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The Capacity of 3 User
Linear Computation Broadcast

Yuhang Yao, Graduate Student Member, IEEE, and Syed A. Jafar, Fellow, IEEE

Abstract—The K User Linear Computation Broadcast (LCBC)
problem is comprised of d dimensional data (from Fq), that is
fully available to a central server, and K users, who require
various linear computations of the data, and have prior knowl-
edge of various linear functions of the data as side-information.
The optimal broadcast cost is the minimum number of q-ary
symbols to be broadcast by the server per computation instance,
for every user to retrieve its desired computation. The reciprocal
of the optimal broadcast cost is called the capacity. The main
contribution of this paper is the exact capacity characterization
for the K = 3 user LCBC for all cases, i.e., for arbitrary
finite fields Fq , arbitrary data dimension d, and arbitrary linear
side-informations and demands at each user. A remarkable
aspect of the converse (impossibility result) is that unlike the
2 user LCBC whose capacity was determined previously, the
entropic formulation (where the entropies of demands and side-
informations are specified, but not their functional forms) is
insufficient to obtain a tight converse for the 3 user LCBC.
Instead, the converse exploits functional submodularity. Notable
aspects of achievability include sufficiency of vector linear coding
schemes, subspace decompositions that parallel those found
previously by Yao Wang in degrees of freedom (DoF) studies
of wireless broadcast networks, and efficiency tradeoffs that lead
to a constrained waterfilling solution. Random coding arguments
are invoked to resolve compatibility issues that arise as each user
has a different view of the subspace decomposition, conditioned
on its own side-information.

I. INTRODUCTION

Recent years have seen explosive growth both in the number
of devices connected to communication networks, as well as
in the amount of data generated, shared, and collaboratively
processed by these devices. With machine communication
expected to dominate human communication, future commu-
nication networks will increasingly be used in the service of
computation tasks [1]. Along with the processing power of
connected devices, a key determining factor of the potential
of these ‘computation networks’ will be the fundamental
limit of their communication-efficiency. Despite a multitude
of advances spanning several decades [2]–[15], the capacity
limits of computation networks remain largely unknown. Re-
markably, this is the case even in the most basic of scenarios
such as computational multiple access and broadcast, the
presumptive starting points for developing a cohesive theory
of computation networks. It is also noteworthy that many
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applications of recent interest, such as coded caching [16]–
[18], private information retrieval [19], [20], coded MapRe-
duce [21], distributed storage exact repair [22]–[24], index
coding [25], [26], coded computing [27], [28], data shuffling
[29], federated learning [30] and secure aggregation [31], are
essentially linear computation multiple access (LCMAC) or
broadcast (LCBC) settings with additional application-specific
constraints. Future developments, say in networked VR/AR
technology [1], [32]–[36], will similarly need linear broadcast
and multiple access computational networks for coordination
and synchronization [37]–[39] of users’ perspectives across
space, typically computed as linear projections of real-world
coordinates. Evidently, beyond their significance as building
blocks, LCMAC/LCBC networks are important in and of
themselves.

The collaborative, task-oriented, and interactive character
of computation networks manifests in data dependencies, and
an abundance of side-information accumulated at each node
from prior computations on overlapping datasets. Both data
dependencies and side-information significantly impact the
capacity of computation networks. Furthermore, because of the
inherently algorithmic character of machine communication,
the underlying structures of data dependencies and side-
information are often predictable, and may be exploited in
principled ways to improve communication efficiency. Indeed,
both of these aspects are central to the computation broadcast
(CBC) problem, an elemental one-to-many computation net-
work studied recently in [40]. The CBC setting is comprised
of data stored at a central server, and multiple users, each of
whom is given some function of the data as side-information
and wishes to retrieve some other function of the data. The
goal is to find ∆∗, which is the least amount of information per
computation that the server must broadcast such that all the
users are able to compute their respective desired functions.
The capacity of CBC is defined as C = 1/∆∗.

The main result of [40] is an exact capacity charac-
terization for K = 2 user linear computation broadcast
(LCBC), where each user’s demand and side-information
are linear functions of the data. The K user LCBC prob-
lem, illustrated in Figure 1, is specified by the parameters󰀃
Fq,K, d, (mk,m

′
k)k∈[K], (Vk,V

′
k)k∈[K]

󰀄
, namely the finite

field Fq , the number of users K, the data dimension d, matrices
Vk ∈ Fd×mk

q that identify the mk dimensions of User k’s

demand, and matrices V′
k ∈ Fd×m′

k
q that identify the m′

k

dimensions of User k’s side-information, for all k ∈ [K]. The
index ℓ ∈ N in Figure 1 identifies the ℓth computation instance,
corresponding to the ℓth instance of the data vector, x(ℓ) ∈
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q

Wants w2(ℓ)

= xT (ℓ)V2 ∈ F1×m2
q

Wants wK(ℓ)

= xT (ℓ)VK ∈ F1×mK
q

...
...

Fig. 1: The ℓth instance of the LCBC
󰀃
Fq,K, d, (mk,m

′
k)k∈[K],

(Vk,V
′
k)k∈[K]

󰀄
, ℓ ∈ N.

Fd×1
q , such that User k, k ∈ [K], wants wk(ℓ) = xT (ℓ)Vk

and has w′
k(ℓ) = xT (ℓ)V′

k as side-information. Following
a typical information theoretic formulation, multiple (say L)
instances may be considered jointly by a coding scheme for
potential gains in efficiency. L is called the batch size and
may be chosen freely by a coding scheme. A coding scheme
that satisfies all the users’ demands across L computation
instances by broadcasting a total of N q-ary symbols, achieves
rate R = L/N , and broadcast cost per computation ∆ =
N/L = 1/R. The goal is to find the supremum of achievable
rates (capacity C), or equivalently, the infimum of achievable
broadcast costs per computation (∆∗ = 1/C) across all
feasible coding schemes. We refer the reader to Section II to
clarify notational aspects, and to Section III for details of the
problem formulation. For K = 2 users, the optimal broadcast
cost is found in [40] to be ∆∗ = max

󰀓
rkq([Vi,V

′
i]) −

rkq(V′
i)+ rkq([V1,V2,V

′
1,V

′
2])− rkq([Vi,V

′
i,V

′
j ])

󰀔
, where

rkq() is the matrix rank function over Fq , and the max is over
(i, j) ∈ {(1, 2), (2, 1)}.

The scope of LCBC includes problems such as index coding
[25], [41], [42] that have been extensively studied and yet
remain open in general. While many instances of index coding
have been solved from a variety of perspectives [26], [43]–
[47], little is known about the optimal broadcast cost for the
general index coding problem. It is shown in [25] that for
scalar linear index coding, the optimal broadcast cost can be
found in general by solving a min-rank problem. The min-rank
solution has been extended to index coding with coded side-
information in [48] and is not difficult to further generalize
to LCBC. However, on top of the difficulty of matrix rank
minimizations (known to be NP-hard [49, Thm. 3.1], [50],
[51]), scalar linear coding is only one of many possible coding
schemes, and it is well known that capacity achieving schemes
need not be scalar or linear, even for index coding [52]–[54].
Thus, finding the capacity of LCBC in general is at least as
hard as solving the general index coding problem.

On the other hand, index coding problems constitute only
a small subset of all possible LCBC instances. The special
cases of LCBC that yield index coding problems are precisely
those where all the columns of Vk,V

′
k can be represented as

standard basis vectors. Evidently, LCBC allows a significantly
richer research space for developing new insights. This is why
for LCBC, even settings with only 2, 3 users are interesting

and insightful, whereas such settings would be trivial for index
coding. The richer space of LCBC problems is particularly
valuable if it is amenable to information theoretic analysis.
Intrigued by this possibility, in this work we explore what
new technical challenges might emerge in the LCBC setting
when we go from 2 to 3 users.

The main result of this work is the exact capacity of the
3 user LCBC for all cases, i.e., for arbitrary Fq , arbitrary
data dimension d, and arbitrary demands and side-informations
Vk,V′

k for each user, k ∈ {1, 2, 3}. An explicit expression
for the capacity, C, is presented in Theorem 1, and depends
on the dimensions (ranks) of various unions and intersections
of subspaces corresponding to the users’ desired computa-
tions and side-information. The intuition behind the explicit
form becomes more transparent when it is viewed as the
solution to a linear program, in an alternative formulation
of the capacity result, presented in Theorem 2. The linear
program sheds light on the key ideas behind the optimal
coding scheme. One of these ideas is a decomposition of
the collective signal spaces of the three users (column spans
of the [V′

k,Vk] matrices) into distinct subspaces that allow
different levels of communication efficiency. Remarkably, this
decomposition, which is formalized in Lemma 2, closely
parallels (see Appendix D) a corresponding decomposition
previously obtained in degrees of freedom (DoF) studies of
the 3 user MIMO broadcast channel in [55], underscoring its
fundamental significance. Facilitated by the subspace decom-
position, the linear program formulation of Theorem 2 reveals
a non-trivial tradeoff between the number of dimensions of
broadcast that are drawn from each subspace, and leads to a
constrained waterfilling solution in Section IX-B. What makes
the achievability especially challenging is that the users have
different (seemingly incompatible) views of the useful infor-
mation within each subspace depending on their respective
side-informations. Random coding arguments are invoked to
find broadcast dimensions for the optimal scheme that are
useful across the different perspectives. Another remarkable
aspect of the capacity result is that non-linear schemes are
not needed for the 3 user LCBC. While our optimal schemes
make use of both field size extensions (Section VIII-B) and
matrix extensions (Section VIII-E), they are still vector linear
schemes over Fq . In contrast, scalar linear codes were found
to be sufficient for the 2 user LCBC in [40]. In terms of
the converse bound,1 an interesting insight emerges from this
work regarding the entropic formulation of the LCBC problem
that was considered in [40]. In the entropic formulation of
[40], the data is assumed i.i.d. uniform, and the entropies of
all subsets of demand and side-information random-variables
are specified as constraints, but their functional forms are not
specified. It was shown in [40] that for the K = 2 user LCBC,
these entropic constraints combined with standard Shannon
entropic inequalities produce a tight converse bound on the
download cost per computation. In contrast, in this work we
show (see Remark 6.1 in Section VI) by a counterexample that
the same approach cannot work for the K = 3 user LCBC,

1A converse bound refers to an impossibility result, i.e., a lower bound on
broadcast cost per computation, or equivalently, an upper bound on capacity.
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even if all Shannon and non-Shannon information inequalities
are applied. Instead, in this work a tight converse for the 3
user LCBC is obtained based on functional submodularity (cf.
[56], [57], also Lemma 3 in this work) that additionally takes
into account the functional forms of the users’ demands and
side-informations.

II. NOTATION

Fq is a finite field with q = pn a power of a prime.
The elements of the prime field Fp are represented as Z/pZ,
i.e., integers modulo p. The notation Fn1×n2

q represents the
set of n1 × n2 matrices with elements in Fq . For a matrix
M , let 〈M〉q denote the Fq-linear vector space spanned by
the columns of M . The subscript q will often be suppressed
to simplify notation when it is clear from the context. The
notation M1 ∩ M2 represents a matrix whose columns form
a basis of 〈M1〉 ∩ 〈M2〉. [M1,M2] represents a concatenated
matrix which can be partitioned column-wise into M1 and
M2. The rank of M over Fq is denoted by rkq(M), and
when written as rk(M) for simplicity, the subscript q is
assumed by default. If rk(M) is equal to the number of
columns of M , i.e., M has full column rank, then we say
that M is a basis of 〈M〉. Define a ‘conditional-rank’ notation
as rk(M1|M2) ≜ rk([M1,M2]) − rk(M2). The notation [n]
represents the set {1, 2, · · · , n}. N denotes the set of positive
integers. R+ denotes the set of non-negative real numbers. C
denotes the set of complex numbers.

III. PROBLEM STATEMENT

A. The General K User LCBC(Fq,K, d, (mk,m
′
k)k∈[K],

(Vk,V
′
k)k∈[K])

While our focus in this work is exclusively on the K = 3
user case, in this section let us define the LCBC prob-
lem for the general K-user setting. As noted previously,
the general LCBC problem is specified by the parameters󰀃
Fq,K, d, (mk,m

′
k)k∈[K], (Vk,V

′
k)k∈[K]

󰀄
. There is a stream

of data vectors x(1),x(2), · · · that is available at a central
server. For each ℓ ∈ N, x(ℓ) = (x1(ℓ), · · · , xd(ℓ))

T ∈ Fd×1
q

is a d-dimensional vector with elements in Fq . There are K
users. For all ℓ ∈ N, the kth user has side-information w′

k(ℓ) =

xT (ℓ)V′
k ∈ F1×m′

k
q and wants wk(ℓ) = xT (ℓ)Vk ∈ F1×mk

q .
1) Coding Scheme: A coding scheme for the LCBC

is represented by a choice of parameters in the form of
a tuple

󰀃
L,N,Φ, (Ψk)k∈[K]

󰀄
. The coding scheme aggre-

gates L instances of data, collectively denoted as X ≜
(x(1), · · · ,x(L)) ∈ Fd×L

q , and specifies an encoding function
(encoder) Φ : Fd×L

q → FN
q , as well as K decoding functions

(decoders) Ψk : FN
q × FL×m′

k
q → FL×mk

q , k ∈ [K].
For compact notation, let us define,

Wk ≜ XTVk = (wk(1), · · · ,wk(L))
T ∈ FL×mk

q , (1)

W′
k ≜ XTV′

k = (w′
k(1), · · · ,w′

k(L))
T ∈ FL×m′

k
q . (2)

The encoder Φ maps the data X to the broadcast information
comprised of N symbols in Fq , represented compactly as S ∈
FN
q , i.e.,

Φ(X) = S ∈ FN
q . (3)

The kth decoder, Ψk allows the kth user to retrieve Wk from
the broadcast information S and the side-information W′

k, i.e.,

Ψk(S,W
′
k) = Wk, ∀k ∈ [K], (4)

for all realizations of X.
Let us denote the set of all feasible coding schemes as C.

We refer to coding schemes with batch size L = 1 as scalar
(coding) schemes, and those with L > 1 as vector (coding)
schemes.

2) Capacity (C) and Optimal Download Cost per
Computation (∆∗): The rate of a coding scheme󰀃
L,N,Φ, (Ψk)k∈[K]

󰀄
∈ C, is defined as R = L/N

representing the number of computation instances satisfied
by the coding scheme per broadcast symbol.2 The supremum
of rates across all feasible coding schemes in C is called the
capacity of LCBC, i.e.,

C ≜ sup󰀃
L,N,Φ,(Ψk)k∈[K]

󰀄
∈C

L/N. (5)

Instead of rate R, it is often more convenient to consider its
reciprocal value, the broadcast cost per computation, ∆ =
1/R = N/L. The optimal broadcast cost per computation,
∆∗ is defined as,

∆∗ ≜ inf󰀃
L,N,Φ,(Ψk)k∈[K]

󰀄
∈C

N/L (6)

= 1/C. (7)

Since ∆∗ = 1/C, the problem of characterizing the capacity
C is equivalent to the problem of characterizing the optimal
download cost per computation ∆∗. We will find it more
convenient to state and prove results in terms of ∆∗ in this
work.

3) Data Distribution, Entropy: Note that the LCBC prob-
lem does not specify any distribution for the data X. This
is because the capacity C and optimal broadcast cost per
computation ∆∗ do not depend on the data distribution. By
definition, any coding scheme

󰀃
L,N,Φ, (Ψk)k∈[K]

󰀄
∈ C,

while broadcasting no more than N q-ary symbols, must
guarantee successful decoding as in(4) for every realization of
the data, i.e., for all qdL realizations of X ∈ Fd×L

q , regardless
of what distribution X follows, and even if X follows no
distribution. This is significant for computation tasks. Recall
that conventional communication scenarios are comprised of
independent messages that can be compressed prior to com-
munication to reduce the size of the task from the outset
and subsequently uncompressed upon successful reception. In
principle optimal compression produces uniformly distributed
data (otherwise further compression would be possible), thus
justifying the common assumption that messages are uni-
formly distributed. For the LCBC, however, while the desired
computation is a linear function of the original uncompressed
data, it may no longer be linear after compression. Thus,
compression to uniformly distributed data cannot be taken
for granted. Furthermore, it is often the case that the data

2Viewing each q-ary broadcast symbol as one channel-use, the rate can be
equivalently viewed as the number of computation instances satisfied by the
coding scheme per channel-use.
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distribution is either unknown, or the data is truly arbitrary.
Therefore, assuming that data follows a particular distribution
may be overly restrictive for computation problems. Such
considerations motivate the conservative formulation presented
above, which requires strong (maximum rather than average)
communication cost guarantees, i.e., any achievable coding
scheme must guarantee that a broadcast of N symbols suffices
for every data realization, regardless of the distribution of X.

On the other hand, it will be occasionally useful, primar-
ily as a thought-experiment, to consider hypothetically what
might happen if the data followed an i.i.d. uniform distribu-
tion. Similar to genie-aided proofs, such thought-experiments
are useful to construct converse bounds (impossibility re-
sults) by the following reasoning. Given any coding scheme󰀃
L,N,Φ, (Ψk)k∈[K]

󰀄
∈ C, we wish to find lower bounds

on the broadcast cost N . As a thought-experiment, suppose
the data X follows a distribution PX(x) and this coding
scheme is used. This imparts a corresponding distribution to
the broadcast symbol S, say PS(s). However, since S ∈ FN

q

by the definition of the coding scheme, the entropy H(S) ≤
logq |FN

q | = N in q-ary units, which produces a lower bound
on the broadcast cost, i.e., N ≥ H(S). Thus any choice
of PX(x) facilitates entropic analysis and leads to a lower
bound on N , by calculating the entropy of S produced by
the coding scheme. The quality of the bound depend on the
choice of PX(x). For example, if we assume the data is
deterministic, then so is S, i.e., H(S) = 0, leading to the
bound N ≥ 0, which is not very useful. Uniform distributions
are particularly interesting because they tend to produce good
converse bounds. In preparation for the converse arguments in
the sequel, it is useful to recall the following facts.

1) For a random variable Z, that takes values in a set Z
according to the probability mass function pZ(z), the
entropy H(Z) in q-ary units is defined as,

H(Z) ≜ −
󰁛

z∈Z
pZ(z) logq pz(z). (8)

2) If Z is i.i.d. uniform over Fµ×ν
q then H(Z) =

logq |Fµ×ν
q | = logq(q

µν) = µν in q-ary units.
3) If Z is i.i.d. uniform over Fµ×ν

q and M ∈ Fµ×ξ
q is a

deterministic matrix, then

H(ZTM) = ν · rkq(M) (9)

in q-ary units. This is seen as follows. Let Z∗i
denote the ith column of Z. Then H(ZTM) =

H(ZT
∗1M,ZT

∗2M, · · · , ZT
∗νM) =

󰁓ν
i=1 H(ZT

∗iM)
(a)
=󰁓ν

i=1 rkq(M) = ν · rkq(M). The step labeled (a) is a
direct application of [40, Lemma 2].

4) If Z is i.i.d. uniform over Fµ×ν
q and M1 ∈ Fµ×ξ1

q , M2 ∈
Fµ×ξ2
q are deterministic matrices, then

H(ZTM1 | ZTM2) = ν(rkq([M1,M2])− rkq(M2))

= ν · rkq(M1 | M2) (10)

in q-ary units, where we used the conditional-rank no-
tation rkq(M1 | M2) as defined in Section II. Using
(9), this is seen as follows: H(ZTM1 | ZTM2) =
H(ZTM1, Z

TM2) − H(ZTM2) = H(ZT [M1,M2]) −

H(ZTM2) = ν · rkq([M1,M2]) − ν · rkq(M2) = ν ·
rkq(M1 | M2).

B. Signal Spaces U1,U2,U3 and their Intersections

Recall that in this work our focus is on the LCBC with
K = 3 users, i.e., the most general setting that we consider
in this work is LCBC

󰀃
Fq, 3, d, (mk,m

′
k)k∈[3], (Vk,V

′
k)k∈[3]

󰀄
.

Let us define the spaces U1,U2,U3, associated with the 3
users, as follows,

U1 ≜ [V′
1,V1], U2 ≜ [V′

2,V2], U3 ≜ [V′
3,V3], (11)

and also define the following intersections,

Uij ≜ Ui ∩Uj , ∀i, j ∈ [3], i ∕= j, (12)

U123 ≜ U1 ∩U2 ∩U3, (13)

Ui(j,k) ≜ Ui ∩ [Uj ,Uk],

∀(i, j, k) ∈ {permutations of (1, 2, 3)}. (14)

Recall that the subspaces 〈Ui〉 refer to the column spans of
the corresponding matrices. These subspaces will be essential
to the understanding of the 3 user LCBC.

IV. PRELIMINARY STEP: SUBSPACE DECOMPOSITION

For problems involving a vector space, the choice of a
suitable basis representation is often an important preliminary
simplification step. When multiple vector spaces are involved,
it is similarly useful to explicitly partition them into indepen-
dent subspaces that fit the needs of the problem. For the 3
user LCBC, there are three vector spaces of interest, namely
〈U1〉, 〈U2〉, 〈U3〉, as defined in Section III-B. A suitable
decomposition of these spaces into independent subspaces
corresponding to various intersections is an important prelim-
inary simplification that is the focus of this section. To put it
concisely, we need the following two lemmas regarding linear
subspaces 〈U1〉, 〈U2〉, 〈U3〉.

Lemma 1 (2-space decomposition). There exist 3 matrices,
B12,B1c and B2c such that B12 is a basis of 〈U12〉,
[B12,B1c] is a basis of 〈U1〉, [B12,B2c] is a basis of 〈U2〉,
and [B12,B1,B2] is a basis of 〈[U1,U2]〉.

Note that Lemma 1 also implies the following dimension
formula,

rk(U1) + rk(U2) = rk(B12) + rk(B1c) + rk(B12) + rk(B2c)

= rk(U1 ∩U2) + rk([U1,U2]). (15)

A common proof of Lemma 1 from a constructive perspective
(e.g. [58, Thm. 3, Ch. 3]) is based on incrementally growing a
basis representation, and is summarized as follows. First one
finds B12 ∈ Fd×rk(U1∩U2)

q as a basis of 〈U1 ∩ U2〉. Then,
by the basis extension theorem, one can find a submatrix
B1c ∈ Fd×rk(U1)

q of U1 such that [B12,B1c] spans 〈U1〉,
and similarly a submatrix B2c ∈ Fd×rk(U2)

q of U2 such
that [B12,B2c] spans 〈U2〉. Note that 〈B2c〉 only has trivial
intersection with 〈U1〉 because otherwise B2cv + U1v

′ =
0 =⇒ B2cv ∈ 〈B12〉 where v,v′ are non-zero vectors,
which contradicts that [B12,B2c] form a basis. Therefore,
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[B12,B1c,B2c] is a basis of 〈[U1,U2]〉 since it also spans
〈[U1,U2]〉.

Figure 2 illustrates the decomposition of 〈U1〉 and 〈U2〉 by
identifying 3 subspaces, each labeled by its basis representa-
tion.

〈U1〉 〈U2〉B12B1c B2c

Fig. 2: Decomposition of 〈U1〉, 〈U2〉 into 3 subspaces labeled
by their respective bases.

The following lemma non-trivially extends the argument to
3 linear subspaces.

Lemma 2 (3-space decomposition). There exist 10 matrices,
B123, B12, B13, B23, B1(2,3), B2(1,3), B3(1,2), B1c, B2c,B3c,
such that the following properties (P1)-(P20) are satisfied.

(P1) B123 is a basis of 〈U123〉,
(P2) [B123,B12] is a basis of 〈U12〉,
(P3) [B123,B13] is a basis of 〈U13〉,
(P4) [B123,B23] is a basis of 〈U23〉,
(P5) [B123,B12,B13] is a basis of 〈[U12,U13]〉,
(P6) [B123,B12,B23] is a basis of 〈[U12,U23]〉,
(P7) [B123,B13,B23] is a basis of 〈[U13,U23]〉,
(P8) [B123,B12,B13,B1(2,3)] is a basis of 〈U1(2,3)〉,
(P9) [B123,B12,B23,B2(1,3)] is a basis of 〈U2(1,3)〉,

(P10) [B123,B13,B23,B3(1,2)] is a basis of 〈U3(1,2)〉,
(P11) [B123,B12,B13,B1(2,3),B1c] is a basis of 〈U1〉,
(P12) [B123,B12,B23,B2(1,3),B2c] is a basis of 〈U2〉,
(P13) [B123,B13,B23,B3(1,2),B3c] is a basis of 〈U3〉,
(P14) [B123,B12,B13,B23,B1(2,3),B2(1,3),B1c,B2c] is a basis

of 〈[U1,U2]〉,
(P15) [B123,B12,B13,B23,B1(2,3),B3(1,2),B1c,B3c] is a basis

of 〈[U1,U3]〉,
(P16) [B123,B12,B13,B23,B2(1,3),B3(1,2),B2c,B3c] is a basis

of 〈[U2,U3]〉,
(P17) [B123,B12,B23,B13,B1(2,3),B2(1,3),B1c,B2c,B3c] is a

basis of 〈[U1,U2,U3]〉,
(P18) [B123,B12,B23,B13,B1(2,3),B3(1,2),B1c,B2c,B3c] is a

basis of 〈[U1,U2,U3]〉,
(P19) [B123,B12,B23,B13,B2(1,3),B3(1,2),B1c,B2c,B3c] is a

basis of 〈[U1,U2,U3]〉, and

(P20) B1(2,3),B2(1,3),B3(1,2) have identical size and B1(2,3)+
B2(1,3) = B3(1,2).

We leave the proof to Appendix C. Figure 3 illustrates the de-
composition of 〈U1〉, 〈U2〉, 〈U3〉 by identifying 10 subspaces,
each labeled by its basis representation.

We conclude this section with the following observations.
Remark 4.1 The decomposition of 2 linear subspaces in

Lemma 1 resembles the decomposition of 2 sets, e.g., the
inclusion-exclusion principle and Venn’s diagrams are re-
flected in the decompositions. However, the set-theoretic anal-
ogy is no longer true for 3 linear subspaces, as in the decom-
position the 3 yellow spaces are not mutually independent.
Appendix B provides more discussion regarding this property.

Remark 4.2 Identifying suitable intersecting subspaces
within vector spaces is also a recurrent theme in the degrees
of freedom (DoF) studies of wireless networks, e.g., to sim-
plify the design of interference alignment schemes in MIMO
settings [59], [60]. In particular, the DoF study of a 3 user
wireless MIMO BC setting in the PhD thesis of Wang [55,
Ch. 3] provides a subspace decomposition that very closely
parallels Lemma 2. The correspondence and the distinctions
between the two are discussed in Appendix D, as are the
limitations that prevent the proof in [55, Ch. 3] from carrying
over directly to our finite field setting. An independent proof of
Lemma 2 for our setting is provided in Appendix C. Notably
the proof in Appendix C only relies on arguments that hold
both over finite fields as well as over the field of complex
numbers, thereby unifying the two settings.

Remark 4.3 Lemma 2 ignores the details of how each
Ui is composed of Vi and V′

i. Depending on their own
side-information and demand, each user will have a different
conditional view of these subspaces. This most essential aspect
of the LCBC problem is not reflected in the decomposition.
Thus, it is worthwhile to note that the decomposition is
primarily a preparatory step, the main technical challenge from
both achievability and converse perspectives remains focused
on accounting for the distinct side-information and demand
structures across users. See also Remark 5.2.3.

V. RESULTS

A. A Closed Form Capacity Expression for the 3 User LCBC

As our main result, the following theorem states the capacity
of the 3 user LCBC in closed form.

Theorem 1. For the K = 3 user general LCBC, i.e.,
LCBC(Fq, 3, d, (mk,m

′
k)k∈[3], (Vk,V

′
k)k∈[3]), the capacity

C = 1/max{∆1,∆2}, equivalently, the optimal broadcast
cost, ∆∗ = max{∆1,∆2} where,

∆n ≜ max
(i,j,k)∈{permutations of (1,2,3)}

{∆ijk
n }, n ∈ {1, 2},

(16)

and

∆ijk
1 ≜ rk(V1 | V′

1) + rk(V2 | V′
2) + rk(V3 | V′

3)

− rk(Uij | V′
j)− rk(Uk(i,j) | V′

k), (17)

∆ijk
2 ≜ rk(V1 | V′

1) + rk(V2 | V′
2) + rk(V3 | V′

3)

− 1

2

󰀓
min
ℓ∈[3]

󰀃
rk(U123 | V′

ℓ)
󰀄
+ rk([Uij ,Uik] | V′

i)

+ rk(Uj(i,k) | V′
j) + rk(Uk(i,j) | V′

k)
󰀔
. (18)

Recall the conditional-rank notation defined in Section II,
rk(X|Y ) ≜ rk([X,Y ])− rk(Y ) . The proof of Theorem 1 will



6

〈U1〉

〈U2〉 〈U3〉
B123

B12 B13

B23

B1(2,3)

B
2
(1
,3
) B 3(

1,
2)

B1c

B
2c B 3c

〈U123〉

2 λ

〈U12〉 〈U13〉 〈[U12, U13]〉
〈U1(2,3)〉

Fig. 3: The top of the figure shows the decomposition of 〈U1〉, 〈U2〉, 〈U3〉 into 10 subspaces that are labeled by corresponding
bases as specified in Lemma 2. The five blue circles in the bottom row each show 〈U1〉, and highlight the subspaces 〈U123〉,
〈U12〉, 〈U13〉, 〈[U12,U13]〉 and 〈U1(2,3)〉, respectively. The compact notations, U123,U12,U1(2,3) etc., are defined in Section
III, for example U12 ≜ U1 ∩U2 and U1(2,3) ≜ U1 ∩ [U2,U3]. The three subspaces highlighted as dashed yellow regions are
not independent, the span of the union of any two of them contains the third.

be presented along with the proof of the upcoming Theorem 2,
in Sections VII, VIII, and IX according to the proof structure
specified in Section V-C.

Remark 5.1.1 The bound ∆∗ ≥ ∆1 follows from a gen-
eralization of the converse bound of the 2 user LCBC, and is
similar to the genie-aided converse bound of coded caching
(e.g., [61, (71)-(75)]). However, unlike the 2 user LCBC, this
bound is not sufficient for the 3 user LCBC, which is why
we also need the bound ∆∗ ≥ ∆2. The bound ∆∗ ≥ ∆2

encapsulates the new technical challenge in the 3 user LCBC
from the converse perspective (see Section VII).

Remark 5.1.2 The capacity of the 3 user LCBC can be
expressed in various equivalent forms. The closed form pre-
sented in Theorem 1 emerges naturally from the converse
bounds. Indeed, the converse in Section VII directly produces
two bounds, one each for ∆ijk

1 ,∆ijk
2 . The achievability ar-

gument on the other hand, takes a different approach which
involves auxiliary parameters (the λ• parameters in Theorem
2) representing various design choices. Optimizing the design
choices amounts to a linear program, the solution to which
yields the same ∆∗ as Theorem 1. Even though the converse
and achievability perspectives ultimately lead to the same ∆∗,
their different forms yield different insights. The achievability
perspective in particular yields constructive insights into the
tradeoffs involved in simultaneously satisfying all 3 users’
demands. This alternative (but equivalent) form of the capacity
result is presented next.

B. An Alternative Expression for the Capacity of the 3 User
LCBC

Theorem 2.

∆∗ = F ∗ (19)

where ∆∗ is the optimal broadcast cost for the K = 3 user
general LCBC and F ∗ is the solution to the following linear
program,

F ∗ ≜
min

λ123,λ12,λ13,λ23,λ∈R+

rk(V1|V′
1) + rk(V2|V′

2) + rk(V3|V′
3)

− 2λ123 − λ12 − λ13 − λ23 − λ, (20)

such that3

λ123 ≤ rk(U123 | V′
i), ∀i ∈ {1, 2, 3}, (21)

λij + λ123 ≤ min
󰀃
rk(Uij | V′

i), rk(Uij | V′
j)
󰀄
,

∀(i, j) ∈ {(1, 2), (1, 3), (2, 3)}, (22)
λij + λik + λ123 ≤ rk([Uij ,Uik] | V′

i),

∀(i, j, k) ∈ {(1, 2, 3), (2, 1, 3), (3, 1, 2)}, (23)
λ+ λij + λik + λ123 ≤ rk(Ui(j,k) | V′

i),

∀(i, j, k) ∈ {(1, 2, 3), (2, 1, 3), (3, 1, 2)}. (24)

Remark 5.2.1 For the sake of high level intuition, Figure
4 conveys a somewhat oversimplified (the caveat is noted in
Remark 5.2.3) understanding of the conditions (21)-(24) in
Theorem 2. The λ• parameters represent the size (dimension)
of signals in various subspaces to be broadcast by the coding
scheme. Depending upon the region they fall in, the subspaces
have different communication efficiencies. For instance, note
that λ123 falls in U123, and carries information that is si-
multaneously useful for all 3 users. Thus, λ123 transmitted
dimensions satisfy a total of 3λ123 dimensions of demand
(λ123 per user). Borrowing the classical metaphor, we refer
to the efficiency of such transmissions as 3 birds, 1 stone.
Transmissions corresponding to λij fall in subspaces Uij and

3By definition the indices ij and ji are interchangeable.
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〈U1〉

〈U2〉 〈U3〉
λ123

λ12 λ13

λ23

λ

λ λ

λ123

≤ rk(U123 | V′
1)

λ123

2

λ12 + λ123

≤ rk(U12 | V′
1)

λ123

λ12

λ13 + λ123

≤ rk(U13 | V′
1)

λ123

2 λ13

λ12 + λ13 + λ123

≤ rk([U12,U13] | V′
1)

λ123

λ12 λ13

λ+ λ12 + λ13 + λ123

≤ rk(U1(2,3) | V′
1)

λ123

λ12 λ13

λ

Fig. 4: Intuitive understanding of the constraints (21)-(24). Note that the blue circles in the bottom row of the figure do not
show 〈U1〉 per se, rather they show the space 〈U1〉 conditioned on User 1’s side-information, so that the corresponding sizes
of all subspaces are represented with conditional ranks after conditioning on V′

1. Each user will generally have a different
perspective due to different impact of conditioning on their respective side-informations, giving rise to different constraints
(21)-(24).

are simultaneously useful for Users i and j, so the efficiency
of such transmissions is similarly referred to as 2 birds, 1
stone. In other words, λij transmitted dimensions satisfy 2λij

dimensions of demand. Transmissions corresponding to λ fall
in the three subspaces highlighted in yellow in Figure 3
where we previously noted that any two subspaces are disjoint
but contain the third. What this means is that the coding
scheme needs to send any 2 of the 3 subspaces marked with
λ, and the third can be automatically inferred from them.
Thus, a transmission of 2λ dimensions, satisfies a total of 3λ
dimensions of demand (λ per user), yielding an efficiency of
3 birds, 2 stones.

Remark 5.2.2 In light of the previous remark, now con-
sider the objective to be minimized in (20), ∆∗ = rk(V1|V′

1)+
rk(V2|V′

2)+ rk(V3|V′
3)−2λ123−λ12−λ13−λ23−λ. We rec-

ognize the sum of the first three terms as the broadcast cost if
the users were to be served separately and no gain in efficiency
was possible by jointly satisfying multiple demands. Let this
be our baseline. Now note that because 3λ123 dimensions of
demand were satisfied with λ123 dimensions of broadcast, the
cost-saving incurred relative to the baseline is 2λ123, which
explains the fourth term that appears as a negative term in the
objective. The next three negative terms are similarly justified
because each λij dimensions of transmission satisfies 2λij

dimensions of demand, thus saving λij relative to the baseline.
Finally, for the λ term, we recall that a total transmission cost
of 2λ dimensions is able to satisfy 3λ dimensions of demand,
thus saving another λ in broadcast cost, which explains the
last negative term in the objective function.

Remark 5.2.3 As a caveat, note that the intuitive expla-
nation above ignores a critical aspect of the problem that
remains challenging — namely, each user’s view of useful

dimensions depends on their own side-information, and is in
general different from other users. This is indicated in Figure
4 by noting that the relevant signal spaces for User 1 are not
simply the U• spaces that appear in the decomposition at the
top of Figure 3 and Figure 4. Rather, each user’s view of useful
subspaces is conditional on his side-information. For example,
the same signal space U123 when seen by the Users 1, 2, 3,
contains rk(U123 | V′

1), rk(U123 | V′
2), rk(U123 | V′

3) useful
dimensions, respectively. Thus, the total number of dimensions
useful to all three users, i.e., the size of λ123 is limited by the
bound in (21). Even with the size of λ123 constrained in this
manner, finding the broadcast dimension is not trivial because
each user may find a different λ123 portion of U123 useful to
them. Similar challenges arise in identifying λij dimensions
that are useful to Users i and j, when each user’s perspective
is different, conditioned on their own side-information. Even
greater care has to be taken in identifying the λ sections of the
broadcast signal, to ensure that 2 transmissions span the third,
while facing the challenge that the projections of λ into each
user’s perspective are distinguished by their different side-
informations.

Remark 5.2.4 Since linear optimizations over polyma-
troidal constraints allow greedy solutions [62] that can sim-
plify dimensional analysis (see e.g., the DoF study in [63,
Chapter 5]), it is worth noting that the constraints (21)-(24)
do not specify a polymatroidal structure. To verify this with
a toy example, suppose V1 = V′

2 = V′
3 = [1, 1]T and V′

1 =
V2 = V3 = [0, 0]T . Then we have the constraints, λ123 ≤ 0,
λ12 + λ123 ≤ 0, λ13 + λ123 ≤ 0 and λ12 + λ13 + λ123 ≤ 1,
which violate the polymatroidal structure.
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C. Structure of Proofs
Theorem 1 and Theorem 2 are equivalent alternative forms

of the same capacity result. We organize the proofs of
these two theorems as follows. In Section VII we prove the
converse (lower) bound for the optimal broadcast cost, i.e.,
∆∗ ≥ max{∆1,∆2}. Then in Section VIII we prove the
achievability (upper) bound ∆∗ ≤ F ∗. Finally in Section IX
we prove that F ∗ ≤ max{∆1,∆2}. The three proofs together
imply that ∆∗ = F ∗ = max{∆1,∆2}, thus proving both
Theorem 1 and Theorem 2.

VI. TOY EXAMPLES

In this section, we present simple toy examples that illustrate
some of the ideas discussed previously, such as subspace
decompositions and linear-programming tradeoffs between
schemes with different communication efficiency (birds vs
stones), some ideas that will be important later on in the
construction of the general coding scheme, such as field
extensions, vector coding, and mixing of dimensions, and
some new insights, such as the insufficiency of entropic
structure, and the need for functional submodularity. For these
examples we use specialized notation for simplicity: ((W′

i →
Wi), i = 1, 2, 3) to specify the setting, A,B,C,D,E instead
of x1, x2, x3, x4, x5, and Aℓ instead of A(ℓ).

Example 1 (3 birds, 1 stone). Consider d = 3 dimensional
data XT = (A,B,C) over F3, and ((A → B + C), (B →
A + C), (C → A + B)). In other words, User 1 has A and
wants B + C, User 2 has B and wants A + C, and User 3
has C and wants A+B. A signal space decomposition as in
Figure 3 yields for this example,

B123 B12 B13 B23 B1(2,3) B2(1,3) B3(1,2)

A+B + C − − − A B A+B

B1c B2c B3c

− − −
Note that for simplicity in these examples we indicate B123 as
A+B +C instead of the formal representation as the vector
[1, 1, 1]T in the 3 dimensional data universe. The optimal
broadcast cost is ∆∗ = 1, achieved with L = 1, N = 1,
λ12 = λ23 = λ13 = λ = 0, λ123 = 1, by broadcasting
S = (A+B + C).

Example 2 (2 birds, 1 stone, vector coding, insufficiency of
entropic structure). Consider d = 3 dimensional data XT =
(A,B,C) over F3, and ((A → B+C), (B → A+C), (C →
A+ 2B)). A signal space decomposition yields,

B123 B12 B13 B23

− A+B + C A+ 2B + 2C A+ 2B + C

B1(2,3) B2(1,3) B3(1,2) B1c B2c B3c

− − − − − −
The optimal broadcast cost is ∆∗ = 1.5, achieved with L =
2, N = 3, λ123 = λ = 0,λ12 = λ13 = λ23 = 0.5, by
broadcasting S = (A1 + B1 + C1, A2 + 2B2 + 2C2, (A1 +
2B1 + C1) + (A2 + 2B2 + C2)).

Evidently, 1.5 dimensions of broadcast satisfy a total of
3 dimensions of demand, as expected from a 2 birds, 1

stone setting. Also note that this example requires vector
coding, i.e., we need L > 1. Most importantly, however, this
example illustrates that unlike the 2 user LCBC, the entropic
formulation of [40] is not enough for the 3 user LCBC. The
following remark elaborates upon this observation.

Remark 6.1 Reference [40] considers an entropic for-
mulation of the LCBC that is summarized as follows.
The data X is assumed to be i.i.d. uniform, W∗ ≜
{W1,W

′
1, · · · ,WK ,W′

K} denotes the set of all 2K demand
and side-information random variables, the entropies H(W)
are specified for all 22K − 1 non-empty subsets of random
variables W ⊂ W∗, the encoding constraint is represented as
H(S | W∗) = 0, and the decoding constraints are represented
as H(Wk | S,W′

k) = 0 for all k ∈ [K]. Subject to these
entropy specifications, as well as standard (Shannon and non-
Shannon) information inequalities, the goal is to minimize
the entropy H(S). As discussed in Section III-A3, such a
formulation produces a lower bound on the download cost,
as N ≥ H(S), which in turn yields a lower bound on ∆∗.
For the K = 2 user LCBC, this bound turns out to be tight.
Remarkably, however, the same approach does not work for
the K = 3 user LCBC, as we argue based on Example 1 and
Example 2. Although a bit tedious, it is not difficult to verify
that all 26−1 = 63 entropies H(W) match for Example 1 and
Example 2. For example, consider W = {W′

1,W3}. Note that
H(W) = H(W′

1,W3) = H(A,A+B) = H(A,B) = 2L in
Example 1, and H(W) = H(W′

1,W3) = H(A,A + 2B) =
H(A,B) = 2L in Example 2, so both examples have the
same entropy for this W . One can similarly compute H(W)
for all 63 non-empty subsets W ⊂ W∗ for both Example 1 and
Example 2 and verify that in each case both examples produce
matching entropies. Therefore, since all the entropic con-
straints for both examples are identical, and all Shannon and
non-Shannon information inequalities apply to both examples,
the two examples can only produce the same entropic lower
bound on H(S). However, we know that the two examples
have different capacities. Example 1 has ∆∗ = 1, C = 1
while Example 2 has ∆∗ = 1.5, C = 1/1.5 = 2/3. Since
Example 2 requires a strictly stronger bound (impossibility
result) than Example 1 for a tight converse, it follows that
the entropic formulation cannot yield a tight converse for
Example 2. Indeed, the key to the converse bound ∆∗ ≥ 1.5
for Example 2 is the functional submodularity property [56],
[57] that takes into account the functional forms of the users’
side-information and demands. A converse for Example 2 is
explicitly provided in Section VII-B1.

Example 3 (3 birds, 2 stones, the user’s perspective). Consider
d = 3 dimensional data XT = (A,B,C) over F2, and ((A →
B), (B → C), (C → A)). A signal space decomposition as in
Figure 3 yields,

B123 B12 B13 B23 B1(2,3) B2(1,3) B3(1,2)

− B A C − − −
B1c B2c B3c

− − −

This coincides with an index coding problem, the optimal
broadcast cost is ∆∗ = 2, achieved with L = 1, N = 2,
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λ123 = λ12 = λ13 = λ23 = 0,λ = 1, by broadcasting
S = (A+B,B + C).

This example also highlights the importance of the users’
individual perspectives conditioned on their side-information.
Without accounting for side-information, the signal space
decomposition of Figure 3 suggests that all the signals reside in
U12,U13,U23, which might suggest 2 birds, 1 stone schemes
with λ12 = λ13 = λ23 = 0.5 and a download cost of
∆∗ = 1.5. However, this is not achievable, as we note the
optimal download cost is ∆∗ = 2. To see this, consider
individual users’ perspectives. For example, User 1 requires
λ13 + λ123 ≤ rk(U13 | V′

1). Now since both U13 and V′
1

correspond to the data dimension A, this conditional rank is
0. In other words, even though the subspace U13 has one
dimension that may suggest the opportunity to simultaneously
satisfy users 1 and 3, this dimension happens to be already
available to User 1. Thus, upon taking into account User 1’s
side-information, there is no such opportunity. We end up with
λ123 = λ12 = λ13 = λ23 = 0, and λ = 1. Out of the 3
dimensions, say A+B,B+C,C+A, any two yield the third by
summation (over F2), and it suffices to send any 2 to satisfy all
3 users. Notice the need to mix up the dimensions, appealing
to mixed dimensions (similar to random coding arguments)
will be a key idea to develop the general coding scheme.

As noted, Example 2 used vector coding (L > 1) to
achieve the optimal download cost ∆∗ = 1.5. Vector coding
may be strictly necessary even in cases where the optimal
download cost ∆∗ is an integer value, as illustrated by the
next example. The necessity of vector coding for the 3 user
LCBC is remarkable because scalar coding was found to be
sufficient for the 2 user LCBC in [40]).

Example 4 (Field size extension). Consider d = 2 dimen-
sional data XT = (A,B) over F2, and ((A → B), (B →
A+ B), (A+ B → A)). A signal space decomposition as in
Figure 3 yields,

B123 B12 B13 B23 B1(2,3) B2(1,3) B3(1,2)

A,B − − − − − −
B1c B2c B3c

− − −

We have ∆∗ = 1, achieved with L = 2, N = 2, λ123 =
1,λ12 = λ13 = λ23 = λ = 0, S = (A1+A2+B2, A1+B1+
B2).

Appendix A shows that ∆∗ = 1 is not achievable with scalar
coding, i.e., neither scalar linear nor scalar non-linear coding
scheme can achieve ∆ = 1 for L = 1 computation for this
example. However, ∆∗ = 1 and can be achieved for L = 2
computations with N = 2. In this case, because λ123 = 1,
we would like to broadcast one dimension. In the scalar code
setting L = 1, this one dimension can be found for each
pair of users but it cannot be the same for the three users
simultaneously. To see this, note that A+B helps User 1 and
User 2 but not User 3; B helps User 1 and User 3 but not User
2; A helps User 2 and User 3 but not User 1. Aside from the
time-sharing type vector coding solution shown for Example
2, another approach is to consider L > 1 (which implies a

vector code) and use a scalar code in a larger extended field
F2z (in general Fqz ). For this example, with L = 2, we can
use a scalar code over F4 = F2[x]/(x

2+x+1), which results
in N = 2 in F2. Representing A = A1+A2x ∈ F4, B = B1+
B2x ∈ F4, the transmitted symbol is simply (1 + x)A + xB
mod (x2 + x + 1) = (A1 + A2 + B2) + x(A2 + B1 + B2)
which corresponds to the transmitted symbol S = (A1+A2+
B2, A1 + B1 + B2). Additional discussion can be found in
Appendix A as well. Indeed, field extensions are a key element
of the general coding scheme.

Example 5 (Inseparability). Consider d = 5 dimensional
data XT = (A,B,C,D,E) over F3, and ((A → [B +
C,D]), (B → [A+C,E]), ([C,D+E] → A+2B)). A signal
space decomposition as in Figure 3 yields,

B123 B12 B13 B23

− A+B + C A+ 2B + 2C A+ 2B + C

B1(2,3) B2(1,3) B3(1,2) B1c B2c B3c

D E D + E − − −

We have ∆∗ = 3, achieved with L = 1, N = 3, λ123 = λ13 =
λ23 = 0,λ12 = λ = 1, by broadcasting S = (A+B+C,A+
D, 2B + E).

Note that this problem combines Example 2 for data
(A,B,C) and another LCBC instance with data (D,E) where
User 1 wants D, User 2 wants E and User 3 knows D + E.
Separately, these problems have download costs of 1.5 and
2, respectively. Since the two problems deal with independent
data, one might expect the solution to be separable, however
a separate solution would have a total broadcast cost of
1.5 + 2 = 3.5. The optimal ∆∗ = 3, which is better than
3.5, thus showing that even though an LCBC problem may be
a composition of instances with separate datasets, in general
a separate solution would be suboptimal. This observation
also underscores why the tradeoffs in LCBC, that we see
represented in the linear program, are non-trivial.

VII. PROOF OF CONVERSE: ∆∗ ≥ max{∆1,∆2}
The converse is comprised of the two bounds, ∆∗ ≥ ∆1,

and ∆∗ ≥ ∆2. The first bound, ∆∗ ≥ ∆1 is a straightforward
generalization of the corresponding bound for the 2 user
LCBC found in [40] to the 3 user setting. The second bound,
∆∗ ≥ ∆2 is novel, and requires functional submodularity.
For the sake of completeness in this section we present the
proof of both bounds. Let us begin by recalling the functional
submodularity property.

Lemma 3 (Functional submodularity of Shannon entropy
(Lemma A.2 of [56])). If X0, X1, X2, X12 are random vari-
ables such that X1 and X2 each determine X0 and (X1, X2)
determine X12, then:

H(X1) +H(X2) ≥ H(X12) +H(X0) (25)

Note that ‘A determines B’ as used in Lemma 3 is equiva-
lent to the statement that H(B | A) = 0, i.e., B is a function
of A. Thus, the lemma assumes that H(X0 | X1) = H(X0 |
X2) = H(X12 | X1, X2) = 0.
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As an immediate corollary, let us note the following form
in which we will apply the functional submodularity.

Corollary 1. For arbitrary matrices M1 ∈ Fd×µ1
q ,M2 ∈

Fd×µ2
q , any random matrix X ∈ Fd×L

q , and any random
variable Z,

H(Z,XTM1) +H(Z,XTM2)

≥ H(Z,XT [M1 ∩M2]) +H(Z,XT [M1,M2]) (26)

Proof. The corollary follows from Lemma 3 by setting X1 =
(Z,XTM1), X2 = (Z,XTM2), and noting that X0 =
(Z,XT [M1 ∩ M2]) can be obtained as a function of both
X1 and X2 individually, while X12 = (Z,XT [M1,M2]) is a
function of (X1, X2). □

A. Proof of the bound: ∆∗ ≥ ∆1

As noted, the proof of this bound is straightforward. It
follows along the same lines as the proof for the 2 user
LCBC in [40], also similar to the genie-aided bound in coded
caching (e.g., [61, (71)-(75)]) and is provided here for the sake
of completeness. In particular, it does not require functional
submodularity. As explained in Section III-A3, recall that the
converse bound is based on a thought-experiment that sup-
poses that the data X is i.i.d. uniform, which leads to a lower
bound N ≥ H(S). Let W∗

k ≜ (Wk,W
′
k), ∀k ∈ [3]. The

bound follows essentially by iteratively using the argument

H(S | W′
k,W

∗
[k−1])

≥ H(Wk | W′
k,W

∗
[k−1])󰁿 󰁾󰁽 󰂀

The genie-aided bound for the kth user

+ H(S | W′
k+1,W

∗
[k]), (27)

since H(S | W′
k,W

∗
[k−1]) = H(S,Wk | W′

k,W
∗
[k−1]) ≥

H(Wk | W′
k,W

∗
[k−1]) + H(S | W′

k+1,W
∗
[k]), where the

first step uses the decoder definition (4) and the second step
applies the chain rule of entropy and the fact that conditioning
reduces entropy. It then follows that for any coding scheme󰀃
L,N,Φ, (Ψk)k∈[3]

󰀄
∈ C,

N ≥ H(S) ≥ H(S | W′
1) (28)

≥ H(W1 | W′
1) +H(S | W′

2,W
∗
1) (29)

≥ H(W1 | W′
1) +H(W2 | W′

2,W
∗
1)

+H(S | W′
3,W

∗
1,W

∗
2) (30)

≥ H(W1 | W′
1) +H(W2 | W′

2,W
∗
1)

+H(W3 | W′
3,W

∗
1,W

∗
2) (31)

= L ·
󰀃
rk(V1 | V′

1) + rk(V2 | [U1,V
′
2])

+ rk(V3 | [U1,U2,V
′
3])

󰀄
(32)

= L ·
󰀃
rk(V1 | V′

1) + rk(V2 | V′
2)− rk(U12 | V′

2)

+ rk(V3 | V′
3)− rk(U3(1,2) | V′

3)
󰀄

(33)

=⇒ ∆ = N/L ≥ ∆123
1 (34)

Steps (29) – (31) follow from (27). Step (32) uses the fact
that for i.i.d. uniform data XT ∈ FL×d

q and an arbitrary
matrix M ∈ Fd×µ

q , we have H(XTM) = L · rk(M) in q-
ary units, and applies the conditional-rank notation as defined
in Section II. Step (33) follows from the observation that
rk(Vk | [Z,V′

k]) = rk([Uk,Z]) − rk([V′
k,Z]) = rk(Uk) −

rk(V′
k) −

󰀓
rk(Uk ∩ Z) − rk(V′

k ∩ Z)
󰀔

= rk(Vk | V′
k) −

rk(Uk ∩Z | V′
k). Similarly, ∆ ≥ ∆ijk

1 for all (i, j, k) that are
permutations of (1, 2, 3). Since this holds for every coding
scheme

󰀃
L,N,Φ, (Ψk)k∈[3]

󰀄
∈ C, it follows that ∆∗ ≥ ∆1.

B. Proof of the bound: ∆∗ ≥ ∆2

The main idea of this proof is to successfully identify and
introduce the entropies of certain (linear) functions of users’
demands and side-information that are critical in determining
the capacity, with the application of Lemma 3. To build
intuition, let us start with the converse proof for a toy example,
specifically Example 2 of Section VI.

1) Converse Proof for a Toy Example: Consider any coding
scheme

󰀃
L,N,Φ, (Ψk)k∈[3]

󰀄
∈ C for Example 2 of Section

VI. Recall that User 1 has Aℓ and wants Bℓ + Cℓ; User 2
has Bℓ and wants Aℓ + Cℓ; User 3 has Cℓ and wants Aℓ +
2Bℓ for all ℓ ∈ [L]. We want to prove the converse bound
∆∗ ≥ 1.5. Let us denote A as (A1, · · · , AL) ∈ F1×L

q , B as
(B1, · · · , BL) ∈ F1×L

q and C as (C1, · · · , CL) ∈ F1×L
q . As

mentioned in Section III-A3 let us start the converse proof
with the thought-experiment that A,B,C are i.i.d. uniform in
Fq , which allows the following entropic arguments.

2H(S) +H(A) +H(B)− I(S;A)− I(S;B)

= H(S, A) +H(S, B) (35)
≥ H(S, A,B + C) +H(S, B,A+ C) (36)
≥ H(S, A+B + C) +H(S, A,B,C) (37)
≥ H(S) +H(A+B + C | S) +H(A,B,C). (38)

Similarly,

2H(S) +H(A) +H(C)− I(S;A)− I(S;C)

= H(S, A) +H(S, C) (39)
≥ H(S, A,B + C) +H(S, C,A+ 2B) (40)
≥ H(S, A+ 2B + 2C) +H(S, A,B,C) (41)
≥ H(S) +H(A+ 2B + 2C | S) +H(A,B,C). (42)

Steps (35) and (39) use the definition of mutual information
I(A;B) = H(A) + H(B) − H(A,B). Steps (36) and (40)
use the decoder definition (4). Step (37) uses functional
submodularity (Lemma 3) by recognizing that (A,B + C)
and (B,A + C) each determine A + B + C, and (A,B +
C,B,A+C) determines (A,B,C). Step (41) uses functional
submodularity by recognizing that (A,B+C) and (C,A+2B)
each determine A + 2B + 2C, and (A,B + C,C,A + 2B)
determines (A,B,C).

Adding the above two inequalities, we have

4H(S) + 2H(A) +H(B) +H(C)

− 2I(S;A)− I(S;B)− I(S;C)

≥ 2H(S) +H(A+B + C | S)
+H(A+ 2B + 2C | S) + 2H(A,B,C). (43)

It follows that

2H(S) ≥ H(A+B + C | S) +H(A+ 2B + 2C | S)
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+ I(S;A) + 2L (44)
≥ H(A+B + C,A+ 2B + 2C | S)

+ I(S;A) + 2L (45)
≥ H(A | S) + I(S;A) + 2L (46)
= H(A) + 2L (47)
= 3L. (48)

Step (44) and (48) apply the assumption that A,B,C are i.i.d.
uniform in Fq . Step (45) uses the general property of joint
entropy that H(X | Z) +H(Y | Z) ≥ H(X,Y | Z) for any
random variables X,Y, Z. Step (46) is obtained by recognizing
that A is a function of (A+B+C,A+2B+2C). Step (47)
uses the information equality I(A;B) = H(A) − H(A|B).
Therefore, we have the desired converse bound, ∆ = N/L ≥
H(S)/L ≥ 1.5 for the coding scheme. Since this is true for
every feasible coding scheme, we have the bound ∆∗ ≥ 1.5.

2) General Proof of Converse Bound ∆∗ ≥ ∆2: As
mentioned in Section III-A3 let us start the converse proof
based on the thought-experiment that supposes the elements
of the data X are i.i.d. uniform in Fq .

2H(S) + 2

3󰁛

k=1

H(W′
k)

= 2

3󰁛

k=1

H(S,W′
k) + 2

3󰁛

k=1

I(S;W′
k)− 4H(S) (49)

= 2

3󰁛

k=1

H(S,W′
k,Wk) + 2

3󰁛

k=1

I(S;W′
k)− 4H(S) (50)

=
󰁛

(i,j)∈{(1,2),(2,3),(1,3)}

󰀓
H(S,XT Ui) +H(S,XT Uj)

󰀔

+ 2

3󰁛

k=1

I(S;W′
k)− 4H(S) (51)

≥
󰀅
H(S,XT U12) +H(S,XT U13)

󰀆

+
󰀅
H(S,XT [U1,U2]) +H(S,XTU3)

󰀆

+
󰀅
H(S,XT [U1,U3]) +H(S,XTU2)

󰀆

+ 2

3󰁛

k=1

I(S;W′
k)− 4H(S) (52)

≥ H(S,XTU123) +H(S,XT [U12,U13])

+H(S,XTU3(1,2)) +H(S,XTU2(1,3))

+ 2H(S,XT [U1,U2,U3]) + 2

3󰁛

k=1

I(S;W′
k)− 4H(S)

(53)

≥ H(XTU123|S) +H(XT [U12,U13]|S)
+H(XTU3(1,2)|S) +H(XTU2(1,3)|S)

+ 2H(XT [U1,U2,U3]) + 2

3󰁛

k=1

I(S;W′
k) (54)

≥ max
ℓ∈{1,2,3}

H(XT (U123 ∩ V′
ℓ)|S) +H(XT [U12,U13]|S)

+H(XTU3(1,2)|S) +H(XTU2(1,3)|S)

+ 2H(XT [U1,U2,U3]) + 2

3󰁛

k=1

I(S;W′
k) (55)

≥ max
ℓ∈{1,2,3}

H(XT (U123 ∩V′
ℓ)) +H(XT [U12,U13]|S)

+H(XTU3(1,2)|S) +H(XTU2(1,3)|S)

+ 2H(XT [U1,U2,U3]) +

3󰁛

k=1

I(S;W′
k) (56)

≥ max
ℓ∈{1,2,3}

H(XT (U123 ∩V′
ℓ))

+H(XT ([U12,U13] ∩V′
1)) +H(XT (U3(1,2) ∩V′

3))

+H(XT (U2(1,3) ∩V′
2)) + 2H(XT [U1,U2,U3]) (57)

In the deduction, the most critical steps are Step (52) and Step
(53). Specifically, Step (52) uses functional submodularity
property from Corollary 1 twice, once for (i, j) = (1, 2)
and once for (i, j) = (1, 3). Step (53) uses functional sub-
modularity from Corollary 1 three times, once for each of
the collections of terms inside the three square parantheses
in (52), making use of the fact that U12 ∩ U13 = U123,
[U1,U2] ∩ U3 = U3(1,2), and [U1,U3] ∩ U2 = U2(1,3) by
definition. The other steps follow from conventional entropic
inequalities. Specifically, Step (49) uses the definition of
mutual information I(A;B) = H(A) + H(B) − H(A,B).
Step (50) uses the decoder definition (4), i.e., Wk is a function
of (S,W′

k). Step (51) uses the definition of Uk = [V′
k,Vk]

from (11) to recognize XTUk = [W′
k,Wk]. Step (54)

uses the chain rule of entropy to extract H(S) from the
first four terms, and the property that H(A,B) ≥ H(B)
to drop S from the fifth term. Step (55) uses the prop-
erty that H(A | B) ≥ H(f(A) | B), and the fact that
XT (U123 ∩ V′

ℓ) is a function of XTU123. Step (56) uses
the fact that H(XT (U123 ∩ V′

ℓ)|S) = H(XT (U123 ∩ V′
ℓ)) −

I(S;XT (U123 ∩ V′
ℓ)) by definition of mutual information,

and I(S;XT (U123 ∩ V′
ℓ)) ≤ I(S;XT V′

ℓ) = I(S;W′
ℓ) ≤󰁓3

k=1 I(S;W
′
k) by data-processing inequality, and the non-

negativity of mutual information. Similar reasoning is applied
to the third, fourth and fifth terms of (56) to obtain (57) by
removing the conditioning on S and by absorbing one of the
I(S;W′

k) terms each. The reasoning can be summarized as
H(A | S) + I(B;S) ≥ H(C | S) + I(C;S) = H(C) if C is
a function of both A and B individually.

Evaluating the entropies in terms of the corresponding
ranks, and normalizing by L, we obtain,

∆ = N/L ≥ H(S)/L

≥ 1

2

󰀓
max

l∈{1,2,3}
rk((U123 ∩V′

l)) + rk([U12,U13] ∩V′
1)

+ rk(U3(1,2) ∩V′
3) + rk(U2(1,3) ∩V′

2)
󰀔

+ rk([U1,U2,U3])−
3󰁛

k=1

rk(V′
k) (58)

=
1

2

󰀓
rk(U123)− min

ℓ∈{1,2,3}
rk(U123 | V′

ℓ) + rk([U12,U13])

− rk([U12,U13] | V′
1) + rk(U3(1,2))− rk(U3(1,2) | V′

3)

+ rk(U2(1,3))− rk(U2(1,3) | V′
2)
󰀔
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+ rk([U1,U2,U3])−
3󰁛

k=1

rk(V′
k) (59)

=
1

2

󰀓
rk(U12) + rk(U13)− min

ℓ∈{1,2,3}
rk(U123 | V′

ℓ)

− rk([U12,U13] | V′
1) + rk(U3) + rk([U1,U2])

− rk(U3(1,2) | V′
3) + rk(U2) + rk([U1,U3])

− rk(U2(1,3) | V′
2)
󰀔
−

3󰁛

k=1

rk(V′
k) (60)

= rk(U1) + rk(U2) + rk(U3)−
3󰁛

k=1

rk(V′
k)

− 1

2

󰀓
min

ℓ∈{1,2,3}
rk(U123 | V′

ℓ) + rk([U12,U13] | V′
1)

+ rk(U3(1,2) | V′
3) + rk(U2(1,3) | V′

2)
󰀔

(61)

= rk(V1 | V′
1) + rk(V2 | V′

2) + rk(V3 | V′
3)

− 1

2

󰀓
min

ℓ∈{1,2,3}
rk(U123 | V′

ℓ) + rk([U12,U13] | V′
1)

+ rk(U3(1,2) | V′
3) + rk(U2(1,3) | V′

2)
󰀔

(62)

Step (58) uses the fact that for i.i.d. uniform data XT ∈ FL×d
q

and an arbitrary matrix M ∈ Fd×µ
q , H(XTM) = L · rk(M)

in q-ary units. Step (59) applies the conditional-rank notation,
rk(A | B) = rk([A,B]) − rk(B) as defined in Section II.
Step (60) uses the fact that rk(U123) = rk(U12 ∩ U13) =
rk(U12) + rk(U13) − rk([U12,U13]), similarly rk(U3(1,2)) =
rk(U3 ∩ [U1,U2]) = rk(U3)+ rk([U1,U2])− rk([U1,U2,U3]),
and by the same token rk(U2(1,3)) = rk(U2 ∩ [U1,U3]) =
rk(U2)+rk([U1,U3])−rk([U1,U2,U3]). Step (61) uses the fact
that rk(Uij) = rk(Ui)+rk(Uj)−rk([Ui,Uj ]). Finally, step (62)
uses the fact that rk(Ui) − rk(V′

i) = rk([V′
i,Vi]) − rk(V′

i) =
rk(Vi | V′

i).
Since this holds for every coding scheme󰀃

L,N,Φ, (Ψk)k∈[3]

󰀄
∈ C, it follows that ∆∗ ≥ ∆123

2 .
Similarly, ∆∗ ≥ ∆ijk

2 , ∀(i, j, k) that are permutations of
(1, 2, 3), which implies that ∆∗ ≥ ∆2.

VIII. PROOF OF ACHIEVABILITY: ∆∗ ≤ F ∗

In this section, we will construct a general scheme for the 3
user LCBC that achieves broadcast cost per computation equal
to F ∗ as specified in the form of a linear program in Theorem
2, thus establishing an upper bound on the optimal broadcast
cost per computation, ∆∗ ≤ F ∗. Finding an explicit solution
to the linear program in closed form will be left for Section
IX. We start this proof with some preliminary steps.

A. Eliminating Redundancies

As a first step let us eliminate redundancies, if any, that
exist in the users’ side-information and demands by removing
redundant columns in Vk,V

′
k such that Uk = [V′

k,Vk] has
full column rank for each k ∈ [3]. Essentially, we retain
only linearly independent columns because the remaining
columns either represent information desired by a user that
is already available to the user (overlap between 〈Vk〉 and
〈V′

k〉), or information that is already accounted for by the

independent columns (redundancies within Vk or within V′
k).

Thus, henceforth let us assume, without loss of generality, that

rk(Uk) = rk([V′
k,Vk]) = rk(V′

k) + rk(Vk) = m′
k +mk.

(63)

B. Field Size Extension

Recall that the problem formulation specifies a field Fq ,
but allows us to choose the number of computations L to
be encoded together as a free parameter in the achievable
scheme. The freedom in the choice of L in fact allows field
extensions that translate the specified field of operations from
Fq to Fqz for arbitrary z ∈ N. Specifically, consider L = z
computations, and denote V̄′

k = V′
k⊗Iz×z , V̄k = Vk⊗Iz×z

and Ūk = Uk ⊗ Iz×z as the z-extension of the coefficient
matrices, where ⊗ denotes the Kronecker product. Denote
X̄ = vec(XT ), where vec(·) is the vectorization function.
By this notation, we can restate the problem such that User
k has side-information X̄T V̄′

k and wants to compute X̄T V̄k

for k = [1 : 3], where X̄ ∈ Fdz×1
q , V̄′

k ∈ Fdz×m′z
q and

V̄k ∈ Fdz×mz
q . Now, since Fq is a subfield of Fqz , this

problem is equivalent to the problem where X ∈ Fd×1
qz ,

V′
k ∈ Fd×m′

qz and Vk ∈ Fd×m
qz for L = 1 computation.

By considering the elements in Fqz instead of Fq , we have
more flexibility in designing schemes by choosing symbols
in the extension field to jointly code over z computations.
Since the achievable scheme allows joint coding over any
L computations, considering L = L′z computations in the
original problem with field Fq is equivalent to considering
L′ computations in the extended field with Fqz . Appendix A
illustrates the idea of field size extension with an example.

C. Useful Lemma

Next let us introduce a useful lemma.

Lemma 4. Let A ∈ Fd×a
q , B1 ∈ Fd×b1

q and B2 ∈ Fd×b2
q be

arbitrary matrices with full column rank (bases), i.e., rk(A) =
a, rk(B1) = b1, rk(B2) = b2. Denote rk(B1 | A) = r1|A,
rk(B2 | A) = r2|A and rk([B1, B2] | A) = r1,2|A. Then for
any non-negative integers n1, n2 such that n1 ≤ r1|A, n2 ≤
r2|A and n1 +n2 ≤ r1,2|A, there exist submatrices of B1, B2,
namely B′

1 ∈ Fd×n1
q and B′

2 ∈ Fd×n2
q , respectively, such that

[A,B′
1, B

′
2] has full column rank a+ n1 + n2.

Proof. Consider first the case that n1 + n2 = r1,2|A.
By Steinitz Exchange lemma there exist submatrices
B

(r1|A)
1 , B

(r2|A)
2 , comprised of r1|A, r2|A columns of B1, B2,

respectively, such that [A,B
(r1|A)
1 ], [A,B

(r2|A)
2 ] have full col-

umn ranks (the superscripts within the parantheses indicate the
number of columns). Now, we claim that if Y (a+r1|A+r2|A) =

[A,B
(r1|A)
1 , B

(r2|A)
2 ] does not have full column rank, i.e.,

a + r1|A + r2|A > rk(Y (a+r1|A+r2|A)) = a + r1,2|A, then
it is always possible to drop a column of B

(r1|A)
1 to yield

Y (a+r1|A+r2|A−1) = [A,B
(r1|A−1)
1 , B

(r2|A)
2 ] which has one

less column but the same column rank as Y (a+r1|A+r2|A).
The claim is proved as follows. Since Y (a+r1|A+r2|A) does
not have full column rank, there exists a non-zero column
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vector Z, such that Y (a+r1|A+r2|A)Z = 0d×1. This non-zero
vector Z must have more than one non-zero element (because
Y (a+r1|A+r2|A) has non-zero columns), and at least one of
its non-zero elements must be in a row-index that maps to
one of the columns of B

(r1|A)
1 (because [A,B

(r2|A)
2 ] has full

column rank). This column of B
(r1|A)
1 can be dropped because

it is spanned by the remaining columns of Y (a+r1|A+r2|A) that
are selected by the support of Z, so that Y (a+r1|A+r2|A−1)

has the same rank as Y (a+r1|A+r2|A). The same claim holds
for B

(r2|A)
2 as well. Repeating this argument we can drop

columns of B
(r1|A)
1 , B

(r2|A)
2 , one-by-one, in any order we wish,

until we meet the target values n1, n2 at which point the
resulting matrix [A,B′

1, B
′
2] has full column rank, equal to

a+ r1,2|A. Finally, if n1 + n2 < r1,2|A, then we continue the
process for an additional r1,2|A − (n1 + n2) steps, but each
additional column that is dropped now reduces both the rank
and the number of columns by 1, until B′

1, B
′
2 are left with

only n1, n2 columns, respectively, and rk(Y (a+r1|A+r2|A)) =
a+ r1,2|A − (r1,2|A − (n1 + n2)) = a+ n1 + n2.

Let us also note the following direct corollary of Lemma 4
which will be used multiple times in our construction of the
coding scheme.

Corollary 2. Let A ∈ Fd×a
q and B ∈ Fd×b

q be arbitrary matri-
ces with full column rank (bases), i.e., rk(A) = a, rk(B) = b.
Denote rk(B | A) = r. Then for any non-negative integer
n such that n ≤ r, there exists a submatrix of B, namely
B′ ∈ Fd×n

q such that [A,B′] has full column rank a+ n.

Proof. Corollary 2 is implied by Lemma 4, by mapping A,
B here to A, B1 in Lemma 4, respectively, and setting b2 =
0.

D. Construction of the Optimal Broadcast Scheme

The construction of the optimal broadcast information fol-
lows the formulation of Theorem 2 and the depiction in Figure
4. At a high level, the goal is to construct a scheme that
broadcasts λ123 dimensions that are simultaneously useful
to all 3 users (3 birds, 1 stone), λij dimensions that are
simultaneously useful to Users i, j (2 birds, 1 stone) for
(i, j) ∈ {(1, 2), (1, 3), (2, 3)}, and λ dimensions that are
of the type (3 birds, 2 stones), i.e., where transmission of
2 dimensions collectively satisfies 1 demand dimension for
every user. For this construction, let us first consider non-
negative integers λ123,λ12,λ13,λ23,λ that satisfy the con-
straints (21)-(24) specified in Theorem 2. Generalization of
λ123,λ12,λ13,λ23,λ to rationals is handled in Section VIII-E
and VIII-F.

Let us start with the (3 birds, 1 stone) component of the
construction, and for now let us focus on User 1. Some
adjustments will be necessary eventually to make the scheme
work for all 3 users. We wish to broadcast λ123 dimensions
for this (3 birds, 1 stone) component of our scheme, but it
remains to determine the actual information to be transmitted.
For this, let us recall Corollary 2, which guarantees that there

exists a submatrix of U123, namely U
(λ123)
123 ∈ Fd×λ123

qz , such
that the following matrix has full column rank,

rk([V′
1,U

(λ123)
123 ]) = m′

1 + λ123. (64)

Broadcasting XTU
(λ123)
123 would help User 1 acquire λ123

desired dimensions based on his side-information XT V′
1.

As a cautionary note, let us point out that this particular
U

(λ123)
123 which is useful for User 1 may not be useful for User

2 or User 3, i.e., [V′
k,U

(λ123)
123 ] may not have full column rank

for k = 2, 3. One can similarly find submatrices of U123 of
size (number of columns) λ123 that are useful for User 2, or
3 individually, but in general these will be different matrices.
In the end the challenge will be to find the same matrix that
is useful for all three users. For now we ignore this challenge
and proceed with only User 1 as our focus.

Next, consider the (2 birds, 1 stone) components, specif-
ically let us find λ12 dimensions within 〈U12〉, and another
λ13 dimensions within 〈U13〉 that will be useful to User
1, conditioned on the user’s side-information V′

1. Letting
A = [V′

1,U
(λ123)
123 ], B1 = U12 and B2 = U13 in Lemma 4,

we have a = m′
1 + λ123, r1|A = rk(U12 | V′

1)− λ123, r2|A =
rk(U13 | V′

1)− λ123, and r1,2|A = rk([U12,U13] | V′
1)− λ123.

Then according to Lemma 4, there exists a submatrix of U12,
namely, U(λ12)

12 ∈ Fd×λ12
qz , and a submatrix of U13, namely,

U
(λ13)
13 ∈ Fd×λ13

qz , such that the following matrix has full
column rank,

rk([V′
1,U

(λ123)
123 ,U

(λ12)
12 ,U

(λ13)
13 ]) = m′

1 + λ123 + λ12 + λ13.
(65)

Once again, note that these choices may not work for Users
2, 3, so that challenge remains to be overcome later.

Next, consider the (2 stones, 3 birds) component of the
scheme. Keeping our focus on User 1, let us find λ dimensions
of broadcast information from the subspace 〈U1(2,3)〉 that will
be useful for User 1. Since we only consider parameters that
satisfy the conditions in Theorem 2, which include in particu-
lar (24), it follows that λ ≤ rk(U1(2,3) | V′

1)−λ12−λ13−λ123

by definition. Letting A = [V′
1,U

(λ123)
123 ,U

(λ12)
12 ,U

(λ13)
13 ], B =

U1(2,3) in Corollary 2, we have a = m′
1 + λ123 + λ12 + λ13

and r = rk(U1(2,3) | V′
1) − λ12 − λ13 − λ123 ≥ λ. Then

Corollary 2 implies that there exists a submatrix of U1(2,3),
namely, U(λ)

1(2,3) ∈ Fd×λ
qz such that the following matrix has

full column rank,

rk([V′
1,U

(λ123)
123 ,U

(λ12)
12 ,U

(λ13)
13 ,U

(λ)
1(2,3)])

= m′
1 + λ123 + λ12 + λ13 + λ. (66)

Next, by letting A be the above matrix and B = U1 in
Corollary 2, we have a = m′

1 + λ123 + λ12 + λ13 + λ,
r = rk(U1 | V′

1)−(λ123+λ12+λ13+λ) = m1−(λ123+λ12+
λ13 + λ) ≜ t1. Then by Corollary 2, there exists a submatrix
of U1, namely, U(t1)

1 ∈ Fd×t1
qz such that the following matrix

has full column rank.

rk([V′
1,U

(λ123)
123 ,U

(λ12)
12 ,U

(λ13)
13 ,U

(λ)
1(2,3),U

(t1)
1 ]) = m1 +m′

1,

(67)
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which implies that it is a basis of 〈U1〉 since each column of
the matrix is in 〈U1〉.

Finally, in Corollary 2 let A be the matrix in (67) and B =
Id×d be the d × d identity matrix. We have a = m1 + m′

1

and r = d − m1 − m′
1. Then by Corollary 2, there exists a

submatrix of Id×d, namely, Z1 ∈ Fd×(d−m1−m′
1)

qz such that the
following d× d matrix has full rank.

rk([V′
1,U

(λ123)
123 ,U

(λ12)
12 ,U

(λ13)
13 ,U

(λ)
1(2,3),U

(t1)
1 ,Z1]) = d.

(68)

In particular, the determinant of the matrix is non-zero.
The following step allows a mixing of information, lead-

ing to a random-coding argument that will be important
to reconcile the users’ different perspectives. So consider
the following determinant, which is a polynomial in the
variables corresponding to the elements of the matrices
N123,N12,N13,M12,M13,M, while the remaining matrices
are fixed.

P1 = det
󰀃
[

m′
1󰁽󰂀󰁿󰁾

V′
1 ,

λ123󰁽 󰂀󰁿 󰁾
U123N123,

λ12󰁽 󰂀󰁿 󰁾
U12N12,

λ13󰁽 󰂀󰁿 󰁾
U13N13,

λ󰁽 󰂀󰁿 󰁾
U12M12 +U13M13 +B1(2,3)M,U

(t1)
1 ,Z1]

󰀄
(69)

The sizes of the variable matrices are specified below.

N123 : rk(U123)× λ123, N12 : rk(U12)× λ12,

N13 : rk(U13)× λ13, M12 : rk(U12)× λ,

M13 : rk(U13)× λ, M : rk(B1(2,3))× λ. (70)

We claim that P1 is not a zero polynomial. This is because we
can assign values to the variables such that the matrix in (69)
becomes identical to the constant matrix in (68), which has
non-zero determinant. Note that by Lemma 2, (P5) and (P8),
〈U1(2,3)〉 = 〈[B123,B12,B13,B1(2,3)]〉 = 〈[U12,U13,B1(2,3)]〉,
therefore, U(λ)

1(2,3) = U12M12+U13M13+B1(2,3)M for some
realization of M12,M13,M. Since there exists a non-zero
evaluation of P1 it cannot be the zero polynomial.

So far our discussion focused on User 1. Proceeding simi-
larly for Users 2 and 3 we arrive at corresponding polynomials
P2, P3 as shown below,

P2 = det([

m′
2󰁽󰂀󰁿󰁾

V′
2 ,

λ123󰁽 󰂀󰁿 󰁾
U123N123,

λ12󰁽 󰂀󰁿 󰁾
U12N12,

λ23󰁽 󰂀󰁿 󰁾
U23N23,

λ󰁽 󰂀󰁿 󰁾
−U12M12 +U23M23 +B2(1,3)M,U

(t2)
2 ,Z2]) (71)

P3 = det([

m′
3󰁽󰂀󰁿󰁾

V′
3 ,

λ123󰁽 󰂀󰁿 󰁾
U123N123,

λ13󰁽 󰂀󰁿 󰁾
U13N13,

λ23󰁽 󰂀󰁿 󰁾
U23N23,

λ󰁽 󰂀󰁿 󰁾
U13M13 +U23M23 +B3(1,2)M,U

(t3)
3 ,Z3]) (72)

that are similarly shown to be non-zero polynomials, in the
variables corresponding to the elements of the matrices N123,
N12, N13, N23, M12, M13, M23, M, with the following
remaining specifications in addition to those in (70).

M23 : rk(U23)× λ, N23 : rk(U23)× λ23, (73)

and

Z2 ∈ Fd×(d−m2−m′
2)

qz , (74)

Z3 ∈ Fd×(d−m3−m′
3)

qz , (75)

t2 ≜ m2 − (λ123 + λ12 + λ23 + λ), (76)

t3 ≜ m3 − (λ123 + λ13 + λ23 + λ). (77)

Note that the minus sign before U12M12 in (71) still allows
the entries of −M12 to be any element in Fqz , and thus we
can still evaluate the determinants individually to non-zero by
choosing appropriate elements in Fqz . Now since P1, P2 and
P3 are non-zero polynomials, their product P ≜ P1P2P3 is
also a non-zero polynomial in the variables corresponding to
the elements of the matrices N123, N12, N13, N23, M12,
M13, M23, and M. Furthermore, the polynomial P has a
degree D loosely (the loose bound suffices for our purpose)
bounded above as,

D ≤ 3d. (78)

By Schwartz-Zippel Lemma, if the elements of
N123,N12,N13,N23,M12,M13,M23,M are chosen
i.i.d uniformly from Fqz , then the probability of P
evaluating to 0 is not more than D

qz ≤ 3d
qz . Thus, by

choosing z > logq(3d), we ensure that there exist such
N123,N12,N13,N23,M12,M13,M23,M that produce
a non-zero evaluation of P , which implies that P1,
P2 and P3 are evaluated to non-zero simultaneously.
Recall that we previously found three constructions,
by identifying submatrices of subspace matrices, and
each such construction could only be guaranteed
to work for one user. The formulation based on
N123,N12,N13,N23,M12,M13,M23,M represents
essentially a generic solution for each user. Whereas
the original solutions comprised of specific submatrices
may not be compatible, the generic solutions turn out to
be compatible, as evident in the argument that P1, P2, P3

are simultaneously non-zero for appropriate choices of the
variables. This is essentially a random coding argument,
because it shows the existence of a good code among
randomly chosen possibilities.

With any such choice, we are able to construct the broadcast
symbol as follows.

S = XT [U123N123,U12N12,U13N13,U23N23, (79)
U12M12 +U13M13 +B1(2,3)M, (80)
−U12M12 +U23M23 +B2(1,3)M, (81)

U
(t1)
1 ,U

(t2)
2 ,U

(t3)
3 ]. (82)

With S, User 1 is able to obtain (using its side-information)

XT [V′
1,U123N123,U12N12,U13N13,

U12M12 +U13M13 +B1(2,3)M,U
(t1)
1 ], (83)

and thus compute XTU1, since the columns of the matrix to
the right of XT form a basis of 〈U1〉, guaranteed by the fact
that P1 has a non-zero evaluation. Similarly, User 2 is able to
obtain (with its side-information)

XT [V′
2,U123N123,U12N12,U23N23,
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−U12M12 +U23M23 +B2(1,3)M,U
(t2)
2 ], (84)

and thus compute XTU2, since the columns of the matrix on
the right of XT form a basis of 〈U2〉, guaranteed by the fact
that P2 has a non-zero evaluation.

User 3 first computes

XT (U12M12 +U13M13 +B1(2,3)M) (85)

+XT (−U12M12 +U23M23 +B2(1,3)M) (86)

= XT (U13M13 +U23M23 +B3(1,2)M) (87)

where we used (P20) from Lemma 2, i.e., B1(2,3)+B2(1,3) =
B3(1,2). Using its side-information, User 3 is then able to
obtain,

XT [V′
3,U123N123,U13N13,U23N23,

U13M13 +U23M23 +B3(1,2)M,U
(t3)
3 ]. (88)

Thus, it can compute XTU3, since the matrix on the right of
XT is a basis of 〈U3〉, guaranteed by the fact that P3 evaluates
to a non-zero value.

The cost of this broadcast S, as noted in Theorem 2, is
found as,

∆ = N/L (89)
= N/z (90)
= λ123 + λ12 + λ13 + λ23 + 2λ+ t1 + t2 + t3 (91)
= m1 +m2 +m3 − 2λ123 − λ12 − λ13 − λ23 − λ (92)
= rk(V1|V′

1) + rk(V2|V′
2) + rk(V3|V′

3)

− 2λ123 − λ12 − λ13 − λ23 − λ (93)

≜ f(λ123,λ12,λ13,λ23,λ). (94)

This implies that ∆∗ ≤ f(λ123,λ12,λ13,λ23,λ) if
λ123,λ12,λ13, λ23 and λ are non-negative integers subject
to the constraints specified in Theorem 2. Next let us show
that the arguments extend to rational λ• by a simple matrix
extension.

E. Matrix Extension

Technically, the choice of z > 1 that enables field extensions
in the achievable scheme, already amounts to vector coding,
because it requires joint coding of L = z symbols. However,
after the field extension, the solution presented above reduces
to a scalar coding solution over the extended field Fqz . This
formulation only allows integer values of λ• parameters.
However, it is quite straightforward to extend the scheme to
all rational values of λ• parameters (subject to the constraints
specified in Theorem 2) by a typical vector coding extension,
labeled here as a Matrix Extension to avoid confusion with
field extensions that also require L > 1. This is described
as follows. Recall that we are allowed to choose any L ∈ N
in the coding schemes, by letting L = L′z (meaning that
the computations are in Fqz and we jointly code for L′ such
computations), the ranks of all subspaces scale by L′ as the
data dimension increases by a factor of L′. Essentially, this
amounts to treating successive instances of the data vector
as new data dimensions. For example, consider the m = 1
dimensional computation of A + B over d = 2 dimensional

data (A,B), say over Fqz . Considering L′ = 2 instances, the
data becomes (A,B) = ((A(1), A(2)), (B(1), B(2)), and the
desired computation is A+B, which can also be interpreted
as mnew = 2 dimensional computations (A + C,B + D)
over dnew = 2d = 4 dimensional data (A,B,C,D) in
Fqz , by mapping ((A(1), A(2)), (B(1), B(2)) to (A,B,C,D).
A bit more formally, by considering L′ data instances as
one instance of L′d dimensional data (both in Fqz ), User
k ∈ [1 : 3] has side-information XTV′

k, which is equiv-
alent to vecT (X)IL

′×L′ ⊗ V′
k. User k wants to compute

vecT (X)IL
′×L′ ⊗Vk. The problem is then equivalent to that

with data X ∈ FL′d×1
qz , with coefficient matrices now changed

to I⊗V′
k, I⊗Vk, k = [1 : 3]. The signal spaces Uk are also

changed to I⊗Uk. Note that this is essentially different from
the field size extension presented in Section VIII-B, where the
dimensions of the coefficient matrices are not changed after
the extension, only the field size is changed. We refer to this
as the matrix extension, since the dimensions (sizes) of the
coefficient matrices scale by a factor of L′ (but the field size
remains unchanged). The ranks of Uk and V′

k also scale by L′,
as do the ranks of all subspaces considered in (21)-(24). Thus,
the RHS of all constraints in (21)-(24) scale by L′, implying a
similar scaling of the λ• parameters. Thus, all rational values
of λ• parameters can be transformed into integer values by
considering a matrix extension by a factor L′ where L′ is the
common denominator of the rational values.

F. Completing the Proof of Achievability

At this point we have the bound that ∆∗ ≤
f(λ123,λ12,λ13,λ23,λ) if λ123,λ12,λ13,λ23,λ are non-
negative rational numbers subject to the constraints specified
in (21)-(24). The final step of the achievability proof is to
recall [64], [65] that for any linear programming problem,
say max cTx, s.t. Ax ≤ b, x ≥ 0, if all the elements of
A,b, c are rational, and the optimal exists, then there exists an
optimizing x whose elements are also rational, and so is the
optimal value of the objective function. Note that in the linear
program in Theorem 2 all coefficients are indeed rational, in
fact the coefficients of λ• parameters in the constraints and
the objective are all either 0, 1 or 2, and the constants on
the RHS of the constraints (21)-(24) are conditional-ranks, so
they are integers as well, by definition. The feasible region
is a rational polytope, so all vertices are rational, and one
of the vertices must be optimal for a linear program over a
rational polytope. Therefore, there exist non-negative rational
values λ∗

123,λ
∗
12,λ

∗
13,λ

∗
23,λ

∗ that satisfy (21)-(24), for which
we we have f(λ∗

123,λ
∗
12,λ

∗
13,λ

∗
23,λ

∗) = F ∗. This gives us the
desired bound, ∆∗ ≤ F ∗. □

IX. MATCHING ACHIEVABILITY WITH CONVERSE:
F ∗ ≤ max{∆1,∆2}

The converse proof in Section VII established the lower
bound ∆∗ ≥ max{∆1,∆2}, whereas the achievability proof
in Section VIII established the upper bound ∆∗ ≤ F ∗. In this
section we show that the bounds are tight. To do so, we will
prove that F ∗ ≤ max{∆1,∆2}.
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Recall that, subject to the constraints (21)-(24), the linear
program in Theorem 2 finds

F ∗ = min
λ123,λ12,λ13,λ23,λ∈R+

m1 +m2 +m3

− 2λ123 − λ12 − λ13 − λ23 − λ (95)
= min

λ123,λ12,λ13,λ23,λ∈R+

f(λ123,λ12,λ13,λ23,λ). (96)

We will proceed with the proof in two steps. First, in Subsec-
tion IX-A, we manipulate max{∆1,∆2} into an equivalent
compact form. Then, in Subsection IX-B we show that in
all cases there exist feasible (λ123,λ12,λ13,λ23,λ) for which
f(λ123,λ12,λ13,λ23,λ) ≤ max{∆1,∆2} and therefore by
(96), we have F ∗ ≤ max{∆1,∆2}.

A. Equivalent Expression for ∆1,∆2 with Compact Notation

To avoid lengthy notation due to the repetitive use of
conditional ranks, let us introduce the following compact
forms.

r123 ≜ min
k∈[3]

rk(U123 | V′
k),

r12 ≜ min
k∈{1,2}

rk(U12 | V′
k),

r13 ≜ min
k∈{1,3}

rk(U13 | V′
k),

r23 ≜ min
k∈{2,3}

rk(U23 | V′
k),

r12,13 ≜ rk([U12,U13] | V′
1),

r12,23 ≜ rk([U12,U23] | V′
2),

r13,23 ≜ rk([U13,U23] | V′
3),

r1(2,3) ≜ rk(U1(2,3) | V′
1),

r2(1,3) ≜ rk(U2(1,3) | V′
2),

r3(1,2) ≜ rk(U3(1,2) | V′
3). (97)

It follows that,

r12,13 ≥ max{r12, r13},
r12,23 ≥ max{r12, r23},
r13,23 ≥ max{r13, r23}. (98)

Note that by these notations, the constraints (21)-(24) for λ•
can be equivalently posed as

(21) ⇐⇒ λ123 ≤ r123, (99)
(22) ⇐⇒ λij + λ123 ≤ rij ,

∀(i, j) ∈ {(1, 2), (1, 3), (2, 3)} (100)
(23) ⇐⇒ λij + λik + λ123 ≤ rij,ik,

∀(i, j, k) ∈ {(1, 2, 3), (2, 1, 3), (3, 1, 2)} (101)
(24) ⇐⇒ λ+ λij + λik + λ123 ≤ ri(j,k),

∀(i, j, k) ∈ {(1, 2, 3), (2, 1, 3), (3, 1, 2)} (102)

With these notations, we are able to express the ∆1,∆2 values
defined in Theorem 1 in the following equivalent forms. For
∆ijk

1 , we have

∆123
1 = rk(V1|V′

1) + rk(V2|V′
2) + rk(V3|V′

3)

− rk(U12|V′
2)− rk(U3(1,2)|V′

3) (103)

= rk(V1) + rk(V2) + rk(V3)

− rk(U12|V′
2)− rk(U3(1,2)|V′

3) (104)
= m1 +m2 +m3 − rk(U12|V′

2)− r3(1,2) (105)

where (104) is due to (63), and similarly

∆213
1 = m1 +m2 +m3 − rk(U12|V′

1)− r3(1,2) (106)

which implies that,

max{∆123
1 ,∆213

1 }
= m1 +m2 +m3 − r3(1,2)

−min{rk(U12|V′
1), rk(U12|V′

2)} (107)
= m1 +m2 +m3 − r12 − r3(1,2) (108)

≜ δ3 (109)

By taking the pairwise maximum of {∆132
1 ,∆312

1 } and
{∆231

1 ,∆321
1 } respectively, we similarly obtain δ1 and δ2 as

follows.

δ1 ≜ max{∆132
1 ,∆312

1 } = m1 +m2 +m3 − r23 − r1(2,3),
(110)

δ2 ≜ max{∆231
1 ,∆321

1 } = m1 +m2 +m3 − r13 − r2(1,3).
(111)

For ∆ijk
2 , first note that ∆123

2 = ∆132
2 . Thus, we have,

max{∆123
2 ,∆132

2 } = ∆123
2

= rk(V1 | V′
1) + rk(V2 | V′

2) + rk(V3 | V′
3)

− 1

2

󰀓
min
ℓ∈[3]

󰀃
rk(U123 | V′

ℓ)
󰀄

+ rk([U12,U13] | V′
1) + rk(U2(1,3) | V′

2)

+ rk(U3(1,2) | V′
3)
󰀔

(112)

= rk(V1) + rk(V2) + rk(V3)

− 1

2

󰀓
min
ℓ∈[3]

󰀃
rk(U123 | V′

ℓ)
󰀄

+ rk([U12,U13] | V′
1) + rk(U2(1,3) | V2)

+ rk(U3(1,2) | V′
3)
󰀔

(113)

= m1 +m2 +m3 −
1

2

󰀃
r123 + r12,13 + r2(1,3) + r3(1,2)

󰀄

(114)

≜ δ23 (115)

where (113) is due to (63). By taking the pairwise maximum
of {∆213

2 ,∆231
2 } and {∆312

2 ,∆321
2 } respectively, we similarly

obtain,

δ13 ≜ max{∆213
2 ,∆231

2 }

= m1 +m2 +m3 −
1

2

󰀓
r123 + r12,23 + r1(2,3) + r3(1,2)

󰀔
,

(116)

δ12 ≜ max{∆312
2 ,∆321

2 }

= m1 +m2 +m3 −
1

2

󰀓
r123 + r13,23 + r1(2,3) + r2(1,3)

󰀔
.

(117)

Thus, we have,

max{∆1,∆2} = max{δ1, δ2, δ3, δ12, δ13, δ23}. (118)
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The next step is to prove that F ∗ ≤
max{δ1, δ2, δ3, δ12, δ13, δ23}.

B. Proving F ∗ ≤ max{δ1, δ2, δ3, δ12, δ13, δ23}: Constrained
Waterfilling

By definition, F ∗ ≤ f(λ123,λ12,λ13,λ23,λ) for any
(λ123,λ12,λ13,λ23,λ) that satisfies (99)-(102). Therefore, it
suffices to show that

f(r123,λ12,λ13,λ23,λ
′) ≤ max{δ1, δ2, δ3, δ12, δ13, δ23},

(119)

where λ′ ≜ min{r1(2,3) − λ12 − λ13, r2(1,3) − λ12 −
λ23, r3(1,2)−λ13−λ23}−r123. In other words, we fix λ123 to
r123 and λ to λ′. It can be easily verified that λ123 = r123,λ =
λ′ are in the feasible region specified by (99)-(102). As will
be shown in the end, fixing λ123 = r123,λ = λ′ will not hurt
the optimality. It is also intuitive because λ123 corresponds to
the amount of transmission that has the highest efficiency (3
birds, 1 stone) so it should be set as large as possible to r123.
Then, λ = λ′ is also the largest possible we can set after λ123

is fixed to r123.
Setting λ123 and λ to these values (note that both values

are non-negative), the objective simplifies to the minimization
of,

f = m1 +m2 +m3 − 2r123 − λ12 − λ13 − λ23

−min{r1(2,3) − λ12 − λ13,

r2(1,3) − λ12 − λ23,

r3(1,2) − λ13 − λ23}+ r123 (120)
= (m1 +m2 +m3 − r123)󰁿 󰁾󰁽 󰂀

constant

−min{r1(2,3) + λ23, r2(1,3) + λ13, r3(1,2) + λ12}.
(121)

We focus on the remaining three parameters, λ12,λ13 and λ23.
Note that minimization of f is equivalent to the maximization
of the minimum of the three terms: r1(2,3)+λ23, r2(1,3)+λ13,
and r3(1,2)+λ12. Intuitively, this optimization may be seen as
a constrained waterfilling problem. To make the connection
to waterfilling clear, let us further introduce the following
notation.

b1 ≜ r1(2,3), wmax
1 ≜ r23 − r123, (122)

b2 ≜ r2(1,3), wmax
2 ≜ r13 − r123, (123)

b3 ≜ r3(1,2), wmax
3 ≜ r12 − r123, (124)

w1 ≜ λ23, wmax
1,2 ≜ r13,23 − r123, (125)

w2 ≜ λ13, wmax
1,3 ≜ r12,23 − r123, (126)

w3 ≜ λ12, wmax
2,3 ≜ r12,13 − r123. (127)

With this notation, the optimization problem becomes

maxmize hmin ≜ min{b1 + w1, b2 + w2, b3 + w3}, (128)

s.t.

󰀻
󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰀿

󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰀽

w1 ≤ wmax
1 ,

w2 ≤ wmax
2 ,

w3 ≤ wmax
3 ,

w1 + w2 ≤ wmax
1,2 ,

w1 + w3 ≤ wmax
1,3 ,

w2 + w3 ≤ wmax
2,3 .

w1, w2, w3 ∈ R+

(129)

Let us explain the waterfilling analogy. There are three

b1

b2

b3

w1

w2

w3

hmin

Fig. 5: Constrained Waterfilling.

adjacent vessels as shown in Figure 5, labeled 1, 2, 3 from
left to right. Vessels 1, 2, 3 have base levels (shown in gray)
at heights b1, b2, b3, respectively. We are allowed to add
w1, w2, w3 amounts of water to Vessel 1, Vessel 2 and Vessel
3, respectively according to the constraints (129), in order to
maximize hmin, i.e., the minimum of the heights of water in
the three vessels. The objective from (121) now maps to the
waterfilling problem as,

f = m1 +m2 +m3 − r123 − hmin. (130)

Note that the first three constraints in (129) are constraints
on the capacity (for holding water) of individual vessels, and
the next three constraints are for pairs of vessels. Furthermore,
we have max{wmax

1 , wmax
2 } ≤ wmax

1,2 by (98), which ensures
that the pairwise capacity constraints do not dominate the
individual capacity constraints. Since the only constraints are
on individual vessel capacities and pairwise vessel capacities,
the optimal value of hmin must correspond to one of the
following outcomes.

1) hmin is limited by the individual capacity of Vessel i,
i ∈ {1, 2, 3}, which holds the maximum water it can,
wi = wmax

i . In this case, hmin = bi + wmax
i and F ∗ ≤

f = m1 +m2 +m3 − r123 − hmin = δi.
2) hmin is limited by the pairwise capacity of Vessels i, j,

(i, j) ∈ {(1, 2), (1, 3), (2, 3)}, which together hold the
maximum water they can, i.e., wi + wj = wmax

i,j , and
have the same final water level hmin. In this case, we
have (hmin − bi) + (hmin − bj) = wmax

i,j which gives us

hmin =
bi+bj+wmax

i,j

2 and F ∗ ≤ f = m1 + m2 + m3 −
r123 − hmin = δij .

Thus, in every case we have F ∗ ≤
max{δ1, δ2, δ3, δ12, δ13, δ23} = max{∆1,∆2}, which
completes the proof. □

X. CONCLUSION

The exact capacity of the 3 user LCBC is found for all cases,
i.e., for arbitrary finite field Fq , arbitrary data dimension d, and
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arbitrary specifications of the users’ desired computations and
side-information V′

k,Vk. The 3 user setting introduces several
intricacies that were not encountered in the 2 user LCBC,
such as the insufficiency of the entropic formulation for tight
converse bounds, the need for functional submodularity, the
rich variety of subspaces involved, random coding arguments
to resolve discrepancies between the users’ differing views of
the same subspaces, the tradeoffs between the communication
efficiencies associated with these subspaces, and the inherent
optimization that led us to a constrained waterfilling solution.
The fact that the 3 user LCBC capacity turns out to be fully
tractable despite these intricacies is surprising. In particular,
we note that even though the 3 user LCBC involves at least
6 key subspaces in Vk,V′

k, k ∈ {1, 2, 3}, the solution did
not require the Ingleton inequality, nor were non-Shannon
inequalities required for the converse. Instead, the main tools
used were Steinitz Exchange lemma, the dimension counting
of pairwise unions and intersections of subspaces, functional
submodularity, and the random coding argument invoked
through the Schwartz-Zippel lemma. The tractability of the
3 user LCBC is indicative of the potential for further progress
in understanding the fundamental limits of basic computation
networks in future efforts. Indeed, there are many promising
directions for future work. Building on the K = 2 and K = 3
cases, the K = 4 user LCBC in particular is an important next
step, as it might either reveal a consistent pattern that holds for
arbitrary K users or present obstacles that are indicative of the
difficulty of the large K setting. Also of interest are asymptotic
LCBC settings with large number of users. An intriguing gen-
eralization of the LCBC problem is the LCBC with partially
informed server, LCBC-PIS in short, where the central server
has only limited knowledge of the data in the form of some
linear functions of the data. The LCBC-PIS setting has been
introduced and solved recently for K = 2 users in [66]. The
capacity remains open for K ≥ 3 users. Studies of linear com-
putation multiple access settings (LCMAC) represent another
promising research avenue, partially explored in [38] from
a coding perspective. Approximate linear computations over
real or complex numbers, as well as non-linear computations
that connect to coded distributed computing represent other
challenging and important research directions for future work.
From a practical perspective, studies of computational and
communication tradeoffs of AR/VR applications that take ad-
vantage of the coding schemes discovered through the studies
of LCBC/LCMAC settings would be valuable complements to
the theoretical efforts.

APPENDIX A
FIELD EXTENSION

To clarify the notation and illustrate the utility of field
extensions, let us present an example. Consider q = 2,K =
3, d = 2,m = m′ = 1 and the following coefficient matrices
Uk = [V′

k,Vk], k ∈ [3] as

U2×2
1 =

󰀗
1 0
0 1

󰀘
, U2×2

2 =

󰀗
0 1
1 1

󰀘
, U2×2

3 =

󰀗
1 1
1 0

󰀘
. (131)

By the problem formulation, x ∈ F2×1
2 denotes the data

for each computation, and X ∈ F2×L
2 denotes the data for

L computations. Let us first try to design a coding scheme
with L = 1. Denote XT = [x1(1), x2(1)] and then W′

1 =
XTV′

1 = x1(1), W1 = XTV1 = x2(1), W′
2 = XTV′

2 =
x2(1), W2 = XTV2 = x1(1) + x2(1), W′

3 = XTV′
3 =

x1(1) + x2(1), W3 = XTV3 = x1(1). The following table
shows all possible outcomes of (W′

k,Wk)k∈[3].

x1(1) x2(1) W′
1 W1 W′

2 W2 W′
3 W3

0 0 0 0 0 0 0 0
0 1 0 1 1 1 1 0
1 0 1 0 0 1 1 1
1 1 1 1 1 0 0 1

A coding scheme must satisfy the property that for any two
outcomes, the broadcast information S corresponding to these
outcomes has to be different if ∃k ∈ [3] such that W′

k is
the same but Wk is different for these two outcomes. This
is necessary to ensure that User k will not be confused when
decoding under these two outcomes. Following this rule it is
easy to verify from the table that the realization of S has to be
different for any two outcomes in this example, which implies
S has to be different in all outcomes. Thus, |S| ≥ 4, which
implies N ≥ 2 and thus ∆ = N/L ≥ 2 for L = 1. In other
words, scalar coding schemes cannot achieve ∆ < 2.

Let us now consider field extension. Let z = 2 and consider
L = z = 2. Denote V̄′

k = V′
k ⊗ I2×2, V̄k = Vk ⊗ I2×2 and

Ūk = Uk⊗I2×2 as the 2-extension of the coefficient matrices,
where ⊗ denotes the Kronecker product. We have

Ū4×4
1 = [V̄′

1, V̄1] =

󰀵

󰀹󰀷

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

󰀶

󰀺󰀸 ,

Ū4×4
2 = [V̄′

2, V̄2] =

󰀵

󰀹󰀷

0 0 1 0
0 0 0 1
1 0 1 0
0 1 0 1

󰀶

󰀺󰀸 ,

Ū4×4
3 = [V̄′

3, V̄3] =

󰀵

󰀹󰀷

1 0 1 0
0 1 0 1
1 0 0 0
0 1 0 0

󰀶

󰀺󰀸 . (132)

Then denote X = [x1(1), x1(2);x2(1), x2(2)] as the data
matrix for L = 2, and denote X̄ = vec(XT ), where
vec(·) is the vectorization function. We have X̄T =
[x1(1), x1(2), x2(1), x2(2)] ∈ F1×4

2 . We can see that User k
has side-information X̄T V̄′

k, and wants to compute X̄T V̄k.
Then by the property of finite field extensions, we can regard
[x1(1), x1(2)] as x̄1 ∈ F4 and similarly [x2(1), x2(2)] as
x̄2 ∈ F4. Accordingly, the extended coefficient matrices are
regarded as 2× 2 matrices in F4 as

U2×2
1 =

󰀗
1 0
0 1

󰀘
, U2×2

2 =

󰀗
0 1
1 1

󰀘
, U2×2

3 =

󰀗
1 1
1 0

󰀘
. (133)

Note that the matrices are exactly the same as the matrices in
(131) but considered in the extended field F4. To avoid com-
plex notations, we redefine the data matrix as X = [x̄1; x̄2] ∈
F2×1
4 . Thus, by considering L = 2 computations, we have an

equivalent problem where q = 4, d = 2,m = m′ = 1 and the
same coefficient matrices Uk = [V′

k,Vk], k ∈ [3], but now
all elements are from F4. As a coding scheme with L = 2, it
suffices to send S = XT [1;α], where α ∕∈ {0, 1} and α ∈ F4.
Since the column vector [1;α] is linearly independent of each
of V′

1,V
′
2,V

′
3, each user has two independent equations in
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XT from which it can decode all of X, and recover the desired
Wk. Since S is chosen as 1 symbol from F4, we have N = 2
(1 symbol in F4 corresponds to 2 symbols in F2) and thus
∆ = N/L = 1, thus a better ∆ = N/L is achieved by
considering L > 1.

In general, by considering L = z computations, the original
problem is equivalent to the problem with all the same parame-
ters including the coefficient matrices but in the extended field
Fqz . By considering z computations in the original problem
as 1 computation in the extended field, the original problem
over Fq for L = zL′ computations, is equivalent to the new
problem with the same parameters in the extended field Fqz

for L′ computations.

APPENDIX B
SOME DISCUSSION ON LEMMA 2

As we go to 3 spaces, 〈U1〉, 〈U2〉, 〈U3〉, generalizing the
decomposition for 〈U1〉 and 〈U2〉 as in Lemma 1 is not
so straightforward. Analogies to set-theoretic ideas such as
inclusion-exclusion principle and Venn’s diagrams do not quite
work for 3 vector spaces. For example, if 〈U1〉, 〈U2〉, 〈U3〉 are
three independent lines in a plane, i.e., pairwise independent
one-dimensional subspaces of a 2 dimensional vector space,
then 〈U1〉 has no non-trivial intersection with either of 〈U2〉
or 〈U3〉 individually, yet 〈U1〉 is contained in 〈[U2,U3]〉,
a situation for which there is no direct set-theoretic anal-
ogy. This is why we need the subspace decomposition for
〈U1〉, 〈U2〉, 〈U3〉, as illustrated in Figure 3 and formalized in
Lemma 2. As noted, the decomposition parallels a correspond-
ing decomposition in the DoF studies of the 3 user MIMO
BC by Wang in [55], highlighting its fundamental conceptual
significance.

Following the idea of growing the basis to cover larger
and larger subspaces, similar to the constructive proof for
Lemma 1, let us interpret Figure 3, so that Lemma 2 will
be intuitively transparent. Consider the space 〈U1〉, i.e., the
column space of U1. This space is decomposed into 5
subspaces as follows. First we have the space within 〈U1〉
which overlaps with both 〈U2〉 and 〈U3〉. This is the space
〈U123〉 ≜ 〈U1〉 ∩ 〈U2〉 ∩ 〈U3〉. The basis for this space is
labeled in the figure as the matrix B123. Now consider the
space within 〈U1〉 which overlaps with 〈U2〉. This is the space
〈U12〉 ≜ 〈U1〉∩〈U2〉. The basis for this space is [B123,B12].
Note that 〈U123〉 ⊂ 〈U12〉, which is also reflected in the
fact that the basis for 〈U12〉 explicitly contains the basis for
〈U123〉. It is important to recall that the columns of a basis
matrix must be linearly independent by definition. Therefore,
not only do we have a basis [B123,B12] for 〈U12〉, but also
by the linear independence of the basis vectors, it follows that
〈U12〉 is decomposed into two independent subspaces, namely
the subspaces 〈B123〉 and 〈B12〉. This can also be expressed
as4 a direct sum, i.e., 〈U12〉 = 〈B123〉 ⊕ 〈B12〉. Similarly,
〈U13〉, i.e., the intersection of 〈U1〉 and 〈U3〉 is decomposed
into independent subspaces 〈B123〉 and 〈B23〉, i.e., 〈U13〉 =

4For vector spaces V,V1, · · · ,VK , we have V = V1 ⊕ V2 ⊕ · · · ⊕ VK

iff for every v ∈ V , there exist unique vk ∈ Vk for all k ∈ [K] such that
v = v1 + v2 + · · ·+ vK .

〈B123〉⊕ 〈B13〉. Continuing the process further, now consider
the space within 〈U1〉 which overlaps with 〈[U2,U3]〉, i.e.,
the space denoted as 〈U1(2,3)〉. As indicated in the figure,
the basis for this space is [B123,B12,B13,B1(2,3)], which
immediately decomposes 〈U1(2,3)〉 into 4 independent sub-
spaces, i.e., 〈U1(2,3)〉 = 〈B123〉 ⊕ 〈B12〉 ⊕ 〈B23〉 ⊕ 〈B1(2,3)〉.
Finally, consider all of 〈U1〉, for which Figure 3 identifies the
basis as the matrix [B123,B12,B13,B1(2,3),B1c], thus com-
pleting the decomposition of 〈U1〉 into 5 disjoint subspaces,
〈U1〉 = 〈B123〉⊕ 〈B12〉⊕ 〈B23〉⊕ 〈B1(2,3)〉⊕ 〈B1c〉. Similar
decompositions apply to 〈U2〉 and 〈U3〉 as well.

The description thus far is similar to set-theoretic decom-
positions into disjoint sets, as one might represent through
disjoint regions in a Venn’s diagram. This brings us to the
most interesting aspect of the 3-subspace decomposition,
highlighted as the yellow regions with dashed boundaries in
Figure 3. The subspaces corresponding to these three regions,
namely 〈B1(2,3)〉, 〈B2(1,3)〉, and 〈B3(1,2)〉 are only pairwise
independent, and the span of the union of any two of them
contains the third. In fact, it is always possible to choose
the basis matrices such that B1(2,3) + B2(1,3) = B3(1,2),
which will simplify the construction of the coding scheme.
Thus, Figure 3 shows 10 subspaces, including the 3 subspaces
highlighted in yellow, and if we exclude any one of the 3
yellow subspaces, the remaining 9 are independent spaces.
Mathematically,

〈[U1,U2,U3]〉
= 〈B1(2,3)〉 ⊕ 〈B2(1,3)〉 ⊕ 〈B1c〉 ⊕ 〈B2c〉 ⊕ 〈B3c〉

⊕ 〈B12〉 ⊕ 〈B23〉 ⊕ 〈B13〉 ⊕ 〈B123〉 (134)
= 〈B2(1,3)〉 ⊕ 〈B3(1,2)〉 ⊕ 〈B1c〉 ⊕ 〈B2c〉 ⊕ 〈B3c〉

⊕ 〈B12〉 ⊕ 〈B23〉 ⊕ 〈B13〉 ⊕ 〈B123〉 (135)
= 〈B3(1,2)〉 ⊕ 〈B1(2,3)〉 ⊕ 〈B1c〉 ⊕ 〈B2c〉 ⊕ 〈B3c〉

⊕ 〈B12〉 ⊕ 〈B23〉 ⊕ 〈B13〉 ⊕ 〈B123〉 (136)

APPENDIX C
PROOF OF LEMMA 2: DECOMPOSITION OF

〈U1〉, 〈U2〉, 〈U3〉
Let us begin by informally summarizing the key facts that

are used extensively in this section.
1) A matrix M forms a basis of the column-space of a

matrix U , if and only if 〈U〉 ⊂ 〈M〉 and the number
of columns of M is equal to rk(U). Note that a basis
matrix must have full column-rank, i.e., all its columns
are linearly independent, and it has only as many columns
as needed to span 〈U〉, i.e., rk(U) columns.

2) If A ∈ Fd×a
q and B ∈ Fd×b

q are basis matrices (i.e.,
they each have full column-rank) and 〈B〉 ⊂ 〈A〉, then
there exists a matrix C ∈ Fd×(a−b)

q such that [B,C] is
a basis of 〈A〉. It follows that 〈C〉 ⊂ 〈A〉. Let us call C
the complement of B in A and denote it as C = A\B.
Note that such C is not unique, and one feasible choice
of such C follows from the Steinitz Exchange Lemma,
which produces a C that is a submatrix of A. Other
feasible choices of C can be constructed as follows.
Denote Cold as the choice from the Steinitz Exchange
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Lemma. Other feasible choices can be constructed as
Cnew = ColdR + BR′, where R ∈ F(a−b)×(a−b)

q ,
R′ ∈ Fb×(a−b)

q and R is invertible. To see this, first
note that Cnew has the same size as Cold. Then note that
any v ∈ 〈A〉 can be represented as v = Brb + Coldrc
because [B,Cold] is a basis of 〈A〉. It follows that
v = B(rb −R′R−1rc)+CnewR−1rc, which implies that
v ∈ 〈[B,Cnew]〉.

3) Also recall the dimension formula (15), i.e., rk(M1) +
rk(M2) = rk(M1 ∩M2) + rk([M1,M2]).

We will now construct the 10 bases that are mentioned in
Lemma 2, collectively referred to as B.

B = {B123,B12,B13,B23,B1(2,3),B2(1,3),B3(1,2),

B1c,B2c,B3c}

First, let us define the compact notation, b∗ ≜ rk(B∗) where

∗ ∈ {1, 2, 3, 12, 13, 23, 1(2, 3), 2(1, 3), 3(1, 2), 1c, 2c, 3c}.

For example, b1(2,3) ≜ rk(B1(2,3)). Since the vector space is
d-dimensional, and B∗ are basis matrices, it follows that the
size of B∗ is d×b∗. The construction now proceeds as follows.

Step 1: B123 = U123.
Step 2: B12 = U12\B123.
Step 3: B13 = U13\B123.
Step 4: B23 = U23\B123.

These four steps are direct applications of the Steinitz Ex-
change Lemma, which also guarantees that properties (P1)
- (P4) are satisfied. Next let us prove that (P5) - (P7) are
also satisfied. Consider (P5). It follows from the construction
that [B123,B12,B13] spans 〈[U12,U13]〉 because it explicitly
contains the bases for both spaces, but we wish to show
that it is itself a basis, i.e., it has full column-rank. Now,
since [B123,B12,B13] has b123 + b12 + b13 columns and
rk([U12,U13]) = rk(U12) + rk(U13) − rk(U123) = (b123 +
b12) + (b123 + b13)− b123 = b123 + b12 + b13, it follows that
[B123,B12,B13] has full column rank. Thus, (P5) is satisfied.
(P6) and (P7) are similarly proved by symmetry. We continue
the construction of B.

Step 5: B1(2,3) = U1(2,3)\[B123,B12,B13].
Step 6: B2(1,3) = U2(1,3)\[B123,B12,B23].
Step 7: B3(1,2) = U3(1,2)\[B123,B13,B23].
Step 8: B1c = U1\[B123,B12,B13,B1(2,3)].
Step 9: B2c = U2\[B123,B12,B23,B2(1,3)].
Step 10: B3c = U3\[B123,B13,B23,B3(1,2)].

Again, Steps 5-10 are applications of the Steinitz
Exchange Lemma, which implies that [B123,B12,
B13,B1(2,3), B1c] is a basis of 〈U1〉, [B123,B12,B23,
B2(1,3),B2c] is a basis of 〈U2〉, and [B123,B13,
B23,B3(1,2),B3c] is a basis of 〈U3〉. Furthermore,
[B123,B12,B13,B23,B2(1,3),B3(1,2),B2c,B3c] is a basis of
〈[U2,U3]〉 because it spans 〈[U2,U3]〉 by construction, and
has full column-rank because

rk([U2,U3]) (137)
= rk(U2) + rk(U3)− rk(U23) (138)
= (b123 + b12 + b23 + b2(1,3) + b2c)

+ (b123 + b13 + b23 + b3(1,2) + b3c)

− (b123 + b23) (139)
= b123 + b12 + b13 + b23 + b2(1,3) + b3(1,2) + b2c + b3c

(140)

which happens to be the number of columns of
[B123,B12,B13,B23,B2(1,3),B3(1,2),B2c,B3c]. Thus,
(P14) - (P16) are satisfied.

Next let us show that (P17) - (P19) are satisfied. Consider
(P17), i.e., we wish to show that B17 ≜ [B123,B12,B13,B23,
B1(2,3),B2(1,3),B1c,B2c,B3c] is a basis for 〈[U1,U2,U3]〉.
First let us show that 〈[U1,U2,U3]〉 is contained in the span
of B17. From (P11), (P12) note that the basis for 〈U1〉 is
explicitly contained in B17, and so is the basis for 〈U2〉. Then,
noting that 〈B3(1,2)〉 ⊂ 〈[U1,U2]〉 by its construction in Step
7, it follows from (P13) that 〈U3〉 is also contained in the span
of B17. Thus, 〈[U1,U2,U3]〉 is contained in the column-span
of B17. Next let us show that B17 has only as many columns
as rk([U1,U2,U3]), so it must be a basis.

rk([U1,U2,U3]) (141)
= rk([U1,U2]) + rk(U3)− rk(U3(1,2)) (142)
= (b123 + b12 + b13 + b23 + b1(2,3) + b2(1,3) + b1c + b2c)

+ (b123 + b13 + b23 + b3(1,2) + b3c)

− (b123 + b13 + b23 + b3(1,2)) (143)
= b123 + b12 + b13 + b23 + b1(2,3) + b2(1,3)

+ b1c + b2c + b3c (144)

which is the number of columns of B17. Thus, (P17) is
satisfied, and by symmetry (P18) and (P19) are satisfied as
well.

At this point, only (P20) remains to be shown. It is
worthwhile to note that we always have,

b1(2,3) = b2(1,3) = b3(1,2). (145)

This is because properties (P17)-(P19) together imply that
b1(2,3) + b2(1,3) = b1(2,3) + b3(1,2) = b2(1,3) + b3(1,2) and thus
the three components must be equal. If b1(2,3) = b2(1,3) =
b3(1,2) = 0, then (P20) can be neglected. Otherwise, we
continue the process from Step 11.

Step 11: Since 〈B3(1,2)〉 ⊂ 〈[U1,U2]〉 as noted above, let
us uniquely represent B3(1,2) in the basis of 〈[U1,U2]〉
according to (P14) as,

B3(1,2) = B123R1 +B12R2 +B13R3 +B23R4

+B1(2,3)R5 +B1cR6 +B2(1,3)R7 +B2cR8 (146)

where R1 to R8 are Fq matrices with appropriate sizes. In
particular, from (145) it follows that R5 and R7 are square
matrices. A key goal in the remainder of the proof will be to
show that R5 and R7 are invertible.

First we claim that R6 and R8 must be zero matrices.
We prove this by contradiction. Suppose R6 is not the zero
matrix, say its first column is a non-zero vector r, then
B1cr ∕= 0 will lie in 〈[U2,U3]〉. However, by construc-
tion, rk(B1c ∩ [U2,U3]) = rk(B1c ∩ U1 ∩ [U2,U3]) =
rk(B1c∩U1(2,3)) = 0, meaning that 〈B1c〉 and 〈[U2,U3]〉 are
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independent spaces. This completes the proof by contradiction,
confirming that R6 is a zero matrix. Similar argument is true
for R8 due to symmetry. Thus, we have

B3(1,2) = B123R1 +B12R2 +B13R3 +B23R4

+B1(2,3)R5 +B2(1,3)R7. (147)

We now claim that R5 and R7 have full column rank, i.e., they
are invertible square matrices. The proof is by contradiction as
well. Suppose R5 does not have full column rank, then there
exists a non-zero vector ‘a’ such that R5a = 0, which then
implies that

(B3(1,2) −B123R1 −B13R3 −B23R4)󰁿 󰁾󰁽 󰂀
∈〈U3〉

a

= (B12R2 +B2(1,3)R7)󰁿 󰁾󰁽 󰂀
∈〈U2〉

a ≜ b. (148)

Since B3(1,2),B123,B13,B23 are disjoint submatrices of the
basis matrix for 〈U3(1,2)〉 according to (P10), they are linearly
independent by construction. It follows that,

1) (B3(1,2)−B123R1−B13R3−B23R4) has full column-
rank equal to b3(1,2). This is because if on the contrary,
there exists a non-zero vector z such that (B3(1,2) −
B123R1 − B13R3 − B23R4)z = 0, then B3(1,2)z ∈
〈[B123,B13,B23]〉. Since B3(1,2) has full column rank
and z ∕= 0, this means 〈B3(1,2)〉 has non-trivial inter-
section with 〈[B123,B13,B23]〉, contradicting their linear
independence.

2) (B3(1,2) − B123R1 − B13R3 − B23R4)a ≜ b ∕= 0,
because of the previous observation and because a is a
non-zero vector.

3) b ∕∈ 〈[B123,B23]〉 = 〈U23〉, because if b ∈
〈[B123,B23]〉 then the non-zero vector B3(1,2)a = b +
B123R1a + B13R3a + B23R4a ∈ 〈[B123,B23,B13]〉,
which is a contradiction because B3(1,2),B123,B13,B23

are linearly independent.
4) b ∈ 〈U3〉. This follows from (148). Specifically, since

B3(1,2),B123,B13,B23 are all submatrices of the basis
matrix for 〈U3〉 according to (P13), and b is their linear
combination, this implies that b ∈ 〈U3〉.

5) b ∈ 〈U2〉. This also follows from (148) by similar
reasoning.

6) From enumerated items 4 and 5 above, we have, b ∈
〈U2〉 and b ∈ 〈U3〉, and thus b ∈ 〈U2〉∩〈U3〉 = 〈U23〉,
which contradicts item 3.

The contradiction proves the desired result that R5 has full
column rank, i.e., it is an invertible square matrix. Similarly
we can prove that R7 has full column rank, also an invertible
square matrix. The last three steps hinge on this property.

Step 12: Redefine B3(1,2) as

Bnew
3(1,2) = Bold

3(1,2) −B123R1 −B13R3 −B23R4.

(149)

Step 13: Redefine B2(1,3) as

Bnew
2(1,3) = Bold

2(1,3)R7 +B12R2. (150)

Step 14: Redefine B1(2,3) as

Bnew
1(2,3) = Bold

1(2,3)R5. (151)

Since R5 and R7 are invertible square matrices, it follows
by (P6) and (P7) that Bnew

1(2,3), Bnew
2(1,3) and Bnew

3(1,2) are also
feasible choices in Steps 5,6, and 7. Thus, (P8)-(P19) are still
satisfied after B1(2,3), B2(1,3) and B3(1,2) are replaced with
Bnew

1(2,3),B
new
2(1,3),B

new
3(1,2), respectively. However, because of the

last three steps and (147), (P20) is now satisfied as well with
Bnew

1(2,3),B
new
2(1,3),B

new
3(1,2), i.e.,

Bnew
3(1,2) = Bnew

2(1,3) +Bnew
1(2,3). (152)

This concludes the proof of Lemma 2. □

APPENDIX D
COMPARISON OF LEMMA 2 TO THE CHANNEL

DECOMPOSITION OF [55]

Reference [55, Chapter 3] explores the DoF of a 3 user
MIMO broadcast channel where the transmitter has m an-
tennas, and the kth receiver has nk antennas, k ∈ [3]. The
channel is specified by Y1 = H1X+Z1, Y2 = H2X+Z2 and
Y3 = H3X + Z3, where X ∈ Cm×1 denotes the input of the
channel and Yk ∈ Cnk×1, k ∈ [3] denotes the output of the
broadcast channel at the kth receiver. Hk ∈ Cnk×m, k ∈ [3]
denotes the channel matrix between the transmitter and the
kth receiver. Z1, Z2 and Z3 are independent Gaussian noise
vectors with zero mean and identity covariance matrix. There
are independent messages desired by various subsets of re-
ceivers. As apparent from the high level description, the overall
3 user MIMO BC DoF question does not allow any direct
mapping to our 3 user LCBC capacity question, e.g., the LCBC
formulation has no notion of channel matrices, all users receive
the same broadcast symbols, whereas the MIMO BC problem
has no notion of side-information or linear computations.

What connects the two problems is that they both involve a
decomposition of 3 subspaces. In the LCBC, the 3 subspaces
of interest are 〈U1〉, 〈U2〉, 〈U3〉 as in Lemma 2. In the
MIMO BC the corresponding subspaces are 〈N1〉, 〈N2〉, 〈N3〉,
defined as the null spaces of the channel matrices HT

1 , HT
2 ,

HT
3 , respectively. The decompositions parallel each other very

closely. Intuitively, even though the context surrounding these
subspaces is quite different in each problem, the subspaces
are similar mathematical objects, so it makes sense that they
should have similar properties, e.g., similar decompositions.
The following table establishes a one-to-one correspondence of
the subspace decompositions in the two settings. The notation
in the right column of the table follows the definitions in [55].

A distinction is apparent in the first and last rows of
the table. According to the first row, [55] assumes that the
three subspaces have empty intersection, whereas Lemma 2
accounts for this space with the basis representation B123.
On the other hand, according to the last row, Lemma 2
assumes the complement of the span of three subspaces is
empty, whereas [55] accounts for this space with the basis
representation V123. This distinction arises mainly because
in the LCBC setting the complement of span of the three
spaces is uninteresting (data dimensions that are neither known
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Lemma 1 [55]
Field Fq C

Dimension of universe d m
3 subspaces to decompose 〈U1〉, 〈U2〉, 〈U3〉 〈N1〉, 〈N2〉, 〈N3〉

Corresponding Bases

B123 ∅
B12 V3

B13 V2

B23 V1

B1(2,3) V23X

B2(1,3) V13X

B3(1,2) V12X

B1c V23R

B2c V13R

B3c V12R

∅ V123

TABLE I: Correspondence between Lemma 2 and the channel
decomposition in [55]

nor desired by any user), whereas in the MIMO BC the
intersection of the three nullspaces is similarly uninteresting
(transmit dimensions that are nulled at every receiver), and
each problem naturally eliminates the uninteresting spaces for
simplicity. The distinction is not significant, however, since
the omitted spaces can be trivially included. A bit more
significant distinction that is not apparent from the table is that
as an additional feature, Lemma 2 chooses the basis matrices
B1(2,3),B2(1,3),B3(1,2) carefully to satisfy the matrix-sum
condition B1(2,3) +B2(1,3) = B3(1,2), which facilitates code
design in the LCBC. Such an explicit specialization of bases
is not considered by the corresponding construction in [55].
Setting aside these finer distinctions, it is quite remarkable
that the subspace decompositions in [55] and Lemma 2,
obtained independently in different contexts, turn out to be
in one-to-one correspondence. The one-to-one correspondence
constitutes strong evidence of the fundamental significance
of the decomposition, as well as a verification of the same
concept from two perspectives.

While the two decompositions are intuitively similar, there
are several underlying technical details that prevent the direct
application of the decomposition in [55] to the LCBC problem.
Note that the proof in [55, Sec. 3] relies on the existence of
an orthogonal complement, i.e., a linear subspace that is both
orthogonal and complementary to a given linear subspace. The
existence of an orthogonal complement is guaranteed over C,
but not over Fq . For instance, self-orthogonality is a promi-
nent theme in error correction code design over finite fields.
Removing the requirement of orthogonality and just using
any complement space instead does not automatically resolve
the issue, because the complement space needs to be chosen
carefully to achieve the correct alignment of spaces. The
orthogonality of the complement space helps to achieve the
desired alignment in the proof of [55, Sec. 3]. Over Fq , since
we are not guaranteed orthogonal complements, this choice
is non-trivial). This is important because the alignment aspect
of subspaces (any two subspaces contain the third) is what
makes the subspace decomposition non-trivial. Furthermore,
the proof of correctness of the subspace decomposition in [55,
Sec. 3] applies to almost all spaces, since the argument relies
on the values taken by ranks almost surely. Over arbitrary Fq ,

an ‘almost-surely’ guarantee is not meaningful. Indeed, the
proof of correctness of the decomposition is shown for all
realizations in Lemma 2.5

Let us introduce a simple setup to further illustrate these
points. Consider the following three (complex) channel matri-
ces H1, H2, H3.

H1 =

󰀗
1 0 0
0 1 0

󰀘
, H2 =

󰀅
0 0 1

󰀆
, H3 =

󰀗
1 1 0
0 0 1

󰀘
.

(153)

Denote N (A) as the nullspace of A, i.e., the set of X such
that AX = 0. Let Nk, k ∈ {1, 2, 3} be a basis (written in
columns vectors) of N (Hk), i.e.,

N1 =

󰀵

󰀷
0
0
1

󰀶

󰀸 , N2 =

󰀵

󰀷
1 0
0 1
0 0

󰀶

󰀸 , N3 =

󰀵

󰀷
1
1
0

󰀶

󰀸 . (154)

Let 〈A〉 denote the linear subspace spanned by the columns
of A. For example, 〈N1〉 = N (H1). A ∩ B denotes a basis
that spans the subspace 〈A〉 ∩ 〈B〉. In addition, if 〈A〉 is a
subspace of 〈U〉, then let A⊥

U denote a basis of the intersection
of N (AT ) with 〈U〉. It follows that ATA⊥

U = 0 and rk(A) +
rk(A⊥

U ) = rk(U). Note that for A defined in C, [A,A⊥
U ] spans

〈U〉. Thus, A⊥
U is the ‘orthogonal complement’ of A (within

the subspace 〈U〉). In particular, 〈A〉 and 〈A⊥
U 〉 have no non-

trivial intersection. However, this is not always true in finite
fields, e.g, A = [1, 1]T ∈ F2×1

2 , and A⊥ = [1, 1]T = A.
Using the same notation as in [55, Sec. 3], let us define

H123 ≜

󰀵

󰀷
H1

H2

H3

󰀶

󰀸 =

󰀵

󰀹󰀹󰀹󰀹󰀷

1 0 0
0 1 0
0 0 1
1 1 0
0 0 1

󰀶

󰀺󰀺󰀺󰀺󰀸
,

H12 ≜
󰀗
H1

H2

󰀘
, H13 ≜

󰀗
H1

H3

󰀘
, H23 ≜

󰀗
H2

H3

󰀘
. (155)

With these definitions, let us apply the decomposition
method in [55, Sec. 3.4.6] on N1, N2, N3. A summary of the
steps is given below.

1) Find V1 = N2 ∩N3 as a basis of N (H23).
2) Find V2 = N1 ∩N3 as a basis of N (H13).
3) Find V3 = N1 ∩N2 as a basis of N (H12).
4) Find V13 as a basis of the orthogonal complement of

〈[V1, V3]〉 within 〈N2〉.
5) Find V23 as a basis of the orthogonal complement of

〈[V2, V3]〉 within 〈N1〉.
6) Find V12 as a basis of the orthogonal complement of

〈[V1, V2]〉 within 〈N3〉.
7) Find independent bases V13X , V12X , V12R, V13R, V23R by

(3.43) - (3.47) of [55].
By Steps 1-3,

V1 = N2 ∩N3 =
󰀅
1 1 0

󰀆T
, (156)

V2 = N1 ∩N3 = [ ], (157)

5It is noteworthy that the proof of Lemma 2 also extends to the field of
complex numbers. The proof is based on linear independence/dependence of
subspaces which holds over both Fq and C.
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V3 = N1 ∩N2 = [ ]. (158)

At this point, note that the next step, which is to construct V13

does not work. According to [55] (3.38),

V13 = (HT
123H123)

−1HT
123(H123[V1, V3])

⊥
H123N2

, (159)

but (HT
123H123) is not invertible although H123 has full

column rank 3. This is because the orthogonal complement of
H123 has nontrivial intersection with itself. This can happen
in Fq but not in C.

Alternatively, if we use the implicit definition, [55, (3.37)],
we may avoid the inversion of HT

123H123, but a similar
problem will again emerge. [55, (3.37)] requires that

H123V13 = (H123[V1, V3])
⊥
H123N2

, (160)

which is a basis of the orthogonal complement of
〈H123[V1, V3]〉 within the subspace 〈H123N2〉. Note that

H123[V1, V3] =
󰀅
1 1 0 0 0

󰀆T
(161)

and

H123N2 =

󰀗
1 1 0 0 0
1 0 0 1 0

󰀘T
. (162)

It is readily verified that the only solution to
(H123[V1, V3])

⊥
H123N2

= [1, 1, 0, 0, 0]T . Therefore, we
obtain that H123V13 = [1, 1, 0, 0, 0]T . This gives us
V13 = [1, 1, 0]T = V1, which is linearly dependent on V1.
However, V13 is required to be linearly independent of V1 in
Step 4.

Next let us consider Step 7. At a high level, the mo-
tivation of Step 7 is that the three spaces V13, V12 and
V23 are not independent in general and therefore a finer
decomposition is needed. In [55], 6 subspaces are intro-
duced, namely V13X , V13R, V12X , V12R, V23X , V23R, so that
[V13X , V13R] spans 〈V13〉, [V12X , V12R] spans 〈V12〉, and
〈[V23X , V23R]〉 spans 〈V12〉. Note that these subspaces iden-
tified by the algorithm have such properties that

• [V13X , V13R, V12X , V12R, V23R] are independent and span
〈[V13, V12, V23]〉. Besides, [V∗∗X , V∗∗R] spans 〈V∗∗〉, for
∗∗ ∈ {13, 12, 23}.

• In addition, V23X is linearly representable by
[V13X , V12X ], i.e., 〈V23X〉 ⊂ 〈[V13X , V12X ]〉. Also,
〈V12X〉 ⊂ 〈[V13X , V23X ]〉 and 〈V13X〉 ⊂ 〈[V12X , V23X ]〉.

• V13X , V12X , V23X are aligned in a way such that
〈H1V13X〉 = 〈H1V12X〉, 〈H2V12X〉 = 〈H2V23X〉 and
〈H3V13X〉 = 〈H3V23X〉.

The critical alignment is the second one, i.e., we need
V13X , V12X , V23X such that each one is contained in the span
of the other two. Let us see what happens if we replace the
‘orthogonal complement’ space (which may not exist over Fq)
with any ‘complement’ space (which do exist over Fq). The
following toy example shows that simply replacing ‘orthogonal
complement’ with ‘any complement’ may not work. Suppose
we are given,

N1 =

󰀵

󰀷
1 0
0 1
0 0

󰀶

󰀸 , N2 =

󰀵

󰀷
1 0
1 1
0 1

󰀶

󰀸 , N3 =

󰀵

󰀷
1
1
1

󰀶

󰀸 , (163)

with entries all defined in F2. It follows by definition that,

V1 = N2 ∩N3 = [ ], V2 = N1 ∩N3 = [ ],

V3 = N1 ∩N2 =

󰀵

󰀷
1
1
0

󰀶

󰀸 . (164)

Next, say we choose the complements (not necessarily orthog-
onal) as,

V13 =

󰀵

󰀷
0
1
1

󰀶

󰀸 , V12 =

󰀵

󰀷
1
1
1

󰀶

󰀸 , V23 =

󰀵

󰀷
0
1
0

󰀶

󰀸 , (165)

so that [V1, V3, V13] span 〈N2〉, [V1, V2, V12] span 〈N3〉, and
[V2, V3, V23] span 〈N1〉. Such an attempt to translate Steps
1 – 6 to the finite field case does not work because now
we see that [V1, V2, V3, V13, V12, V23] are not linearly inde-
pendent. In particular, with this choice there is no non-trivial
V13X , V23X , V12X so that any one is contained in the span
of the other two. What this shows is that the complement
spaces V13, V12, V23 need to be chosen carefully. The proof
in [55] does not face this problem, because orthogonal spaces
and complement spaces are compatible for complex numbers
and therefore calculations of orthogonal complements help to
identify the appropriate V13, V12, V23. Over Fq this does not
work. Fortunately, there does exist a solution to [V13, V12, V23]
so that such non-trivial V13X , V23X , V12X can be found (see
Steps 11–14 in Appendix C for the details of this key aspect
of the proof in the general case). Indeed, with a more careful
choice of subspaces we have,

V13 =

󰀵

󰀷
0
1
1

󰀶

󰀸 , V12 =

󰀵

󰀷
1
1
1

󰀶

󰀸 , V23 =

󰀵

󰀷
1
0
0

󰀶

󰀸 , (166)

V13X =

󰀵

󰀷
0
1
1

󰀶

󰀸 , V12X =

󰀵

󰀷
1
1
1

󰀶

󰀸 , V23X =

󰀵

󰀷
1
0
0

󰀶

󰀸 , (167)

and then

V13R = V12R = V23R = [ ]. (168)

Thus, following our proof we successfully found the
V13X , V13R, V12X , V12R, V23X , V23R that satisfy the desired
(first two) properties described in Step 7.
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