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Source-independent full waveform inversion of seismic ct.ata 

Ki Ha Lee* and Hee Joon Kim** 

ABSTRACT 

A rigorous full waveform inversion of seismic data has been a challenging subject 
primarily because of the lack of precise knowledge of the source. Conventional approaches 
involve some form of approximations to the source, so the inversion results are bound to be 
subject to the quality involved in the source approximation. The full waveform inversion 
methodology proposed and demonstrated in this paper does not require ~ource information, 
therefore, the potential error involved in source estimation is eliminated. Seismic trace is first 
Fourier transformed in its entirety into the frequency domain and transfer functions are 
obtained. The transfer function is dimensionless, normalized frequency response and is 
complex. Normalization is done with any one data at arbitrary position among the data set. 
The transfer function is then shown to be uniquely defined as the normalized impulse 
response provided that a certain condition is met for the source. It is this property that allows 
construction of the proposed inversion algorithm without the source information. The 
algorithm'minimizes misfits between data transfer function and the model transfer function. 
The methodology is applicable to any 3-D seismic problems, and damping can be easily 
included in the process. A proof of concept of the proposed approach has been successfully 
demonstrated using a simple 2-D scalar problem. 

INTRODUCTION 

It is common practice in seismic industry that the velocity structure is estimated by 
analyzing the traveltime of the seismic signal. In crosshole and surface-to-borehole 
applications, typical approach involves ray tracing in which the ray may be straight or curved 
depending on the degree of resolution desired, and more recently the Fresnel volume 
approach. The traveltime approach is fundamentally of high-frequency approximation with 
its maximum resolution on the order of a wavelength (Sheng and Schuster, 2000), or a 
fraction (5%) of the well separation in some practical cases. Furthermore, the usefulness of 
the result obtained from the ray tomography may be limited if the objective is to better 
understand the petrolophysical and hydrological 'properties' of the soil and rock; an 
increasingly important subject in characterizing petroleum and geothermal reservoirs and the 
enviro~mental application of varying scales. 

A better alternative to the traveltime approach appears to be the full waveform 
inversion. A number of recent studies on this subject (Sen and Stoff a, 1991; Kormendi and 
Dietrich, 1991; Minkoff and Symes, 1997; Zhou et al, 1997; Plessix and Bork, 1998; Pratt, 
1999-a, 1999-b, to list a few) suggests that the full waveform inversion may provide 
improved resolution of the velocity and density structures. Furthermore, the amplitude and 
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the phase of the waveform are, together, sensitive to the intrinsic energy loss of the 
propagating wave through dispersion, and to the petrophysical property of the material 
through which the wave propagates. Therefore, the full waveform analysis seems to be an 
attractive tool in investigating hydrological and petrophysical properties of the medium. To 
get to the full waveform inversion, however, there is one major difficulty to overcome. In all 
field applications, the effective source waveform and the coupling of the medium with the 
source and the receiver are not very well understood. The problem can be resolved to some· 
extent with a good velocity approximation (Pratt, 1999-a), but in general, the measured signal 
cannot be properly calibrated, rendering the full waveform inversion a technical challenge. 

In this paper we propose and describe a methodology to overcome this difficulty 
using the 'transfer function' approach. The transfer function described in the next section is 
completely independent of the actual source function, and it is this unique property that 
makes the proposed approach feasible. The propo·sed method allows the full waveform 
inversion without the knowledge of the transmitted waveform. If and when one desires to 
know the actual source function, the proposed method provides a deterministic means to 
reconstruct the source function once the inversion is earned out successfully. 

TRANSFER FUNCTION 

Without loss of generality, let us assume a. field survey involving NT transmitter 
positions and NG receiver positions of arbitrary configurations. In acquiring data, 
configuration of source and receiver deployment is important part of survey design for 
successfully achieving the desired objective of the survey. The proposed full waveform 
inversion scheme is general in that any arbitrary configuration is acceptable; surface or single 
borehole reflection, surface-to-borehole or borehole-to.:surface (VSP), or crosshole. In 
developing an inversion scheme for full 3-D problems using the transfer function, we require 
a full tensor measurement; three component measurements at each receiver position for each 
one of three transmitting events at each source position. The data may be in the form of 
pressure, displacement, velocity or acceleration, and may be described in general as 

(1) 

The superscript d indicates data and each_ constituent in this equation is a ( 3 x 3) tensor. It 

simply states that the data D~ (t) recorded at the j-th receiver position are multiple 

convolution of the actually transmitted sourceS; (t) that includes source system function and 

the radiation pattern caused by source-medium coupling, the impulse response Pj7 (t) of the 

medium at thej-th receiver due to the i-th source, and the receiver system function R/t) 

including the medium-receiver coupling. In the following analysis we will drop R/t) 

assuming that receiver (geophone) calibration is known and the effect of medium-receiver 
coupling to data is relatively minor compared to that ofthe source waveform. The source 
function S;(t) is in general not well understood, and this is an ongoing research by itself in 

order to improve the quality of data interpretation. The impulse response Pj7 (t) is the 

solution to the governing differential equation with an impulse source in time at the i-th 
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position. If we Fourier transform equation (1), FT {(D,S,P) (t)} ~ (D,S,P) ( m), with the 

Rj(t) term neglected, we get 

D~;(m) = S; (m )Pf; (m). (2) 

The data in the frequency domain contains all information the time series has, Longitudinal 
and transverse waves of primary arrivals followed by events of converted modes, multiple 
reflections, and all other scattering waves caused by heterogeneities. Equation (2) simply 
states that data is the impulse response of the medium weighted by the source spectrum. In 
describing elements of individual tensors, let l = (1, 2, 3) define field components in 
Cartesian coordinate and k =(a, b, c) define three source events .. We next assume that each 
event of k = (a, b, c) in tum consists of three unknown Cartesian components. The data at the 
j-th receiver position, equation (2), may then be described as 

dl~ji 
d;bji 

d;bji 

d l dlcji 

d;cji. (w), 
dd . 
. 3cji . 

due to the sources (three events k =a, b, and c) at the i-th position 

(3) 

(4) 

Notice that if the events are made to align closely to the Cartesian components, the source 
matrix will be diagonally dominant. The tensor impulse response of the medium relating the 
diagonal impuise source at the i-th transmitter position to the measurements at thej-th 
receiver position may be written as · 

d 
PI2ji 

d. 

P22j; 
d 

PJ2ji 

(5) 

In defining the data transfer function,. we first select the reference point, say j = 1. 
The tensor data transfer function is now defined by the data atj = 1- NG, normalized by that 
of the reference point 
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·d 
tl2ji 

d 
t22ji 

d 
t32ji 

(6) 

where the convention of the subscriptsfcir the tni.riSfer function is the same as that used for 
impulse response. In equation (6) the source term cancels out itself, sci the transferfunction 
is defined as the normalized impulse response of the medium; hence the uniqueness of the 
transfer function. The necessary condition for the source tenn to cancel out is that the 
determinant of the source matrix· is non-zero. In other words, three source events need to be 
linearly independent. This condition can be met,in piin.ciple, even if source events consist of 
explosionsas long as their Cartesian constituents are linearly independent. 

In this procedure we assumethatfor each source, i = l- NT,NG measurements are 
made simultaneously. If for some reason all NG data cannot be taken simultaneously, a 
simultaneous data set may be simulated if neighboring subsets share at least one overlapping 
·receiver position. Since we do not know the medium, the impulse response itself is not 
known either at this point. · · · 

FULL WAVEFORM INVERSION USING TRANSFERFU:NCTION 

To obtain the numerical solution for the impulse response for sca:lar and elastic wave 
equations one needs to spatially discretize the constitutive parameters, and apply finite 
difference, finite element, or integralequatiori technique to solve the. discretized system. 

·Using the finite difference or finite element method, the assembledsystem of equations, 
including the damping, takes a general form (Marlurt; 1984) 

MP{t) +.CP (t) +Kp(t) =g8(t), (7) 

where the field vector p ( t) is the discretiz~d wavefield, M is the ma~s matrix, K is the 
. . . . ·. 

stiffness matrix, and Cis the damping matrix. Ifthere is a total ofNunknowns in. the 
distretization, all M, C, and K are Ni<N square matrices, the field 'vectorp is · N x l, and the 
load vector g is also N x 1 whose entries are all zero except for 1 s at the source locations. 
Boundary condition is included implicitly. 

. . 

The reduced system of equations may be solved in the time domain, typically using 
the coupled first-order differential equationson a staggered grid (Virieux, 1984 and 1986; 
Levander, 1988; Randa:ll, 1989; Yomogida and Etgen, 1993; Graves; 1996), or in the 
frequency. domain (Pratt, .1990; Pratt and Worthington; 1990; Song and Williamson, 1995; 
Song et aL, 1995; Prattet aL, 1998) after Fourier transforming equation (7), 
FT{p(t)} ~ p (w}, into· 

-alMp (cv) +icvCp( m) + Kp (m} = g . (8) 
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Next, we will show that the transfer function defined by equation (6) is all that's 
needed for the full waveform inversion. In the inversion the objective functional typically 
consists of data misfit, and the misfit in transfer function can be used just for that purpose. 
For a given model one can generate synthetic data using equation (8), and then obtain the 
model transfer function similar to the data transfer function described by equation (6). 
Formally, the synthetic impulse response at thej-th receiver due to the i-th source may be 
obtained and designated as P; (OJ) , 

[ . p'('zji p~"] P!Iji 

P; (m) = p~ji .m 
p§ji (m). (9) Pzzj; 

m 
P3Iji p32ji P33ji . 

where the superscript m indicates model. Accordingly, the model transfer function is 
obtained from the numerical solution for the given velocity model 

m 
t!2ji 

(10) 

The inversion procedure starts with the misfit, with the subscripts to the transfer 
functions dropped 

(11) 

The misfit between data and model transfer functions at the reference point is always zero 

(t1~1;- t1~ 1 ; = 0.0). In setting up the data misfit real and imaginary parts are separated, so the 

actual number of data used for the inversion is NEQ = 2xNFREQxNTx(NG -l)x9, and the 
computation is done in real arithmetic. The variable NFREQ is the total number of 
frequencies. The matrix Wd is an NEQxNEQ weighting matrix representing the relative 

importance of each data. 

For inversion we consider Gauss-Newton method by first expanding the objective 
functional, equation (11), into a Taylor series (Bertsekas, 1982; Tarantola, 1987; Oldenburg 
et al., 1993; to list a few) 

(12) 

Here, y m is an M x1 column matrix consisting of elements { d¢ , p = 1 - M} with M being 
. dm . p 

the total number of parameters to be determined, and is compactly written as 
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and Hm is an Mx.M square matrix(weighted and constrained Hessian) consisting of 

elements { cl¢J , p,q=1- M} written as 
amqamp 

The last term is literally interpreted as the changes in the partial derivative of data (transfer 
function in this case) due to changes in the velocity. This term is small if either the residuals 
are small, or the forward differential equation is quasi linear (Tarantola, 1987). Furthermore, 
it is usually difficult to compute, so is generally dropped. For each frequency and source the 
sensitivity function (Jacobian) J is a {2 x (NG-1) x 9}x M rectangular matrix; {2 x (NG-1) x 
9} because real and imaginary parts have been separated for each of 9 tensor elements. For 
example, for the i-th source and a fixed frequency, the entries to the Jacobian corresponding 
to the j-th receiver and the p-th parameter may be obtained as 

(
lp,l,k,(2*j-l),iJ=( real )-a-m. l k=l2 3 

• • tlkjl, ' ' ' ' 
J p,l ,k ,(2• j),i tmagmary amp 

(13) 

with 

_i_tm =_a_ P'!/cj; = _l_(aPt7ji _ P~; api7li J· i = 1 _ NT· 1. = 2 _ NG· p =1-M. 
a 1/qt a m m a m a ' ' . ' 

mP mP Ptkii PJkii mP . · Ptkli mP . .·· 

Evaluation of the partial derivatives of transfer function is straightforward because it only 
requires the partial derivatives of the model impulse response, which in tum may be obtained 
from the forward model results using equation (8). This feature is the essence of this paper; a 
rigorous full waveform inversion of seismic data can be done,.and it does not require the 
knowledge of the actual source waveform. The partial derivatives with respect to model 
parameters can be efficiently evaluated, but will not be discussed here because the subject is 
beyond the scope of this paper. 

The functional that will be minimized consists of the misfit, equation (12), and a 
constraint that will have a smoothing effect on the variation of the model in the updating 
process. Specifically, it may be written 

(14) 

where A, is the· Lagrange multiplier that controls relative importance of data misfit and the 
behavior of the parameter variation, and Wm an Mx.M controlling matrix. When the matrix 

is diagonal it has an effect of keeping the parameter from changing from the current one. On 
the other hand, if the matrix represents a gradient operator its effect is to spatially smooth out 
. the changes. Minimization of functional ( 14) with respect to perturbation in model parameter 
results in a system of normal equations 
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(15) 

from which the model parameter at the (k+l)-th iteration is updated to 

The iteration stops when the change in parameter is below a preset tolerance, typically given 
in terms of root mean square (rms). 

CONSTRUCTION OF SOURCE FUNCTION 

Once the inversion is successful, the functional description of the actual source 
waveform can be established using deconvolution. Specifically, the deconvolution can be 
achieved by dividing the data with the impulse response of the synthetic model that has been 

_obtained through the inversion process. From equation (2), the deconvolution tensor may be 
estimated to be 

clbji 

c2bji 

c3bji 

(16) 

Notice that the elements of the impulse response of the model P; (co) are independent of the 

source events (a, b, c), but the elements of the deconvolution tensor C ji (co) are related to the 

source events. If the data and the inversion process were exact, the deconvolution function 

C ji (co) is actually the frequency spectrum of the source, and it must be identiCal for all 

receiver position. Since neither the data nor the inversion process is exact, the source 
function may be obtained by taking a statistical mean of the deconvolution function at 
different receiver positions. For example the first element of the source fu11ction in equation 
(4) may be estimated usingthe root mean square approach 

(17) 

Since the function C ji (co) itself is complex the averaging process has to be in amplitude and 

phase, or real and imaginary parts, separately. Inverse Fourier transforming, 

FT-1 {S; (co)}~ S; (t}, one obtains the source function in time 

(18) 
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Note that each one of three events (a, b, c), for example s ai (t) = { S1a;, s2a;, s3a;} T ( t), will 

produce complete description of the source at the transmitter location i as a function of time. 
The function S; (t) describes the source at the i-th transmitter position that would most likely 

have produced data D~ (t), j = 1- NG , shown in equation (1 ). The reconstructed source 

function is the effective source at the time of the event and it will include spatial and 
temporal radiation patterns as well. 

FULL WAVEFORM INVERSION OF 2-D ACOUSTIC VELOCITY 

The proposed inversion scheme has been tested using a simple 2-D acoustic model. 
Let us consider the impulse response governed by a 2-D acoustic wave equation in the 
frequency domain 

(19) 

where the impulse response p isthe scalar pressure wavefield, v the velocity, and (x,,x.) 
receiver and source positions. The source is a 2-D Kronecker's delta function in space, and is 
also a delta function at t = 0 in the time-domain formulation. A finite-element modeling 
(FEM) scheme is used to generate the synthetic impulse response. The model parameter is 
the acoustic velocity in each of the rectangular elements used for the FEM solution. 
Following the procedure described in the previous section, the scalar synthetic transfer 
function is obtained from the numerical solution for the given velocity model 

(20) 

The inversion procedure starts with an objective functional, equation (14), reduced to 
handle scalar problem. The number of equation is NEQ = 2 x NFREQ x NT x (NG -1), and 
the computation is done in real arithmetic. Related sensitivity functions are 

with 

(

] p,(2* j-l),i J ( real ) a m 

lp,(2*j),i = imaginary amp tji 

The model used for the test is a broken dipping fault in a background of 3000 m/s 
constant velocity. The fault consists of a 6 m thick low velocity (2500 rnls) layer overlain by 
another 6 m thick high velocity (3500 m/s) layer. A crosshole configuration is used for the 
exercise, with the borehole at x = -45 m for the transmitter (Tx) borehole and the other at x = 
45 m for the receiver (Rx) borehole. A total of 2lline sources are used with an equal vertical 
separation of 9 m, and same number of receivers and separation for the receivers. For each 
source pressure wavefields computed at 21 receiver positions have been normalized by the 
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first pressure wavefield, resulting in 21 transfer functions. The number of frequencies used is 
10; starting from 10Hz to 100Hz, linearly separated by 10Hz. The shortest wavelength in 
the background is 30m, so the maximum resolution is expected to be on the order of 7 to 8 m 
if we take into account of the wavelength as a measure of resolution. Using the numerical 
solution of the model as synthetic data, the inversion was started with an initial model of 
2850 m/s uniform whole space. A grid of uniform cell size, 3 m by 3 m, has been used 
throughout. The inversion domain is 120 m by 180m, containing a total of 2400 velocity 
parameters. 

The size of the matrix from equation (15) is relatively modest for the test model, so 
we solved it using QR decomposition with successive Householder transformations. The 
Lagrange multiplier A is automatically selected in the inversion process. It starts with 
executing a given number, say nl, of inversions using nl different multipliers that are spaced 
appropriately. The same Jacobian is used at this step. As a result nl updated parameter sets 
are produced, followed by nl forward model calculations resulting in nl data misfits. Among 
these, we choose the model and parameter A giving the lowest data misfit. 

To demonstrate the validity of the proposed inversion scheme, we first carried out 
conventional inversion using impulse response, and the result is shown in Figure I b. By 
what we mean conventional, we assume that the source waveform is known, so data can be 
reduced to impulse response and inversion is carried out using the impulse response. 
Separate from this, we also obtained velocity structure using transfer function approach and 
the result is shown in Figure I c. In this exercise we used nl =3 in each iteration to select 
parameter update and Lagrange multiplier. After 5 iterations, two results appear almost 
identical. Slight difference may have been due to the fact that the transfer function approach 
has one less data than the impulse response approach because one data was used to normalize 
the others. The behaviors of the rms are similar too. Figure 2 shows the comparison in rms 
with impulse response and with transfer function. Note that the Lagrange multiplier also 
changes as iteration is continued. There is room for improvements in the quality of inversion 
by using higher frequency data and denser deployment of transmitters and receivers, but the 
main objective seems to have been achieved. 

Ia lb lc 
hho!o Axholo 

0 · 0· 

" ,,. 
" 

30 :JO · "' -:J<ioo 
<5 · r= -- <5 -

60 · 
3300 

60 · 

75 · 3200 75 · 

I 90 JOOO 90 90 -

•os 

~ 
2800 •os 

120 · 
2700 

,20 

"' '" 
•so >300 •so - •so 

(mls) 

"' 165 · "' 
•eo •so - •eo -

-60 ·<15 -30 "" 0 " 30 45 60 -60 -45 -30 
_,, 

0 " "' 45 60 ·60 -<5 ·:JO 
_, 

0 ,, 30 " 60 

x{m) :.< (m) x (m) 

Fig. I. Comparison of full waveform inversion results using a fault model in a background of 
3000 m/s constant velocity: Ia) A 2-D velocity model. !b) Inversion result using impulse 
response. !c) Inversion result using transfer function. 
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Fig. 2. Convergence in rms misfits and associated Lagrange multiplier as a function of 
iteration during the full waveform inversion. 

CONCLUSIONS 

An innovative, rigorous full waveform inversion scheme has been proposed and the 
validity of the scheme successfully demonstrated using a simple 2-D synthetic model. The 
highlight of the proposed scheme is that full waveform inversion of seismic data can be 
accomplished without the source information, taking advantage of the useful property of the 
transfer function. Under proper combination of sources and receivers the transfer function is 
shown to be uniquely determined in terms of the normalized impulse response. The 
methodology is easily extended to include general 3-D problems. As an important byproduct, 
it has also been shown that the source function can be reconstructed once the full waveform 
inversion is completed. The reconstructed source function describes the effective source, not 
the source system output, at the time of event, including spatial and temporal radiation 
patterns. 
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