets (Figure 4d), the accessible surface area of the porous monoliths will
increase. On the other hand, Yang and co-workers reported that adding a monovalent
cation, K+, can weaken the repulsive electrostatic interactions, promoting a “face-to-face”
stacking of Ti3C2Tx nanosheets, resulting in a thicker laminated wall (Figure 4e) [69].

MXene can uniformly disperse in a polymer matrix to form a hybrid monolith with
isotropic pores. The driving force can be various physical/chemical interactions, including
polymer chain entanglements, ionic interactions, and hydrogen and/or covalent bonding.
Details of the gelation mechanism and fabrication process were summarized previously [45].
Since the report of the Ti3C2Tx/poly(vinyl alcohol) (PVA) hybrid hydrogel [70], a series of
polymers have been selected as the support to generate MXene-based hydrogels, aerogels,
and organohydrogels [71–80]. For instance, Zhang and co-workers modulated a mixture
containing Ti3C2Tx and poly(amic acid) [33]. After freezing and freeze drying, a robust 3D
architecture was formed, driven by the strong interaction between the two components. A
thermal annealing was then performed to induce the polymerization of poly(amic acid)
to generate polyimide (PI) macromolecules, resulting in the final Ti3C2Tx/PI aerogel with
a compact interface and interconnected porous structure (Figure 4f). Recently, Wan and
co-workers reported a facile and mild procedure to prepare a Ti3C2Tx/poly(acrylic acid)
(PAA)/amorphous calcium carbonate (ACC) hybrid hydrogel [79]. By mixing the Ti3C2Tx,
PAA, and CaCl2 in an aqueous solution then adding Na2CO3, the MXene-based hydrogel
was produced by the synergistic interactions among the surface terminations of Ti3C2Tx
and the carboxylic groups of PAA and Ca2+. Figure 4g shows the porous structure of the
hydrogel after freeze drying.

The main challenges of MXene gelation in an aqueous environment are their hy-
drophilicity and strong electrostatic repulsion between the nanosheets, which can be
addressed by the addition of metal cations. Divalent metallic ions, e.g., Fe2+, Mg2+, Co2+,
and Ni2+, have been used to initiate the fast gelation of Ti3C2Tx in aqueous suspension [81].
The metal ions electrically interact with the surficial groups of Ti3C2Tx, destroying the
electrostatic repulsive force between Ti3C2Tx, and acting as crosslinkers to lead a phase
separation of Ti3C2Tx from the solution to initiate the gelation, finally forming a 3D porous
network (Figure 4h).
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from ref. [34]. Copyright 2018, American Chemical Society. (b) is reproduced with permission from
ref. [63]. Copyright 2018, Wiley-VCH. (c) is reproduced with permission from ref. [64]. Copyright
2019, The Royal Society of Chemistry. (d) is reproduced with permission from ref. [67]. Copy-
right 2019, Wiley-VCH. (e) is reproduced with permission from ref. [69]. Copyright 2021, Elsevier.
(f) is reproduced with permission from ref. [33]. Copyright 2018, Wiley-VCH. (g) is reproduced
with permission from ref. [79]. Copyright 2021, American Chemical Society. (h) is reproduced with
permission from ref. [81]. Copyright 2019, Wiley-VCH.

2.1.2. Emulsion Template

The liquid–liquid interface provides a versatile platform for integrating nano-building
blocks into hierarchical constructs for physical, chemical, and biological applications [82–85].
Pristine MXene nanosheets are electronegative and hydrophilic, both detrimental for ad-
sorption to the inherently negative oil/water interface. This challenge was addressed
by tuning the wetting behavior of Ti3C2-MXene with a surface modification with cetyl
trimethylammonium bromide (CTAB) [86]. Using CTAB-modified Ti3C2 as emulsifiers,
Huang and co-workers produced high internal phase Pickering emulsions as a robust
template. After polymerizing the continuous phase, 3D porous materials with a cellular
microstructure were achieved.

A more convenient strategy, though, is based on the electrostatic interactions between
functionalized nanoparticles and organic ligands having a complementary functionality
at the liquid–liquid interface to form nanoparticle surfactants (NPSs) that assemble at
and are irreversibly bound to the interface [87]. The binding of the NPSs is sufficiently
strong so that when the NPS assemblies are compressed to reduce the interfacial area,
the assemblies will jam, locking any further shape changes of the liquids, shaping the
liquid domains. Such structured liquids afford a simple route to generate hierarchical
constructs [88–92]. Using this strategy, Russell and co-workers introduced a MXene-
surfactant (MXS), a nanosheet surfactant, with exceptional surface activity by the interfacial
interactions between MXene, dispersed in the aqueous phase, and oil-soluble amine-
functionalized polyhedral oligomeric silsesquioxane (POSS-NH2) in situ at the toluene–
water interface (Figure 5a) [93]. By homogenizing an aqueous dispersion of Ti3C2Tx
and with a solution of POSS-NH2 in toluene, very stable emulsions were formed, even
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under ultra-centrifugation, allowing them to be concentrated and used as scaffolds and
templates. Freeze drying the emulsions leads to a lightweight MXS-based aerogel with an
interconnected porous framework and excellent mechanical strength under compression.
Since the ligands anchored to the Ti3C2Tx are hydrophobic, a hydrophobic MXene-based
aerogel was produced. Similar types of assemblies could be achieved at the silicone oil–
water interface, enabling the 3D printing of MXene all-liquid devices [94]. In addition to
the oil–water interface, this interfacial co-assembly method can be performed in an ionic
liquid–water biphasic system, underscoring the generality of the liquid–liquid interface in
the generation of MXene-based porous monoliths [95].
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Polymer chains can also be anchored to the MXene surface directly, where the adsorbed
polymer, for example, polystyrene, can be used for its inherent hydrophobic character to
generate Janus Ti3C2Tx-MXene nanofilm (JMN), which can serve as a distinct building
block to form Pickering emulsions (Figure 5b) [96]. Here, the densely packed JMNs readily
form a continuous network due to the strong inter-sheet interactions and, ultimately,
to a lightweight and isotropic JMN-based aerogel. SEM images show the continuous,
cellular pores, and the inter-sheet connections, giving direct insights into the porous
micromorphology and the integrity of cell walls.

It is worth noting that, in these interfacial assembly systems, the pore size of the
aerogels is commensurate with the emulsion droplets, allowing a tailorable microstructure.
It was demonstrated that the size of MXS emulsion droplets could be controlled from several
tens to hundreds of microns by changing the concentration of Ti3C2Tx. The resultant MXS
aerogels show a tunable pore size from 60 to 15 µm. Similarly, by adjusting the JMN
content, pores ranging from 50 to 20 microns can be obtained. As the concentration of
JMNs decreases, pores connecting adjacent cells in the porous monolith emerge, due to the
incomplete coverage of the liquid domains in the original emulsion.
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2.2. Aligned Honeycomb Structure

MXene monoliths with an aligned honeycomb structure consist of interconnected
and long tubules, where the walls are made of closely packed MXenes. This anisotropic
morphology presents a honeycomb-like cellular structure in the transverse plane and a
long tubular structure in the longitudinal plane. By using the unidirectional freezing
technique or 3D printing, MXene-based porous monoliths with this type of microstructure
can be produced.

2.2.1. Unidirectional Freezing

Directional freezing, also termed freeze casting (FC), has been well developed to
fabricate hierarchical porous materials [97–99]. By confining the heat reduction along
the axial direction, e.g., from bottom to top, ice crystals nucleate on the cooled bottom
surface and propagate along the temperature gradient, offering an aligned ice-template to
concentrate and squeeze the building blocks into the gaps between the crystal boundaries,
yielding highly ordered constructs. Yu and co-workers firstly reported a Ti3C2Tx/sodium
alginate (SA) aerogel with aligned channels prepared by this unidirectional freeze casting
(UFC) method (Figure 6a) [52]. By UFC, the Ti3C2Tx/SA mixed dispersion in a Teflon
mold with an attachment of a copper base (cold finger) immersed in liquid nitrogen, the
as-formed pyramid-like ice crystals exclude the SA-adhered Ti3C2Tx sheets, leading to the
formation of a hybrid aerogel. SEM images show that the aerogel has oriented cell walls
and unidirectional pore channels with gaps of tens of micrometers from the side view, and
a honeycomb-like cellular structure from the top view.

2.2.2. 3D Printing

Additive manufacturing technologies, which are capable of printing 3D objects, appear
as a paradigm for scalable manufacturing porous monoliths [100,101]. Prior to the printing,
understanding the rheological features of the material dispersions is necessary. Gogotsi
and co-workers studied the rheological behavior of Ti3C2Tx aqueous dispersions, from
single-layer to multiple-layer Ti3C2Tx, from colloidal dispersions to high-loading slurries,
and from viscous to viscoelastic properties [102]. They found a shear-thinning behavior of
MXene dispersions, and the rheological properties could be effectively tuned by flake size
selection, volume fraction/concentration of dispersion, and shearing rates. Processability
charts for aqueous dispersions of Ti3C2Tx were provided, where the ratio of elastic moduli
to viscous moduli is plotted as a function of frequency, superimposed with approximate
regimes of operation techniques to see the change in rheology of the system at different
processing rates. The charts showed great potential of MXenes in electrospraying, spray
coating, ink-jet printing, wet spinning, extrusion printing, and dry spinning. With this
knowledge in mind, Barg and co-workers modulated 3D printable inks based on large
lateral size, few-layer thick Ti3C2Tx flakes aqueous suspension [103]. These inks presented
a typical shear-thinning behavior that can easily flow through narrow nozzles and instanta-
neously recover to the solid state after being printed, enabling the extruded filaments to
retain their shape, even in multiple-layered stacking. By using continuous extrusion-based
3D printing and freeze drying, a series of 3D MXene constructs, such as woodpile, hollow
rectangular prism, and interdigitated electrode configurations, were achieved. Figure 6b
shows that the lattice structure in the prepared woodpile is supported by the interlaced
configuration of printed filaments with hundred micrometer channels, where each filament
is 326 ± 13 µm in diameter, formed by a cross-assembly of Ti3C2Tx flakes.

A limitation of the above ink is the relatively high concentration of MXenes required
by the ink rheology, however, leading to agglomeration. Recently, several groups addressed
this challenge by developing the ink composition or printing process [104–108]. Sun and
co-workers added a trace amount of a divalent cation, e.g., Zn2+, into the Ti3C2 suspension,
assisting ink gelation to satisfy the rheology demanded by 3D printing [105]. Qiu and
co-workers reported a 3D printed template-assisted assembling approach, where a resin
template is firstly printed then filled by MXene inks via a predesigned sprue [107]. NaOH
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solution was then used to etch the template and to crosslink Ti3C2Tx nanosheets, forming a
3D hydrogel network. Wang and co-workers formulated a mixed aqueous slurry composed
of V2CTx MXenes, GO, and carbon nanotubes (CNTs) as ink [108]. After printing, the
as-prepared microgrid hydrogel was freeze dried to form an aerogel. Then, an annealing
process was performed to convert GO into rGO, creating a strong mechanical scaffold to
support MXenes.
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2.2.3. 3D Printing Combined UFC

Liang and co-workers combined 3D printing and unidirectional freezing, developing
a facile strategy to prepare MXene-based hierarchical architectures with finest structure
regulation (Figure 6c) [109]. They formulated a Ti3C2Tx-based nanocomposite ink, then
deposited it layer-by-layer onto oxygen plasma-treated polydimethylsiloxane (PDMS)
by the extrusion-based 3D printing technique, to build a thick interdigitated construct.
UFC and freeze drying were subsequently adopted to engineer and solidify the filament
into a honeycomb-like microporous scaffold, with most cell walls being parallel to the
temperature gradient, achieving the designing of pores at a micro-level.
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2.3. Aligned Lamellar Structure

An aligned lamellar microstructure consists of vertically aligned, layered walls and
channels, which can be further divided into local oriented, long-range ordered, and radial
types according to the morphology and regularity of walls. The introduction of these
microstructures into MXene monoliths can be achieved by using the directional freezing
technique, which is unidirectional, bidirectional, and radial FC, corresponding to the above
microstructure types.

2.3.1. Local Oriented Lamellar Microstructure

Numerous short-ranged, interconnected building layers are characteristic of monoliths
with a local oriented lamellar structure. Like the aligned honeycomb structure, it possesses
penetrable channels in the longitudinal plane, yet, in the transverse plane, a series of
relatively layered domains appear. MXene monoliths with this type of microstructure are
commonly produced by UFC. Zhang and co-workers unidirectionally freeze-casted an
unordered Ti3C2Tx/rGO hybrid hydrogel to regulate its microstructure (Figure 7a) [49].
After freeze drying, a Ti3C2Tx/rGO aerogel was obtained, where an aligned structure,
formed by the guidance of vertical ice crystal, was observed in the side view, while, a
layered morphology was seen in the top view.
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Material design often draws guidance and inspiration from the natural world. Kim
and co-workers, inspired by the structure of a penguin’s down feather, fabricated an
MXene-based aerogel with a microstructure consisting of longitudinal struts connected by
transverse ligaments (Figure 7b) [110]. They prepared a mixed suspension of spectrally
modified Ti3C2Tx/PVA and performed three iterations of freezing/thawing cycles to form a
crosslinked hydrogel, then adopted UFC followed by freeze drying and heating to generate
an aerogel. The addition of PVA and the repeated freezing–thawing process increase the
viscosity of the freezing subject, inducing a dendritic ice growth (ice-structuring) during
UFC, and thus, resulting in a unique feather-like microstructure, with main trunks along
the temperature gradient and parallel ligaments at an angle of ≈60◦ from the struts.

Lin and co-workers reported a novel 3D freeze-printing method that combines drop-
on-demand inkjet printing and UFC, to build aerogel [111]. Droplets of Ti3C2Tx ink were
deposited onto a freezing substrate and quickly frozen once in contact. The 3D aerogels
were fabricated through the layer-by-layer deposition of lines followed by freeze drying.
Ti3C2Tx sheets in each layer were forced to align vertically and tightly, forming walls
between the ice crystal boundaries. The top surface of this aerogel consists of randomly
aligned lamellae, proving the local oriented lamellar feature (Figure 7c).

2.3.2. Long-Range Ordered Lamellar Microstructure

Monoliths with this type of microstructure consist of uniformly arranged and large
building layers. The formation of this morphology requires the generation of two or-
thogonal temperature gradients (horizontal and vertical) during freezing, which can be
achieved by a bidirectional freeze casting (BFC) technique [99]. In general, BFC is per-
formed in a thermal insulated mold, with a slope PDMS wedge at the bottom. When
freezing, dual temperature gradients are generated simultaneously, resulting in a bidi-
rectional growth of ice crystals and forcing the building blocks into an aligned lamellar
arrangement (Figure 8a) [60]. Yin and co-workers [112], and other groups [60,113], used
BFC to produce a series of MXene monoliths with a parallel lamellar structure. This
anisotropic morphology was systematically characterized by Zhang and co-workers [54].
As shown in Figure 8b, the side views from the X-Z plane and X-Y plane show uniform
lamellar structures with numerous bridges, while rough solid lamella surfaces are seen
from the Y-Z plane.
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2.3.3. Radial Lamellar Microstructure

GO aerogel with a radial and centrosymmetric structure exhibited superior elasticity
and absorption capacity to that of GO aerogels with “traditional” pore structures made
by conventional FC, showing the great value of this configuration [114]. Building MXene
monoliths with radially distributed lamellar structure is a cutting-edge topic, which was
recently achieved by Liu and co-workers [53]. They reported a Ti3C2Tx/PI aerogel with
vertically and radially aligned layers formed via a radial freeze casting (RFC) process. The
freezing mold is made by a copper outer wall with high thermal conductivity that can
induce a growth of ice crystals from the periphery to the center and a polyvinylidene
difluoride (PVDF) base that can prevent the vertical growth of ice. An obvious radial
temperature gradient can be generated once the mold is immerged in liquid nitrogen
(Figure 9a). The structural features are shown in SEM images from different views: in
the top view, the Ti3C2Tx/PI layers arrange in a well-defined centrosymmetric pattern
(Figure 9b); the side view reveals a vertically aligned, ordered, layered structure (Figure 9c);
and a zoomed-in image displays the 2D lamellar structure of a single layer (Figure 9d).
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2.4. Microstructure Tailoring and Evaluation

It is notable that the property and function of monoliths are closely related to their
microstructure. The ability to tailor the microstructure has a great impact on the me-
chanical strength, ion transport, and so on. The pore morphology and regularity of the
monoliths constructed through the FC method depend on various intrinsic and extrinsic
parameters, including the concentration and size of the solid loading, particle–particle
interaction, particle–ice interaction, additives, external energized fields, and freezing
rate/direction [115,116]. For MXene-based porous monoliths with an aligned microstruc-
ture, it has been reported that the concentration and freezing direction/rate can affect the
porous structure, from the macroscopical level, e.g., regularity and spacing, to the finest
level, such as sheet thickness and openings throughout the walls.

The concentration of colloids has an imperative effect on the growth of ice crystals and
the morphology of subsequent monoliths. Gogotsi’s group [113] and Barg’s group [117]
both found that, by increasing the MXene concentration, the interlayer spacing will shrink
and synapses/bridges will form (Figure 10a), due to the less available space for the growth
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of ice crystals, and the trapping of MXene flakes within the ice crystals, respectively. It
was also reported that the increase in MXene concentration could lead to fewer openings
throughout the walls and smaller lamellae domains.
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and 3D segmented rendering of the aerogel sheets (up left); virtual CT section and 3D segmented
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(a) is reproduced with permission from ref. [117]. Copyright 2019, American Chemical Society.
(b) is reproduced with permission from ref. [118]. Copyright 2020, American Chemical Society.
(c) is reproduced with permission from ref. [55]. Copyright 2022, American Chemical Society.

We have discussed that the freezing direction directly determines the structure of
pores. On the other hand, the freezing rate can also strongly influence the final microstruc-
ture. Li and co-workers found that the widths of the aligned channels can be varied from
~20 to 200 µm by tuning the freezing rates from 2 mm s−1 to 20 µm s−1 (Figure 10b) [118].
Nyström and co-workers also claimed that the pore channels’ diameter can be influenced
by the induced temperature gradient [59]. This phenomenon was explained by Saiz
and co-workers, where a lower freezing rate gives a smaller ice front velocity, allowing
colloidal particles to locally pin the ice front, leading to a transverse growth in ice crys-
tals, and finally obtaining relatively wide channels within the porous monoliths after the
ice sublimation [119].

Microstructural evolution during compression is of great importance in supercapac-
itors [117], sensors [120], and oil cleanup [121]. Visualizing this process is essential for
understanding the in-service structural changes and optimizing material designing. Raw-
son and co-workers used synchrotron-source X-ray computed microtomography (CT) and
built 3D images of the domains of Ti3C2Tx MXene aerogels with a local oriented lamellar
structure (Figure 10c) [55]. By quantitatively analyzing the lamellar domains, sheet spacing,
and sheet orientation, and tracking their evolution as a function of increased compression,
they proposed domain collapse mechanisms for the lamellar structure under uniaxial
compression: (1) compressive strain leads to a progressive realignment of sheets normal



Nanomaterials 2022, 12, 3792 14 of 30

to the loading direction and a reduction in sheet spacing; (2) for domains that initially
aligned with the loading direction, their orientation and sheet spacing are maintained until
buckling. The analysis method presented is widely applicable, showing the capacity of
quantifying fine nanoscale features in MXene monoliths with other types of microstructures,
or monitoring the microstructure evolution in other applications.

3. Applications of MXene-based Porous Monoliths and the Roles of
Porous Microstructures

MXenes with attributes of high electrical conductivity (up to 20,000 S cm−1) [13,122,123],
excellent light-to-heat conversion efficiency (near 100%) [14], abundant surface groups, and
notable mechanical strength [15–17,124,125], have emerged as muti-functional materials
and show promise for physical, chemical, and environmental applications. Integrating
MXenes into a porous framework can effectively address their aggregation and maximize
the functions. Such porous microstructure possesses high inner surface areas and large
cavities, imparting the MXene monoliths with preeminent performance in the fields of
electrochemistry, EMI shielding/EMW absorption, and piezoresistive sensing, as well as,
in turn, the accommodation of other functional materials. Moreover, those aligned pore
channels, either honeycomb-like or lamellar, can give extra advantages, such as a super-
elastic mechanical property and facilitated wave/mass transport, pushing MXene-based
functional materials to a new level.

3.1. Isotropic Pores
3.1.1. Energy Storage and Conversion

MXenes have high volumetric capacitance and highly reversible intercalation/deinter-
calation of ions [126]. MXene-based porous monoliths have been used as electrodes that
show superior performance for energy storage [67,69,81,127] and capacitive deioniza-
tion [36], due to the more exposed electroactive sites, shortened ion diffusion path for
promoting redox kinetics, and a rich inner surface for ion storage. MXene aerogels can
serve as Li nucleation sites for Li-metal batteries [63] or polysulfide reservoir for lithium-
sulfur batteries [64], where the efficient adsorption interfaces and fast ion/electron transport
given by the porous structure are of importance in their high efficiency.

3.1.2. EMI Shielding and EMW Absorption

Modern electronic, wireless, detection and radar devices provide great convenience
while simultaneously bringing a series of EM pollution to human life, which drives a
fast exploration of advanced EMI shielding and EM absorption materials [128–133]. In
2016, Gogotsi and co-workers first reported a high EMI shielding Ti3C2Tx-SA composite
film and proposed mechanisms for its excellent performance (Figure 11) [22]. When an
incoming EMW strikes the surface of film, the waves are partially reflected due to many
charge carriers on the highly conductive surface. The remaining waves go through the
MXene lattice, where interaction with the high electron density of MXene induces currents,
contributing to ohmic losses and leading to a drop in energy. Local dipoles between Ti and
terminating groups are generated when subjected to an alternating electromagnetic field,
consuming the incoming EMWs by polarization losses. They also found that the interlayer
space between the film layers gives rise to multiple internal reflections of the EMWs,
facilitating the attenuation, and thus yielding an excellent EMI shielding capability. The 3D
porous architectures with numerous pores have far more scattering centers for the internally
reflected EMWs, greatly enlarging the intrinsic shielding ability of the materials [133].
Therefore, using MXene-based porous monoliths as EMI shielding or EMW absorption
materials is one of the most effective strategies to manage the EM radiation (even terahertz)
emission and interference [65,66,77,93,134].
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3.1.3. Wearable Piezoresistive Sensor

Advanced wearable electronics require strain sensors that are highly sensitive and
stretchable, capable of adhering conformably to various surfaces. In virtue of the elastic
property of polymer and the conductive property of MXenes, porous MXene/polymer
monoliths hold great promise as sensors for wearable piezoresistive sensing application,
where the geometric variation of the inner pores matters. Alshareef and co-workers
characterized the geometry evaluation of the skeleton and the packing of Ti3C2Tx in a
Ti3C2Tx/PVA hydrogel under compressing [70]. The conductive resistance of the initial
hydrogel is high, due to the large spacing between the Ti3C2Tx nanosheets. In contrast,
when the hydrogel is compressed, the geometry becomes shorter, allowing Ti3C2Tx to have
contact with each other and thus, resulting in a decrease in resistance and a corresponding
increase in the current. Based on this mechanism, a series of advanced MXene/polymer
monoliths serves as wearable sensing devices for real-time monitoring of small strains
typically found in the human physiology (Figure 12a–e) [33,70,135,136]. Recently, Liu and
co-workers developed a Ti3C2X MXene/PI nanofiber aerogel with typical “layer-strut”
bracing hierarchical nanofibrous cellular structure [80]. Benefiting from the conductive
skeleton and the robust connecting between MXene and PI nanofiber, a widely ranged
detection of pressure was achieved, where a subtle compression (down to 0.5% compres-
sion, corresponding to 0.01 kPa) can cause the bend and contact of PI nanofibers, while
the MXenes will contact when the compression strain increases to 60%. It is worth noting
that the MXene/polymer piezoresistive devices can be imparted with versatile properties
by using different functional polymers as components, such as strong anti-freezing [72],
thermally stable [75], healable/degradable [72,79], or ammonia responsiveness [78], that
can satisfy various application requirements. For instance, Shen and co-workers developed
a multifunctional bio-aerogel based on a degradable bacterial cellulose/Ti3C2Tx hybrids
with 3D porous structures that can be used for monitoring occlusal force and the release
of NH3 from dental caries, offering a powerful platform for the preliminary screening of
dental diseases [78].
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3.1.4. Accommodation

The inner pores and pore walls can serve as scaffolding to support functional mate-
rials, affording the opportunity to engineer superstructures for a variety of applications.
Functionalization with Eosin Y (EY) photosensitizer [34], layered double hydroxides [137],
CuO [138], Co particles [139], Pd [140], MOFs [141], Prussian blue [142], and Sb single
atoms and quantum dots [143] allows the MXene hybrid monoliths to be used for photore-
dox catalysis, supercapacitors, acetone sensing, room-temperature Na-S batteries, catalytic
hydrogenation of nitroaromatic compounds, alkali-ion batteries, real-time H2O2 monitors
for living cells, and K+ batteries. The porous structure not only provides anchoring sites,
but also facilitates application performance as compared to the restacked composites. For
instance, Xu and co-workers demonstrated that the EY-functionalized Ti3C2Tx/rGO hy-
drogel performs with higher photoredox catalytic efficiency than corresponding powders,
which can be attributed to the interconnected porous structure that (1) endows the hydrogel
with extended conductive networks and multidimensional electron transport pathways,
to facilitate the separation and transfer of charge carriers produced from the visible light
excitation of EY; and (2) has a large surface area, promoting the adsorption of reactants
and thus enhancing the photoactivity. In addition, the framework offers a chance for
drug loading and controllable release. Zhang and co-workers reported a Ti3C2/cellulose
hydrogel with large pores that favors anticancer drug loading [71]. Due to the effective
light adsorption and light–heat conversion of Ti3C2, the pore volume could be enlarged by
a local temperature heating, enabling a light-triggered drug release.

3.2. Aligned Channels
3.2.1. Anisotropic Mechanical Property and Wearable Piezoresistive Sensing

The anisotropic structure imparts MXene monoliths with an anisotropic mechanical
property. Li and co-workers used a compression test to demonstrate that the Ti3C2Tx/gelatin
hybrid aerogel with an aligned honeycomb structure has an orientation-dependent mechan-
ical strength, where a high compression resilience only occurs in the direction that is normal
to the aligned channels [144]. Zeng and co-workers fabricated a Ti3C2Tx/carboxylated
CNT/carboxymethyl chitosan hybrid aerogel and used it as a model to systematically
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investigate this oriented mechanical property [145]. As shown in Figure 13a, the stress–
strain curves show good resilience when the external force is applied normally to the
orientation direction, sharply contrasting with the other direction. Finite element analysis
was performed to simulate the stress distribution of the aerogel compressed from two
directions, and the obtained 3D finite element models at a strain of 50% are presented in
Figure 13b. The aerogel model, under a perpendicular compression, shows a uniform von
Mises stress distribution between 0.4 and 0.8 kPa and the maximum stress on the inner
wall of the skeleton is about 1.2 kPa. However, a larger stress of the skeleton of about 2 kPa
could cause the collapse of the skeleton during compression cycles, which reveals obvious
anisotropic mechanical properties of the monoliths with an aligned honeycomb structure.
As for Ti3C2Tx MXene monoliths with an aligned lamellar structure, they also have an
anisotropic mechanical property, where the excellent elasticity and fatigue resistance only
exist in the direction that is normal to the oriented channels [54].
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Super-elastic MXene aerogels with an aligned microstructure hold great potential
in wearable piezoresistive pressure sensing. Taking Ti3C2Tx/rGO aerogels as examples,
although the isotropic ones can be used for piezoresistive sensing, the elasticity (<80% of
strain) still does not satisfy the expectations [120]. In contrast, aerogels with same com-
ponents but with an aligned honeycomb microstructure can display a resilient strain of
95% [146]. The conducting and elastic skeleton provides fast electron transfer and stable
structural integrity under compression/release cycles. When used for piezoresistive detect-
ing, it performs with high sensitivity (0.28 kPa−1), wide detection range (up to 66.98 kPa),
and ultralow detection limit (~60 Pa). Owing to the excellent flexibility, high sensitivity, and
wide pressure range, several aligned MXene aerogel/hydrogel were derived, and wearable
intelligent devices were developed for the real-time monitoring of human motions and
health conditions [145–147]. More interestingly, by connecting the sensors with an external
power and Bluetooth module to construct a signal generator, while using a smartphone as
a signal receiver, the finger movement in Morse code can be wirelessly detected, achieving
remote information transmission (Figure 14) [148].

To further break the detection limits and expend the application conditions, Liang
and co-workers proposed a new hierarchical structure, with multilevel cellular walls, for
the Ti3C2Tx MXene aerogels. Typically, a “sandwich-like” design was proposed, where
bottlebrush-like poly(3-glycidoxypropyldimethoxymethylsilane) (PGPDMS) with a soft
polysiloxane main chain and flexible short side chains was intercalated into the aerogel



Nanomaterials 2022, 12, 3792 18 of 30

walls (Figure 15a) [149]. The introduction of spacers not only prevents the restacking of
Ti3C2Tx nanosheets, but also forms easily shrinkable nanochannels inside the cellular walls.
The total resistance changes of aerogel in response to external forces are contributed to RE
and RI, in which RE is external resistance changes induced by the bending or bucking of
the cellular walls under compression, and RI is the resistance changes induced by shrink-
ing (or expanding) the spaces between nanochannels (Figure 15b). This aerogel has an
ultralow Young’s modulus (~140 Pa at a density of 10 mg/cm3), remarkably reducing the
critical stress value that triggers material deformation. When compressed, the multilevel
nanochannels will shrink, promoting the contact of Ti3C2Tx nanosheets and thus, numerous
new conductive paths form, and a considerable resistance change could be detected. Due
to this ingenious design, the piezoresistive detection limit can be reduced to 0.0063 Pa with
an ultrahigh sensitivity (>1900 kPa−1), which outperforms most reported pressure sensors.
In another work, thermos-responsive semicrystalline poly(ethylene oxide) (PEO) was inter-
calated into the Ti3C2Tx MXene aerogel walls, generating a dual-sensing aerogel that can be
used for simultaneously monitoring discriminable temperature and pressure [150]. When
using as wearable device, it can detect the temperature-dependent characteristics of pulse
pressure waveforms from artery vessels under different human body temperature states,
which is promising for monitoring the real-time diagnosis of the human physiological state.
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3.2.2. Water Steam Generator/Solar Water Desalination

Water scarcity is a global issue that drives the development of advanced desalina-
tion techniques for water harvesting [151]. Solar desalination is an effective method for
seawater purification by converting solar energy to heat for vapor production [152,153],
driving a fast exploration of high solar adsorption materials (such as carbon materials and
black TiO2) and advanced architectures (such as hydrogel with many pores structure that
can facilitate the water transport) [154–156]. The optimized combination of the materials,
building constructions, and special structures can elevate light-absorbing and photothermal
conversion efficiency. MXenes are considered ideal solar absorbers due to their nearly 100%
light-to-thermal conversion and superior hydrophilicity. Perforated, oriented channels
open light/water transport pathways to expand the application of MXene materials for
solar water desalination/steam generation [53,106,118,157–159]. Quan and co-workers fab-
ricated a vertically aligned Ti3C2 aerogel, then modified it to a Janus-type structure, where
a hydrophobic upper layer can convert light to heat and lower the heat loss, while a hy-
drophilic bottom layer submerged in water can quickly pump water upward and enable the
effective inhibition of salt crystallization due to the continuous pumping (Figure 16a) [50].
The vertically aligned channels facilitate capillary water transport, light absorption, and
vapor escape, making this aerogel output a high conversion efficiency (87%) and a stable,
long-term water yield (after 15 days) under 1 sun.
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Figure 16. (a) Schematic illustration of a solar steam generation system and the salt resistance strategy
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2022, American Chemical Society.

Based on the aligned microstructure, Liang and co-workers proposed a hierarchical
design for the Ti3C2Tx foam, where the skeleton is decorated with vertical arrays of 2D
carbon nanoplates with embedded Co nanoparticles to further increase the solar–vapor
conversion efficiency (Figure 16b) [160]. It was found that the vertical arrays can: (1) create
multiple light scattering and reflection, enhancing the solar light absorption across a broad
spectrum of wavelengths; (2) reduce thermal conductivity; and (3) improve the chemical
stability. These advantages, together with the rapid water transport and localized heating,
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impart the foam with up to ≈93.4% solar–vapor conversion efficiency for continuous
water desalination. Very recently, Kim and co-workers were inspired by the excellent
thermal isolating capability of penguin down feather, and they designed and fabricated a
spectrally modified Ti3C2Tx/PVA aerogel with similar microstructure (Figures 7b and 16c),
which contains longitudinal channels for water transport and transverse ligaments for
suppressing the thermal loss, giving a high energy efficiency of 88.52% with an evaporation
rate of 0.92 kg m−2 h−1 under a weak irradiation of 0.5 sunlight intensity [110]. Also
enlightened by nature, Liu and co-workers produced a radial Ti3C2Tx/PI composite aerogel,
in which the microstructure is similar to the xylem parenchyma of dicotyledonous stems
(Figures 9 and 16d) [53]. The biomimetic radial water transporting channels impart the
aerogel with excellent photothermal evaporation performance, with a water evaporation
rate of 14.4 kg m−2 h−1 at solar irradiance of 4 sun.

3.2.3. EMI Shielding and EMW Absorption

Highly oriented cell walls govern EMI shielding performance, through an adjustment
of their orientation angle to the electric field direction of the incident EMWs. Nyström
and co-workers revealed that the EMI shielding effectiveness of the Ti3C2Tx/CNF mono-
lith was maximized when the internal channels are parallel to the electric field direction
(Figure 17) [59]. Such a shielding tuning mode provides a wide range of controllable EMI
performance without altering the frame materials, offering great chances for fabricating
functional devices with aligned microstructures for excellent EMI shielding performance.
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A sophisticated microstructure design and a multicomponent strategy were adopted
to 3D MXene monoliths to further optimize their EMI shielding and EMW absorption
performance [52,144,161–166]. Xie and co-workers anchored magnetic Ni nanochains into
an aligned Ti3C2Tx/rGO aerogel [167], where the oriented channels and cell walls facilitate
the entrance and the internal multiple scattering of EMW, respectively; the resulting 3D
electric/magnetic-coupling network in the cell space effectively captured and attenuated
the EMW (Figure 18). The cell walls consisting of Ni, Ti3C2Tx, and rGO contribute to
the synergistic dielectric losses (multiple heterogeneous interface polarizations, dipolar
polarization, and conduction loss) and magnetic losses (magnetic resonance, magnetic-
coupling effect, eddy current loss, etc.) of the incident EMWs. The hybrid aerogel exhibits
exceptionally high EM absorption performance with a minimal reflection loss of -75.2 dB
(99.999996% wave absorption) and a broadest EA band of 7.3 GHz. Very recently, Liu and co-
workers reported a novel MXene sediment (Ti3C2Tx MXene and Ti3AlC2 MAX)/PVA/Ag
nanowire (AgNW) hybrid hydrogel that has the best EMI shielding performance compared
to the reported porous EMI shields [147]. This marked breakthrough is attributed to the
synergistic efforts of multiple reflections, conductive loss, and polarization loss stemming
from charge carriers of MXene sediment and AgNW, heterogeneous interfaces, and changed
hydrogen bond networks associated with water molecules.
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3.2.4. Energy Storage and Conversion

In addition to the above applications, MXene monoliths with an aligned microstruc-
ture also show prospects in electrochemical fields, such as supercapacitors and batter-
ies [105,107,108]. Yang and co-workers, as we mentioned in the Introduction, reported an
excellent thickness-independent electrochemical performance based on a vertically aligned
Ti3C2Tx electrode film for energy storage application [48]. Wu and co-workers prepared a
vertically aligned Ti3C2Tx hydrogel treated by H2SO4 used as a capacitive electrode [168].
The synergistic effect of the intercalation of H+ and vertical alignment of Ti3C2Tx flakes
enables sufficient ion diffusion and fast ion transport, respectively, rendering ultrahigh high
capacitance (393 F g–1 at 5 mV s–1), and excellent rate capability (198 F g–1 at 1000 mV s–1).
Gong and co-workers reported that a vertically aligned nanosheet arrays of Ti3C2Tx elec-
trode, fabricated by ice-template-assisted blade coating, with an aligned and low tortuosity
structure that could offer homogeneous and fast Li transport, is able to achieve a high
Coulombic efficiency of 98.8% with more than 450 cycles at a fixed areal capacity of
1.0 mAh cm−2 at 1.0 mA cm−2 [169].

As for batteries, Lv and co-workers fabricated a lamellar aerogel with sandwich-like
walls composed of Ti3C2Tx/CNT [170]. Such a structure has an optimal physical blocking
ability for the LiPSs, with enhanced exposure of Ti3C2Tx surface for the trapping and
catalytic conversion, benefiting the confinement and rapid conversion of LiPSs, effectively
suppressing the shuttling of LiPSs in high sulfur loading batteries. Sun and co-workers used
vertically aligned Ti3C2Tx/V2O5 aerogels as precursors to fabricate two thick electrodes
that are vertically and horizontally aligned, respectively, by applying a mechanical press
in two directions. The vertically aligned electrode delivers higher lithium-ion storage
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performance, due to the faster electron/ion transport over the entire electrode given by
its vertical channels [171]. The summarized energy storage and conversion applications
of MXene-based porous monoliths in different structural forms and their corresponding
advantages are given in Table 1.

Table 1. Summary of MXene-based porous monoliths in energy storage and conversion.

Applications Structural Forms Advantages Ref.

Supercapacitor electrode
Vertically aligned MXene electrodes;

porous 3D MXene foam,
monolith, aerogel, and hydrogel

Abundant active sites for ion
storage, superb gravimetric

capacitance and rate performance,
outstanding cycling stability

[48,67,81,107,127,168]

Sodium-ion batteries MXene monolith,
V2CTx/rGO-CNT aerogel

Sufficient Na+ storage sites and
multi-dimensional ion

transport pathways
[69,108]

Li metal anodes
MXene aerogel,

v-Ti3C2Tx electrodes,
v-MXene/V2O5 electrode

Fast Li+ transport capability and
abundant Li nucleation sites, high

cycling stability and low
overpotential, high gravimetric
capacities and rate performance

[63,169,171]

Li-S batteries
3D porous MXene/rGO (MX/G)

hybrid aerogel,
PA-MXene/CNT aerogel

Low polarization, reduced
interfacial impedance, and fast

redox kinetics; ultra-stable cycling
with a high sulfur loading

[64,170]

Zn-ion hybrid capacitors 3D-printed MXene cathode
Large interlayer spacing and Zn

ions diffusion rate, excellent areal
capacitance and rate capability

[105]

4. Conclusions

MXene-based porous monoliths have become an emerging class of advanced materials,
where the inner pore structure affords a large interface area, rapid wave/mass transfer, and
excellent mechanical properties for applications, including energy storage and conversion,
EMI shielding/EMW absorption, solar/capacitive seawater desalination, and wearable
piezoresistive sensors. Progress in the design of the pore structure has been markedly
enhanced by the understanding and use of processing strategies. Gelation and templating
with concentrated emulsion droplets were developed to generate foams, hydrogels, and
aerogels with isotropic cellular structures, while anisotropic structures were able to be
produced by FC and 3D printing techniques. Isotropic pore structures with a range of pore
characteristics are easily produced and provide model systems for understanding the roles
of porous microstructures in applications. Aligned channels yield anisotropic mechanical,
structural, and physical properties, providing specific advantages for applications. A sum-
mary including the type of microstructures, fabrication methods, features and advantages,
and applications of MXene-based porous monoliths is shown in Table 2.
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Table 2. Summary of MXene-based porous monoliths in terms of the type of microstructures, fabrication methods, features and advantages, and applications.

Type of
Microstructures

Fabrication
Methods Features and Advantages Applications Ref.

Isotropic
cellular

Assisted gelation
Emulsion template

Facial and versatile fabrication process; tunable
pore size and morphology; addressed restacking;

conductive skeleton; high electron transfer rate and
fast ion diffusion; multiple internal reflection;
elastic MXene/polymer monoliths; offering

accommodation for functional materials

Energy storage and conversion; EMI
shielding and EMW absorption;

wearable piezoresistive
sensor; accommodation

[33,34,63–73,75,78–81,86,93,95,96,120]

Aligned
honeycomb

UFC 3D printing
3D printing and UFC

UFC or 3D printing instruments requiring; tunable
channel width; flexible macro- and microscopic
structure designing; anisotropic structure and

property; offering light/water transport pathways

EMI Shielding; solar water
desalination; wearable

piezoresistive sensor; energy storage
and conversion

[52,59,103,105–108,118,144–146,148–150,157,167]

Local oriented
lamellar UFC

UFC instruments requiring; tunable domain size;
anisotropic structure and property; offering

light/water transport pathways

EMI Shielding; energy storage and
conversion; solar water desalination [49,55,110,111,117,147,160]

Long-range
ordered
lamellar

BFC
BFC instruments requiring; tunable interlayer
width; anisotropic structure and property in

two directions
EMI shielding and EMW absorption [54,60,112,113,172]

Radial lamellar RFC RFC instruments requiring; elastic and conductive;
offering light/water transport pathways

Wearable piezoresistive sensors;
solar evaporators [53]
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We are still, though, in the early stages of the development of MXene-based porous
monoliths, with numerous opportunities in the designing and manipulating of the pore
structures and, hence, applications. For instance, incorporating 1D functional materials
with MXenes at the liquid–liquid interface, such as Ni nanochain or Ag nanowire, may
regulate the in-plane organization of MXene nanosheets, as well as enriching the com-
ponents of the final architectures, imparting the emulsions and the subsequent aerogels
with novel mechanical and physical properties. MXene-based porous monoliths with
multilevel hierarchical architectures, such as those that are sandwich-like or penguin’s
feather-like, have demonstrated great promise in piezoresistive sensing, batteries, and solar
water desalination, inspiring more advanced designs for the microstructure. Introducing
electrical- or magnetizable-responsible particles into MXene suspensions, then performing
an external force field to regulate FC will likely help to guide the growth of ice crystals
and thus, manipulate the microstructure of MXene monoliths. Coupled with these are
developments in imaging and tomographic methods to quantitatively map out the 3D
organization of the MXenes, correlate this organization with the processing conditions, and
provide insights to exquisitely control the spatial distribution of the MXenes and, hence,
their properties. The promise of MXene-based porous monoliths is significant, but it rests
on developing a quantitative understanding of the science underpinning the processing to
generate a specific structure so that design rules can be established to reproduce and tailor
the structure.
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